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Abstract

In this paper, we study a distributionally robust optimization approach to chance-constrained
stochastic programs to hedge against uncertainty in the distributions of the random parameters.
We consider a general polyhedral ambiguity set under finite support and study Wasserstein am-
biguity set, total variation distance ambiguity set, and moment-based ambiguity set as examples
for our computations. We develop a decomposition-based solution approach to solve the model
and take advantage of mixing inequalities to develop custom feasibility cuts. A probability cut
framework is also developed to handle the distributionally robust chance constraint. Finally,
we present a numerical study to illustrate the effectiveness of the proposed formulations and
showcase our results for the chosen ambiguity set examples.

Keywords: Distributionally robust optimization, Chance-constrained programming, De-
composition algorithm, Cutting planes

1 Introduction

The success or failure of a supply chain is determined by customer satisfaction. To enhance customer
satisfaction, businesses are endeavoring to optimize the performance of their supply chains by
designing a robust and resilient [11, 14]. Such a supply chain allows for the synchronization of
supply to meet fluctuations in demand, both peaks and troughs [44]. According to [43], retailers
globally suffered a loss of $1.1 trillion because of demand uncertainty.

Demand uncertainty refers to the unpredictability of customer demand for products or services
provided by the buyer. Factors such as consumer preferences, competition, and economic fluctua-
tions contribute to this uncertainty [4]. In such volatile market conditions, where businesses must
prioritize customer satisfaction, it is pragmatic to take into account the impact of uncertainties
on supply chain planning to mitigate their effects [36]. While advanced techniques like time se-
ries analysis have been developed to enhance forecasting precision, uncertainties in demand are
inevitable due to the constantly evolving market conditions [54]. Overestimating uncertainties can
lead to overly cautious decisions, unnecessarily compromising the objective function. Moreover,
striving to guarantee feasibility for all possible uncertainty scenarios may also result in excessively
conservative decisions. As a result, deterministic models are incapable of offering optimal strategies
when faced with demand uncertainty.

Recognizing these facts, there is a necessity to develop decision-making models that account for
uncertainty. These models operate under the assumption that the decision-maker possesses some
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level of information regarding the uncertain demand. This information could entail knowledge
of the entire distribution governing these uncertain inputs or, at the very least, the mean and
standard deviation of the random demand. Historical data can be leveraged to generate estimates
of future demand, which can then inform decision-making processes. In recent decades, numerous
such approaches have been suggested to tackle uncertainty, with chance-constrained programming
emerging as notably prominent.

Chance-constrained programming (CCP) is a powerful tool for decision-making under uncer-
tainty. Instead of satisfying all system constraints due to the inherent uncertainty in the model, it
aims to satisfy the system constraints with high probability. Thus, by specifying a minimum prob-
ability for satisfying a constraint, decision-makers can hedge against risk while minimizing costs.
The study of CCP has a rich history dating back to the 1950s, with seminal works by [8, 35, 40].
In terms of supply chain management, CCP has been implemented in many past studies. A CCP
model is studied in [3] for a production planning problem under demand and price uncertainties
and in [45] for a network design problem under demand uncertainty. Similar model is studied for an
inventory management problem in [19], where the authors consider a chance constraint to enforce
the probability that an inventory shortage occurs during the planning horizon is limited to a max-
imum acceptable risk level. A risk-averse objective by using a risk measure, such as Conditional
Value-at-Risk (CVaR), is considered in some studies to handle the risk of high cost. For example,
the authors in [13] develop a CCP model with risk-averse objective, using CVaR risk measure, for
a network design problem under demand uncertainty. There are some studies that consider a two
stage stochastic programming (2SP) model which consists of decision-making in two stages and the
observation of some random event taking place in between. The first stage decision must be made
before the realization of the random parameter. While, the second stage decisions are made as
recourse actions based on the realized value random parameter. For example, a chance-constrained
2SP model is studied for a network design problem in [41] considering supply uncertainty. Similar
chance-constrained 2SP models has been studied in [12, 30, 34, 58].

However, the numerical processing of chance constraints is computationally very hard. The first
difficulty in handling CCPs is that calculating the joint probability may require a multidimensional
integration. A commonly used approach to handle this issue is sample average approximation
(SAA). SAA offers a promising solution to mitigate these challenges by studying an approxima-
tion of the optimization problem with probabilistic constraints in which the original distribution of
the underlying random vector is replaced with an empirical distribution obtained from a random
sample [5, 7, 32, 38]. Consistency results show that the optimal value and optimal solutions of
the approximate problem converge to their optimal deterministic counterparts as the sample size
goes to infinity. SAA allows us to reformulate CCPs as deterministic optimization problems that
can be solved using standard optimization techniques. The deterministic reformulation of CCPs
that result from the SAA approach can be reformulated as a deterministic equivalent model by
introducing big-M coefficients and adding additional binary variables. The resulting MIP refor-
mulation is weak in general as it introduces big-M constraints. However, it can be strengthened
by adding valid inequalities obtained from the so-called mixing set substructure [28, 33]. Com-
bining decomposition-based methods and cutting plane techniques, [33] propose a branch-and-cut
decomposition algorithm for solving a two-stage chance-constrained program, where the recourse
decisions incur no additional costs.

The second difficulty of solving CCPs is due to the nonconvexity of the feasible region of CCP.
There has been a great deal of work in developing tractable methods to construct a good feasible
solution. One such method is inner approximation approach which deals with developing a deter-
ministic safe convex approximation, i.e., a tractable convex set that is an inner approximation to
the chance constraint set. A chance constraint is equivalent to a VaR constraint. Since CVaR is an
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approximation of VaR, we may consider an approximation scheme for chance constraint by replacing
it with a CVaR constraint [39, 42]. An obvious advantage of using CVaR approximation is that the
constraint function is convex. Another inner approximation approach is Bernstein approximation
[39]. On the other hand, another family of approximation approach involves developing a tractable
convex set that is an outer approximation of the feasible region of CCP. One such approach is relax-
ations obtained by a specific dualization of CCP [1]. CCP can be reformulated into an equivalent
formulation by making copies of the decision variables and making them equal. These constraints
are known as nonanticipativity constraints. A dual problem is then developed after relaxing the
nonanticipativity constraints with Lagrangian multipliers. The resulting dual problem can be de-
composed and solved efficiently to obtain lower bound on the optimal value of the original CCP
model. Recently, a hybrid of the two approximation approaches, called inner-outer approximation
approach, studied in [15, 16, 17] under which two smooth parametric optimization problems are
defined whose feasible sets converge to the feasible set of CCP from inside and outside, respectively.

A critical assumption when modelling chance constraints is that the decision makers have perfect
knowledge of the probability distribution P. In practice, however, obtaining the true distribution
and generating scenarios for approximations is difficult, making this assumption unrealistic and
possibly leading to suboptimal policies. To safeguard the chance constraint against uncertainties
stemming from variations in the probability distribution, an effective strategy is to embrace a dis-
tributionally robust approach. Distributionally robust chance-constrained programming (DRCCP)
incorporates a family of potential distributions of the uncertainty, known as the ambiguity set, into
the problem and solves it in a computationally tractable way.

The DRCCP framework provides decision makers with the flexibility to customize the size of
the ambiguity set. This allows them to express their risk tolerance and incorporate their confidence
level regarding the underlying uncertainty. In cases where the ambiguity set is limited to a single
distribution or includes all possible distributions, DRCCP produces results that are similar to those
obtained through scenario-based stochastic programming and robust optimization, respectively.
However, by selecting an ambiguity set size between these two extremes, decision makers can adopt
a risk attitude that falls in between. This approach balances the conservatism of robust optimization
and the suboptimal out-of-sample performance of stochastic optimization, while leveraging their
respective advantages.

The vast literature on DRCCP can be segregated into two primary categories based on the
type of ambiguity sets considered. Moment-based ambiguity sets rely on specific moment-based
properties of probability distributions. The family of distributions in this category include: dis-
tributions conforming to prescribed bounds on first- and second-order moments [6, 50, 52, 59],
distributions that meet mean absolute deviation moment constraints [20], distributions that are
based on marginal moment constraints [18]. Statistical distance-based ambiguity sets are defined
by the statistical proximity of distributions to an empirical distribution. Various metrics and mea-
sures are employed to quantify the distance between distributions within ambiguity sets, including:
ϕ-divergence [24, 26, 53], Wasserstein distance [10, 25, 26, 48, 51]. Recently, DRCCP is emerging
as a popular approach to handle uncertainty in supply chain related problems. For example, a DR-
CCP model for a network design problem is studied in [55] considering moment based ambiguity
set and in [27] considering moment based ambiguity set and Wasserstein distance ambiguity set.
A DRCCP model with Wasserstein ambiguity set is considered for a facility location and capacity
planning problem in [47].

Within the domain of DRCCP, a plethora of solution approaches has emerged to address the
challenges of modeling distributional uncertainty. These approaches can be broadly categorized into
two groups of methods: approximate and exact. A survey on reformulations and approximation
approaches to handle CCPs and DRCCPs is reviewed in [29]. Approximate methods are solution
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approaches that offer computational tractability but potentially sub-optimal solutions. These in-
clude reformulation of DRCCP using CVaR [23, 59], or utilizing Bonferroni inequality to develop
conservative approximate conic reformulations [9, 39, 49].

Exact methods rigorously resolve DRCCP models, resulting in optimal solutions. These meth-
ods include either using the dual form of the worst-case expectation constraint with indicator
function or utilizing the structural information of the worst-case probability distribution to refor-
mulate the distributionally robust chance constraint with Wasserstein metric [10, 48]. The resulting
reformulation reduces to a MILP formulation when the Wasserstein ambiguity set is constructed
via l1-norm or l∞-norm and can be solved using any branch and cut algorithm. The exact reformu-
lation of DRCCP over Wasserstein ambiguity sets in [10] has been further studied to develop tighter
inequalities [21, 22, 56]. In the case of employing a ϕ-divergence metric, authors in [26] propose a
method that transforms distributionally robust chance constraints, characterized by ϕ-divergence
from the empirical distribution, into standard chance constraints based on empirical distributions.
This conversion enables practitioners to adjust the tolerance level using a perturbed bound on the
probability of violation and to utilize regular chance-constrained techniques for solving the problem.
A DRCCP with moment-based ambiguity set can be reformulated, using worst-case CVaR, into
an mixed-integer conic programming model with second-order cone and semi-definite constraints
[27]. The past studies on DRCCPs focus on developing a solution approach for specific ambiguity
sets. However, to the best of our knowledge, [46] consider a general ambiguity set under finite
support. They study a binary integer program for a chance-constrained assignment problem and
the distributionally robust counterpart. They formulate the chance constraints as binary linear
constraints using big-M coefficients. In an alternative approach, they reformulate the chance con-
straints as binary bilinear formulation and develop lifted cover inequalities as feasibility cuts. They
also develop a branch-and-cut solution approach with probability cuts, derived from distribution
separation problem, to efficiently solve the distributionally robust chance-constrained model. In our
study, we consider a general polyhedral ambiguity set under finite support, thus also allowing the
framework to be applied to many possible definitions of ambiguity sets. We used the Wasserstein
ambiguity set, total variation distance ambiguity set, and moment-based ambiguity set as specific
examples in our computations. However, we consider a two-stage stochastic problem with recourse.
We develop a big-M free mixed integer formulation and solve the model using a branch and cut
algorithm with custom feasibility cuts and probability cuts.

