
Routing a fleet of unmanned aerial vehicles: a trajectory
optimisation-based framework

Walton P. Coutinho∗a, Jörg Fliegeb, Maria Battarrac, Anand Subramaniand

a Department of Technology, Federal University of Pernambuco, Caruaru, 55016-400, Brazil
walton.coutinho@ufpe.br5

b Mathematical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
j.fliege@soton.ac.uk

c School of Management, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
m.battarra@bath.ac.uk

d Departamento de Sistemas de Computação, Centro de Informática, Universidade Federal da Paráıba, João Pessoa,10

58058-600, Brazil
anand@ci.ufpb.br

Abstract

We consider an aerial survey operation in which a fleet of unmanned aerial vehicles (UAVs) is required

to visit several locations and then land in one of the available landing sites while optimising some perfor-15

mance criteria, subject to operational constraints and flight dynamics. We aim to minimise the maximum

flight time of the UAVs. To efficiently solve this problem, we propose an algorithmic framework con-

sisting of: (i) a nonlinear programming formulation of trajectory optimisation that accurately reflects

the underlying flight dynamics and operational constraints; (ii) two sequential trajectory optimisation

heuristics, designed to cope with the challenging task of finding feasible flight trajectories for a given20

route; and (iii) a routing metaheuristic combining iterated local search and a set-partitioning-based inte-

ger programming formulation. The proposed framework is tested on randomly generated instances with

up to 50 waypoints, showing its efficacy.

Keywords: Unmanned gliders, routing, trajectory optimisation

1. Introduction25

The traditional way of performing aerial survey operations involves the use of manned aircraft. While

this solution has been widely used, it presents several drawbacks such as high operational costs, the

need for nearby infrastructure (e.g., helipads and runways), relatively high response times and the life

risk imposed on the aircraft crew. An alternative to this approach consists of using Unmanned Aerial

Vehicles (UAVs), a.k.a. drones (Xia et al., 2017; Öztürk & Köksalan, 2023). UAVs are aircraft that30

do not need a human pilot on board. These vehicles can be controlled either by autonomous embedded

computers or by a remote pilot. Several applications of this type can be found in the literature, such

as for forest fire detection (Yuan et al., 2015), target observation (Rysdyk, 2006), traffic monitoring and

management (Kanistras et al., 2015), military operations (Xia et al., 2017), three-dimensional mapping

(Nex & Remondino, 2013) and disaster assessment (Nedjati et al., 2016; Aretoulaki et al., 2023).35

Gliders are UAVs without an onboard propulsion system (e.g., an electrical or combustion engine). In

the past few years, UAVs have become very popular for logistics and surveillance applications. The main

advantage of gliders over other powered UAVs is their unit cost. As examples, the SULSA UAVs can

be easily 3D printed (Keane et al., 2017), while the so-called MAVIS gliders provide a low-cost platform

that can be launched by atmospheric balloons (Crispin, 2016).40

Providing rapid response to unpredictable and large-scale disasters is a key challenge for search and

rescue organisations around the world. In the aftermath of such events, collecting as much information

as possible about its effects is a crucial activity that must be performed in a timely and cost-efficient

way. Aerial survey operations play an important role when rapid and accurate information of affected

∗Corresponding author.
Preprint submitted to Transportation Research Part B: Methodological July 11, 2024

areas is necessary (Mersheeva, 2015). High-resolution imaging of entire affected areas can provide search45

and rescue teams with useful reports about the location of victims, damaged buildings and potential

environmental hazards, among others. Moreover, better response and evacuation plans can be designed

with the support of aerial imaging (Aretoulaki et al., 2023).

In this work, we consider the problem in which a fleet of aerial gliders launched from an atmospheric

balloon or some other air platform is required to visit several waypoints, representing points of interest.50

The gliders must land at one of the available landing sites while optimising some performance criteria,

e.g., the mission time, subject to operational constraints and flight dynamics. Minimising such mission

time is obviously one of the relevant aspects of fast disaster response. We refer to this problem as the

Glider Routing and Trajectory Optimisation Problem (GRTOP). Most of the literature on UAV routing

problems overlooks the influence of flight dynamics when formulating aerial route designs (Agatz et al.,55

2018; Khoufi et al., 2019; Morandi et al., 2023). In the case of gliders, such considerations are not only

relevant but necessary to ensure the feasibility of routes.

Integrating flight dynamics into the design of routes is a very challenging task that, in the O.R. context,

can be seen as a combination of the Vehicle Routing Problem (VRP) and the Trajectory Optimisation

Problem (TOP) Coutinho et al. (2018). In the current paper, we integrate for the first time non-linear60

flight dynamics and routing decisions for a fleet of gliders in a computationally efficient way. By this,

we provide important contributions to the UAV routing and Trajectory Optimisation (TO) literature

and provide substantial methodological innovation compared to previous work, see, e. g. Coutinho et al.

(2019).

Our main contributions can be summarised as follows:65

• We propose a novel multi-phase Mixed-Integer Non-linear Programming (MINLP) formulation for

the GRTOP that allows for the use of sub-models of varying fidelity for TO. For example, along

the arcs of a given route, we allow for different flight modes, flight dynamics, wind conditions,

discretisation methods and discretisation step sizes;

• We provide theoretical bounds on the discretisation errors for the linearised reformulation of the70

gliders’ Equations of Motion (EOMs) and demonstrate how to reformulate the proposed GRTOP

model to incorporate the error-bounding constraints. Our computational experiments show that

providing a modelling framework that incorporates such errors leads to more accurate trajectories;

• We develop two heuristics based on the so-called Sequential Trajectory Optimisation (STO) ap-

proach, designed to find feasible (flyable) trajectories for a given route with low computational75

effort. The first heuristic is based on nonconvex trajectory optimisation subproblems, while the

second one is based on an iterative flight time minimisation procedure that solves Second-Order

Cone Programmings (SOCPs) subproblems;

• By integrating the proposed STO heuristics with a state-of-the-art routing algorithm, we develop

a new matheuristic framework for the GRTOP in which we decouple the continuous dynamics of80

flight from the combinatorial waypoint routing problem. We highlight that such integration is non-

trivial since one has to find a good compromise between local search and trajectory computations to

develop a scalable algorithm. This computational framework allows us to solve large-sized problem

instances.

In total, we present an optimisation framework that takes as input a set of waypoints, environmental85

conditions and flight dynamics of the UAVs under question and computes flyable trajectories and control

commands that can be promptly embedded into the UAVs’ microcontrollers. Our framework can be

easily adapted for problems involving other autonomous vehicles such as powered UAVs and unmanned

marine vehicles.

2

Some further contributions are as follows. (i) We employ an objective function based on the concept90

of makespan that minimises the mission duration. This formulation better suits the needs of disaster

response organisations when a large number of waypoints must be surveyed. In such cases, it is a strategic

goal to collect information about all waypoints as quickly as possible before designing an adequate in-

tervention plan. (ii) We compare two different strategies for calculating steady-flight conditions for level

and descent flight modes. Such conditions are necessary to model different flight modes and can be used95

in the linearisation of non-linear flight dynamics. (iii) We address the lack of data by providing a problem

generator and a rich set of large-sized benchmark instances. (iv) We test our GRTOP solution framework

on existing instances as well as on novel randomly generated instances with up to 50 waypoints. We

show that our framework is capable of finding feasible solutions within 200 seconds of computing time

on average.100

The remainder of this paper is organised as follows. In Section 2, we present different equilibrium

conditions of gliding flight. Section 3 presents a multi-phase MINLP formulation for the GRTOP. A

linearisation of the gliders’ EOM and theoretical contributions are presented in Section 4. In Sections

5 and 6, a matheuristic approach is proposed for the GRTOP. Section 7 describes an extensive number

of computational experiments that allow us to assess the performance of the proposed STO algorithms,105

showing the efficacy of our approach. Finally, in Section 8, we provide conclusions and recommendations

for future research.

2. Flight dynamics

This section contains the technical background on glider flight dynamics and provides innovative

means to calculate steady-state flight conditions for two different flight modes.110

2.1. Preliminaries

We define the state of a glider at time τ ∈ R≥0 as y(τ) = (x(τ), y(τ), h(τ), v(τ), γ(τ), ϕ(τ))>, where

x(τ), y(τ) ∈ R and h(t) ∈ R≥0 denote the position and height of the glider, while v(τ) ∈ R≥0 is it’s

airspeed (flight velocity). The airspeed can be defined as the glider’s rate of movement relative to the

wind velocity. Variables γ(τ) and ϕ(τ) ∈ R, denote the flight path and heading angles, respectively. Let115

us define the control variables (or input) as u(τ) = (Cl(τ), µ(τ))>. Here, Cl(τ) ∈ R represents the lift

coefficient and variable µ(τ) ∈ R the bank angle. The lift coefficient accounts for the amount of lift

generated by the wings of an aircraft. The angles γ(τ), ϕ(τ) and µ(τ), depicted in Figure 1, are defined

over an aerodynamic frame (a.k.a., relative frame). In Figure 1, the North-East-Down frame, represented

by vectors xo, yo and −ho, is rotated to obtain the aerodynamic frame denoted by xA, yA and −hA in120

the sequence of rotation of the angles ϕ→ γ → µ. This is a common representation used in the aviation

literature (Fisch, 2011). For simplicity, we will conveniently omit τ when referring to state and control

variables. For a more detailed understanding of aircraft flight dynamics, we refer the interested reader

to the books by Blanchard (1967), Russell (1996), Stengel (2004) and Fisch (2011).

In this paper, we employ the EOMs presented by Zhao (2004) to model the flight of unmanned gliders.

A compact representation of the system dynamics can be written as the system of Ordinary Differential

Equations (ODEs) in Equation (1), where f(y(τ),u(τ), τ) ∈ R6 corresponds to the function describing

the evolution of the system dynamics over time. Here, we use the dot notation “ ˙ ” to represent time

derivatives.

ẏ = f(y(τ),u(τ), τ) (1)

We assume that state and control variables are limited by lower and upper bounds. Here we denote125

ylb = (xlb, ylb, hlb, vlb, γlb, ϕlb)
>and ulb = (Cllb, µlb)

> as the lower bounds on state and control variables,

3

φ
μ

γ

-h0

y0

x0

yA

xA

-hA

v

Figure 1: Coordinate frames used to define the glider’s flight dynamics.

respectively. Similarly, yub = (xub, yub, hub, vub, γub, ϕub)
> and uub = (Club, µub)

> denote the upper

bounds on states and controls. For the sake of clarity, we have listed all design parameters and constant

values in this paper’s online supplement.

2.2. Equilibrium flight modes130

Two types of stability can be defined for an aircraft. A body is said to be in static stability (or

in a static steady-state) if its state is to some extent resistant to disturbances (being stationary or at

rest). Dynamic stability requires an investigation using the full dynamic equations of an aircraft. In a

steady-state flight, the aerodynamic basic forces are balanced. A powered UAV, for example, can achieve

a steady flight when lift equals weight and thrust equals drag. Similarly, a glider is in steady flight when135

its airspeed and angle of attack (Stengel, 2004, p. 53) are such that the lift force equals its weight.

Let us denote by yeq = (xeq, yeq, zeq, veq, γeq, ϕeq)
> and ueq = (Cleq, µeq)

> some steady-states and

controls, respectively, of the dynamics defined by Equation (1). Then, in continuous time, the derivatives

of the state variable with respect to time are zero (0 ∈ R6), that is:

ẏ = f(yeq,ueq, τ) = 0. (2)

In this paper, we are concerned with finding equilibrium flight conditions for two distinct practical

situations, namely, steady-level flight, in which the origin and destination points are nearly at the same

altitude, and steady-descent flight, in which the origin is at a higher altitude and the glider must descend

to reach the desired destination.140

2.2.1. Steady-level flight conditions

In previous work, Coutinho et al. (2016, 2019) applied a set of analytical steady-state conditions for a

gliding level-flight as described, e.g., in Russell (1996). Such analytical steady-states were computed under

simplifying assumptions about the glider’s flight dynamics. In this paper, we instead use a numerical

approach for computing more accurate and realistic steady-states without additional assumptions. Our

formulation extends the one presented by Stengel (2004) by the addition of box constraints (4) and

constraints (5) on state and control variables. These additional constraints are important to obtain

realistic, that is, flyable trajectories. In full, we consider the following optimisation problem for an

arbitrary fixed time τ to compute a steady-state solution:

min
y,u

||f(y,u)||2 (3)

4

s.t. ylb ≤ y ≤ yub (4)

ulb ≤ u ≤ uub. (5)

In this problem, the objective function (3) minimises the Euclidean norm of the right-hand side of

Equation (1) for an arbitrary fixed τ . By minimising such norm, we expect to find a solution that fulfils

the condition in Equation (2), if such a solution exists. Otherwise, only an approximation is returned.

Constraints (4) and (5) ensure that the optimal steady-flight conditions lie within the bounds of state and145

control variables. As we will see below, this problem is equivalent to a quadratic programming problem

which can be reliably solved by available optimisation software. Let y∗ and u∗ be the optimal solution

of the optimisation problem defined by Equations (3–5) for an arbitrary fixed time τ . With these we will

approximate the steady-states yeq, ueq of Equation (2).

In Table 1, we compare the steady-states found analytically, denoted by s1, with the ones found by150

using the proposed formulation, denoted by s2. We fixed the reference altitude to 500 metres to match

the parameter for the wind strength as defined in this paper’s online supplement. Table 1 shows that

the proposed numerical approach provides better results than the analytical solution, i.e., s2 is closer to

the condition defined in Equation (2) than s1. Hence, hereafter we will use s2 as level flight steady-state

conditions.155

Table 1: Comparison of steady-level flight states.

heq veq γeq ϕeq Cleq µeq ||f(y,u)||2
s1 500.00 9.45 -0.04 0.0 0.74 0.0 15.6705
s2 500.00 12.48 -0.02 -1.57 0.37 0.0 0.4133

2.2.2. Steady-descent flight

Level-flight steady-states are easy and fast to compute, but they may not be accurate for descent or

climb manoeuvres. The forces acting on a UAV in steady-descent gliding flight are lift (L), drag (D)

and weight (defined as the mass of the glider mg times gravity ge). In a descent flight, these forces are

in equilibrium and can be depicted as in Figure 2, where a UAV is assumed to move from (x1, y1, h1)

to (x2, y2, h2). Here, the equilibrium bank and heading angles are considered to be close to zero, i.e.,

µeq ≈ ϕeq ≈ 0. If we approximate the equilibrium pitch angle γeq by the angle between points (x1, y1, h1)

and (x2, y2, h2) compared to a horizontal plane, then γeq can be written as in Equation (6), where R is

the flight range and ∆h = h2 − h1:

γeq ≈ − tan−1(∆h/R). (6)

From the triangle of forces in Figure 2, one can write an expression relating γeq to the lift and drag

forces as in Equation (7). The rightmost expression in Equation (7) follows from the definition of the lift

and drag coefficients, respectively, Cl and CD (Russell, 1996, p. 42):

cos γeq =
L√

L2 +D2
=

Cl√
Cl2 + C2

D

. (7)

Two important parameters that are fixed when designing the glider are the coefficient of drag at

zero-lift, CD0, and the aerodynamic coefficient of the glider, kA. The values of these that we will

use are provided in this paper’s online supplement. Let us then define the auxiliary variables b =

1 +
√

2CD0kA − cos γ−1
eq and ∆ = b2 − 4kACD0. Now, the equilibrium lift coefficient can be computed as

5

mgge
D

L

(L2 +D2)1/2

D
V

R

∆h

−γeq

−γeq

(x1, y1, h1)

(x2, y2, h2)

b

b

Figure 2: Steady descent flight conditions. The glider is assumed to be in a descent flight with airspeed V going from point
(x1, y1, h1) to (x2, y2, h2).

in Equation (8):

Cleq = min

{
−b±<(

√
∆)

2kA

}
, (8)

where we denote by <(.) the real part of a complex number. Solving Equation (7) for Cl leads to a

quadratic equation with two possible solutions. The two roots of this equation define a minimum and

a maximum angle of attack. By choosing the smallest root, one indirectly chooses the smallest angle160

of attack and therefore the minimum amount of generated lift, thus allowing the glider to perform a

steady-descent flight.

Finally, from the lift equation, one can derive an expression for the equilibrium airspeed as in Equation

(9), involving the additional glider parameters mg (the mass of the glider) and S (wing area), as well as

the density of the air ρ:

veq =


√

2mgge cos γeq
ρSCleq

, if Cleq > 0,

vlb, otherwise.
(9)

Again, the values used here are provided in this paper’s online supplement.

By approximating the steady-descent pitch (γeq), lift coefficient (Cleq) and airspeed (veq) using Equa-

tions (6), (8) and (9), respectively, one might find equilibrium values that are out of the bounds given165

for the state and control variables. In this case, we simply project the respective equilibrium values to

the nearest bound.

3. Problem definition

We will consider the following problem. A fleet G of gliders is available at the launch site 0 ∈ R3. We

consider a finite graph with vertex set V ′ = {0} ∪ V ∪ L and a set A of arcs connecting these vertices.170

The set V represents all waypoints that need to be visited by the fleet of gliders, while L is the set of

all possible landing sites. We assume V ∩ L = ∅ and 0 6∈ V ∪ L. In general, the graph formed by the

sets V ′ and A is not complete since we do not allow for arcs connecting the launch point directly to

any landing site, nor do we consider arcs going from waypoints to the launch point. Moreover, problem-

specific characteristics might eliminate further arcs from consideration. The objective is to find optimal175

routes and trajectories in such a way that: (i) all waypoints in V are visited at least once; (ii) each route

finishes at some landing site in L; (iii) all routes depart from the launch site, and; (iv) the maximum

flight duration among all gliders is minimised.

Each waypoint i ∈ V is represented by (x̄i, ȳi, r̄i, hi, hi), where (x̄i, ȳi) is the position of the object

6

i in the xy plane and r̄i > 0 is the radius of the base of an inverted truncated cone with the waypoint180

at its centre. Gliders will visit waypoints in order to photograph them. To this end, we are given hi

and hi, the minimum and maximum allowed photographing heights of waypoint i. Assuming w.l.o.g.

that the opening angle of the cameras is 45° and that all waypoints lie in the same xy plane, a glider

at position (x, y) and flying at altitude h is said to visit waypoint i if the glider passes through the

inverted truncated cone covering i and respecting the minimum and maximum photographing altitudes,185

i.e. if (x − x̄i)2 + (y − ȳi)2 ≤ (h + r̄i)
2 and hi ≤ h ≤ hi holds. A landing site i ∈ L is determined by a

half-sphere of radius r̃i centred at (x̃i, ỹi). Assuming that landing sites lie in the same xy plane as the

waypoints, a glider will be considered landed at site i if it touches or enters the half-sphere containing

i, i.e. if (x − x̃i)2 + (y − ỹi)2 + h2 ≤ r̃2
i . Figure 3 depicts a feasible solution for an instance with two

waypoints and one landing site.190

0

100

1000

200

300

400

h

500

800

600

600

y

800
400 600

x

400
200 200

0
0 -200

Figure 3: A feasible solution for the GRTOP showing the geometry of waypoints and landing sites. If the gliders’ cameras
are the same, one can transfer their field of view to the waypoints forming truncated inverted cones.

The problem defined here shares some similarities with the one proposed by Coutinho et al. (2019), but

there are also important differences. In the present work the TO is modelled as a multi-phase problem, in

which changes to the system dynamics during the flight are modelled one arc at a time, leading to a more

accurate representation of the overall dynamics. The exact approach of Coutinho et al. (2019), based

on a single-phase formulation, requires a fixed and rather coarse discretisation step size and flight times195

for all gliders’ trajectories. Given that gliders might have very different flight times (i.e., some fly for

minutes, others for hours), such a global time discretisation will often be too coarse for long flights, and

possibly lead to trajectories that are not sufficiently accurate. In the following, we alleviate this problem

by providing a mathematical formulation for TO that allows for adaptive discretisation schemes.

3.1. A Multi-phase mixed-Integer trajectory optimisation formulation200

We associate each arc (i, j) ∈ A as a phase of a glider’s trajectory. A phase is a section of the trajectory

in which the flight dynamics and parameters (e.g., flight mode, target definition and flight environment)

remain unchanged. In this paper, we use the words phase and arc interchangeably. Let us denote by

yijg(τijg) : [0,∞)→ R6 and uijg(τijg) : [0,∞)→ R2 the state and control variables, respectively, of glider

g ∈ G flying along arc (i, j) ∈ A, and denote by τijg ∈ R the time variable. Let variables τoijg and τfijg205

represent the initial and final flight times of the glider g flying along arc (i, j) such that τijg ∈ [τoijg, τ
f
ijg].

We recall that the unknown states and controls are interpreted as the evolution of the dynamical system

(Equation 1), where τ is the independent variable.

In what follows, we express the EOMs of the glider g flying on arc (i, j) by

ẏijg = fijg(yijg(τijg),uijg(τijg), τijg). (10)

7

Both state and control variables are limited by lower and upper bounds, as explained in Section 2.1. Initial

conditions yo and uo must be provided at time 0, i.e., yijg(0) = yo and uijg(0) = uo, for all (i, j) ∈210

A and for all g ∈ G.

Figure 4 illustrates our conceptual model with a small example and its respective feasible solu-

tion. Let the launching point be 0, V = {1, 2}, L = {3}, and G = {1, 2}. For each arc in the

set A = {(0, 1), (0, 2), (1, 2), (2, 1), (1, 3), (2, 3)} there are associated times τijg, states yijg(τijg) and

controls uijg(τijg), variable time limits τoijg and τfijg, and a dynamical system as in Equation (10),215

where (i, j) ∈ A and g ∈ G. In Figure 4, the flight duration of gliders 1 and 2 can be computed as

∆t1 = (τf011 − τo011) + (τf131 − τo131) = τf131 and ∆t2 = (τf022 − τo022) + (τf232 − τo232) = τf232. Note that

the continuity of the dynamics of each glider’s route is guaranteed by setting the values of states and

controls at the initial time of an arc equal to the states and controls at the final time of its preceding arc,

assuming w.l.o.g. that τo0jg = 0,∀j ∈ V, g ∈ G.220

τ
o
01

1
≤ τ011

≤ τ
f
01

1

0

1

2

3

τ o
022 ≤

τ022 ≤
τ f
022

τf011 = τo131

τf022 = τo232

τ o
131 ≤ τ131 ≤ τ f

131

τo022 = 0

τ
o
23
2
≤ τ232

≤ τ
f
23
2

τo011 = 0

Figure 4: A graph representing routes (0, 1, 3) and (0, 2, 3) and their respective time, state and control continuity constraints.

Now let us define variables aijg ∈ {0, 1} such that that aijg = 1 if glider g traverses arc (i, j) ∈ A
and taking value 0 otherwise. For simplicity, we define the set A′ as the set of arcs not leaving from the

launching point, i.e., A′ = A \ {(0, j), j ∈ V }. Thus, the objective

min max
g∈G

 ∑
(i,j)∈A

(τfijg − τoijg)aijg

 . (11)

minimises the total flight duration of the longest route (where the length of a route is measured in flight

time). We highlight that this objective formulation is nonlinear since the initial τoijg and final τfijg flight

times depend nonlinearly on other decision variables, to be introduced below.

Constraints (12–14) account for the assignment of routes to gliders. Constraint (12) ensures that

every launched glider lands in one of the predetermined landing sites. Constraints (13) and (14) make

sure that every waypoint is visited at least once and that the continuity of routes is preserved:∑
i∈V

a0ig =
∑
i∈V

ailg ≤ 1,∀l ∈ L,∀g ∈ G (12)∑
g∈G

∑
i∈V

aijg = 1,∀j ∈ V, j 6= i (13)

∑
i∈V

aijg −
∑
i∈V

ajig = 0,∀j ∈ V, j 6= i,∀g ∈ G. (14)

Constraints (15–17) below ensure that the gliders fly through the respective covering regions of the

waypoints at the end times of each phase, and finally arrive at a landing site. A phase at an arc (i, j)

is deemed to start and end at its respective initial and final flight times τoijg and τfijg. Constraints (15)

and (16) ensure that a glider g flies within the boundaries of waypoint i at time τoijg, if arc (i, j) is used,

8

while Constraints (17) state that a glider g must be within the boundaries of a landing site at the end of

its mission.

aijg((xijg(τ
o
ijg)− x̄i)2 + (yijg(τ

o
ijg)− ȳi)2) ≤ (hijg(τ

o
ijg) + r̄i)

2,∀(i, j) ∈ A′,∀g ∈ G (15)

aijghi ≤ aijghijg(τoijg) ≤ hi,∀(i, j) ