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Abstract

Crowdshipping, a rapidly growing approach in Last-Mile Delivery (LMD), relies on inde-

pendent crowdworkers for delivery orders. Building a sustainable network of crowdshippers

is essential for the survival and growth of such systems, while their participation is primarily

motivated by fair pay. Additionally, the financial well-being of crowdworkers is sensitive to fair

compensation, especially for those who depend on crowdwork as their main source of income.

Therefore, equitable workload allocation and compensation mechanisms in crowdsourcing

platforms will benefit both platforms and crowdworkers. We aim to answer several questions

gig-economy platforms interested in fair pay may ask: How to measure equity, assess the

cost benefits, and manage potential drawbacks? Our main contribution is the proposal of a

practical equity-oriented framework tailored to crowdshipping within an LMD environment.

This framework draws inspiration from the real-world operations of a group of crowdshipping

platforms and operates in real-time. At its core is a bi-objective optimization process that

balances equity and cost, aiming to address the study’s main research questions. Built on a

theoretical foundation, it enables the use of various equity measures and allows us to identify

the equity measure that most reliably explores the trade-offs between cost and equity. We

show that even a marginal sacrifice in cost efficiency (e.g., 2.5%) can significantly improve

equity, potentially up to 39%. We provide actionable recommendations for practitioners,

offering insights into selecting equity measures. We demonstrate that significant improve-

ments in pay equity can be achieved with minimal increases in company’s operational costs.

Our experiments reveal that the best level of equity is achieved when the pool of employed

crowdshippers is kept as small as possible. We quantify the loss of high and low-performing

crowdshippers as the crowdshipper pool size increases, offering further insights for workforce

management.

Key words: Crowdshipping, Last-mile delivery, Equitable workload allocation, Fair pay,

Bi-objective optimization
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1 Introduction

Last-mile delivery (LMD) consistently represents a significant expense within the logistics

framework. According to CapGemini Research Institute (2019), LMD stands out as the primary

cost driver in the supply chain, a fact accentuated by the exponential growth of e-commerce,

which exposes the unsustainability of current delivery models. Vehicle routing in last-mile

logistics is often considered non-value-added due to resource underutilization, high delivery

costs, and loss of business time. In response to the growing demand for faster delivery services,

several retailers are now adopting platforms allowing them to employ independent gig workers

for order fulfillment. Such platforms facilitate the onboarding of gig workers based on demand

dynamics, lowering operational costs compared to maintaining permanent employees, as noted

by Fatehi and Wagner (2022). The employment of gig workers in the context of last-mile delivery

is often referred to as crowdshipping. In a typical implementation of crowdshipping, a group of

ad-hoc/occasional drivers takes over the delivery task of one or multiple online orders to online

shopper locations (Alnaggar et al., 2019; Archetti et al., 2016; Arslan et al., 2019; Dayarian

and Savelsbergh, 2020; Macrina et al., 2017; Soto Setzke et al., 2017). The most distinguishing

characteristic of crowdshipping from conventional delivery methods in LMD is that crowdshippers

are not employees of the company providing the delivery service; they become available to render

service only occasionally and usually utilize spare space in their personal vehicles to make such

deliveries on the way to their next destination. Thus, crowdshippers differ in terms of the

time they become available, the capacity of their vehicles, and their next destinations as the

determinant of their coverage area, among other factors.

Therefore, while crowdshipping revolutionizes LMD, its distinguishing factors introduce new

operational challenges. One significant challenge, as discussed in Allon et al. (2023), is ensuring

the uninterrupted and sustained arrival of participating crowdshippers. This is mostly determined

by crowdshippers’ satisfaction from their past participation. Satisfied crowdshippers are more

likely to undertake subsequent jobs, maintaining operational flow. To satisfy crowdshippers,

a fair and equitable workload allocation and compensation mechanism is required (Bai et al.,

2019; Dayarian and Pazour, 2022). An equitable workload allocation creates equal profit-

making opportunities for all participating crowdshippers at a time, given the system state

and crowdshippers individual competencies. This not only promotes financial stability among

crowdworkers, particularly those who rely on crowdwork as their primary income source, but

also provides a sense of insurance, ensuring that even in the worst-case scenario, outcomes

match or exceed those of an efficiency-focused workload allocation approach. However, achieving

workload equity often comes with two types of costs: operational cost and opportunity cost.

The operational cost is proportional to the deviation of the equity-oriented workload allocation

from the allocation that would have been made if an efficiency-oriented objective had been

adopted. The opportunity cost represents the potential reduction in the revenue of a subset of

participating crowdshippers by altering the workload allocation to improve the payoff to the

remaining crowdshippers to create a more equitable compensation allocation.

We focus on a setting in which a company, convinced of the benefits of an equitable workload

allocation, is willing to take on the operational cost of equity. Passing on any part of the

operational cost of equity to the crowdshippers would result in a reduction in the total payoff
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(opportunity) offered, which goes against the spirit of equity used as an encouragement for a

higher participation rate of the crowd. Opportunity cost, on the other hand, is an inherent aspect

of equity considerations. By definition, it implies that some opportunities will be redistributed

among crowdshippers, resulting in gains for some and losses for others compared to purely

efficiency-oriented allocations. While increased participation may be expected among those

with an improved payoff, those experiencing losses, despite recognizing the ethical principle

of equity, may find it discouraging. This concern is particularly pertinent for high-performing

crowdshippers, who make available higher resource levels (e.g., larger vehicles) and thus expect

greater returns. Mitigating this drawback is a primary objective of our study, achieved through

the implementation of an effective workforce size management strategy.

The main contribution of this paper lies in the proposal of a practical equity-oriented

framework tailored to crowdshipping within an LMD environment. This framework seeks to

mitigate the adverse effects of operational and opportunity costs while maximizing the benefits of

equitable workload allocation. The considered framework is inspired by the real-world activities

of a group of crowdshipping platforms. We refer to the identified problem as the Dispatch

Zone-Wave Problem (DZWP). In conjunction with the problem formulation, we propose a

solution method that provides effective strategies for addressing the DZWP. The method is

tailored to optimize decision-making processes, thereby enhancing the overall effectiveness of

the equity-aware framework in LMD contexts with a similar format. Numerical experiments

are conducted to evaluate the efficiency and performance of the proposed method, providing

empirical evidence of its capability to address practical-sized scenarios.

The proposed framework focuses on equity-aware workload allocation within a free-market

environment, specifically aiming to benefit for-profit companies. The desired benefits materialize

when: (1) the operational cost of equity remains sufficiently low to uphold the company’s

competitive edge, and (2) equity-driven outcomes favor all crowdshippers uniformly to the

highest possible degree including the high-performing crowdshippers. To address these aspects,

first, we design a mechanism to mathematically express crowdshippers’ workloads (equity metric),

which must be equalized. This would also necessitate the design of equity measures, to gauge

the level of equality/inequality achieved. In this study, we propose a novel equity metric

for comprehensively capturing workload allocation within a diverse courier pool. As for the

equity measures, we adopt several established functions in the economics literature. Second,

we acknowledge that at the heart of our proposed framework lies a bi-objective optimization

process that determines the trade-offs between equity and cost, referred to as the ‘nondominated

frontier’. To preserve the company’s competitive edge, we propose that the company sets an

upper bound on the maximum operational cost they are willing to take on when balancing equity

and cost. Utilizing our proposed framework, we aim to answer three primary research questions

through extensive computational analysis:

1. Which equity measure(s) prove most reliable within the scope of our study, given that there is

no unique way of defining an equity objective function? Using a multi-objective optimization

analysis, we first prove that none of the equity measures in the literature of economics can be

theoretically dismissed in the context of the DZWP. We then provide a novel solution approach

to identify the most reliable equity measure(s) numerically. A measure is considered reliable
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if its solutions, corresponding to its nondominated frontier, yield high-quality approximations

of the nondominated frontier when moved to the criterion space of other equity measures.

Our numerical findings highlight Coefficient of Variation as particularly promising within

the context of our research.

2. How much can equity be enhanced with varying equity budgets by the close of a working day?

We showcase that adhering to our framework can lead to an equity improvement of up to

about 39% within a working day, with a cost increase of no more than 2.5%. Furthermore,

this enhancement can extend to about 70% while incurring a cost increment of no more than

10%

3. What potential loss might high-performing crowdshippers incur due to the company’s equity

considerations? Our numerical evidence underscores our framework’s aim to minimize losses

for high-performing crowdshippers. To provide a more holistic perspective, we also study

low-performing crowdshippers. A significant finding of this study is the alignment of interests

between low-performing and high-performing drivers, as well as equity-focused for-profit

companies. The advantage for all involved is in minimizing the number of crowdshippers

in the system. This approach not only reduces the company’s expenses but also minimizes

opportunity costs for both high-performing and low-performing drivers.

The remainder of this paper is organized as follows: Section 2 provides a brief literature

review. Section 3 discusses the theoretical foundation of the research. Section 4 details the

DZWP. Our proposed optimization models and solution methods are in Section 5. Section 6

presents a solution to identify the most reliable equity measure(s). Section 7 presents a detailed

computational study to tackle the research questions. Finally, Section 8 provides a discussion

and concluding remarks.

2 Literature Review

In this section, we classify the literature relevant to our study into two categories: optimization

approaches for the LMD and fairness in resource allocation. Among the optimization techniques,

we investigate exact methods, machine learning models, and heuristics. We then review fairness

principles and models in resource allocation literature, and explore equity considerations within

the vehicle routing problem (VRP) literature.

2.1 Optimization Approaches for the Last-mile Delivery

Among the solution approaches, exact methods are devoted to achieving optimal solutions for

optimization problems. To ensure their effectiveness, exact solution methods often necessitate

extensive customization for each variant of the VRP. Notable contributions in the existing

literature include the generic exact methods proposed by Baldacci and Mingozzi (2009) and

Pessoa et al. (2020), which address multiple VRP variants. Additionally, Arslan et al. (2019)

iteratively employs an exact method to solve the crowdsourced dynamic pickup and delivery

problem as new information emerges. Furthermore, Fatehi and Wagner (2022) addresses a robust
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counterpart of crowdshipping using queuing theory and robust optimization techniques. In a

recent study, Raghavan and Zhang (2024) employed a branch-cut-and-price algorithm to study

the impact of driver-aide on improving delivery speed. Despite these advancements, solving even

moderately sized instances to optimality remains computationally demanding. For an extensive

review of exact methods and heuristics applied to VRPs in freight transportation, readers can

refer to Konstantakopoulos et al. (2022).

In recent years, machine learning (ML) techniques have gained popularity, either as standalone

tools (Kwon et al., 2020) or in conjunction with exact or heuristic approaches (Morabit et al.,

2021; Sobhanan et al., 2023) to solve VRPs. Behrendt et al. (2023) specifically focuses on the

courier scheduling problem within the context of crowdsourced same-day deliveries. However,

ML encounters challenges such as distribution dependency and extended training times, critical

factors in the face of evolving data trends. Furthermore, the performance of many ML models

is constrained to a specific problem size. Both exact and ML methods are tailored to specific

problem contexts and may not be easily adaptable to problems with additional features.

As a result, heuristics emerged as the most widely employed and researched method for

tackling large-scale optimization problems. Macrina et al. (2020) considers a variant of the

crowdshipping problem involving intermediate depots and employs a variable neighborhood

search heuristic. Among heuristics, the genetic algorithm stands out as a popular and widely

accepted heuristic for solving the VRPs. Genetic algorithms operate on a population of solutions,

providing increased flexibility in managing the population to guide the search toward optimal

solutions. Vidal (2022) provides an open-source package to solve capacitated VRP with a genetic

algorithm and finds near-optimal solutions with remarkably short computational times. Genetic

algorithms have also been proven beneficial in effectively addressing multiple VRP variants.

Some examples include routing problems with multiple depots and periodicity (Vidal et al.,

2012), or truck-drone mixed fleet (Mahmoudinazlou and Kwon, 2024).

2.2 Fairness in Resource Allocation

Fairness in resource allocation is a critical concern that has been addressed in various fields such

as healthcare, public policy, economics, and ethics. Readers may refer to Mandell (1991) for

an earlier study that explores the trade-off between cost and equity in public service delivery,

as opposed to LMD in for-profit companies. Bertsimas et al. (2012) addresses the trade-off

between efficiency and fairness in resource allocation using the notion of α-fairness, where the

parameter α provides flexibility in adjusting this trade-off. For a comprehensive examination of

various mathematical models that attempt to balance efficiency and fairness, one can refer to

Xinying Chen and Hooker (2023). The authors assert that no single approach is generally suitable

to all problems, as the principles of fairness vary across contexts. Chen and Hooker (2020)

presents a related approach by introducing social welfare functions (SWFs) that combine fairness

and utilitarianism to propose a mixed integer linear programming model. Their sequential

optimization prioritizes less advantaged recipients, but this lexicographic approach limits a

balanced fairness perspective.