In particular, our main contributions are summarized as below:

• We show that the distributionally robust chance constraint is mixed integer representable with
big-M coefficients and additional binary variables. We then derive a deterministic equivalent
reformulation of the problem.

• We show that the DRCCP can be represented in a new big-M free mixed integer reformulation,
which can be solved with a standard branch and cut algorithm. We develop an algorithm
based on the L-shaped method to solve the reformulation.

• We develop custom feasibility cuts based on the works in [31]. Taking advantage of the
knapsack constraint, we further develop a cut separation scheme for a generic polyhedral
ambiguity set. Moreover, in order to take care of the distributionally robust chance constraint,
we develop custom probability cuts.

• We consider an integrated production and distribution planning problem for a generic sup-
ply chain over a single period and conduct a comparative computational study to assess the
performance of our proposed decomposition-based algorithm with the mixed integer reformu-
lation solved directly on an off-the-shelf solver.
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2 Problem Definition

We investigate a generic DRCCP represented by the optimization problem:

min
x∈X

{
c⊤x

∣∣min
P∈D

P
{
x ∈ Sω

}
≥ 1− ϵ

}
, (1)

where x ∈ Rn is the decision variables vector and c ∈ Rn denotes the objective function coefficients.
We define Sω as the set {x | ∃ y : Tx+ By ≥ rω, x ∈ X , y ≥ 0}, where Ω is the set of scenarios
for the random parameter r with any generic element of the set denoted by ω, and P represents
the probability distribution on Ω. The likelihood of the outcome x ̸∈ Sω, over all probability
distributions in the set D, is restricted to be less than the given risk tolerance ϵ ∈ (0, 1). We make
several key assumptions throughout the paper:

(A1) Only the right-hand side vector r is random; the technology matrix T is deterministic.

(A2) The random vector r follows a distribution with finite support.

(A3) Sω, ω ∈ Ω, is a nonempty polyhedral set and have the same recession cone for all ω ∈ Ω.

(A4) The ambiguity set D is a polyhedral set with a generic form D = {p|Ap ≤ b, p ≥ 0}.

Since Ω is finite, we use a vector p = {p1, p2, . . . , p|Ω|} ∈ R|Ω| to denote a probability distribution
vector.

2.1 Polyhedral Ambiguity Set

In this section, we provide examples of the construction of few polyhedral ambiguity sets considered
in our paper. Note that the ambiguity sets are constructed while considering a nominal probability
distribution q. A Wasserstein distance ambiguity set is represented as

D =
{
p ≥ 0 :

∑
ω∈Ω

pω = 1,W(p, q) ≤ λ,
}
, (2)

where the Wasserstein radius is denoted as λ ≥ 0 and Wasserstein distance is defined as

min
p,π

{
c⊤π

∣∣∑
ω∈Ω

πωω′ = pω,
∑
ω′∈Ω

πωω′ = qω,π ≥ 0,p ≥ 0
}
. (3)

Next, an example of the total variation ambiguity set is represented as

D =
{
p ≥ 0 :

∑
ω∈Ω

pω = 1,
1

2

∑
ω∈Ω
|pω − qω| ≤ λ

}
, (4)

where the total variation radius is denoted as λ ≥ 0. Finally, we provide an example of a moment-
based ambiguity set as

P =
{
p ≥ 0 : (1− γ1)µ ≤

N∑
ω=1

pωrω ≤ (1 + γ1)µ,

µ2 − γ2σ
2 ≤

N∑
ω=1

pωr
2
ω ≤ µ2 + γ2σ

2
}
, (5)

where γ1 and γ2 denote the metrics on first-order and second-order moments, and µ and σ denote
the mean and variance of the random parameter r. Here, µ2 and σ2 are pointwise squared.

5



2.2 Reformulation

Problem (1) can be reformulated as

min
x,z

c⊤x (6a)

s.t. βω = 0⇒ x ∈ Sω, ∀ ω ∈ Ω, (6b)

max
p∈D

∑
ω∈Ω

pωβω ≤ ϵ, (6c)

x ∈ X , (6d)

β ∈ {0, 1}|Ω|, (6e)

where βω is a binary variable and βω = 0 implies x ∈ Sω.
A trivial approach to solve the problem (6) is to reformulate the constraint (6b) using “big-M”

constraints. Using additional scenario-dependent variables yω, ω ∈ Ω, we formulate problem (6) as

min
x,y,z

c⊤x (7a)

s.t. Tx+Byω + βωMω ≥ rω, ∀ ω ∈ Ω, (7b)

max
p∈D

∑
ω∈Ω

pωβω ≤ ϵ, (7c)

x ∈ X , (7d)

β ∈ {0, 1}|Ω|, (7e)

yω ≥ 0, ∀ ω ∈ Ω, (7f)

where Mω ≥ 0, ω ∈ Ω are sufficiently large to ensure that when βω = 1, constraints (7b) are not
active. On the other hand, when βω = 0, constraints (7b) enforce x ∈ Sω.

