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Abstract

Expected-value-constrained programming (ECP) formulations are a broad class of stochas-
tic programming problems including integrated chance constraints, risk models, and stochastic
dominance formulations. Given the wide availability of data, it is common in applications to
have independent contextual information associated with the target or dependent random vari-
ables of the problem. We show how to incorporate such information to efficiently approximate
ECPs, and prove that the solution set of the approximate problem approaches the true solu-
tion set exponentially fast. We illustrate our approach with a portfolio optimization problem
that exemplifies the importance of taking contextual information into account in problems with
expected-value constraints.

Keywords: Expected-value constraints, Data-driven optimization, Stochastic programming,
Large deviations

1 Introduction

In virtually all contexts where decisions need to be made, uncertainty must be taken into account.
Transportation problems can have uncertain demand, capacity, and lead times, energy problems
can have both inflow and demand as random elements, while portfolio problems typically have un-
known returns. While many possible alternatives exist to handle uncertainty, e.g., simply replacing
them with their averages, stochastic programming (SP) is one of most the popular approaches to
incorporate randomness into the decision-making process.

Classical models in SP assume a known distribution of the uncertainty and aim at finding the
best course of action before randomness is revealed. For instance, in two-stage models, after the
first-stage decision is made uncertainty becomes known, and a recourse action can be taken to
ensure feasibility if needed. A significant challenge with SP problems is tractability. Computing
in closed form the expected value or the risk of a random variable that depends on decisions is
usually impossible; even the evaluation of feasibility for a given solution can be prohibitively time-
consuming. Alternative approaches such as robust optimization [3] generate tractable problems by
assuming randomness lies in an uncertainty set and the decision maker has a budget that controls
the trade-off between protection and performance. Despite the challenges, the popular sample
average approximation (SAA) approach converts an SP problem into a tractable optimization
problem, and convergence results state that the set of optimal solutions and the optimal value of
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those approximations converge to their true counterparts in the original formulation (see [19] for
the analysis of two-stage problems, [23] for chance-constrained optimization, and [30] for problems
with expected-value constraints).

The use of data in most applications of SP has been restricted to considering past realizations
of uncertainty to estimate the distribution of the random parameters of the model. For example,
in [27], the authors use historical data to model demand by commodity and location for a disaster
relief application. In [25], the authors use inflow data from 1987 to 2006 to construct a Markov
chain that is the only source of uncertainty in the model (demand is assumed to be known). In the
last few years, we have witnessed a change in the use of data in SP. A series of recent publications
[2, 4, 5, 6, 7, 8, 10, 11, 12, 15, 22, 24] advocates for the incorporation of contextual information
into the models. Contextual information, or features, are additional measurements that are taken
by surveys, sensors, or by simply tracking and adding independent variables that might be related
to the random quantity of interest. The premise is that the wide availability of data, which usually
comes with features, should be harnessed to give a better estimation of uncertainty, ultimately
allowing for better decisions.

Suppose one is trying to model the default risk of companies in a certain sector of the economy
or geographical region in order to make investment decisions. The expected losses of the portfolio
are bounded by a given amount, selected by the decision-maker. The standard practice would
be to estimate the joint distribution of the default risk of the companies under consideration and
find an optimal allocation that maximizes expected returns while controlling the losses. It is often
the case that one has access to contextual information before making a decision, including for
instance inflation rates, unemployment, interest rates, and sentiment analysis extracted from social
networks. A better model would take this observation of features into account, considering the
conditional expected losses instead of the unconditional ones. The solution obtained by ignoring
contextual information might not be feasible under all realizations of the contextual variables.

In this work, we will focus on contextual expected-value-constrained programming (ECP) prob-
lems, a broad class that includes integrated chance constraints (ICCs), risk-constrained models,
and problems with stochastic dominance constraints. Contextual chance-constrained programming,
which was studied in [26], is a different modeling framework because the focus is on qualitative be-
havior. The final solution satisfies the chance constraint with high probability, but nothing is said
about the amount of the violation in the cases where it is not met. On the other hand, ECP prob-
lems allow for constraint violation as long as it does not exceed some pre-defined amount, which
translates into a quantitaive behavior.

Our first contribution in this paper is a formulation for ECP problems that include contextual
information. Our second contribution is to approximate those problems using k-nearest neighbors
(kNN) and derive theoretical results that characterize the solution quality. We show feasibility
results, proving that a feasible solution to the approximate contextual ECP problem is feasible to
the true contextual ECP problem, with high probability as the number of data points increases.
We then provide estimates for the number of data points needed in the approximate problem to
yield feasibility for the true problem with high confidence. We show that a kNN-based approximate
leads to probabilistic guarantees with an exponential rate of convergence as the number of data
points increases.

We present a detailed computational study of a portfolio selection problem and compare our
results with the näıve SAA approach, which ignores features and only uses the samples from the
random parameters of the problem. We show that in several cases the näıve SAA approach does not
find feasible solutions to the true problem, and that convergence is absent as the number of data
points grows. For the contextual case, feasibility is quickly achieved, and we observe convergence
to a feasible solution as the number of data points increases.

2



The rest of this paper is outlined as follows. In Section 2, we present ECPs and show that
several important classes of problems in the literature can be cast as those problems. Moreover, we
formally present a contextual ECP and describe a method to approximate this problem in a data-
driven fashion. In Section 3, we provide theoretical results on how a data-driven approximation of
contextual ECPs relates to the true problem in terms of the feasibility of resulted solutions. We
then present numerical experiments in Section 4. Finally, we end with conclusions in Section 5.