Readers are directed to Matl et al. (2018) for a comprehensive discussion of workload equity in

VRPs. Their study covers desirable properties of equity functions and compares commonly used
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ones. It also addresses the VRP with route balancing, which considers fairness in route length

among couriers. Matl et al. (2019) conduct a bi-objective optimization analysis of classic VRPs.

Other studies analyze fairness in transportation problems from a single-objective perspective.

McCoy and Lee (2014) quantify the efficiency and equity of allocating health workers from clinics

to outreach sites. Equity considerations are increasingly prominent in LMD decision-making.

Ibarra-Rojas and Silva-Soto (2021) investigate equity in demand satisfaction when only a fraction

of orders are fulfilled. Yu et al. (2024) explore workload balancing among couriers in a consistent

VRP, focusing on route, courier, and time consistency.

3 Theoretical Foundation

In this section, we establish a theoretical framework applicable to various problems, including

the one explored in this paper. Consider an entity G that needs to allocate N indivisible goods

of varying sizes among M independent agents, each seeking to maximize their utility. Each good

i ∈ N = 1, . . . , N , with size qi, is assigned to one agent. The set of all feasible allocations is

denoted by S, with sm representing the set of goods allocated to agent m ∈ M = {1, . . . ,M}
under allocation s ∈ S. Each allocation s incurs a cost, denoted by Cost(s), for entity G

and generates utility u(sm) for agent m. The utility function u(·) is identical for all agents.

Entity G aims to minimize costs and ensure fairness in allocation, creating a multi-objective

optimization problem with M + 1 objectives: minimizing G’s costs and optimizing each agent’s

utility. To manage the complexity, we reduce the M + 1 objectives to two by replacing the

utility functions of agents with an equity measure EquityMeasure(s) that we seek to minimize.

EquityMeasure(s) is a function of u(s1), . . . , u(sM ) and captures the disparity among agents’

utilities; smaller values of EquityMeasure(s) indicate lower disparities. Using this bi-objective

conversion, entity G seeks to identify the trade-offs between cost and equity, determining what

is known as the “nondominated frontier”. Each point on this frontier, called a “Pareto-optimal”

solution, represents a feasible solution within the objective function space, where improving one

objective compromises the other. The final choice of a Pareto-optimal solution depends on the

specific application. We propose a tailored selection approach, particularly suited for for-profit

entities, which we elaborate on later in this study.

The process described above holds relevance across a wide spectrum of applications, and we

apply it within the scope of this paper as well. Nevertheless, it is imperative to underscore a

critical aspect when endeavoring to reduce the full-dimensional criterion space, i.e., the M + 1-

dimensional criterion space, into a two-dimensional counterpart. This process of reduction

essentially constitutes a mapping from a higher dimension to a lower dimension, and we define a

‘proper mapping’ as follows:

Definition 1. Reducing the full-dimensional criterion space to a two-dimensional criterion space

constitutes a ‘proper mapping’ if every Pareto-optimal solution within the bi-objective criterion

space also remains Pareto-optimal within the full-dimensional criterion space.

According to Definition 1, a proper mapping ensures that solving the bi-objective optimization

problem guarantees a subset of Pareto-optimal solutions from the full-dimensional criterion

space. Failure to ensure proper mapping could result in generating suboptimal outcomes, where
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improving one agent’s utility does not necessarily result in the deterioration of others’ utilities.

To ensure proper mapping, the structure of the utility function and the choice of equity measures

are pivotal. For instance, consider using the ‘range’ of utility values as the equity measure to

minimize. Without a specific structure in the utility function, achieving proper mapping using

the range becomes improbable. This is because the range aims to minimize the gap between the

best and worst utility values, neglecting those in between. Consequently, this approach could

lead to arbitrarily poor outcomes for the agents whose utilities are not at the extremities of the

range. Hence, such solutions may not qualify as Pareto-optimal for the full-dimensional criterion

space.

The above discussion highlights that for an arbitrary utility function, not all equity measures

are suitable. Specifically, those equity measures that do not result in a proper mapping can be

ignored.

Theorem 1. If u(I) is an increasing function of
∑

i∈I qi for all I ⊆ N , then the proper mapping

is guaranteed for any chosen equity measure.

Proof. We aim to prove the assertion through a contradiction. Consider an arbitrary equity

measure, and suppose u(I) is an increasing function of
∑

i∈I qi, with I ⊆ N , but this mapping

is not a proper one. In such a scenario, there must exist a Pareto-optimal solution s ∈ S in the

bi-objective optimization problem, which is not Pareto-optimal in the full-dimensional criterion

space counterpart. This suggests the existence of a feasible solution s′ ∈ S that dominates s in

the full-dimensional criterion space. Formally, we require Cost(s′) ≤ Cost(s) and u(s′m) ≥ u(sm)

for all m ∈ M, with at least one strict inequality.

Now, we consider two cases: First, suppose there exists m ∈ M with u(s′m) > u(sm). In

this case, it immediately follows that
∑

i∈s′m qi >
∑

i∈sm qi by assumptions. However, since we

know that
∑

i∈N qi is a constant, there must exist l ∈ M such that
∑

i∈s′l
qi <

∑
i∈sl qi. Based

on our assumptions, this implies u(s′l) < u(sl), leading to a contradiction as s′ cannot dominate

s. Alternatively, if u(s′m) = u(sm) for all m ∈ M, which implies

EquityMeasure(s′) = EquityMeasure(s),

then for s′ to dominate s, we must have Cost(s′) < Cost(s). However, this directly contradicts

the Pareto-optimality of s in the bi-objective version.

Theorem 1 suggests that as long as the utility function of agents is an increasing function

of the summation of item sizes allocated to them, then none of the equity measures can be

considered unsuitable in theory. Therefore, the task of selecting the most appropriate equity

measure(s) becomes primarily a computational challenge. Later in Section 6, we outline a

computational method for this selection process. The underlying concept of our proposed

approach lies in solving a bi-objective optimization problem for each equity measure. If the

Pareto-optimal solutions of one equity measure closely approximate those of the others, we

designate it as the most reliable equity measure. This is because by selecting that equity measure,

we obtain solutions that are good across a variety of equity measures.
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4 Problem Description

Our study focuses on a company (i.e., Entity G) operating from a single depot, aiming to conduct

last-mile deliveries (i.e., Indivisible Goods of varying sizes) using crowdshippers (i.e., Agents).

Each day is divided into equal-length time intervals (e.g., every hour) that online shoppers can

choose among for their delivery to take place. Each interval is available to the online shoppers by

a fixed cutoff time, after which it cannot be selected for delivery. The group of orders received

for delivery within a time interval is referred to as a “wave”. Moreover, delivery orders within a

wave are further broken down based on their delivery locations. Specifically, we assume that the

geographical area covered by the depot is divided into predefined delivery zones to categorize

orders based on their delivery locations. The compensation offered for deliveries made at different

delivery zones can vary based on their characteristics (further discussed in Section 4.1).

To streamline our discussion, we label each delivery zone within a wave as a “zone-wave”,

presuming the company devises a plan for each zone-wave independently. Once the orders

for a given zone-wave are identified, the decision maker faces the task of securing sufficient

transportation capacity to deliver the orders of each interval. As crowdshippers become available,

they choose the zone-wave they wish to serve. Subsequently, the company adopts a first-come,

first-served approach for selecting crowdshippers for each zone-wave. Note that this assumption is

both practical and fair. It is practical because from a crowdshipper’s perspective, once they see a

company’s request for a given zone-wave in their platforms, they expect prompt accommodation

rather than being put on hold for an extensive time to know if they are selected. It is fair

because it prevents the company from discriminating against crowdshippers. We propose that

the company selects the minimum number of crowdshippers necessary to fulfill orders for each

zone-wave. Later in this paper, we explore the consequences of the company deviating from

this assumption on both the low- and high-performing crowdshippers. Following crowdshipper

selection, the company endeavors to allocate jobs (and their corresponding routes) to them by

solving a variant of vehicle routing problem (VRP) incorporating two conflicting objectives: cost

and equity.

4.1 Cost Objective Function

The foundation of our cost objective function lies in the compensation policy established by

the company. Therefore, we first discuss this policy before presenting the cost function. The

company’s compensation policy encompasses two primary facets: per-delivery compensation and

mileage compensation. Per-delivery compensation is contingent upon both the delivery zone

and the quantity of deliveries. Specifically, a delivery in zone z is compensated proportional to

the size/quantity of the delivery by a factor βz ∈ R+, denoting the per-quantity compensation

allocated by the company for Zone z. The value of βz is customizable based on factors such

as demand volume, traffic, safety, and proximity to the depot, among others. On the other

hand, mileage compensation is proportional to the traveled distance by a crowdshipper to

make assigned deliveries by a factor α ∈ [0, 1]. In essence, α denotes the portion of routing

costs covered by the company, and its determination in this study is grounded in two pivotal

assumptions:
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Assumption 1. The company absorbs all operational costs of equity, ensuring that none are

passed on to the crowdshippers.

Assumption 2. Crowdshippers should not be able to garner additional profits by deviating from

the routes assigned to them by the company (the shortest route to make deliveries).

Therefore, in our setting, the company compensates mileage costs only based on the optimal

routes. Additionally, setting α = 1 (full compensation of the mileage cost by the company) implies

that within a designated zone-wave, the collective profits earned by all crowdshippers remain

constant, equating to the total compensation per delivery. This collective profit resembles a

fixed-size cake, with varying workload allocations akin to different cutting strategies implemented

by the company. Striving for fairness, the company aims to distribute the cake more equitably

while minimizing overall costs. Since the compensation per delivery remains fixed, the company’s

expenses are primarily influenced by routing costs. Therefore, the objective function for cost

optimization is its total routing cost.

4.2 Equity Objective Function

This objective function relies on two critical concepts (Matl et al., 2018; Xinying Chen and

Hooker, 2023):

• Equity Metric is the utility function of agents (e.g., crowdshippers), representing the aspect

(e.g., profits, tour length) to be equalized. It quantifies resource allocation according to

predefined fairness guidelines.

• Equity Measure is a mathematical function used to assess equality (e.g., range and standard

deviation). It serves as the fairness criterion for equitable resource distribution.

Combining these two concepts yields the equity objective function, which requires optimiza-

tion. However, there is no unique method to define this function. In the scope of our research,

the challenge lies in delineating both the equity metric and the equity measure. This challenge

emerges due to the varying characteristics among crowdshippers, such as vehicle capacities.

While profits may initially appear as the most fitting equity metric since all crowdshippers strive

to maximize their earnings, excluding crowdshippers’ investments (in terms of resources they

make available) from the equity metric may result in biased and inconclusive outcomes. This

implies that crowdshippers can be viewed as rational investors who, from their perspective,

anticipate higher returns with increased investment. Consequently, the equity metric should

encompass crowdshippers’ investments.

In our research context, crowdshippers offer the company two resources: their time and

vehicle capacities. Since each zone-wave is tackled independently, crowdshippers chosen for a

specific zone-wave are already largely standardized in terms of time, as they are allocated to the

same zone-wave. Therefore, each zone-wave offers similar time commitments and compensation

policy for crowdshippers interested in servicing it. Consequently, within a given zone-wave, the

sole resource requiring adjustment to compute crowdshippers’ profits is their vehicle capacities.

9



With this consideration, we introduce the following equity metric for each crowdshipper, termed

“adjusted profit”:

Adjusted Profit =
Total Profit Earned

Vehicle Capacity
× Total Capacity Used

Vehicle Capacity
. (1)

Equation (1) reflects the preference of each crowdshipper to maximize profits by fully

utilizing their vehicle capacity. The first term of the equation captures the latter preference,

while the second term encapsulates the former. Based on our discussions in Section 4.1, “Total

Profits Earned” can be calculated by taking the product of βz and the “Total Capacity Used”

representing the total quantity assigned to a crowdshipper. This implies that in EQ. (1), both

the numerator and denominator are consistent in their quadratic form. Squaring inherently

renders the equity objective function sensitive to outliers, similar to the concept of mean square

errors in statistical methods.

Observation 1. ‘Adjusted Profit’ is an increasing function of ‘Total Capacity Used’.

Now that we have established the equity metric, the primary question arises: what form

should the equity measure take? The challenge is related to the existence of multiple measures in

the literature. Therefore, we approach the selection of an equity measure as a research question.

Specifically, within the context of our research, we examine five well-known equity measures, i.e.,

range, mean absolute deviation, standard deviation, coefficient of variation, and Gini coefficient.

While there are other measures, we do not include them in this study as they perform similarly to

those we have already considered. For instance, Min-Max, a popular method, shares similarities

with the range. We choose to use range since our research emphasizes distributional justice over

the condition of the worst-paid-off crowdshipper.