Given that D is a polyhedral set, using linear programming (LP) duality, maxp∈D
∑

ω∈Ω pωβω
in constraint (7c) is equal to minπ≥0{π⊤b : π⊤A ≥ β}. Hence, problem (7) can be reformulated
as a mixed-integer LP formulation (refer Proposition 2), referred to as Deterministic Equivalent
Formulation (DEF), as

min
x,z,π

c⊤x (8a)

s.t. (7b), (7d)− (7f) (8b)

π⊤b ≤ ϵ, (8c)

π⊤A ≥ z, (8d)

π ≥ 0, (8e)

3 Solution Methodology

A major issue in using “big-M” constraints approach is the possibility of weak lower bounds.
Moreover, when |Ω| is large, we get a very large mixed-integer program due to the introduction
of the scenario-dependent yω variables. In order to avoid these issues, we develop decomposition-
based algorithms to solve the problem (6). We intend to develop a decomposition algorithm based
on a first-stage problem that includes the original variables x, and the binary variables β. Our goal
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is to enforce the constraint (6b) and (6c) by adding strong cutting planes. We formulate a relaxed
mixed-binary linear program (LP) for first-stage problem containing only decision variables (x,β)
as

min
x,β

c⊤x

s.t. (x,β) ∈ F̃ ,
(p,β) ∈ P̃.

(9)

In order to avoid situations that do not respect the distributionally robust chance constraint
(DRCC), we iteratively form a convex polyhedral outer approximation F̃ , referred to as the set of
feasibility cuts, for the following set

F=
{
(x,β) ∈ X × {0, 1}|Ω| : (6b), (6c)

}
, (10)

and P̃, referred to as the set of probability cuts, for the following set

P=
{
(p,β) ∈ D × {0, 1}|Ω| : (6c)

}
. (11)

Given the sets F and P, problem (6) can be written as

min
(x.β)∈X×{0,1}|Ω|

{c⊤x : (x,β) ∈ F , (p,β) ∈ P}. (12)

We now describe how to iteratively generate feasibility and probability cuts, given an optimal
solution (x̂, β̂) to problem (9).

3.1 Feasibility Cut

Proposition 1. Consider an optimal solution (x̂, β̂) to problem (9). Suppose that β̂ω = 0 for some
ω ∈ Ω, where x̂ ̸∈ Sω and σ is an extreme ray of {σ : Bσ ≤ 0,σ ≥ 0}. Let

vω(σ
⊤T ) = min{σ⊤Tx : Tx+By ≥ rω, x ∈ X ,y ≥ 0}, (13)

and ζ be a permutation of Ω describing a nonincreasing order of vω(σ
⊤T ), ω ∈ Ω. Then, the

following inequality is valid for F , defined in (10),

σ⊤Tx+

l∑
i=1

(
vκi(σ

⊤T )− vκi+1(σ
⊤T )

)
βκi ≥ vκ1(σ

⊤T ),

∀N = {κ1, . . . , κl} ⊆ {ζ1, . . . , ζj∗}, (14)

where j∗ = max{j : max
p∈D

∑j
ω=1 p

ω ≤ ϵ}, vκi(σ
⊤T ) ≥ vκi+1(σ

⊤T ), i ∈ {1, . . . , l}, and vκl+1
(σ⊤T ) =

vζj∗+1
(σ⊤T ). Moreover, the most violated cut among (14) is provided by N = {ζ1} if β̂ζ1 = 0, and

N = {ζ1, ζm} if β̂ζ1 ̸= 0, with m ∈ min{2, . . . , j∗} such that β̂ζm = 0.

Proof. Consider scenario ω. From LP duality, x ∈ Sω when β̂ω = 0 if

σ⊤(rω − Tx) ≤ 0. (15)

Inequality (15) is of the form σ⊤Tx ≥ µω, with µω := σ⊤rω, and is valid for Sω. Moreover,
σ⊤Td ≥ 0 for all d ∈ C where C is the recession cone of Sω, ω ∈ Ω, defined as C := {d : x+ ςd ∈
Sω, ∀x ∈ Sω, ς ≥ 0}. This implies that σ⊤T ∈ C∗, where C∗ is the dual cone of C, defined as

7



C∗ := {ρ : ρ⊤d ≥ 0, ∀d ∈ C}. By contradiction, suppose that σ⊤Td < 0 for some d ∈ C. Given
that x + ςd ∈ Sω for all ς ≥ 0, we cannot find µω such that σ⊤T (x + ςd) ≥ µω for all ς ≥ 0.
Hence, σ⊤T ∈ C∗ when σ⊤Tx ≥ µω is valid for Sω.

Next, we show that the inequality of the form

σ⊤Tx+ σ⊤rωβω ≥ σ⊤rω, (16)

which is valid for {(x, βω) ∈ X × {0, 1} : βω = 0⇒ x ∈ Sω} for all ω ∈ Ω can be derived from the
valid inequality of the form σ⊤Tx ≥ σ⊤rω for Sω. Observe that from (16), we have σ⊤Tx ≥ µω

when βω = 0 and σ⊤Tx ≥ 0 when βω = 1. To show that the inequality (16) holds for all x ∈ X , we
recall that for all ω ∈ Ω, we have the same recession cone C, given as C = {d : σ⊤Td ≥ 0,σ ∈ Σ},
where Σ is the pointed cone Σ := {σ : σ⊤B ≤ 0,σ ≥ 0} and is same for all ω ∈ Ω. Therefore, for
all d ∈ C, σ⊤T ∈ C∗. Now, the fact that σ⊤T ∈ C∗ and x ≥ 0, implies that for all ω ∈ Ω, (13) has
a finite and positive optimal value, suggesting that σ⊤Tx ≥ 0, ∀ x ∈ X . Putting these together
and noting that vω(σ

⊤T ), defined in (13), gives a lower bound on σ⊤Tx, x ∈ X , we conclude the
validity of σ⊤Tx+ vω(σ

⊤T )βω ≥ vω(σ
⊤T ) for {(x, βω) ∈ X × {0, 1} : βω = 0⇒ x ∈ Sω}.

Then, we form a mixing set to prove that (14) is valid for F . The above discussion leads us to
consider the generic set

G′ =
{
(y,β) ∈ R× {0, 1}|Ω| : y + hiβi ≥ hi, i = 1, . . . , |Ω|

}
,

by setting y = σ⊤Tx and hi = vi(σ
⊤T ) for each i. We assume that h1 ≥ h2 ≥ . . . ≥ h|Ω| and form

the star inequalities of the form

y +

l∑
i=1

(hti − hti+1)βi ≥ ht1 , {t1, t2, . . . , tl} ⊆ Ω, (17)

where t1 ≤ t2 ≤ . . . ≤ tl, and (17) is facet-defining for G′ when t1 = 1, and are sufficient to define
the convex hull of G′ [33, Theorem 2].

We tighten these inequalities in (17) for G′ by using the knapsack constraint maxp∈D
∑

ω∈Ω pωβω ≤
ϵ. Let j∗ = max{l : maxp∈D

∑l
i=1 pi ≤ ϵ}. Observe that that there has to be at least one

i ∈ {1, . . . , j∗ + 1} such that βi = 0 and thus we have y ≥ hi ≥ hj∗+1. Thus, the constraints in G′
redundant for i = j∗ + 1, . . . , |Ω| is redundant. We can now replace the inequalities in G′ with

y + (hi − hj∗+1)βi ≥ hi, i = 1, . . . , j∗.

We now prove the last part of the proposition. For simplicity in the notation, let vω := vω(σ
⊤T ),

ω ∈ Ω. The inequalities in (14) are facet-defining for the convex hull of

G′ =
{
(σ⊤Tx,β) ∈ R× {0, 1}j∗ : σ⊤Tx+ (vζi − vζj∗+1

)βζi ≥ vζi , i = 1, . . . , j∗
}
,

if and only if vκ1 = vζ1 , suggesting that N should always include ζ1. In particular, we claim that if

β̂ζ1 = 0, thenN = {κ1}, where κ1 = ζ1, provides the most violated cut as σ⊤Tx+(vζ1−vζj∗+1
)βζ1 ≥

vζ1 . Consider an arbitrary point (σ⊤Tx,β) ∈ G′. Observe that when βζ1 = 0, N leads to
σ⊤Tx ≥ vκ1 . By contradiction, suppose that N ′ = {ζ1, ζk} where k ≤ j∗, with κ1 = ζ1 and
κ2 = ζk, provides a stronger cut; that is, σ⊤Tx + (vζ1 − vζk)βζ1 + (vζk − vζj∗+1

)βζk ≥ vζ1 . When

βζ1 = 0, N ′ leads to σ⊤Tx+ (vζk − vζj∗+1
)βζk ≥ vζ1 . Now, if βζk = 0, N ′ leads to σ⊤Tx ≥ vζ1 , as

in the case of N = {ζ1}. However, when βζk = 1, N ′ leads to σ⊤Tx ≥ vζ1− (vζk −vζj∗+1
). Because
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vζ1 ≥ vζ1 − (vζK − vζj∗+1
), the distance of the point (σ⊤Tx,β) and hyperplane σ⊤Tx− vζ1 = 0 is

less than or equal to that of the point and hyperplane σ⊤Tx− vζ1 + (vζ1 − vζj∗+1
) = 0. As point

(σ⊤Tx,β) ∈ G′ is arbitrary, this contradicts that N ′ = {ζ1, ζk} provides a stronger cut for G′.
By induction, we can similarly argue that N ′ = {κ1, . . . , κl} ⊆ {ζ1, . . . , ζj∗} with κ1 = ζ1 among
the class of valid inequalities (14) leads to a weaker cut than when N = {ζ1}. This proves that
N = {ζ1} provides the most violated cut for G′.

Let us now consider the case that β̂ζ1 = 1. We claim that in this case N = {κ1, κ2} with

κ1 = ζ1 and κ2 = ζm where m ∈ min{2, . . . , j∗} such that β̂ζm = 0, provides the most violated cut
as σ⊤Tx+ (vζ1 − vζm)βζ1 + (vζm − vj∗+1)βζm ≥ vζ1 . Consider an arbitrary point (σ⊤Tx,β) ∈ G′.
Observe that when βζ1 = 1 and βζm = 0, N leads to σ⊤Tx ≥ vζm . By contradiction, suppose that
N ′ = {κ1}, where κ1 = ζ1, provides a stronger cut. When βζ1 = 1, N ′ leads to σ⊤Tx ≥ vζj∗+1

.