Notation: We use 1 {Z} to denote the indicator function which takes value one when Z holds
and zero otherwise. We use Nη(u) to denote the open ball with center u and radius η. We let [n]
denote the index set {1, . . . , n}. A random variable Z is said to be sub-Gaussian with variance

proxy σ2 if E [Z] = 0 and E [exp{tZ}] ≤ exp{ t2σ2

2 } for all t ∈ R. Function u 7→ Z(u) is L-Lipschitz
if there exists L > 0 such that |Z(u) − Z(u′)| ≤ L‖u − u′‖p ∀u, u′ and for some p ≥ 0. For a
bounded set U ⊆ Rm, the diameter is defined as θ = sup{‖u− u′‖ |u, u′ ∈ U}.

2 Contextual Expected-Value-Constrained Programming

Consider an ECP problem as

min
u∈U

f(u)

s.t. EP [Gt(u, Y )] ≥ εt, t ∈ T ,
(ECP)

where U ⊂ Rdu is the feasible set, Y is a random vector defined on a probability space (Y,F , P )
with Y ⊂ Rdy , f : Rdu → R is a deterministic objective function, and εt is a target value, t ∈ T .
Moreover, Gt : Rdu × Y → R is a random function for t ∈ T ; that is, Gt(u, ·) is measurable for
u ∈ Rdu . Without loss of generality, we assume that εt = ε, t ∈ T .

In Section 2.1, we present several examples that can be formulated as an ECP. Then, in Section
2.2, we present the SAA approach to approximate an ECP. Finally, in Section 2.3, we formally
present a contextual ECP and describe a data-driven approximation approach.

2.1 Examples

In this section, we show several examples of fundamental problems in SP that can be written as an
ECP. We start with integrated chance constraints, the quantitative counterpart of classical chance
constraints. We then discuss risk measures and show three examples of popular ones that fit within
our framework. Finally, we show that a class of stochastic dominance problems can also be written
as ECPs.

2.1.1 Integrated Chance Constraint (ICC)

ICCs were proposed by [16] as a quantitative alternative to traditional chance constraints. The
most common form is the linear one: let

ηt(u, Y ) := u>wt(Y )− ht(Y ), t ∈ T ,

with T = {1, . . . , T} be a list of goals we would like to satisfy, where wt(·) is a du-dimensional
vector and ht(·) is a scalar, t ∈ T . The ICC is written as

EP [ηt(u, Y )−] ≤ β, t ∈ T ,

where (a)− = max{0,−a} and β ≥ 0. In this case, choosing

Gt(u, Y ) = −ηt(u, Y )−
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and letting ε = −β in (ECP) we can write a problem with an ICC in the ECP form, for some
objective function f(u). In [18] the authors propose an algorithm to solve ICC problems, and we
refer the reader to [17] for an application to an asset liability management problem in the context
of pension funds. The complete theory of this class of problems, including additional algorithms
and representations for special cases (e.g., normality) can be found in chapter 6 of the book [14].

2.1.2 Risk Measures

Most risk measures are specified by an expected value of a given function. If the decision maker tries
to bound risk by some threshold β, it is possible to accommodate such requirement in formulation
(ECP). To simplify the exposition, we assume the decision function G(·, Y ) is linear in u, as in
u>Y , which is the most common form in financial problems. In this case, the decision variable
u represents the allocations in each of the available financial instruments and Y are the random
returns. We will also adopt the fairly standard convention in risk measures that losses are positive
and gains are negative. Obviously, that can be changed depending on the problem. Let us see some
examples of risk measures that can be accommodated within our framework:

1. Conditional Value-at-Risk (CVaR): for a random variable Z, the CVaRα with reliability level
α ∈ (0, 1) is defined as

CVaRα[Z] := min
η∈R

{
η +

1

1− α
EP [(Z − η)+]

}
, (1)

where (a)+ = max{0, a}. By defining

G(ũ, Y ) := −η − 1

1− α
(u>Y − η)+

and ε = −β in (ECP), where ũ = (u, η), we have a CVaR constraint

CVaRα[u>Y ] ≤ β

in the form of an ECP. The minimum in (1) can be removed since we are imposing the
inequality for all η. We refer the reader to [24] for a portfolio optimization application that
utilizes a CVaR constraint.

2. Upper semideviation of order p (UDp): For a fixed parameter p ∈ [1,∞) and a random
variable Z with EP [|Z|p] <∞, the UDp is defined as

σ+p [Z] :=
(
EP
[
(Z − EP [Z])p+

] )1/p
.

By defining

G(u, Y ) := −(u>Y − EP
[
u>Y

]
)p+

and ε = −βp in (ECP), we have a UDp constraint

σ+p [u>Y ] ≤ β.

When p = 1, the risk measure is referred to as absolute semideviation. We refer the reader to
[29], where the authors apply the UDp in the objective function of a hydrothemal scheduling
problem.
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3. Quantile semideviation (QDEV). Using a result proven in [28], the QDEVα1,α2 for a random
variable Z is defined as

QDEVα1,α2
[Z] := min

η∈R
EP [α1 max(η − Z, 0) + α2 max(Z − η, 0)] .