The equity objective functions can be defined as follows. Let x represent any feasible solution

to the problem at hand. In this study, we denote the adjusted profit for each crowdshipperm ∈ M,

corresponding to solution x, as pm(x). Essentially, pm(x) quantifies the utility of crowdshipper

m under solution x. With these notations, the equity objective functions considered in this study

are Range, Mean Absolute Deviation (MAD), Standard Deviation (SD), Coefficient of Variation

(CV), and Gini Coefficient (GINI), represented as set Θ := {Range, MAD, SD, CV, GINI}.
The mathematical expressions of these functions are provided in Appendix A. In closing this

subsection, we emphasize the following result:

Proposition 1. The equity objective functions considered in this study offer proper mappings.

Proof. This follows directly from Theorem 1 and Observation 1.

In Section 6, we will present an approach to numerically compare and select the most reliable

equity measure(s) for the problem under study.

4.3 Balancing Objectives: Equity and Cost

As previously noted, the equity and cost objective functions are two antithetical objectives,

making it unlikely for a solution to simultaneously optimize both. Consequently, in tackling

such bi-objective optimization problems, the primary aim for the company is to identify the
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trade-offs between the objectives, determining what is known as the “nondominated frontier”.

Recall that each point on this frontier represents a feasible solution, known as a “Pareto-optimal”

solution, within the objective function space. These solutions are labeled Pareto-optimal because

improving one objective unavoidably results in a compromise in the other.

With the nondominated frontier calculated, the company faces the task of selecting a

nondominated point (and its corresponding Pareto-optimal solution) that effectively balances the

equity and cost objectives from its perspective. This selection process is closely tied to the specific

problem at hand and is heavily influenced by the application’s context and underlying research

philosophy. In our research context, the guiding philosophy centers on favoring an equity-driven

workload allocation, i.e., balancing adjusted profits, within a free-market environment, with

a focus on benefiting for-profit companies. Benefits are attained when (1) the cost of equity

remains sufficiently low to preserve the company’s competitive edge, and (2) the outcomes driven

by equity are uniformly favorable for all crowdshippers to the highest degree feasible. In essence,

the cost of equity borne by the company should not yield undesirable consequences, resulting in

uniformly unfavorable outcomes for all crowdshippers.

The latter condition is addressed by the proposed compensation policy outlined earlier in

Section 4.1, which guarantees that crowdshippers will not bear the burden of equity costs. The

former condition is pivotal in balancing the cost and equity objective functions. This means

that the company can only afford to sacrifice a small fraction of its least-achievable costs to

achieve a higher workload allocation for crowdshippers. Consequently, the company selects a

point from the nondominated frontier with a capped percentage increase in costs, denoted by γ

(e.g., 5%), and then chooses the closest feasible nondominated point to it—effectively selecting

the nondominated point that maximizes the equity objective function while adhering to the cost

cap. As an aside, we sometimes refer to γ as the equity budget of the company in this paper.

5 Optimizing a Zone-Wave

As mentioned previously, the company must independently explore each zone-wave. Therefore,

this section provides additional details about the optimization problems that arise in each

zone-wave, along with explanations of our proposed solution approaches. Our research context

involves two optimization problems: crowdshipper selection and workload allocation. The former

is a single-objective optimization problem to determine the minimum number of crowdshippers

required to fulfill all orders within a targeted zone-wave. The latter, a bi-objective optimization

process, focuses on generating the nondominated frontier for cost and equity objective functions.

5.1 The Crowdshipper Selection Problem

The problem is essentially a variation of the classical bin packing problem. It entails dynamically

solving the classical bin packing problem as crowdshippers join the system and enroll for the

targeted zone-wave. Specifically, crowdshippers are accepted on a first-come, first-served basis. A

crowdshipper is admitted only if the current capacities of accepted crowdshippers are insufficient

to meet the demand in the targeted zone-wave. Thus, admitting a crowdshipper involves solving

a classical bin packing problem, which is not computationally expensive and can be quickly
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addressed using a commercial integer linear programming solver (e.g., Gurobi or CPLEX). We

assume that a sufficient number of crowdshippers will register in the system to fulfill orders in

any zone-wave. This assumption is not restrictive because if there are insufficient crowdshippers,

the company can redistribute some orders (in a first-come, first-served manner) to the immediate

next wave within the same zone. Interested readers can find the mathematical formulation of

the crowdshipper selection problem and further details in Appendix B.

Table 1: Notations Used in Workload Allocation Optimization

Notation Description
Sets:
N Set of all customers with a cardinality of N

N Set of all vertices, N ∪ {0} where 0 is the depot
A Set of all arcs
M Set of all selected crowdshippers with a cardinality of M
Parameters:
cij Cost of traversing the arc (i, j)
qi Order size of customer i ∈ N
pi Per delivery compensation for fulfilling the order of customer i ∈ N
Qm Vehicle capacity of crowdshipper m ∈ M
Q Maximum vehicle capacity among crowdshippers selected, i.e., max(Qm)m∈M
Variables:
xijm Binary decision variable which equals one if crowdshipper m ∈ M traverses the arc from i to j,

0 otherwise
ui Continuous decision variable designed for subtour elimination constraints, where i ∈ N

5.2 The Workload Allocation Problem

After completing the crowdshipper selection, the next step is determining workload allocation,

which involves two conflicting objectives: cost and equity. This problem can be seen as a

variation of the capacitated VRP with three main distinguishing characteristics:

• Heterogeneous Vehicles: Unlike traditional VRP variants with homogeneous vehicles, our

problem involves a limited fleet of vehicles with varying loading capacities.

• Open Routes : In our research context, each crowdshipper begins their route from the depot and

serves assigned customers based on prescribed routing. Unlike traditional VRP, crowdshippers

are not required to return to the depot after completing their tasks.

• Bi-objective Optimization: In contrast to traditional VRP with a single objective, our problem

introduces an additional objective function alongside cost, namely equity. The equity objective

function can be highly non-linear depending on the underlying equity measure.

Using the notation outlined in Table 1, the workload allocation problem for any zone-wave

can be formulated as follows:

min
{
Cost(x), EquityMeasure(x)

}
(2a)

s.t.
∑
i∈N

∑
m∈M

xijm = 1 ∀j ∈ N (2b)

∑
i∈N

xijm =
∑
i∈N

xjim ∀j ∈ N ;m ∈ M (2c)

∑
j∈N

x0jm = 1 ∀m ∈ M (2d)
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∑
m∈M

xiim = 0 ∀i ∈ N (2e)

qi ≤ ui ≤
∑

m∈M
Qm

∑
j∈N

xjim ∀i ∈ N (2f)

ui − uj +Q
∑

m∈M
xijm ≤ Q− qj ∀i, j ∈ N ; i ̸= j (2g)

ui ∈ R ∀i ∈ N (2h)

xijm ∈ {0, 1} ∀i, j ∈ N ;m ∈ M (2i)

The first objective function aims to minimize the total routing cost incurred by all crowd-

shippers, and it can be stated as:

Cost(x) :=
∑
i∈N

∑
j∈N

∑
m∈M

cijxijm.

The second objective function retains its abstraction, allowing for the integration of any equity

measure to evaluate the disparity in adjusted profits. Specifically, define

Nm(x) :=
{
j ∈ N : ∃ i ∈ N such that xijm = 1

}
as the set of customers to be serviced by crowdshipper m ∈ M under solution x. Utilizing this

notation, the adjusted profit for crowdshipper m ∈ M under solution x, denoted by pm(x), is

expressed as:

pm(x) =

(∑
i∈Nm(x) pi

Qm

)(∑
i∈Nm(x) qi

Qm

)
. (3)

With this groundwork, any of the Range(x), MAD(x), SD(x), CV(x), and GINI(x) measures, as

stated in Appendix A, can be employed as EquityMeasure(x) in the optimization model.

Constraints (2b) ensures the fulfillment of all customer demands. It is important to note that

while constraints (2c) enforce flow conservation at each node, the first objective function solely

minimizes traversal costs for active routes. Hence, the cost of returning from the last served

location to the depot, although considered in the constraint set, is omitted from the objective

function. Crowdshippers depart from the depot according to constraints (2d), and self-visits

are prohibited by constraints (2e). Subtour elimination constraints (2f)–(2g), also known as

Miller-Tucker-Zemlin constraints (Miller et al., 1960), ensure the connectivity of crowdshipper

routes based on heterogeneous load capacities. Variables ui are assigned real values as per (2h),

yet their range is bounded by constraints (2f). Finally, the integrality conditions of routing

decision variables are enforced by constraints (2i). It is important to note that we have not

explicitly introduced capacity constraints as they are inherently captured by constraints (2f)–(2g).

This is because each customer must be satisfied by a crowdshipper, implying that customer

i ∈ N must be in the sequence of customers to be serviced by a crowdshipper. Thus, variable ui

can be interpreted as the capacity occupied by customer i and its preceding customers in that

crowdshipper’s route.
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5.2.1 Proposed Solution Approach

Solving the workload allocation problem (2) is challenging. This is evident as even classical

VRPs with a single objective pose considerable difficulty. In our research, we confront a variant

of the VRP that is notably more complex due to its bi-objective nature, particularly when one

objective is nonlinear (partly due to the nonlinear nature of the adjusted profits). Consequently,

employing exact multi-objective optimization methods for solving the workload allocation

problem becomes impractical. Therefore, we propose a custom-built heuristic approach tailored

to address the problem, irrespective of the equity measure employed. Our proposed method

efficiently approximates the nondominated frontier for any instance of the workload allocation

problem. It combines the core principles of the well-known Non-dominated Sorting Genetic

Algorithm (NSGA-II; Deb et al. (2002)) with the concepts of Multi-Directional Local Search

(MDLS; Tricoire (2012)), offering an effective solution approach for handling the complexities of

the workload allocation problem.

We refer to our proposed solution method as HybridNsgaII. At the heart of our proposed

method is NSGA-II, known for its computational efficiency in approximating optimal trade-offs

between conflicting objectives by ranking and selecting solutions based on their dominance

relationship (Jozefowiez et al., 2005; Srivastava et al., 2021; Zhou et al., 2018; Gullotta et al.,

2021). Specifically, during each iteration, NSGA-II evaluates the rank of each candidate solution

using a non-dominated sorting technique. This technique categorizes the solutions into different

approximations of the Pareto-optimal frontiers based on their dominance relationship with others.

This implies that the first approximation has rank one and is better than the second, and the

second is better than the third one, and so forth. To generate a new population of offspring

solutions, NSGA-II then performs selection, crossover, and mutation operations. Additionally,

to ensure well-distributed objective function values or diversity in the population of solutions,

NSGA-II uses a crowding distance metric.

To effectively solve the workload allocation problem, we either customize some of the main

operations or add some new operations to NSGA-II. Customized operations include:

• Solution Representation: We employ a sequence-based solution representation for N customers

and M crowdshippers by a two-part chromosome: a giant tour gene of length N specifying

the order of customer visits, and a breakpoint gene of length M − 1 indicating where the

giant tour is split into crowdshipper routes. The breakpoint gene contains increasing positive

integers less than N , ensuring each crowdshipper serves at least one customer.

• Initialization: The initial population is generated using both targeted and random methods.

While targeted methods such as the Clarke-Wright savings heuristic and nearest neighbor

algorithm provide good initial solutions that improve convergence speed, random permutations

of customers and breakpoints increase population diversity.

• Genetic Algorithm Operations: Parent selection, a critical step in the genetic algorithm, is

implemented using binary tournament selection based on fitness scores. To generate offspring,

we employ effective crossover operations specifically designed for sequence-based chromosome

representations. Additionally, mutations are introduced with a predetermined probability and

tournament selection.
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Newly integrated operations include:

• Local Search: We attempt to refine the set of best solutions by employing MDLS at each

iteration. This process prioritizes cost and equity separately, leveraging Large Neighborhood

Search and workload reassignment strategies to achieve targeted improvements.

• Infeasible Population Management: Due to vehicle capacity constraints, some solutions

generated during the search may be infeasible. Instead of discarding these solutions, we

either attempt to repair them or preserve them in a separate population. This diversifies the

total population and aids in escaping local optima. To ensure proper integration into the

selection process, the objective values of infeasible solutions are penalized based on the extent

of capacity violations, weighted by an adaptive penalty factor.

• Diversity Score: Our method enhances population diversity using a diversity score and

alternately focuses on cost, equity, and solution rank throughout the search process to ensure

a balanced exploration of the solution space.