Because vζm ≥ vζj∗+1
, the distance of the point (σ⊤Tx,β) and hyperplane σ⊤Tx− vζm = 0 is less

than or equal to that of the point and hyperplane σ⊤Tx− vζj∗+1
= 0. As point (σ⊤Tx,β) ∈ G′ is

arbitrary, this contradicts that N ′ = {ζ1} provides a stronger cut for G′. With a similar argument
as in the case β̂ζ1 = 0, it can be shown that any other set N ′, with two or more elements, provides
a weaker cut than when N is chosen. This completes the proof.

Proposition 2. Index j∗ in Proposition 1 to generate the most violated cut can be calculated as
the optimal value of the following problem

max
π,z
{
∑
ω∈Ω

zω : π⊤z ≤ ϵ,π ∈ D′(z), z ∈ {0, 1}|Ω|}, (18)

where π is an extreme points of the dual of the feasible region D = {Ap ≤ b, p ≥ 0} and
D′(z) = {π : Aπ ≤ z,π ≥ 0}.

Proof. Recall j∗ from Proposition 1 which can be written as j∗ = maxz{
∑

ω∈Ω zω : maxp∈D
∑

ω∈Ω p⊤z ≤
ϵ, z ∈ {0, 1}|Ω|}. From LP duality, we have j∗ = maxz∈D∗ h(z) where D∗ = {z : minπ∈G′(z) π

⊤z ≤
ϵ, z ∈ {0, 1}|Ω|} and h(z) =

∑
ω∈Ω zω. Let j̃ be an optimal value of the problem (18). Then, we

can represent j̃ = max
(π,z)∈D̃ h(z) where D̃ = {(π, z) : π⊤z ≤ ϵ,π ∈ D′(z), z ∈ {0, 1}|Ω|}. We will

show that j∗ = j̃.
First, we will look into feasibility context. Suppose that ẑ ∈ D∗. This implies that minπ∈D′(ẑ) π

⊤ẑ ≤
ϵ. In other words, ∃ a π s.t. π⊤ẑ ≤ ϵ,Aπ ≤ ẑ,π ≥ 0. This implies that if ẑ ∈ D∗, ∃ a π ∈
D′(ẑ) s.t. (π, ẑ) ∈ D̃. Next, let (π̂, ẑ) ∈ D̃. In other words, π̂⊤ẑ ≤ ϵ and π̂ ∈ D̃(ẑ). This means
min

π∈D̃(ẑ)
π⊤ẑ ≤ π̂⊤ẑ ≤ ϵ. Therefore, if (π̂, ẑ) ∈ D̃, ẑ ∈ D∗.

Next, we will look into optimality context. Suppose j∗ = h(z∗), where z∗ is an optimal solution
to maxz∈D∗ h(z). Also, let j̃ = h(z̃), where (π̃, z̃) is an optimal solution to max

(π,z)∈D̃ h(z). As

per our previous argument, if (π̃, z̃) ∈ D̃, z̃ ∈ D∗. However, since z∗ is an optimal solution, we
have h(z∗) ≥ h(z̃). Moreover, if z∗ ∈ D∗, ∃ a π ∈ D′(z∗) s.t. (π, z∗) ∈ D̃. However, since z̃ is an
optimal solution, we have h(z̃) ≥ h(z∗). Therefore, h(z̃) = h(z∗), i.e., j∗ = j̃.

3.2 Probability Cuts

Proposition 3. Consider an optimal solution (x̂, ẑ) to (9). Suppose that for any ω ∈ Ω, if ẑω = 0
then x̂ ∈ Sω. Then the following inequality is valid for P, defined in (11),∑

ω∈Ω
p∗ω ẑω ≤ ϵ, (19)

where p∗ is an optimal solution to maxp∈D
∑

ω∈Ω pω ẑω.
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Proof. Consider an arbitrary point (p∗, ẑ) ∈ P; that is,
∑

ω∈Ω p∗ω ẑω = maxp∈D
∑

ω∈Ω pω ẑω ≤ ϵ.
Because p̂ ∈ D, then (p∗, ẑ) ∈ P satisfies

∑
ω∈Ω p̂ω ẑω ≤ ϵ, i.e.,

∑
ω∈Ω p̂ω ẑω ≤

∑
ω∈Ω p∗ω ẑω. This

completes the proof.
We propose a decomposition-based cutting plane algorithm to solve (1) and present the pseudocode
of the algorithm in Algorithm 1.

3.3 Finiteness

Theorem 1. Algorithm 1 solves problem (9) in finitely many iterations.

Proof. In order to show that the Algorithm 1 is finitely convergent, we need to show that “while”
loop in Algorithm 1 terminates after finite iterations.

Suppose (x̂, ẑ) is not a feasible solution to (17), then it means that none of the previously
derived feasibility cuts impose x̂ ∈ {x| ∃ y s.t. By ≥ rω − Tx} when ẑω = 0 for any scenario
ω ∈ Ω. Therefore, a new set of extreme rays σ from the set {σ : Bσ ≤ 0,σ ≥ 0} are obtained
to derive an appropriate feasibility cut of the form (14) to cut-off the point (x̂, ẑ). Since there are
finite number of such extreme rays, a finite number of feasibility cuts are possible.

Given Assumption-(A-4), a finite number of probability cuts of the form (19) are possible since
each cut corresponds to one of the finitely many extreme points of the ambiguity set D.

Algorithm 1 Decomposition-based algorithm for distributionally robust chance-constrained prob-
lems with polyhedral ambiguity set.

Initialization:
Set F̃ ← ∅, P̃ ← ∅, viol-Feas = TRUE, viol-Prob = TRUE.
Input: ϵ
Output: Optimal solution x̂ and optimal value c⊤x̂ of problem (9)
while (viol-Feas = TRUE or viol-Prob = TRUE) do

Solve the problem (9) and obtain the optimal solution (x̂, β̂).
for ω ∈ Ω do

if β̂ω = 0 then
if x̂ ̸∈ {x|∃y ∈ Rd : Tx+By ≥ rω,x ∈ X ,y ≥ 0} then

Obtain an extreme ray σ from the cone {σ : Bσ ≤ 0,σ ≥ 0}.
Calculate vω(σ

⊤T ) for all ω ∈ Ω defined in (13).

Obtain a feasibility cut of the form (14) and add it to F̃
viol-Feas = TRUE

else
viol-Feas = FALSE

end if
end if

end for
if viol-Feas = FALSE then

Solve z = maxp∈D p⊤β̂
if z > ϵ then

Obtain a probability cut of the form (19) and add it to P̃.
viol-Prob = TRUE

else
viol-Prob = FALSE

end if
end if

end while

10



4 Numerical Study

In this section, we do an extensive computational study (Section 4.1) and assess performance
analysis (Section 4.2). The algorithms were implemented in Python in GUROBI 9.0. For our
decomposition-based algorithm, we used the lazy constraint callback function of GUROBI to add
the feasibility and probability cuts whenever the algorithm finds a mixed-integer incumbent can-
didate solution. The algorithms were executed on a single thread of high-performance computing
nodes of the Palmetto Cluster with 32 cores and 125 GB of memory, with a time limit of 3600
seconds per instance and algorithm.

For our experiments, we consider an integrated production and distribution planning problem
in a supply chain consisting of a set of manufacturers denoted by i ∈ I = {1, ..., n}, and a set of
retailers denoted by j ∈ J = {1, ...,m}. We assume that each retailer represents a set of customers
and therefore, the retailer demand is the sum of the demand of customers it represents. We develop
a chance-constrained stochastic programming problem as follows:

min
x≥0

{
c⊤x

∣∣ P{x ∈ Sω} ≥ 1− ϵ
}
,

where,

Sω =

x ≥ 0| ∃ y ≥ 0 s.t.

|J |∑
j=1

yij ≤ xi, ∀i ∈ I,

|I|∑
i=1

µijyij ≥ ξjω, ∀j ∈ J

 .

Here, ξj represents the demand at retailer j, and (1 − µij) represents the damage rate during
transportation of products from manufacturer i to retailer j. The variables x represent the quantity
of product manufactured by the manufacturer i ∈ I. The variables y represent the quantity of
product shipped from manufacturer i ∈ I to retailer j ∈ J . A similar CCP model is studied in
[31] for a resource allocation problem.

Given a probability distributions ambiguity set D, we represent the DRCCP variant of the
problem as:

min
x≥0

{
c⊤x

∣∣min
P∈D

P
{
x ∈ Sω

}
≥ 1− ϵ

}
4.1 Test Instances

For a given problem size (number of manufacturers and retailers), we first generated a single “base
instance” consisting of the unit costs of the manufacturing product and a set of base damage rates.
The manufacturing cost per unit quantity ci at each manufacturer i is chosen independently from
a normal distribution with mean 1 and standard deviation 0.2. In order to generate damage rate,
we first generate µ̃j for each retailer j independently from a normal distribution with mean 1 and
standard deviation 0.2. Then, µij = min{ci + µ̃j , 1}. The reasoning behind this construction is
that manufacturers that charge higher cost will have better packaging and shipping methods that
result in higher µij and thus low damage rate (1− µij).

For each base instance, we generated five independent samples of retailer demand with |Ω| re-
alization. The random demand is generated independently from a multivariate normal distribution
with mean for each retailer j generated independently from a normal distribution with mean 110
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and standard deviation 25. The covariance matrix v is generated as 1.25
|J | ṽ

⊤ṽ, where ṽjj is generated

indepedently from an uniform distribution in [-6.25,25].

4.2 Computational Study

In this section, we present a computational performance to analyze the efficiency of our proposed
decomposition-based algorithm, shown in Algorithm 1, and compare it with an off-the-shelf mixed-
integer LP solver for the DEF.

For our experiments, we consider various instances with different levels of risk parameter ϵ ∈
{0.05, 0.1}, problem size (|I|, |J |) ∈ {(10, 20), (20, 30), (30, 40)}, and sample size |Ω| ∈ {200, 300, 400, 1000}.
We consider different radii λ for total variation distance (TV) and Wasserstein distance (WAS) am-
biguity sets (defined in (2) and (4), respectively) and metric γ2 for moment-based (MO) ambiguity
set (defined in (5)). For each combination of these parameters, we generated 5 instances.

We present the computational results for TV (Table 1), WAS (Table 2), and MO (Table 3) ambiguity
sets. In Tables 1, 2 and 3, “OV” column denotes the average optimal value of the instances that
were solved to optimality. The columns“B&C” and “DEF” denote the computational performance
of our proposed decomposition-based algorithm and DEF solved directly in GUROBI 9.0. We use
the notation “a (b,c)” to report the computational performance, where “a” indicates the average
computational time of the instances that were solved to optimality, “b” shows the average relative
optimality gap, and “c” shows the number of instances that could not be solved to optimality
within the time limit of 3600 seconds.

The observations from Table 1 are the following:

1. The average optimal value increases with the increase in radius λ. As λ increases, the ambi-
guity set D becomes larger and includes more probability distributions making the problem
more risk averse.

2. We observe that after λ is equal to ϵ, the average optimal value does not change. This im-
plies that the ambiguity set becomes large enough to contain all the probability distributions
including the worst-case distribution which is the same as the model without any chance con-
straints. According to Proposition 4 in [26], DRCCP with total variation distance ambiguity
set can be equivalently represented as a classical CCP with a perturbed risk level ϵ

′
= ϵ− λ.

Therefore, when λ = ϵ, ϵ
′
= 0, i.e., a model without chance constraints. Our observation is

consistent with their study.

3. At small radius λ, the average computational time is higher. A reason for this is the more
computational time spent to generate feasibility cuts. In our experiments, we observed that
the average number of feasibility cuts and total time spent in generating feasibility cuts is
higher when radius is small. Similar results were observed in [21, 57], and [2].

4. With increase in risk parameter ϵ, the average computational time increases. As ϵ increases,
the feasible region increases and more time is spent to find an optimal solution.

5. Increase in sample size |Ω| results in increase in the average computational time. As sample
size increases, more number of subproblems are needed to be solved which results in higher
computational time. Observe from Table 1, when |Ω| = 1000, not all instances could be solved
to optimality by solving DEF with GUROBI. Whereas, our proposed decomposition-based
algorithm was able to solve all the instances to optimality within the time limit.

6. Increase in problem size (|I|, |J |) leads to increase in number of variables and results in higher
average computational time.
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We skip the interpretation of the results for WAS, in Table 2, as they remain similar to those
mentioned for TV. In Table 3, we present computational study for MO and vary γ2 and observe
similar observations as varying radius λ for TV. The observations related to varying other parameters
remain similar to those mentioned for TV.

4.3 Out-of-sample Performance

In this section, we compare the out-of-sample performance of our DRCCP with total variation
distance and Wasserstein distance ambiguity sets with the classic CCP considering risk tolerance
ϵ = 0.1.

In the case of WAS, we follow the holdout method procedure as described in [37] for the Wasser-
stein radius λ selection from different candidate radius values via cross-validation. We note
that TV is a special case of WAS, where Wasserstein distance, defined in (3), is constructed with
cost cωω′ = 0 if ω = ω′, and cωω′ = 1 otherwise. Therefore, we perform out-of-sample ex-
periment for TV by using WAS with the new Wasserstein distance explained earlier. We gener-
ate random problem instances with problem size (|I|, |J |) = (10, 20), and training samples of
size |Ω| ∈ {100, 300, 500, 700, 1000, 1500}. In the case of TV, we chose candidate radius λ ∈
{0, 0.0001, 0.001, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1}. Whereas, for WAS, the can-
didate radius were chosen as λ ∈ {i ∗ 0.6 : i ∈ {0, . . . , 12}}.

Figure 1a shows the probability of scenarios that are satisfied by DRCCP with total variance
radius chosen selected via holdout method (referred to as “DRCC” in the figure) and CCP with
ϵ = 0.1 (referred to as “Nominal” in the figure). Our results indicate that as the number of samples
increases, both DRCCP and CCP generate solutions that achieve the desired risk tolerance of
0.1, i.e., mean of the upper bounds on probability of scenarios satisfied with the generated solution
converges to 90%. Moreover, in comparison to CCP with a nominal risk tolerance, DRCCP appears
to result in better solutions, in terms of probability of satisfying desired safety conditions, especially
when data are scarce. We skip the interpretation of the results for WAS, in Figure 1b, as they remain
similar to those mentioned for TV.

100 300 500 700 1000 1500
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(a) TV ambiguity set
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(b) WAS ambiguity set

Figure 1: Out-of-sample performance for probability of satisfying safety threshold at ϵ = 0.1.
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5 Conclusion and Future Research

We investigate distributionally robust chance-constrained programming with polyhedral ambiguity
sets in which randomness appeared only in the right-hand side of the constraints. We consider three
types of ambiguity sets, i.e., total variation distance, Wasserstein distance and moment-based. To
solve the distributionally robust chance-constrained two-stage stochastic program, we propose a
decomposition-based algorithm based on L-shaped method. We conducted extensive numerical
experiments to evaluate the computational efficiency of our proposed solution approach with the
equivalent mixed-integer linear program formulation solved with an off-the-shelf solver. We also
discuss how to choose a proper Wasserstein radius via holdout method and draw insights from out-
of-sample analysis considering total variation distance and Wasserstein distance ambiguity sets.

For future research, our proposed model and solution approach can find application in many
real-world network design problems. Moreover, in our study, we employ a synthetically generated
data. For future study, real historical data from the financial market can be considered.
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