By defining
G(u, Y ) := −α1 max(η − u>Y, 0)− α2 max(u>Y − η, 0)

and ε = −β in (ECP), we have a QDEV constraint

QDEVα1,α2
[u>Y ] ≤ β.

We refer the reader to [9], where the authors apply the QDEV to several problem instances
available in the SP literature.

Remark 1. The first two risk measures are coherent, according to the definition of [1], while the
last one is not. However, they all satisfy convexity, which makes the formulations using those risk
measures tractable.

Remark 2. For each of those risk measures we could have written multiple constraints by varying
the risk level. For instance, for the CVaR we can have T constraints, each with reliability levels
(α1, . . . , αT ) and right-hand sides (β1, . . . , βT ). This is useful in some contexts where we want to
shape the decision-maker’s preferences. See for an example in [20] for a portfolio problem with the
S&P 100 stocks.

2.1.3 Stochastic dominance

Stochastic dominance is often used when we want to compare two random variables. For simplicity,
let us consider the stochastic dominance of order 2. If Z and W are random variables, we say Z
dominates W in the second order, written Z �2 W , if

EP [max{η − Z, 0}] ≤ EP [max{η −W, 0}] ∀η ∈ R.

When the random variable W has a finite distribution {w1, . . . , wT }, with probabilities {q1, . . . , qT },
it has been shown that Z �2 W if and only if

EP
[
(wt − Z)+

]
≤ EP

[
(wt −W )+

]
, t ∈ T . (2)

In this case, we would need T expected value constraints, one for each realization of W as

Gt(u, Y ) := (wt −W )+ − (wt − u>Y )+, t ∈ T .

and ε = 0. A typical example in portfolio optimization is to try to construct a portfolio that
outperforms some well-known benchmark. See [21] for an example with 435 stocks where the
author constructs a portfolio optimization model to dominate the S&P 500 index in the first and
second orders.
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2.2 SAA for ECP

General (ECP) problems are challenging to solve since EP [Gt(u, Y )], t ∈ T , may not be calcula-
ble and approximations are needed. Given a sequence of identically distributed (not necessarily
independent) observations {yi}i∈[n] from Y , we can construct an empirical probability distribution

P̂n :=
1

n

∑
i∈[n]

δyi , (3)

where δyi is the Dirac point mass on yi, i ∈ [n]. Using the empirical probability distribution, we
can obtain an empirical approximation

et,n(u) := EP̂n [Gt(u, Y )] =
1

n

∑
i∈[n]

Gt(u, y
i) (4)

for t ∈ T . The SAA problem is obtained by replacing the true expected value

et(u) := EP [Gt(u, Y )]

by the approximated one in (4) as

min
u∈U

f(u)

s.t. et,n(u) ≥ α, t ∈ T ,
(SAA-ECP)

where α is the target level of the approximate problem, which may be different from ε in (ECP).

2.3 Contextual ECP and its Data-Driven Approximation

The random parameters Y may exhibit some dependency on a vector of features, which may have
a predictive power to explain the outcomes of the random vector Y . Hence, it may be beneficial to
include those features in the problem formulation.

For a given random observation X = x, a contextual ECP (C-ECP) can be formulated as

z∗ε (x) = min
u∈U

f(u)

s.t. EP [Gt(u, Y ) | X = x] ≥ ε, t ∈ T .
(C-ECP)

In (C-ECP), we let (X,Y ) be defined on a probability space (X × Y,F , P ), where X ⊂ Rdx and
Y ⊂ Rdy . Moreover, the expected value is calculated with respect to the conditional probability of
Y given X = x. For each X = x, we assume that z∗ε (x) exists and is finite, and a solution u∗(x)
to problem (C-ECP) gives the best response to the observed feature vector x as measured by the
objective function f(·).

Solving (C-ECP) requires the conditional probability of Y given X = x. Even when such a
distribution is known, approximation schemes need to be considered to deal with the expected-value
constraint in (C-ECP). Given a sequence of identically distributed observations Dn := {(xi, yi)}i∈[n]
from (X,Y ) and an observation X = x, we construct a data-driven approximation of (C-ECP). We
first form a weight function win(x,Dn), i ∈ [n], such that

∑
i∈[n]w

i
n(x,Dn) = 1 and win(x,Dn) ≥ 0,

i ∈ [n], to measure “proximity” of each data point i with respect to the observed feature x. Using
this weight function the conditional distribution of Y given X = x can be approximated as

P̂n :=
∑
i∈[n]

win(x,Dn)δyi . (5)
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For simplicity in notation, we dropped the dependence of P̂n to X = x and Dn. Using the approx-
imated probability distribution (5), we can obtain an approximated expected value as

mt,n(u;x) := EP̂n [Gt(u, Y )] =
∑
i∈[n]

win(x,Dn)Gt(u, y
i) (6)

for t ∈ T .
A data-driven contextual ECP formulation (DDC-ECP) can be obtained by replacing

mt(u;x) := EP [Gt(u, Y ) | X = x] (7)

by the approximation (6) as

ẑn,α(x) = min
u∈U

f(u)

s.t. mt,n(u;x) ≥ α, t ∈ T .
(DDC-ECP)

We adopt the convention that if the feasible set of (DDC-ECP) is empty, we have ẑn,α(x) = +∞.
Also, we have ẑn,α(x) = −∞ when (DDC-ECP) is unbounded.