Additional information about HybridNsgaII is available in Appendix C for interested

readers. HybridNsgaII serves as a key tool for addressing the research questions in this

study. Therefore, in our computational analysis, we prioritize demonstrating its reliability before

utilizing it to tackle the research questions. To show its reliability, we borrow two measures from

the literature of multi-objective optimization:

• Cardinality : The Cardinality, sometimes referred to as ‘Card.’ in this study, shows the number

of approximate nondominated points found. We would like to highlight that, unlike exact

methods, in heuristic solution approaches, the number of approximate nondominated points

does not necessarily increase over time, as it is possible for a point to be found in one iteration

that dominates a subset of the points in the previous iteration. However, one can hope that

the cardinality measure gets stabilized over time.

• Hypervolume: This is a widely used performance indicator in multi-objective optimization (Pal

and Charkhgard, 2019), and we sometimes refer to it as ‘HV’ in this study. It is a single value

reflecting the area of the criterion space that is dominated by the approximate nondominated

frontier found and is trapped between the approximated frontier and a given reference point.

Larger values for the Hypervolume indicate better approximations. To ensure this premise, it

is critical for the reference point to be selected carefully and remain fixed when comparing

multiple approximations. In this study, because we are minimizing both objective functions,

the correct selection of the reference point means each component of the reference point should

be larger than or equal to the same component among all points across all approximations.

6 Identifying the Most reliable Equity Measure(s)

In this section, we explore the process of identifying the most reliable equity measures for solving

the workload allocation problem within a given zone-wave. As per Proposition 1, all equity

measures considered in this study offer proper mappings. Therefore, selecting the most reliable
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measure(s) is primarily an empirical question, best addressed through computational analysis.

Thus, we propose a method for this purpose in this section. The approach proposed here conducts

a comprehensive analysis over the entire set of approximate Pareto-optimal solutions found using

each measure. Later in Section 7.2 and Appendix E, we highlight other alternative techniques

that rely on analyzing a subset of Pareto-optimal solutions found using each measure. However,

such approaches raise some major questions that are not trivial how they can be addressed. We

posit that a measure identified as the most reliable using full-set analysis is likely to perform

well under subset-based analysis but not necessarily vice versa. We provide numerical evidence

supporting this claim in Section 7.2 and Appendix E. With this in mind, we next present our

proposed selection approach.

Our approach starts with generating approximate frontiers for each equity measure using

HybridNsgaII for each instance. Given that we are investigating five equity measures in this

study, we produce five distinct approximate nondominated frontiers for each instance. The

proposed approach involves mapping the approximate Pareto-optimal solutions identified under

each equity measure into the bi-objective space of every other equity measure. For each pair of

equity measures, this mapping can be expressed as follows:

Map
(
(Cost, θI) → (Cost, θII)

)
, ∀θI , θII ∈ Θ := {Range, MAD, SD, CV, GINI}.

For instance, let θI be Range and θII be MAD. This indicates a desire to map the approximate

Pareto-optimal solutions obtained by HybridNsgaII for Cost and Range into the space of Cost

and MAD. To achieve this, we simply compute the values of Cost and MAD for each solution.

While the Cost values remain constant as in the Cost and Range space, this mapping generates

several feasible points in the Cost and MAD space. However, some of these feasible points may

dominate others in this new space, necessitating the removal of dominated points. Through a

removal process, an approximate nondominated frontier is derived for the Cost and MAD space

using the solutions originally found for the Cost and Range space.

Considering the exploration of five distinct equity measures in Θ, for every equity measure

θII ∈ Θ, we obtain five different approximated nondominated frontiers through this mapping

procedure, namely

Approximation(θI , θII) : Map
(
(Cost, θI) → (Cost, θII)

)
, ∀θI ∈ Θ.

Note that among these approximations, Approximation(θII , θII), where the approximate

Pareto-optimal solutions obtained by θII is re-mapped into the space of θII , is expected

to be the best approximation of the nondominated frontier for the space of Cost and θII .

This is because such an approximation implies that HybridNsgaII has directly generated

an approximate nondominated frontier for the space of Cost and θII , rendering the mapping

redundant. However, such certainty is not guaranteed given that HybridNsgaII is a heuristic

approach. Hence, we regard Approximation(θII , θII) as a benchmark for assessing the quality

of all Approximation(θI , θII), ∀θI ∈ Θ \ θII . By comparing the Hypervolumes of all five

approximations to that of Approximation(θII , θII), we can compute the Hypervolume gaps.

Naturally, the Hypervolume gap will be 0% for Approximation(θII , θII). However, for each
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θI ∈ Θ\θII , the Hypervolume gap corresponding to Approximation(θI , θII) may vary positively

or negatively. Smaller Hypervolume gaps across all approximations denote better performance.

After computing all five different approximations for each equity measure, we can now

readily identify the most reliable measure(s). An equity measure earns this distinction if it not

only produces the best-known approximation for itself but also comes close to achieving the

same level of accuracy for other measures through mapping. We gauge this performance using

the Hypervolume gap. Clearly, determining the best measure through this method requires a

comprehensive computational study across various instances to assess the average performance

of each equity measure and its corresponding mappings.

7 Computational Study

In this section, we conduct an extensive computational study using large-sized instances to

not only showcase the performance of HybridNsgaII but also to address the main research

questions delineated in Section 1. All simulation and optimization tools necessary for conducting

the experiments in this paper are implemented and executed in Julia 1.9.4. The experiments are

carried out on a MacBook Pro featuring an Apple M1 Chip with 16GB RAM, running on macOS

Sonoma 14.1.2. In this paper, we conduct two types of experiments, each necessitating a unique

instance generation approach. The first type focuses on operations at a single zone-wave level,

exclusively tackling the workload allocation problem while omitting the crowdshipper selection

aspect. Conversely, the second type explores the comprehensive operations of the company

throughout a typical working day. These experiments encompass multiple zones and waves,

addressing both the crowdshipper selection and workload allocation problems on a frequent

basis.

For the first set of experiments, we create numerous instances of varying sizes, with the

specific quantity and dimensions outlined individually for each experiment of this type. Here, we

concentrate on delineating the instance generation process. Each instance comprises depots and

customers randomly positioned across a grid with coordinates ranging from [1, 100]× [1, 100].

Customer demands are integer values within the interval [1, 100], while vehicle capacities are

generated as τqm where τ is randomly drawn from a uniform distribution in the range [0.7, 3.3]

and qm represents the mean demand per vehicle. Additionally, the parameter βz is randomly

selected from the interval of [0.7, 1.0]. In the second set of experiments, we consider a working day

as ten waves of customer orders, each wave containing between 150 and 200 orders. Orders are

divided into four geographical zones and each zone is assigned a compensation factor βz from the

set {0.6, 0.7, 0.8, 0.9} based on demand volume. Within each zone, two types of crowdshippers

are available to fulfill the orders, differentiated by their vehicle capacity. Our simulation assumes

a scenario where approximately 80% of crowdshippers are low-performing, with vehicle capacities

L ∈ {150, 200, 250}, and the remaining 20% are high-performing, with capacities H ∈ {450, 500}.
We denote the set of low-performing crowdshippers and the set of high-performing crowdshippers

by ML and MH , respectively.
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7.1 Validating the Proposed Heuristic Approach

In this subsection, our goal is to present numerical evidence demonstrating the high-quality

performance of HybridNsgaII in solving the workload allocation problem. This demonstration

inherently asserts that HybridNsgaII is indeed a fitting tool for tackling our research questions.

We provide two types of analysis to demonstrate the high performance of HybridNsgaII. First,

we compare its performance with an off-the-shelf exact solver. Secondly, we provide some results

about its workings over time, reflecting that it quickly generates high-quality approximations

and can improve its approximations over time.

Table 2: Comparing HybridNsgaII to an Exact Solver using Range as the Equity Measure

N M
Exact Solver HybridNsgaII

HV Gap

Card. HV Time Card. HV Time
(sec.) (sec.) (%)

8 2 4.8 475.32 2.05 4.8 475.32 3.74 0.00
8 3 8.7 468.12 4.26 8.7 468.12 3.92 0.00
10 2 7.7 462.42 23.79 7.7 462.42 4.18 0.00
10 3 10.8 452.03 84.29 10.4 451.80 5.21 0.05
12 2 6.3 439.78 969.98 6.2 439.46 4.77 0.07
12 3 14.6 423.71 1,625.90 13.4 423.39 6.19 0.07

In light of the complex nature of the VRP variation we are examining, exact multi-objective

optimization solvers face significant challenges in solving instances unless the equity measure

chosen is Range from our list of options. This preference stems from the inherently linear

nature of Range, coupled with the fact that existing off-the-shelf multi-objective optimization

tools are primarily designed for integer linear programs. Consequently, our comparison with an

exact off-the-shelf solver is focused solely on Range. However, we note that despite the Range’s

linear nature, the range of adjusted profits is non-linear due to the underlying non-linearity of

adjusted profits (i.e., Equation (3)). To address this, we have decided to employ the range of

vehicle utilization values (specifically,
∑

i∈Nm(x) qi
Qm

) for our comparison. For this purpose, we have

employed the Julia package MultiObjectiveAlgorithms, leveraging the ϵ-constraint method and

Gurobi Optimizer.

We did not impose any time limit for the Exact Solver. Consequently, six instances took up

to 75 minutes to be solved using the exact solver, while the rest were solved within 30 minutes.

The results of our comparison across various instance sizes are presented in Table 2, with each

row displaying averages from 10 randomly generated instances (60 instances in total). In the final

column of the table, we showcase the gap between the HV reported by our proposed approach

and the exact method for the fixed reference point of (700, 1).

Overall, our findings underscore the efficacy of our proposed approach, which significantly

outpaces the exact solver in terms of speed. Notably, for networks of size 8, our approach

successfully generated all nondominated points. This trend continues for networks of size 10

with 2 crowdshippers. Furthermore, our observation from the table reveals that even for larger-

sized instances, the proposed approach consistently finds almost all nondominated points. For

additional details, readers may refer to Appendix D.

Now we focus on assessing the overall performance of the HybridNsgaII across various

equity measures and its evolution over time. To accomplish this, we generated 80 random
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Table 3: Average Run Time of HybridNsgaII across different Equity Measures

N M
Average CPU Time (sec.)

Range MAD SD CV GINI

25 3 2.10 2.49 2.17 1.94 1.96
25 5 4.06 3.09 4.25 3.59 2.80
50 5 3.80 4.65 5.02 4.53 5.76
50 10 7.24 7.32 8.32 9.17 9.49
75 8 9.72 13.63 13.36 15.61 15.59
75 15 11.85 19.94 19.90 20.75 20.51

100 10 18.62 22.16 27.14 24.57 29.94
100 20 16.17 27.81 27.90 25.55 29.39

Average 9.20 12.64 13.51 13.21 14.43

instances using our instance generator across 8 classes of different sizes, each containing up to

100 nodes and 20 crowdshippers. The solution times of HybridNsgaII under different equity

measures are detailed in Table 3, with the values in each row representing averages across 10

instances. Observe that the proposed approach can generate an approximate frontier within

a matter of seconds even for large-sized instances. Unsurprisingly, we observe a relationship

between the solution time of HybridNsgaII and the complexity of the chosen equity measure.

The equity measure with the least complexity, Range, exhibits an average solution time of 9.2

seconds, while the most complex measure, GINI, necessitates 14.43 seconds on average to solve

an instance.

(a) Hypervolume (b) Cardinality

Figure 1: Progression of HybridNsgaII results until termination under GINI for two instances
with N = 50

The progression of HybridNsgaII in terms of both Hypervolume and Cardinality at each

iteration is illustrated in Figures 1 and 2. Specifically, Figure 1 focuses solely on the GINI measure,

depicting the progress of two instances simultaneously. Both instances have a population size of

N = 50 deliveries, with one having M = 5 crowdshippers and the other M = 10. The latter

instance is further depicted in Figure 2 across all equity measures considered. From these figures,

it is evident that almost after 200 iterations, Hypervolume has nearly converged, indicating

that high-quality approximations have been generated within only 10% of the total runtime

of the HybridNsgaII. This implies that early termination can still result in high-quality

approximations by HybridNsgaII, which can be useful for solving instances significantly larger

than those used in this study.

Regarding Cardinality, natural fluctuations are observed, indicating continuous improvement
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(a) Hypervolume (b) Cardinality

Figure 2: Progression of HybridNsgaII results under various equity measures for an instance
with N = 50 and M = 10

of its best-known approximate nondominated frontier over time, facilitated by various enhance-

ment techniques such as dynamic weight adjustments and periodic repopulation of the solution

set. It is noteworthy that a decrease in the nondominated frontier can occur when a newly

found feasible point dominates a subset of points in the best-known approximate nondominated

frontier, resulting in a reduction in Cardinality as dominated points are removed. Furthermore,

an interesting but expected observation is that more complex equity measures lead to larger

Cardinality values. This implies that in practice, companies may struggle to enhance equity

when employing simpler measures like Range. The challenge lies in selecting a point from the

approximate nondominated frontier that balances equity without significantly impacting costs.