Some observations regarding problem (DDC-ECP) are in order. First, one can interpret the
output of formulation (DDC-ECP) as a policy: given an observed feature vector X = x, a solution
u∗n(x) represents the best response measured by the objective function f(·). Second, (C-ECP) is at
least as hard to solve as (SAA-ECP) since the computation of the weights can be done offline.

In this paper, we will construct the weights win(x,Dn), i ∈ [n], using kNN [13], described in
Definition 1:

Definition 1. Consider a collection of independently and identically distributed (i.i.d.) random
vectors (X,Z), (X1, Z1), . . . , (Xn, Zn) ∈ Rdx ×R and let kn be a deterministic parameter such that
kn →∞ and kn/n→ 0 as n→∞. Then, kn nearest neighbors of (X,Z) are chosen as follows:

• Points (Xi, Zi), i ∈ [n], are ordered in a nondecreasing sequence based on the distance between
X and Xi using `p-norm,

• kn nearest neighbors of (X,Z) are chosen with ties broken randomly,

to construct a kn-NN estimator µn(X) =
∑

i∈[n]
1
k1
{
Xi is a kn-NN of X

}
Zi.

A kNN weight function is constructed such that data points that are “close” to the observed
feature vector X = x be more important to accurately estimate the conditional distribution of Y
given X = x; and hence, the expected values mt(u;x), t ∈ T .

3 Finite Dataset Guarantees of (DDC-ECP)

In this section, we present theoretical results that support the use of (DDC-ECP) to approximate
(C-ECP) with kNN. In particular, we investigate the feasibility of the data-driven solution in
Section 3.1 with the proofs presented in Section 3.2. To present the theoretical results, we make
the following assumptions.

Assumption 1. U ⊂ Rdu is a nonempty and compact set with diameter θ.

Assumption 2. X ⊂ [0, 1]dx is a compact set, and there exists ϑ > 0 such that P {X ∈ N%(x)} >
ϑ%dx for all x ∈ X and % > 0.
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Assumption 3. Given a random Z ∈ R, Z − EP [Z | X = x] is conditionally sub-Gaussian given
X = x with variance proxy σ2, uniformly for all x ∈ X , and µ(x) := EP [Z | X = x] is N(x)-
Lipschitz, with N := supx∈X N(x) <∞.

Assumption 4. For any u ∈ U and x ∈ X , EP [Gt(u, Y ) | X = x] is bounded for t ∈ T .

Assumption 5. For any y ∈ Y, function Gt(·, y) is L(y)-Lipschitz, with L := supy∈Y L(y) < ∞,
for t ∈ T .

We note that X ⊂ [0, 1]dx is without loss of generality, and it indicates a normalization of X.

3.1 Main Results

In this section, we state and prove two feasibility results, one assuming that the compact set U
is a finite set (Theorem 1) and one for a more general compact set but under some mild addi-
tional assumptions on function Gt(·, y), y ∈ Y for t ∈ T (Theorem 2). These results state that
the probability that an optimal data-driven solution to (DDC-ECP) remains feasible to (C-ECP)
approaches one exponentially fast, as the number of data points increases. These results offers
uniform probabilistic guarantees, which imply pointwise guarantees trivially.

Before we start the exposition, we introduce some notation. Let En := {(X1, Y 1), . . . , (Xn, Y n)}
and (X,Y ) be a collection of i.i.d. random vectors. Let Pn denote the sampling distribution of
En, i.e., the n-fold product distribution of P , and EPn [·] denote the corresponding expectation
operator. Let W i

n(x, En), i ∈ [n], be a random weight function and define

Mt,n(u;x) := EPn [Gt(u, Y ) | X = x] =
∑
i∈[n]

W i
n(x, En)Gt(u, y

i). (8)

Note that mn(u;x), defined in (6), is a realization of the random variable Mn(u;x), calculated
based on observations Dn of En. Let Uε(x) and Un,α(x) denote the feasible region to (C-ECP) and
(DDC-ECP), respectively, for X = x and given En. That is,

Uε(x) := {u ∈ U |mt(u;x) ≥ ε, t ∈ T },

and
Un,α(x) := {u ∈ U |Mt,n(u;x) ≥ α, t ∈ T }.

We note that Un,α(x) is random and depends on En.

Theorem 1. Suppose that Assumptions 1–3 hold. Moreover, assume that the compact set U is
finite and let α > ε Then,

Pn {Un,α(x) ⊆ Uε(x) ∀x ∈ X} ≥ 1− |T ||U|A(α− ε) exp{−nB(α− ε)},

where constants A(·) and B(·) are defined in Corollary 1 of Lemma 1.

Theorem 2. Suppose that Assumptions 1–5 hold. Let λ > 0 and 0 < β < α− λ− ε. Then,

Pn {Un,α(x) ⊆ Uε(x) ∀x ∈ X} ≥ 1− |T |
⌈ 1

β

⌉|T |⌈(2Lθ

λ

)du⌉
A(α− λ− ε− β)

× exp{−nB(α− λ− ε− β)},

where constants A(·) and B(·) are defined in Corollary 1 of Lemma 1.

8



We now present the minimum dataset size n required to guarantee with high probability the
feasibility of a data-driven solution.

Proposition 1. Suppose that |U|≤Udu. Under assumptions of Theorem 1, the minimum dataset
size n required to guarantee that {Un,α(x) ⊆ Uε(x) ∀x ∈ X} with probability at least 1−ρ, ρ ∈ (0, 1),
is calculated as follows:

n ≥ 1

min

{
O(1)

(
O(1)κ

)2dx ,minn∈N

{
O(1)n

γ−1κ2

σ2 −O(1)dx
log(n)
n

}}

×
[
log

(
1

ρ

)
+ log |T |+ du log(U)

+ log

(
max

{(
O(1)

√
dx

κ

)dx
,O(1)

(
O(1)

dx

)dx })]
,

where n ≥ O(1)
(
O(1)
κ

) dx
1−γ

and nγ

log(n) ≥
dxσ2

κ2
, and κ = α− ε.

Proposition 2. Under assumptions of Theorem 2, the minimum dataset size n required to guar-
antee that {Un,α(x) ⊆ Uε(x) ∀x ∈ X} with probability at least 1 − ρ, ρ ∈ (0, 1), is calculated as
follows:

n ≥ 1

min

{
O(1)

(
O(1)κ

)2dx ,minn∈N

{
O(1)n

γ−1κ2

σ2 −O(1)dx
log(n)
n

}}

×
[
log

(
1

ρ

)
+ log |T |+ du log

⌈2Lθ

λ

⌉
+ |T | log

⌈ 1

β

⌉
+ log

(
max

{(
O(1)

√
dx

κ

)dx
,O(1)

(
O(1)

dx

)dx })]
,

where n ≥ O(1)
(
O(1)
κ

) dx
1−γ

and nγ

log(n) ≥
dxσ2

κ2
, and κ = α− λ− ε− β.

Remark 3. Observe from Propositions 1 and 2 that the higher the confidence level 1− ρ and |T |,
the larger the required dataset size n, where n grows logarithmically in 1/ρ. Also, n is large for α
close to ε, with a growth in a polynomial order of 1/(ε− α)2dx. The larger the dimension dx of the
feature vector is, the closeness of α to ε has a larger impact on n. We also see in that in general, the
larger dx, the larger n. Moreover, n grows linearly in du. The required dataset size n to guarantee
the feasibility of a data-driven solution when the feasible region is infinite is also impacted by the
choice of the parameter β. Observe that n grows logarithmically with d 1β e. Moreover, the impact of

d 1λe is similar to that of d 1β e.

3.2 Proofs

A critical component for the proofs is the uniform consistency of a kn-NN estimator. We adopt
Lemma 1 from [6, Lemma 10] to state such a result and then we apply it to contextual ECP in
Corollary 1.
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Lemma 1. Consider i.i.d. random vectors (X,Z), (X1, Z1), . . . , (Xn, Zn) ∈ Rdx ×R and let µn(x)
denote a kn-NN estimator, constructed based on Definition 1. Suppose that Assumptions 2 and 3
hold. Then,

Pn
{

sup
x∈X
|µn(x)− µ(x)| ≥ κ

}
≤
(

4
√
dxϕN

κ

)dx
exp

{
− 2

n

(
nϑ
( κ

4N

)dx
+ 1− kn

)2
}

+ 2

(
25

dx

)dx
exp

{
−
(
knκ

2

8σ2
− 2dx log(n)

)}
,

for κ ≥ 4N
(
kn−1
nϑ

)1/dx
and n ≥ 2dx, where ϕ > 0 is a constant that depends on `p-norm used in

the construction of µn(x).

Now, for t ∈ T , define

Rt,n(x) := sup
u∈U
|Mt,n(u;x)−mt(u;x)|, (9)

where mt(u;x) and Mt(u;x) are defined in (7) and (8), respectively.

Corollary 1. Under assumptions of Lemma 1, suppose that the weight function W i
n(x, En), i ∈ [n],

is formed with kn = dcnγe for γ ∈ (0, 1) and c > 0 such that kn ≤ n − 1. Then, for any κ > 0,

there exist constants A(κ) and B(κ) defined as A(κ) := max

{(
O(1)

√
dx

κ

)dx
,O(1)

(
O(1)
dx

)dx }
and

B(κ) := min

{
O(1)

(
O(1)κ

)2dx ,minn∈N

{
O(1)n

γ−1κ2

σ2 −O(1)dx
log(n)
n

}}
, where n ≥ O(1)

(
O(1)
κ

) dx
1−γ

and nγ

log(n) ≥
dxσ2

κ2
, such that

Pn
{

sup
x∈X

Rt,n(x) ≥ κ
}
≤ A(κ) exp{−nB(κ)}

for t ∈ T .

We are now ready to prove Theorem 1.

Proof of Theorem 1. For X = x, we have

{Un,α(x) * Uε(x)} (10)

= {∃ u ∈ U such that u ∈ Un,α(x) and u ∈ U\Uε(x)}

=
⋃
u∈U
{u ∈ Un,α(x) and u ∈ U\Uε(x)}

=
⋃
u∈U
{Mt,n(u;x) ≥ α for all t ∈ T and mt(u;x) < ε for some t ∈ T }

⊆
⋃
t∈T

⋃
u∈U
{Mt,n(u;x)−mt(u;x) ≥ α− ε}

⊆
⋃
t∈T

⋃
u∈U
{|Mt,n(u;x)−mt(u;x)| ≥ α− ε}

⊆
⋃
t∈T
{sup
u∈U
|Mt,n(u;x)−mt(u;x)| ≥ α− ε}
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=
⋃
t∈T
{Rt,n(x) ≥ α− ε}. (11)

By a similar argument leading to (11) we have

{Un,α(x) * Uε(x) for some x ∈ X} ⊆
⋃
t∈T

⋃
u∈U
{sup
x∈X

Rt,n(x) ≥ α− ε}.

Thus, by applying Pn {·} on both sides, an application of the union bound, and finally using
Corollary 1, the result follows.

To prove Theorem 2, we recall the following fact.

Fact 1. For a bounded set Z ⊆ Rm with diameter θ, and any v > 0, there exists a finite set Zv ⊆ Z
with |Zv| ≤ d

(
θ
v

)me such that for any z ∈ Z, there exists z′ ∈ Zv ∩Nv(z).

Proof of Theorem 2. Consider an arbitrary X = x and a fixed t ∈ T . Let J = d 1β e, and for
j ∈ [J − 1], define

Ut,j(x) :=

{
u ∈ U

∣∣∣∣ at + (bt − at)
j − 1

J
≤ mt(u;x) < at + (bt − at)

j

J

}
,

and let

Ut,J(x) :=

{
u ∈ U

∣∣∣∣ at + (bt − at)
J − 1

J
≤ mt(u;x) ≤ bt

}
,

where mt(u;x) ∈ [at, bt] for any u ∈ U , i.e., at = infu∈U mt(u;x) > −∞, bt = supu∈U mt(u;x) <∞,
and at ≤ bt. We note that for some jt ∈ [J ], but not all, Ut,jt(x) might be empty, t ∈ T . We start
the proof by claiming that for any j := [j1, . . . , jT ] with Ut,jt(x) 6= ∅ for all t ∈ T , there exists a

finite set Zλj (x) ⊆
⋃
t∈T Ut,jt(x) such that |Zλj (x)| ≤ |T |d

(
2Lθ
λ

)due and for any u ∈
⋃
t∈T Ut,jt(x),

there exists z ∈ Zλj (x) ∩ N λ
L

(u). To prove the claim, note that by Fact 1, there exists a finite set

∅ 6= S ⊆ U with |S| ≤ d
(
2Lθ
λ

)due such that for any u ∈ U , there exists s ∈ S ∩ N λ
2L

(u). Let us

define Sλt,jt(x) :=
{
s ∈ S

∣∣∣Ut,jt(x) ∩N λ
2L

(s) 6= ∅
}

and Z̃λj (x) :=
⋃
t∈T

⋃
s∈Sλt,jt (x)

us, where us is an

arbitrary element ∈ Ut,jt(x)∩N λ
2L

(s), t ∈ T . Note that by construction, Z̃λj (x) ⊆
⋃
t∈T Ut,jt(x) and

|Z̃λj (x)| ≤
∑

t∈T |S
λ
t,jt(x)| ≤ |T ||S| ≤ |T |d

(
2Lθ
λ

)due. Moreover, for any u ∈
⋃
t∈T Ut,jt(x) ⊆ U , there

exists s ∈ S∩N λ
2L

(u), for which Ut,jt(x)∩N λ
2L

(s) 6= ∅ for some t ∈ T (because u ∈ Ut,jt(x)∩N λ
2L

(s)

for some t ∈ T ). Consequently, this s belongs to Sλt,jt(x) for some t ∈ T , and hence, there

exists us ∈ Z̃λj (x). Note that by the definition of Z̃λj (x), this us belongs to N λ
2L

(s) as well, i.e.,

us ∈ Z̃λj (x) ∩N λ
2L

(s). Now, by the triangle inequality we have

‖u− us‖ ≤ ‖u− s‖+ ‖s− us‖ ≤
λ

2L
+

λ

2L
=
λ

L
,

that is, us ∈ Z̃λj (x) ∩N λ
L

(u). Now, by taking Z̃λj (x) as Zλj (x), the claim is proved.

Now, let us define Zλ(x) :=
⋃
j∈J Zλj (x), where J :=×t∈T [J ] and |Zλ(x)| ≤ |J ||T |d

(
2Lθ
λ

)due.
We note that Zλj (x) might be empty for some j ∈ J , but not all. Hence, Zλ(x) is a nonempty
finite set. We also define

Zλε+β(x) =
{
u ∈ Zλ(x)

∣∣∣mt(u;x) ≥ ε+ β, t ∈ T
}
,
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and
Zλn,α(x) =

{
u ∈ Zλ(x)

∣∣∣Mt,n(u;x) ≥ α− λ, t ∈ T
}
.

Now, because α− λ > ε+ β and Zλ(x) is finite for x ∈ X , by Theorem 1, we have

Pn
{
Zλn,α(x) ⊆ Zλε+β(x) ∀x ∈ X

}
≥ 1− |T |

⌈ 1

β

⌉|T |⌈(2Lθ

λ

)du ⌉
A(κ) exp{−nB(κ)}, (12)

where κ = α − λ − ε − β. To complete the proof, consider u ∈ Un,α(x). Let j = [j1, . . . , jT ] with
jt ∈ [J ], be such that u ∈ Ut,jt(x), t ∈ T . Using the claim, for this u, there exists z ∈ Zλj (x)∩N λ

L
(u).

This z belongs to Zλj (x) ⊆
⋃
t∈T Ut,jt(x) and |mt(u;x)−mt(z;x)| ≤ 1

J ≤ β for all t ∈ T . Moreover,

by Assumption 5, we have |Gt(u, Y i) − Gt(z, Y
i)| ≤ L‖u − z‖ ≤ λ for i ∈ [n] and t ∈ T . In

particular, Gt(z, Y
i) + λ ≥ Gt(u, Y

i) for all i ∈ [n] and t ∈ T . Because
∑

i∈[n]W
i
n(x, En) = 1, we

have
∑

i∈[n]W
i
n(x, En)Gt(z, Y

i) + λ ≥
∑

i∈[n]W
i
n(x, En)Gt(u, Y

i), t ∈ T . Consequently, given that

u ∈ Un,α(x), we have Mt,n(z;x) ≥ α − λ for all t ∈ T . In addition, as z ∈ Zλj (x) ⊆ Zλ(x), we

conclude that z ∈ Zλn,α(x). Now, if Zλn,α(x) ⊆ Zλε+β(x), then we have mt(z;x) ≥ ε+β for all t ∈ T ,
which combined with mt(u;x) ≥ mt(z;x)−β, imply that mt(u;x) ≥ ε for all t ∈ T , i.e., u ∈ Uε(x).

Consequently, we showed that {Un,α(x) ⊆ Uε(x)} ⊇ {Zλn,α(x) ⊆ Zλε+β(x)}. This, in turn, imply
that

Pn {Un,α(x) ⊆ Uε(x) for all x ∈ X} ≥ Pn
{
Zλn,α(x) ⊆ Zλε+β(x) for all x ∈ X

}
,

and thus, the result follows from (12).

4 Numerical Experiments

In this section, we present numerical experiments for an expected-value-constrained optimization
problem with a continuous, infinite feasible region. We investigate the feasibility of a data-driven
solution to the true problem and analyze the impact of various parameters, including the dimension
of the feature vector, on the rate of convergence and the required number of data points to achieve
feasibility in the original problem. To this end, we consider a portfolio optimization problem with
synthetic data and features. A version of the problem was proposed in [12], and we adapt the
formulation for an expected-valued-constrained optimization problem.

We assume that there are features that may be used to predict the return of du assets, while
Σ ∈ Rdu×du , the covariance matrix of the asset returns, does not depend on the features. We assume
that the decision maker aims to minimize the variance of the portfolio’s return while keeping the
expected return of the portfolio above a desired target ε as follows:

min
u∈U

u>Σu

s.t. E
[
u>Y | X = x

]
≥ ε.

(13)

Vector u ∈ Rdu defines the portfolio positions, and Y ∈ Rdu is the random vector of asset returns.
We have U =

{
u ∈ Rdu

∣∣ e>u = 1, u ≥ 0
}

, where e ∈ Rdu is a vector of all ones. Moreover, we
set ε = α − χ, where χ is some positive number, implying that ε < α (recall that our feasibility
guarantees require that α− χ = ε < α, which is ensured by any choice of χ > 0).

We assume that the feature vector X ∈Rdx follows a normal distribution N(0, Idx), i.e., entries
Xl, l ∈ [dx], of X are drawn independently from a standard normal distribution. We also assume
that Y is formed by a linear factor model of the form Y = Ȳ + Ef + ε. Here, E ∈ Rdu×4
is the loading factor matrix such that each entry of E is drawn independently from a uniform

12



distribution on [−0.0025τ, 0.0025τ ], where τ ≥ 0 is a noise level parameter. Moreover, f ∼ N(0, I4)
and ε ∼ N(0, (0.01τ)2Idu). We assume that only a subset L∗ ⊆ [dx] has predictive power and we
form the vector of conditional mean returns Ȳ as

Ȳj =

(
0.05√

5

∑
l∈L∗

B∗jlXl + 0.1
1
p

)p
, j ∈ [du],

where p is a fixed positive integer number and B∗ ∈ Rdu×dx is a random matrix that contains
the parameters of the true linear factor model. Each entry of B∗ is drawn independently from a
Bernoulli distribution with parameter 0.5. Given the setup described, conditioned on X = x, we
have Y |(X = x) ∼ N(Ȳ , EE> + (0.01τ)2Idu). As it can be seen, the covariance of Y |(X = x) does
not depend on x by design, and we set Σ = EE> + (0.01τ)2Idu .

To conduct experiments, we consider an instance with du = 10 assets, p ∈ {1, 4, 8, 16}, dx ∈
{5, 10, 100}, τ ∈ {1, 2}, and α = 0.10. For each value of τ , we first generate matrix E and
subsequently matrix Σ (note that they only depend on τ) to have the deterministic parameters to
form an instance of (13). Then, we generate B∗ and X = x, in a nested way, such that an instance
with a higher dx would contain all information from an instance with a smaller dx, i.e., the first
five elements of x in an instance with dx = 10 are the same five elements of x in an instance with
dx = 5. For B∗, the first five columns of B∗ in an instance with dx = 10 are the same five columns
of x in an instance with dx = 5. Throughout, we assume that |L∗| = 5, and hence, without loss of
generality, we can assume that columns of B∗ that do not belong to the index set L∗ are effectively
zero. These imply that for a fixed X = x, regardless of the dimension dx, we always have the same
Ȳ .

Now, we have a full instance of (13), and we can simulate i.i.d. data Dn = {(xi, yi)}i∈[n] following
the distributions of X and Y . Again, we emphasize that by construction, there is no difference
between the y-component of the data point i in datasets with different dimension dx, i ∈ [n].
We can then form a data-driven approximation to (13) as (DDC-ECP). We refer to an optimal
data-driven solution to this problem as ûn,α(x). We perform 50 microsimulations per instance with
a fixed B∗ and X = x, i.e., 50 sets of training data Dn are generated. Solutions obtained from
different data-driven approaches are compared by calculating their expected out-of-sample returns,
i.e., Ȳ >ûn,α(x). We report the results of 50 microsimultations per instance in boxplots of these
expected returns. We also let n ∈ {2dx, 5dx, 10dx, 100dx}. We consider two data-driven approaches
to solve (13):

kNN: The constraint in (13) is approximated by a kn-NN, where kn = dn0.5e.

nSAA: The “näıve” SAA approach without contextual information.

We present the results in Figures 1 and 2. Each of the presented figures depicts the performance
of the kNN and nSAA approaches for a specific configuration of ε and τ , over varying the feature
dimension dx, the model degree p, and the training dataset of size n.

Several trends can be seen in Figures 1 and 2. Observe that the median value of the expected
return for the kNN approach always outperformed that of the nSAA approach. More importantly,
nSAA did not yield consistent solutions, whereas kNN always yielded consistent solutions. We note
varying convergence rates, and we will analyze them by varying the model degree p, the feature
dimension dx, the target return ε, and the noise level τ .

Effects of varying model degree p and feature dimension dx. The rate of convergence of the
kNN approach highly depends on the model degree p and the feature dimension dx. On the one
hand, for a fixed (dx, ε, τ), increasing p led to a lower rate of convergence. Recall that when p = 1,
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Figure 1: du = 10, α = 0.10, and τ = 1.

there is a linear relationship between X and Y , whereas p > 1 leads to a nonlinear relationship.
Our results indicate that while the form of this relationship is unknown to the kNN approach, a
higher degree of nonlinearity leads to a lower rate of convergence. Moreover, for a fixed (ε, τ), the
impact of increasing p on the convergence rate was more pronounced for a higher dx. On the other
hand, as expected, for a fixed (p, ε, τ), a higher dx results in a lower rate of convergence for the
kNN approach (see Remark 3). In other words, for a fixed dataset of size n, increasing dx leads to
a smaller coverage probability on the feasibility of the data-driven solution.

Effects of varying target return ε and noise level τ . To analyze the impact of the target return
ε on the rate of convergence, let us fix (p, dx, τ). Observe that the closer ε is to α = 0.10, the lower
the rate of convergence, as expected from Remark 3. We know that an estimation of the required
number of data points grows quite large for values of α close to ε, in the order of 1/(ε−α)2dx . The
impact of such closeness on the convergence rate is more pronounced for a larger dx. Moreover, we
see that for a fixed (p, dx, ε), a higher noise level τ led to a higher variability in the expected return
per its role in the covariance of Y |(X = x). However, the median value of the expected return does
not seem to be impacted significantly.
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Figure 2: du = 10, α = 0.10, and τ = 2.

We end this section with several remarks. First, notice that for any pair of (ε, τ) and for a
specific configuration of p, the performance of nSAA remains the same by varying dx but with a
fixed n. For instance, when p = 1 and n = 50, nSAA results in the same solution for both dx = 5 and
dx = 10. This is because not only all these n = 1000 samples are equally likely but also they have
the same y-component by construction. Thus, the performance of nSAA is the same in both cases.
Second, we observed similar trends hold for the case that du = 50. Additionally, we observed that
for a fixed (p, dx, ε, τ), increasing du leads to a slower rate of convergence. This result is expected,
as the estimated required dataset size grows linearly in the dimension of the feasible region, du (see
Remark 3).

5 Conclusions

Expected-value-constrained programming problems represent a broad class of models that include
integrated chance constraints, problems with a risk constraint, and stochastic dominance formula-

15



tions. In this paper, we propose a contextual expected-value-constrained programming formulation
that accommodates features in addition to the dependent random variables. We show how the
important aforementioned classes of problems can be written in this format, and also how the
resulting problems can be approximated using data. The contextual information is incorporated
using kNN, which averages the past observations that are closest to the currently observed feature
vector.

We then show theoretical results stating that by solving the data-driven formulation one can
obtain a feasible solution to the true problem with high probability. Such probability approaches
one exponentially fast as the dataset size grows. While our results accommodate approximations
obtained by popular machine learning methods such as classification and regression trees (CARTs)
and random forest (RF), we presented theoretical results for kNN.

We test our methodology on a synthetic portfolio selection problem. We vary several parameters
of the problem, including the dimensions of the feature vector. Our results show that by ignoring
features a feasible solution may never be found and that our feature-based data-driven solution
converges to a feasible solution as the number of data points increases. The convergence is slower
for higher-dimensional problems, for which case more data points are needed.

Future work includes extensions to dynamic problems. In sequential settings, the way to in-
corporate new features is not unique and it makes sense to mix offline and online components, in
an adaptive fashion. It would also be interesting to investigate if our approach can accommodate
decision-dependent uncertainty problems. On the application side, we plan to explore problems
in energy systems (optimal power flow, unit commitment) and transportation (urban mobility,
air-cargo transportation), where there is the availability of data with contextual information.
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