Due to the limited options available-attributed to the small cardinality under these simpler

equity measures-companies may find it difficult to achieve substantial improvements.

7.2 The Most Reliable Equity Measures

In this subsection, we embark on exploring our first research question: which equity measure(s)

prove most reliable within the scope of our study? To achieve this goal, we utilize the selection

method introduced in Section 6. This method identifies a measure as most reliable when it

can generate a set of Pareto-optimal solutions using HybridNsgaII that remain robust across

all measures. As discussed in Section 6, alternatives to our proposed approach may involve

analyzing a subset of Pareto-optimal solutions rather than the entire set holistically. However,

such approaches encounter challenges as determining the appropriate subset selection method is

not straightforward. Additionally, we posit that a method identified as most reliable through

holistic analysis is likely to maintain its efficacy relative to subset-based approaches, but the

reverse may not hold true. This implies that selections made using our proposed approach are

expected to possess an additional layer of robustness against subset-based approaches. For those

interested, Appendix E provides numerical evidence and further discussions supporting this

claim, focusing on a special case of subset-based approaches when the subset size is one.

Given these considerations, we revisit the 80 instances outlined in Table 3 from the preceding

subsection. These instances are evenly distributed across four classes, categorized by the

number of customers in their networks, denoted as N ∈ {25, 50, 75, 100}. Utilizing the mapping

techniques detailed in Section 6, we attempt to identify the most reliable measure(s). Table 4
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provides a comprehensive summary of the HV gap for each observed instance class in the

mapping experiments. Each row reports approximate Pareto-optimal solutions obtained using

a specific equity function, reevaluated against the remaining functions investigated in this

study. To maximize the reliability of our findings, we first solve each instance 10 times using

HybridNsgaII for every equity measure. The best approximation, based on HV, is then selected

from these 10 runs for each equity and will be used for subsequent mapping processes across

various criterion spaces for that instance. Furthermore, to ensure consistent comparison of the

Hypervolume gap across diverse problem sizes, each experiment class uses a fixed reference point.

This point is determined by the maximum observed cost within the respective class.

Table 4: Mapping Results: Hypervolume Gaps

(a) Class N = 25

Map HV Gap (%) using
Average

From\To Range MAD SD CV GINI

Range 0.00 0.40 -0.03 0.39 -0.04 0.14
MAD -0.25 0.00 -0.21 0.02 -0.36 -0.16
SD 0.44 0.93 0.00 0.92 0.31 0.52
CV -0.38 -0.02 -0.39 0.00 -0.42 -0.24
GINI 0.10 0.57 -0.29 0.55 0.00 0.19

(b) Class N = 50

Map HV Gap (%) using
Average

From\To Range MAD SD CV GINI

Range 0.00 1.47 0.95 1.65 1.02 1.02
MAD -0.86 0.00 -0.05 0.29 -0.34 -0.19
SD -0.43 0.93 0.00 1.16 0.25 0.38
CV -1.42 -0.26 -0.45 0.00 -0.62 -0.55
GINI -0.61 0.50 0.00 0.75 0.00 0.13

(c) Class N = 75

Map HV Gap (%) using
Average

From\To Range MAD SD CV GINI

Range 0.00 1.17 0.93 1.30 1.31 0.94
MAD -0.47 0.00 -0.34 0.25 -0.01 -0.11
SD 0.49 2.12 0.00 2.21 1.41 1.25
CV -1.16 -0.20 -0.93 0.00 -0.29 -0.52
GINI -0.69 0.48 -0.96 0.65 0.00 -0.10

(d) Class N = 100

Map HV Gap (%) using
Average

From\To Range MAD SD CV GINI

Range 0.00 1.37 0.53 1.81 2.30 1.20
MAD 0.71 0.00 -0.04 0.60 0.82 0.42
SD 1.16 3.04 0.00 3.42 2.95 2.11
CV -1.44 -0.48 -2.20 0.00 -0.09 -0.84
GINI -1.18 -0.46 -1.64 0.08 0.00 -0.64

Note that a negative HV gap in Table 4 indicates that the approximation found through

mapping is better than the original approximation for that criterion space. This can partly be

attributed to the fact that HybridNsgaII is a heuristic approach; however, by running each
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instance 10 times, we aim to minimize its impact. Overall, the table shows that the average HV

gap through mapping is up to about 2% better or worse than the original approximation. The

mapping results demonstrate that CV is the most reliable equity measure, consistently outper-

forming others across all instance classes. Notably, GINI also exhibits improved performance

as the problem size increases. However, while the Range equity function is computationally

efficient, it underperforms due to its inability to capture variations in adjusted profits effectively.

7.3 Quantifying Potential Equity Improvement

In this subsection, we explore our second research question: How much can equity improve

with varying equity budgets by the end of a working day? The goal is to demonstrate that

equity can be significantly enhanced across various zones even with only a small increase in

the operational cost for the company in different zones. To explore the question, we consider

different equity budgets for the company, ranging from γ ∈ {2.5%, 5%, 7.5%, 10%}, and conduct

a full simulation of the entire working day. We report the average improvement for each zone

in Table 5, with each row showing averages across all 10 waves. This section focuses on CV,

identified previously as one of the most reliable equity measures. Within each zone-wave, we

select the minimum necessary crowdshippers based on the first-come, first-served principle. Our

method for selecting a point from the approximate nondominated frontier follows the approach

in Section 5.2.1, choosing the point that maximizes equity for the given equity budget.

Table 5: Summary of Results Obtained by Simulating a Working Day

Zone βz N |ML| |MH | Card.
Best Improvement in CV (%)

Cost γ = 2.5% γ = 5% γ = 7.5% γ = 10%

1 0.6 85.6 68.2 17.4 24.3 1,771.2 31.69 41.80 45.73 49.44
2 0.7 37.4 30.1 7.3 19.9 499.6 32.41 51.53 62.60 69.75
3 0.8 36.2 29.1 7.1 19.8 465.1 38.58 52.54 61.64 72.17
4 0.9 14.1 9.9 4.2 8.1 108.9 23.45 47.33 59.47 65.41

Table 5 demonstrates that even a minor deviation of 2.5% from the least-cost solution can

significantly enhance equity in workload allocation. Across the four zones, distinguished by

order volume and compensation policies, we observe an average equity improvement of 31.53%

when allowing for this slight cost increase. For example, in Zone 1, a 2.5% deviation permits

the selection of a solution with a route cost averaging 1,815.48, compared to the average least

cost of 1,771.2. Similarly, with an equity budget of 5%, the average equity improvement is

observed as 41.8% compared to the least-cost solution. This highlights that even with a modest

equity budget, the company can foster a more equitable workload distribution, incentivizing

participation from crowdshippers and aiding a sustainable business model.

7.4 Quantifying the Loss of Crowdshippers

In this subsection, we explore our third research question: How much potential loss might

a high-performing crowdshipper face due to the company’s equity considerations? Gains (or

losses) refer to the difference between adjusted profits under an equity-aware solution and those

under the least-cost solution. We provide insights on both low-performing and high-performing
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crowdshippers in this section. The response to the research question depends on the number of

crowdshippers in the system. Our proposed approach, by construction, targets the minimum

number of crowdshippers (denoted as M) employed in a first-come-first-served framework, when

solving the crowdshipper selection problem. It is anticipated that deviating from this minimum

count and admitting more crowdshippers will increase the loss of crowdshippers. Thus, we

examine the research question across different scenarios, contingent upon the crowdshipper

count. Specifically, we increase M by 50% and 100%, i.e., 1.5M and 2M , as shown in Table

6. Echoing the preceding subsection, we also explore various equity budgets for the company,

spanning γ ∈ {2.5%, 5%, 7.5%, 10%}, and conduct a comprehensive simulation covering the

entire operational day.

Table 6: Comparing the Impacts of Different Numbers of Crowdshippers by Simulating a Working
Day

Zone
Equity Number of Crowdshippers Selected

Budget M 1.5M 2M

(%) Cost CV pL pH Cost CV pL pH Cost CV pL pH

1

0.0 1,771.2 0.04 0.56 0.56 1,631.1 0.49 0.28 0.24 1,888.4 0.65 0.18 0.15
2.5 1,797.3 0.02 0.56 0.56 1,669.7 0.36 0.27 0.22 1,933.1 0.49 0.18 0.13
5.0 1,831.1 0.02 0.56 0.56 1,709.4 0.31 0.27 0.21 1,980.8 0.42 0.17 0.12
7.5 1,848.9 0.01 0.56 0.56 1,750.3 0.27 0.27 0.21 2,027.6 0.38 0.17 0.12

10.0 1,891.9 0.01 0.56 0.56 1,791.2 0.24 0.27 0.21 2,069.8 0.35 0.16 0.12

2

0.0 499.6 0.10 0.61 0.44 514.3 0.64 0.26 0.37 607.7 0.82 0.18 0.24
2.5 508.2 0.07 0.61 0.43 525.5 0.48 0.25 0.33 619.2 0.66 0.16 0.23
5.0 520.7 0.04 0.61 0.44 538.5 0.39 0.24 0.33 635.0 0.57 0.16 0.21
7.5 531.6 0.03 0.62 0.43 550.7 0.32 0.25 0.31 651.7 0.46 0.17 0.17

10.0 546.0 0.03 0.61 0.43 563.8 0.27 0.24 0.30 664.7 0.40 0.16 0.17

3

0.0 465.1 0.12 0.66 0.66 466.7 0.65 0.28 0.40 546.0 0.80 0.17 0.28
2.5 474.6 0.07 0.68 0.63 476.1 0.52 0.29 0.35 556.2 0.61 0.17 0.25
5.0 483.7 0.05 0.68 0.63 488.6 0.40 0.29 0.33 571.5 0.49 0.17 0.22
7.5 491.4 0.04 0.69 0.62 500.1 0.35 0.29 0.31 585.7 0.41 0.18 0.20

10.0 505.5 0.03 0.68 0.62 511.1 0.29 0.29 0.30 597.3 0.35 0.17 0.20

4

0.0 108.9 0.40 0.54 0.42 125.7 0.77 0.25 0.26 145.8 0.86 0.22 0.23
2.5 109.9 0.32 0.55 0.40 127.0 0.64 0.24 0.22 148.2 0.69 0.21 0.21
5.0 112.3 0.20 0.49 0.40 130.4 0.51 0.26 0.22 151.1 0.55 0.23 0.16
7.5 114.0 0.14 0.51 0.39 133.7 0.38 0.25 0.21 155.1 0.43 0.20 0.15

10.0 115.6 0.13 0.51 0.39 136.8 0.27 0.25 0.21 157.8 0.34 0.17 0.15

The zone-wave experiment results for different numbers of crowdshippers are summarized in

Table 6, with each row representing averages across all 10 waves. Note that pL and pH are the

average adjusted profits for low-performing and high-performing crowdshippers, respectively.

Results within each zone are categorized by the equity budgets discussed earlier. We observe

the following five key managerial insights:

• Insight I: Expanding the number of crowdshippers generally drives up operational costs for the

company. Yet, exceptions arise due to the requirement of utilizing all selected crowdshippers

on a first-come-first-served basis. This variance is notable in Zone 1, where up to 70% increase

in crowdshipper numbers has reduced the company’s operational costs, while a 100% increase

has increased the cost.

• Insight II: Even if the company hires more crowdshippers than necessary, it can still notably

improve equity across all zones with a small equity budget. This improvement is evident in

the shifts in the CV values for each crowdshipper size.
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• Insight III: While equity gains remain notable even with a limited equity budget across different

workforce sizes, the disparities between the average adjusted profits of high-performing and

low-performing crowdshippers exhibit minimal variation. In essence, pL and pH exhibit

comparable magnitudes across different budget allocations within each zone and the same

workforce size. Thus, according to the definition of CV, equity gains predominantly arise from

reductions in standard deviations.

• Insight IV: The equity deteriorates with an increase in the number of crowdshippers in general.

This is apparent from the rising trend in the CV values across each row. According to the

definition of CV, this suggests that as the number of crowdshippers increases, the average

adjusted profits decrease significantly, to an extent where even a decrease in standard deviation

cannot compensate for it.

• Insight V: Interestingly, selecting more crowdshippers than needed increases opportunity costs

for both low- and high-performing crowdshippers. This is evident in the reduced adjusted

profits for both types as the number of crowdshippers rises.

(a) Zone 1 (b) Zone 2

(c) Zone 3 (d) Zone 4

Figure 3: Average trends in Equity, Cost Increase Ratio, and Adjusted Profits when γ = 2.5%

To demonstrate the broader applicability of our findings beyond the 1.5M and 2M thresholds,

Figure 3 showcases the average values of CV, pL, pH , and the Cost Increase Ratio (CIR) for

all four zones across various workforce sizes, with an equity budget set at 2.5%. The CIR

quantifies the percentage increase or decrease in costs compared to hiring the minimum number

of crowdshippers. For instance, a CIR of 0.1 indicates a 10% increase, while -0.1 implies a 10%

decrease in costs. Overall, Figure 3 reaffirms that our key findings extend beyond the 1.5M

and 2M thresholds. Consequently, the managerial imperative highlighted in this section is to

prioritize selecting the minimum number of crowdshippers.
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8 Discussion

This study addresses three fundamental questions that crowdshipping-based LMD platforms,

with a focus on fair pay, may pose to foster a sustainable crowd for the longevity and expansion

of their systems: How can equity be effectively measured? How can the cost benefits be assessed?

And what are the potential downsides of using more couriers? The first question tackles the

challenge of selecting an appropriate equity measure from the long list of available measures in

statistics and economics literature. The second question emphasizes the imperative for LMD

platforms, operating under for-profit entities, to consider costs thoughtfully while striving for

equity. This necessitates the development of tailored tools capable of evaluating both costs

and benefits. Finally, the last question focuses on minimizing a significant negative outcome

of equity consideration, which is linked to the notion of opportunity cost. This concept is an

inherent part of equity considerations, indicating that the redistribution of opportunities results

in gains for some and losses for others. Consequently, a primary negative consequence of equity

consideration is the discouragement of individuals, especially high-performing crowdshippers,

who experience reduced opportunities. Hence, it is crucial to mitigate this negative impact.

To address these research questions, we developed a practical equity-oriented framework

inspired by the real-time operations of a group of crowdshipping platforms. The framework

comprises two key elements: (1) a fair crowdshipper selection process based on the principle

of first-come, first-served, and (2) an innovative bi-objective optimization process for workload

allocation and optimal route selection aimed at balancing equity and cost. This optimization

process utilizes an effective heuristic approach known as HybridNsgaII, and its effectiveness

was demonstrated through a comprehensive computational analysis.

To tackle the first question, we laid down theoretical groundwork rooted in the concept

of Pareto-optimality in multi-objective optimization, identifying which equity measures are

not desirable. Subsequently, we outlined a systematic selection process to determine the most

reliable equity measures. Our approach is straightforward: if solutions generated under a

given equity measure perform well across all measures, then that measure is deemed the most

reliable. Implementing this process alongside HybridNsgaII, we found that among established

methods such as Range, MAD, SD, CV, and GINI, CV stands out as the most reliable equity

measure within our study’s scope. Furthermore, GINI emerged as a viable alternative for larger

problem instances. However, Range might appeal more to those prioritizing computational

speed, boasting an average execution time of 9.2 seconds, compared to 13.21 seconds for CV

and 14.43 seconds for GINI.

We explored the tradeoffs between cost and equity from the company’s perspective using

HybridNsgaII to address our second research question. By exploring various equity budget

scenarios that might interest a for-profit enterprise, we unveiled a significant finding: even a

slight increase in operational expenses can yield a substantial enhancement in equity. Notably,

our study reveals a key managerial insight, showcasing a logarithmic-like relationship between

equity improvement and budget allocation. This suggests that modest equity budgets drive the

most significant improvements, while larger allocations result in only marginal gains. Through

our computational analysis, we underscore that a mere 2.5% increase in the equity budget could

potentially boost equity by approximately 40%, whereas a subsequent 7.5% investment by the
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company may only yield an additional 30% improvement in equity.

To address the final question, we examined the number of crowdshippers as a key factor in

mitigating the negative effects of equity considerations. Our analysis revealed a significant insight:

all stakeholders, including low- and high-performing crowdshippers and equity-focused for-profit

companies, benefit from minimizing crowdshippers in a first-come, first-served environment.

Excess crowdshippers increase company costs and inflate opportunity costs for all drivers.

Additionally, regardless of the equity budget, the level of equity decreases with an excessive

number of crowdshippers.
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A Mathematical Expressions of the Considered Equity Objective

Functions

The equity objective functions considered in this study include:

1. Range: This simple measure of inequality is calculated as the difference between the

maximum and minimum adjusted profits, reflecting the maximum magnitude by which

the workload allocation varies among the crowdshippers. Equitable optimization occurs

when the range is 0. Mathematically, Range can be stated as:

Range(x) = max
m∈M

pm(x)− min
m∈M

pm(x). (4)

2. Mean Absolute Deviation (MAD): This measure evaluates the average absolute differ-

ence between each adjusted profit and the mean of adjusted profits. Unlike the range,

MAD considers every adjusted profit, offering a more comprehensive measure of equity.

Mathematically, MAD can be stated as:

MAD(x) =

∑
m∈M |pm(x)− p(x)|

M
(5)

where

p(x) :=

∑
m∈M pm(x)

M

is the mean of adjusted profits.

3. Standard Deviation (SD): This measure stands as one of the widely adopted statistical

measures of dispersion, assessing the deviation of individual adjusted profits from their mean.

While it offers a more comprehensive gauge of equality compared to the aforementioned

measures, decision-makers might refrain from its use due to the additional computational

demands it entails or its comparatively greater complexity relative to simpler methods.

Mathematically, SD can be stated as:

SD(x) =

√∑
m∈M

(
pm(x)− p(x)

)2
M

. (6)

4. Coefficient of Variation (CV): Also known as the relative standard deviation, this measure

compares the standard deviation to the mean. Its relative nature makes it more interpretable

and intuitive for assessing inequality compared to the SD, which presents outcomes in the

original unit. However, unlike the SD, the CV lacks translation invariance. This means

that while shifting the entire dataset by a constant does not affect the SD, it does alter the

mean, consequently impacting the CV value as well. Mathematically, CV can be stated as:

CV(x) =
SD(x)

p(x)
. (7)

5. Gini Coefficient (GINI): This measure resembles the CV, albeit with a change in the

numerator. The Gini coefficient stands as one of the most renowned measures of inequality,
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frequently applied in economics to gauge wealth disparities. Its range spans from zero to

a maximum value of one. The Gini index directly correlates with the area between the

Lorenz curve and a diagonal line representing perfect equality. In cases of perfect equality,

this area diminishes, resulting in an index value of 0. Mathematically, GINI can be stated

as:

GINI(x) =
1

2M2

∑
m∈M

∑
l∈M |pm(x)− pl(x)|
p(x)

. (8)

When adjusted profits are arranged in ascending order, the expression in (8) simplifies to

(9), resulting in quicker computation (Dixon et al., 1987).

GINI(x) =

∑
l∈M(2l −M − 1)pl(x)

M
∑

m∈M pm(x)
. (9)

B Mathematical Formulation of the Crowdshipper Selection

Problem

Let M := {1, 2, . . . ,M} represent the index set of crowdshippers dynamically joining the system

and enrolling for a target zone-wave. This set evolves over time, with each element indicating

the position number of the crowdshippers, where, for instance, ‘1’ denotes the first crowdshipper

to enroll. We assume that a sufficient number of crowdshippers will register in the system to

fulfill orders in any zone-wave. This assumption is not limiting since if there is an insufficient

number of crowdshippers, the company can redistribute some orders (in a first-come, first-served

manner) to the immediate next wave within the same zone. With this premise, the objective is

to determine the minimum number of crowdshippers, denoted by M , needed to fulfill all orders,

considering crowdshippers are employed on a first-come, first-served basis. The load capacity

of crowdshipper m ∈ M is denoted by Qm, and the index set of customers is represented by

N = {1, . . . , N}, with qi indicating the demand size of customer i ∈ N . The crowdshipper

selection problem is formulated as a bin packing problem as follows:

M = min
∑
m∈M

zm (10a)

s.t.
∑
m∈M

yim = 1 ∀i ∈ N , (10b)

∑
i∈N

qiyim ≤ Qmzm ∀m ∈ M, (10c)

zm+1 ≤ zm ∀m ∈ M\{M}, (10d)

yim ∈ {0, 1} ∀i ∈ N , ∀m ∈ M, (10e)

zm ∈ {0, 1} ∀m ∈ M, (10f)

where yim is a binary variable indicating whether customer i’s order is assigned to crowdshipper

m or not. Additionally, let zm be a binary variable indicating whether or not crowdshipper

m is selected. The objective function aims to minimize the number of selected crowdshippers.
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Constraints (10b) ensure that each order is assigned to a crowdshipper. Constraints (10c) ensure

that the capacities of selected crowdshippers are not exceeded. Finally, Constraints (10d) ensure

that crowdshippers are selected in a first-come, first-served manner. It is evident that M must

lie within the range [M ′, n], where

M ′ = min
{
m′ ∈ M :

∑
j∈N

qj ≤
m′∑

m=1

Qm

}
.

This implies that in terms of implementation, the company will select all crowdshippers if

the number of crowdshippers who have already signed up for the zone-wave is less than or equal

to M ′. Beyond this threshold, the optimization problem mentioned earlier needs to be solved

whenever a new crowdshipper arrives. In cases of infeasibility, the company accepts the current

crowdshipper and awaits further crowdshipper sign-ups. The last crowdshipper to accept is the

one that renders the problem feasible for the first time.

C Detailed Description of the Proposed Method

In this section, we explain the details of our proposed method, HybridNsgaII, designed to

efficiently approximate the nondominated frontier, denoted by YN , for any instance of the

workload allocation problem. This algorithm merges the core principles of the well-known Non-

dominated Sorting Genetic Algorithm (NSGA-II) with the concepts of Multi-Directional Local

Search (MDLS), providing an effective approach to address the complexities of the workload

allocation problem.

C.1 Non-dominated Sorting Genetic Algorithm

Non-dominated Sorting: Let P represent the set of points corresponding to a given population

of initial solutions. Each iteration of the NSGA-II begins with the process of non-dominated

sorting to the population. A notion of different fronts, denoted as Y1,Y2, . . . ,Yk, based on

the dominance relation over a population is used in this method. Here, the points in Yi are

non-dominating to each other, and each front Yi contains at least one point that dominates a

point in Yi+1 if |Yi+1| ≥ 1. In non-dominated sorting, the set of non-dominated points in P is

allocated to the first front Y1. Subsequently, the set of non-dominated points in the remaining

population is assigned to Y2, and this process continues until every point is allocated to a

particular front.

Crowding Distance: Crowding distance serves as a metric to guide the solution selection

process in NSGA-II when the number of required solutions is less than the cardinality of a

front. It provides an estimate of the density of solutions surrounding a particular solution in the

front. In the selection process using crowding distance, solutions are sorted based on each of

their objective values. The crowding distance of a solution is subsequently calculated as the

normalized sum of the difference between the objective values of neighboring points along each

dimension. During selection, solutions with higher crowding distance values are prioritized. This

preference promotes diversification in the next generation, leading to a set of well-distributed
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Figure 4: Chromosome solution representation of an instance with N = 9 and M = 3

solutions in the solution space.

Outline: NSGA-II starts with an initial population P0 of size 2nP, where nP represents the

population size for the genetic algorithm. Let Pt denote the population at iteration t of the

algorithm. At each iteration t, Pt undergoes non-dominated sorting where the population is

sorted and rank or fitness levels are assigned to each individual. The rank of a solution is equal

to its non-domination or front level. Clearly, Y1 comprises the best solutions within Pt. Next, an

elitist selection procedure forms a subset of the population Pt, denoted as Qt, with a size of nP.

We start with an empty set and the solutions from each front are sequentially added to Qt when

applicable. For a front k, if the size of Yk is less than or equal to nP − |Qt|, it is entirely added

to Qt. Otherwise, solutions in Yk are sorted based on their crowding distances in descending

order and the top nP − |Qt| individuals are selected. The resultant Qt of size nP serves as the

parent population to generate a set of offspring solutions Rt of the same size nP using the genetic

algorithm. Pt+1 = Qt ∪ Rt gives the new population for the next iteration of the algorithm.

Refer to Deb et al. (2002) for further details on NSGA-II and the algorithm pseudocode. This

iterative process is continued until convergence is observed or a desired stopping criteria is

reached. More specifically, we stop the algorithm if the set of best solutions remains unchanged

after tbreak consecutive iterations or if the maximum number of iterations, tMaxIter, is reached.

Moreover, to escape local optima, if no improvements are observed for trepopulate consecutive

iterations, we repopulate the solution space while retaining the best solutions identified up to

that iteration.

C.2 Genetic Algorithm

Our tailored genetic evolution in the HybridNsgaII drives the improvement of solutions by

employing iterative processes of parent selection, crossover, and mutations over successive

generations based on a fitness score to evaluate the solution quality.

C.2.1 Chromosome Representation

For an instance with N customers and M crowdshippers, a solution consists of M routes that

represent the order in which the crowdshippers fulfill the assigned customer demands in a given

sequence. To represent such a solution, we use a two-part chromosome encoding: a gene of

length N for the giant tour and a gene of length M − 1 that provides the breakpoint indices

for crowdshippersin the giant tour. Since each crowdshipper needs to be utilized, it is safe to

assume that the last crowdshipper visits at least one customer from the end of the giant tour.

An example is illustrated in Figure 4. Note that the breakpoint gene contains positive integers in
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a strictly increasing order and the last element of the gene must be less than N , which ensures

that each crowdshipper serves at least one location.

C.2.2 Initial Solutions

The initialization of the population is a crucial step, where the solutions are either randomly

generated or strategically use targeted rules to generate good initial solutions that can expedite

the convergence of the methodology. First, we use the Clarke-Wright savings heuristic (Clarke

and Wright, 1964) adapted for the heterogeneous capacitated VRP to find a good initial solution.

Next, we employ the nearest neighbor algorithm to generate a giant tour, which is a greedy

approach with an arbitrary origin and visiting the nearest unvisited location in each step. Here,

the breakpoint gene is generated by a heuristic approach based on the average vehicle utilization

level ρ = (
∑

i∈N qi)/(
∑

m∈MQm). Customers are assigned sequentially for each crowdshipper

m until the expected load size of ρQm is attained. In addition to targeted initial solution

generation, the inclusion of random solutions plays a crucial role in diversifying the population.

The remaining individuals of the initial population are generated through random permutations

of the customers with random and increasing breakpoint indices for the giant tour.

C.2.3 Fitness Scores

Each individual in the population is ranked based on a fitness score, which serves as a metric for

solution quality. In order to promote diversity in the population and enhance the solution search

space, a diversity factor is introduced in the fitness score, which measures the dissimilarity of an

individual from its neighbors. The population is sorted based on both objective values, employing

lexicographic ascending order to determine the neighbors of each individual. Specifically, the

population can be first sorted based on the cost, and in cases where the costs of two solutions are

equal, they are further sorted based on equity. The diversity factor δ(I) for an individual I ∈ P ,

defined as (11), is the average normalized Hamming distance of I with its k nearest neighbors.

δ(I) =
1

k(N +M − 1)

k∑
l=1

N+M−1∑
i=1

1(I[i] ̸= Il[i]) (11)

In (11), Il[i] is the i-th index element of the chromosome Il of length N +M − 1. Here, 1(·) is
an indicator function that is equal to 1 if the condition in (·) is true, and 0 otherwise. For the

first and last sorted individual, we set k = 1, while for the remaining individuals, k = 2.

We estimate three distinct fitness scores for an individual, considering objectives related to

cost and equity, alongside the rank of an individual determined through non-dominated sorting.

fitnesscost(I) = C(I)×
(
1− nE

nP

)δ(I)

, (12)

where C(I) is the total routing cost of individual I and nE is the number of elite individuals

desired in the population. Similarly, fitness scores corresponding to equity objective and rank of

a solution can be quantified based on the diversity factor.
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C.2.4 Infeasible Solutions

Due to the capacity constraints of the problem, a generated solution may be infeasible. In the

event of an infeasible solution generation, the candidate undergoes repair with a probability pr.

Otherwise, the infeasible solution is added to a dedicated population for the infeasible solutions.

The maintenance of an infeasible population along with the feasible population diversifies the

solution space and guides the algorithm towards better solutions by overcoming local optima.

The objective values of infeasible solutions are penalized to appropriately integrate infeasible

solutions into the selection process. The penalty is determined based on the margin by which the

vehicle capacities are violated, weighted by a penalty factor wp. During the NSGA-II iterations,

wp is adaptively adjusted to limit the maximum ratio of infeasible solutions in the population to

a desired level.

C.2.5 Parent Selection, Crossover, and Mutation

Parent selection plays a pivotal element in guiding the current solutions toward optimality by

favoring individuals with higher fitness scores. During each step of the genetic algorithm, a

crossover is performed with a crossover probability pc. Two distinct parents are selected using

K tournament selection based on the fitness scores to execute the crossover operation. Larger

tournaments favor better solutions but to mitigate the risk of premature convergence, we use

a binary tournament selection procedure. In addition, an adaptive strategy is incorporated

to dynamically determine which fitness score governs the parent selection process. Both the

parents are selected using fitnessrank(I) based on a probability (1− t−tPF
t )pc, where tPF is the

last iteration of NSGA-II when the set of efficient solutions was updated. Otherwise, one parent

is chosen based on fitnesscost(I), and the other parent is determined using fitnessequity(I) using

binary tournament selection.

Many sequence-based crossover operations are documented in the literature. Through

numerical experiments, we have adopted three highly effective crossovers, namely partially

mapped crossover (PMX), order crossover (OX1), and order-based crossover (OX2) for the

giant tour genes. Additional details on the crossover operations are presented in Larranaga

et al. (1999). The crossover applies to the giant tour gene of selected parents and transmits the

ordering information from parents to their offspring. Then, one of our two crossover strategies is

randomly selected to generate the breakpoint genes for the offspring. The first strategy involves

directly copying a substring of the breakpoint gene from a parent to an offspring, followed by

obtaining the remaining components based on the other parent. In cases where the insertion of

substrings from the second parent to the offspring is invalid, i.e., the breakpoint gene components

are not strictly increasing, a random integer is generated within the permissible range of values.

Similarly, the breakpoint gene of the second offspring is completed by copying a substring from

the second parent and utilizing the first parent gene to complete the incomplete information. The

second strategy entails sequentially generating the breakpoint gene of an offspring by assigning a

random value in the range of the minimum permissible value and the maximum of corresponding

parent gene indices.

With a mutation probability pm, we select a solution I based on its fitnessrank(I) using

binary tournament selection to apply mutation. One of the following five mutations is randomly
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applied to I. Displacement mutation selects a random location, followed by its reinsertion to

a different random position, and the exchange mutation picks two customers randomly and

swaps them. Shuffle mutation (SM) scrambles the ordering of a subtour string of a random

crowdshipper visit sequence. We also perform a cyclic shift mutation by a left shift of the giant

tour gene from a randomly chosen starting point. The final mutation type involves a random

change in a component of the breakpoint gene, ensuring that the chromosome representation

remains valid after the alteration.

C.3 Multi-Dimensional Local Search (MDLS)

After each iteration of the algorithm, we perform the multi-dimensional local search (Tricoire,

2012) on the existing set of best solutions for each objective distinctly. Utilizing crowding

distance as a metric, we focus on exploring solutions in less crowded regions of the frontier. A

solution is chosen for education based on higher crowding distance value. To select individuals

for education, one can opt for the top-ordered solutions or apply binary tournament selection

based on the crowding distance for diversification. Upon discovering a new best solution, we

update the existing best solutions in Y1. This process can be repeated for all the solutions in Y1

or a user-defined number of solutions, nMDLS. We execute MDLS using Large Neighborhood

Search (Shaw, 1998) and workload reassignment to attempt to improve the selected solution for

cost and equity objectives, respectively. If improvement is achieved for either objective, the new

solutions obtained are stored in the offspring population Rt, where t is the current iteration.

After the education of all selected solutions in an iteration, the set of current best solutions is

updated by merging it with Rt and removing all dominated solutions.

C.4 Parameter Settings

We perform our experiments using commonly recommended parameter values from the recent

genetic algorithm literature (Mahmoudinazlou and Kwon, 2024), with minor modifications

tailored to suit the problem requirements. The parameters used in our experiments are nP = 200,

nE = 0.8nP, pc = 0.9, pm = 0.1, pr = 0.9, wp = 2.0, nMDLS = 0.2|Y1|, trepopulate = 50,

tbreak = 100, and tMaxIter = 2000. Moreover, we dynamically adjust the penalty for infeasible

solutions wp by monitoring the average ratio a of infeasible solutions within the population over

the last 10 iterations. When a > 0.2, we update wp as max {1000, 1.2wp}, and if a < 0.1, wp is

reduced to min {0.1, 0.8wp}.

D Comparison With Exact Method

We elaborate on the findings presented in Table 2 from Section 7.1, illustrating the performance

of both HybridNsgaII and the exact solution across each instance. The results, detailed in

Table 7, highlight their speed and capability of the proposed method in generating nearly all

nondominated points in each instance.
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Table 7: Comparing HybridNsgaII to an Exact Solver on Each Instance Using Range as the
Equity Measure

Instance
Exact Solver HybridNsgaII

HV Gap

Card. HV Time Card. HV Time
(sec.) (sec.) (%)

T1-N8-D2 6 466.05 1.75 6 466.05 4.80 0.00
T2-N8-D2 5 521.74 2.10 5 521.74 4.60 0.00
T3-N8-D2 3 428.14 1.00 3 428.14 3.13 0.00
T4-N8-D2 5 467.30 1.77 5 467.30 3.13 0.00
T5-N8-D2 5 503.41 1.28 5 503.41 3.22 0.00
T6-N8-D2 5 411.27 4.71 5 411.27 3.30 0.00
T7-N8-D2 4 448.04 3.03 4 448.04 3.10 0.00
T8-N8-D2 4 469.12 1.56 4 469.12 5.82 0.00
T9-N8-D2 5 562.91 1.99 5 562.91 3.08 0.00
T10-N8-D2 6 475.20 1.27 6 475.20 3.24 0.00
T1-N8-D3 4 513.74 2.57 4 513.74 3.22 0.00
T2-N8-D3 10 457.67 3.27 10 457.67 4.21 0.00
T3-N8-D3 9 468.94 5.58 9 468.94 6.20 0.00
T4-N8-D3 9 440.71 2.97 9 440.71 3.37 0.00
T5-N8-D3 5 463.33 3.18 5 463.33 4.22 0.00
T6-N8-D3 10 491.44 5.40 10 491.44 3.26 0.00
T7-N8-D3 3 473.56 0.82 3 473.56 3.26 0.00
T8-N8-D3 9 455.39 5.06 9 455.39 3.19 0.00
T9-N8-D3 15 480.26 7.83 15 480.26 4.55 0.00
T10-N8-D3 13 436.17 5.93 13 436.17 3.74 0.00
T1-N10-D2 7 417.18 4.34 7 417.18 3.34 0.00
T2-N10-D2 13 485.47 8.17 13 485.47 3.90 0.00
T3-N10-D2 6 463.49 34.18 6 463.49 3.74 0.00
T4-N10-D2 3 472.88 12.82 3 472.88 3.25 0.00
T5-N10-D2 6 418.22 29.46 6 418.22 3.89 0.00
T6-N10-D2 8 437.10 18.90 8 437.10 6.04 0.00
T7-N10-D2 7 514.13 41.04 7 514.13 3.48 0.00
T8-N10-D2 5 456.26 23.95 5 456.26 3.49 0.00
T9-N10-D2 14 489.71 37.84 14 489.71 5.95 0.00
T10-N10-D2 8 469.74 27.22 8 469.74 4.72 0.00
T1-N10-D3 7 464.94 40.82 7 464.94 5.41 0.00
T2-N10-D3 14 424.11 127.37 14 424.11 3.49 0.00
T3-N10-D3 7 486.07 56.36 7 484.27 5.52 0.37
T4-N10-D3 17 384.88 166.43 17 384.88 6.09 0.00
T5-N10-D3 8 462.35 48.26 9 461.98 4.38 0.08
T6-N10-D3 18 511.57 140.08 13 511.52 3.90 0.01
T7-N10-D3 8 492.40 106.00 8 492.40 5.69 0.00
T8-N10-D3 7 407.16 79.26 7 407.16 5.26 0.00
T9-N10-D3 13 469.39 61.68 13 469.34 6.05 0.01
T10-N10-D3 9 417.40 16.67 9 417.40 6.30 0.00
T1-N12-D2 3 376.76 822.34 3 376.76 3.59 0.00
T2-N12-D2 4 444.06 497.20 3 441.52 3.02 0.58
T3-N12-D2 9 469.23 531.41 10 469.18 4.95 0.01
T4-N12-D2 8 448.29 635.93 8 447.64 5.98 0.15
T5-N12-D2 8 416.02 2,042.81 7 416.02 6.08 0.00
T6-N12-D2 6 452.45 78.54 6 452.45 4.48 0.00
T7-N12-D2 8 430.34 2,557.05 8 430.34 3.99 0.00
T8-N12-D2 4 492.51 508.81 4 492.51 3.94 0.00
T9-N12-D2 5 463.19 1,171.47 5 463.16 5.56 0.01
T10-N12-D2 8 404.97 854.20 8 404.97 6.11 0.00
T1-N12-D3 18 399.64 1,394.93 19 398.97 6.44 0.17
T2-N12-D3 12 429.81 1,270.76 12 429.55 5.11 0.06
T3-N12-D3 17 430.84 1,079.78 16 430.63 6.52 0.05
T4-N12-D3 12 435.09 311.29 10 434.98 6.32 0.03
T5-N12-D3 14 429.85 4,266.00 11 428.41 6.54 0.34
T6-N12-D3 17 378.79 2,275.71 14 378.63 6.45 0.04
T7-N12-D3 14 423.02 357.34 13 422.97 5.51 0.01
T8-N12-D3 14 418.27 2,018.39 12 418.11 6.30 0.04
T9-N12-D3 8 463.07 538.12 8 463.07 6.21 0.00
T10-N12-D3 20 428.69 2,746.69 19 428.61 6.48 0.02
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E Single-Solution Mapping Results

Our systematic approach, detailed in Section 6, selects the most reliable equity measure by

assessing the complete set of approximate Pareto-optimal solutions generated by each measure

via a mapping procedure, and by comparing hypervolume values. This method provides a

comprehensive view of the approximate nondominated frontier across various measures, aiding in

the identification of the most reliable one. Alternatively, a different approach involves selecting a

subset of the approximate Pareto-optimal solutions obtained by each measure and applying the

same mapping process described in Section 6 for selection, rather than considering the entire

approximate frontier. However, such a subset-based approach raises several questions, such as

determining the subset size and the subset selection process, that are not trivial to answer.

These challenges are precisely why in this paper we advocate for a holistic analysis of the

complete set of Pareto-optimal solutions found by each measure, rather than relying on a subset.

However, to showcase that the effectiveness of CV extends beyond the holistic analysis of the

approximate nondominated frontier, we examine a specific case: subset-based approaches with

the subset size of one. In this scenario, we select a single Pareto-optimal solution from each

measure and compare them using the same mapping procedure detailed in Section 6. An

advantage of a subset size of one is the elimination of the need for Hypervolume, as we are not

comparing sets. During the mapping procedure, we calculate the gap relative to the measure

corresponding to the hosting space. For instance, if we are mapping into the Cost-and-Range

criterion space, we evaluate the points based on their Range gaps instead of Hypervolume

gaps. These gaps, termed target-measure gaps, are computed similar to Hypervolume Gaps, as

described in Section 6.

The average target-measure gaps for different instance classes, including N = 25, N = 50,

N = 75, and N = 100, are provided in Tables 8-11, respectively. To select a solution, we consider

five different equity budget scenarios, with λ ∈ {0%, 2.5%, 5%, 7.5%, 10%}. For each scenario, we

choose the solution that maximizes equity from the set of approximate Pareto-optimal solutions

reported by each measure and then perform the mapping process. Our analysis reveals that

CV consistently performs well, ranking as the second-best choice after MAD. As discussed in

Section 7.2, MAD performs poorly under full-set mapping assessment. However, we observe here

that under single-solution mapping assessment, it excels. Thus, while MAD may lack robustness

under full-set mapping, CV maintains robustness under single-solution mapping. Moreover, as

mentioned in Section 7.2, GINI’s performance improves with larger instance sizes under full-set

mapping, a trend observed similarly in single-solution mapping. This further underscores the

robustness of results derived from full-set mapping compared to single-solution mapping. In

summary, CV demonstrates strong performance across both single-solution and full-set mapping

analyses, suggesting its effectiveness across the entire spectrum of mapping assessments.
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Table 8: Single-Point Mapping Results for Class N = 25: Target-Measure Gaps

(a) γ = 0%

Map Equity Gap (%) using
Average

From\To Range MAD SD CV GINI

Range 0.00 0.28 -0.94 0.23 -0.17 -0.12
MAD -1.17 0.00 -3.8 -0.21 -1.31 -1.30
SD 0.17 0.26 0.00 0.24 0.16 0.17
CV -0.81 0.17 -3.46 0.00 -1.15 -1.05
GINI 0.00 0.12 -0.26 0.10 0.00 -0.01

(b) γ = 2.5%

Map Equity Gap (%) using
Average

From\To Range MAD SD CV GINI

Range 0.00 0.47 -1.64 0.38 -0.29 -0.22
MAD -1.77 0.00 -6.3 -0.34 -2.29 -2.14
SD 0.42 0.61 0.00 0.57 0.38 0.40
CV -0.97 0.21 -4.49 0.00 -1.54 -1.36
GINI 0.13 0.50 -0.88 0.43 0.00 0.04

(c) γ = 5%

Map Equity Gap (%) using
Average

From\To Range MAD SD CV GINI

Range 0.00 0.60 -1.96 0.49 -0.33 -0.24
MAD -1.91 0.00 -6.82 -0.35 -2.55 -2.33
SD 0.57 0.79 0.00 0.75 0.50 0.52
CV -1.09 0.23 -5.27 0.00 -1.81 -1.59
GINI 0.17 0.68 -1.20 0.59 0.00 0.05

(d) γ = 7.5%

Map Equity Gap (%) using
Average

From\To Range MAD SD CV GINI

Range 0.00 0.64 -2.23 0.52 -0.43 -0.30
MAD -1.96 0.00 -7.95 -0.35 -3.05 -2.66
SD 0.61 0.84 0.00 0.80 0.52 0.55
CV -1.16 0.24 -5.83 0.00 -2.07 -1.76
GINI 0.18 0.73 -1.24 0.63 0.00 0.06

(e) γ = 10%

Map Equity Gap (%) using
Average

From\To Range MAD SD CV GINI

Range 0.00 0.62 -2.40 0.51 -0.49 -0.35
MAD -2.10 0.00 -8.31 -0.38 -3.15 -2.79
SD 0.60 0.84 0.00 0.80 0.53 0.55
CV -1.14 0.25 -5.94 0.00 -2.06 -1.78
GINI 0.20 0.71 -1.27 0.62 0.00 0.05

Table 9: Single-Point Mapping Results for Class N = 50: Target-Measure Gaps

(a) γ = 0%

Map Equity Gap (%) using
Average

From\To Range MAD SD CV GINI

Range 0.00 0.14 -0.25 0.12 -0.01 0.00
MAD -0.65 0.00 -1.86 -0.08 -0.74 -0.67
SD 0.09 0.17 0.00 0.16 0.10 0.10
CV -0.48 0.06 -1.22 0.00 -0.44 -0.42
GINI -0.03 0.10 -0.16 0.09 0.00 0.00

(b) γ = 2.5%

Map Equity Gap (%) using
Average

From\To Range MAD SD CV GINI

Range 0.00 0.41 -0.83 0.36 -0.09 -0.03
MAD -2.75 0.00 -6.31 -0.36 -2.50 -2.38
SD 0.29 0.55 0.00 0.51 0.33 0.34
CV -1.66 0.23 -4.14 0.00 -1.52 -1.42
GINI -0.06 0.58 -0.90 0.51 0.00 0.03

(c) γ = 5%

Map Equity Gap (%) using
Average

From\To Range MAD SD CV GINI

Range 0.00 0.53 -1.16 0.47 -0.16 -0.06
MAD -3.36 0.00 -7.67 -0.46 -3.12 -2.92
SD 0.39 0.73 0.00 0.69 0.43 0.45
CV -1.96 0.28 -4.99 0.00 -1.89 -1.71
GINI -0.11 0.61 -0.96 0.51 0.00 0.01

(d) γ = 7.5%

Map Equity Gap (%) using
Average

From\To Range MAD SD CV GINI

Range 0.00 0.64 -1.51 0.57 -0.27 -0.11
MAD -3.70 0.00 -8.14 -0.49 -3.38 -3.14
SD 0.42 0.77 0.00 0.73 0.46 0.48
CV -1.96 0.27 -5.26 0.00 -2.07 -1.80
GINI -0.04 0.69 -0.98 0.60 0.00 0.05

(e) γ = 10%

Map Equity Gap (%) using
Average

From\To Range MAD SD CV GINI

Range 0.00 0.69 -1.56 0.61 -0.27 -0.11
MAD -3.62 0.00 -8.40 -0.47 -3.49 -3.20
SD 0.47 0.83 0.00 0.79 0.48 0.51
CV -1.89 0.26 -5.45 0.00 -2.13 -1.84
GINI -0.10 0.74 -1.05 0.63 0.00 0.04
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Table 10: Single-Point Mapping Results for Class N = 75: Target-Measure Gaps

(a) γ = 0%

Map Equity Gap (%) using
Average

From\To Range MAD SD CV GINI

Range 0.00 0.14 -0.18 0.13 0.00 0.02
MAD -0.56 0.00 -1.12 -0.06 -0.46 -0.44
SD 0.00 0.00 0.00 0.00 0.00 0.00
CV -0.63 0.06 -1.23 0.00 -0.49 -0.46
GINI -0.07 0.22 -0.32 0.19 0.00 0.00

(b) γ = 2.5%

Map Equity Gap (%) using
Average

From\To Range MAD SD CV GINI

Range 0.00 0.47 -0.61 0.42 0.00 0.06
MAD -2.28 0.00 -4.45 -0.26 -1.88 -1.77
SD 0.10 0.22 0.00 0.20 0.12 0.13
CV -1.76 0.20 -3.58 0.00 -1.39 -1.31
GINI -0.15 0.42 -0.60 0.36 0.00 0.01

(c) γ = 5%

Map Equity Gap (%) using
Average

From\To Range MAD SD CV GINI

Range 0.00 0.61 -1.09 0.55 -0.14 -0.01
MAD -3.51 0.00 -6.75 -0.39 -2.91 -2.71
SD 0.28 0.56 0.00 0.53 0.32 0.34
CV -2.17 0.23 -4.74 0.00 -1.99 -1.73
GINI -0.14 0.60 -0.84 0.52 0.00 0.03

(d) γ = 7.5%

Map Equity Gap (%) using
Average

From\To Range MAD SD CV GINI

Range 0.00 0.60 -1.19 0.55 -0.19 -0.05
MAD -4.20 0.00 -7.41 -0.47 -3.17 -3.05
SD 0.34 0.74 0.00 0.70 0.42 0.44
CV -2.28 0.25 -4.92 0.00 -2.03 -1.80
GINI -0.23 0.70 -0.97 0.60 0.00 0.02

(e) γ = 10%

Map Equity Gap (%) using
Average

From\To Range MAD SD CV GINI

Range 0.00 0.62 -1.07 0.57 -0.14 0.00
MAD -4.73 0.00 -7.91 -0.54 -3.31 -3.30
SD 0.38 0.78 0.00 0.74 0.44 0.47
CV -2.39 0.25 -4.92 0.00 -2.06 -1.82
GINI -0.27 0.74 -1.11 0.63 0.00 0.00

Table 11: Single-Point Mapping Results for Class N = 100: Target-Measure Gaps

(a) γ = 0%

Map Equity Gap (%) using
Average

From\To Range MAD SD CV GINI

Range 0.00 0.14 -0.18 0.13 0.00 0.02
MAD -0.71 0.00 -1.00 -0.07 -0.44 -0.44
SD 0.01 0.04 0.00 0.04 0.02 0.02
CV -0.53 0.05 -0.96 0.00 -0.38 -0.36
GINI -0.10 0.23 -0.31 0.20 0.00 0.00

(b) γ = 2.5%

Map Equity Gap (%) using
Average

From\To Range MAD SD CV GINI

Range 0.00 0.36 -0.36 0.33 0.04 0.07
MAD -2.69 0.00 -4.00 -0.27 -1.73 -1.74
SD 0.01 0.12 0.00 0.11 0.07 0.06
CV -1.60 0.16 -2.57 0.00 -1.01 -1.00
GINI -0.20 0.42 -0.55 0.36 0.00 0.01

(c) γ = 5%

Map Equity Gap (%) using
Average

From\To Range MAD SD CV GINI

Range 0.00 0.38 -0.49 0.35 -0.01 0.05
MAD -3.99 0.00 -5.47 -0.41 -2.29 -2.43
SD 0.12 0.33 0.00 0.31 0.19 0.19
CV -2.07 0.21 -3.50 0.00 -1.40 -1.35
GINI -0.36 0.56 -0.75 0.47 0.00 -0.02

(d) γ = 7.5%

Map Equity Gap (%) using
Average

From\To Range MAD SD CV GINI

Range 0.00 0.65 -0.73 0.59 0.03 0.11
MAD -4.58 0.00 -6.27 -0.48 -2.62 -2.79
SD 0.18 0.55 0.00 0.51 0.31 0.31
CV -2.53 0.23 -4.34 0.00 -1.82 -1.69
GINI -0.44 0.66 -0.94 0.55 0.00 -0.03

(e) γ = 10%

Map Equity Gap (%) using
Average

From\To Range MAD SD CV GINI

Range 0.00 0.63 -0.85 0.58 -0.04 0.06
MAD -5.34 0.00 -6.95 -0.58 -2.81 -3.14
SD 0.22 0.59 0.00 0.56 0.34 0.34
CV -2.68 0.25 -4.39 0.00 -1.81 -1.73
GINI -0.55 0.70 -1.05 0.58 0.00 -0.06
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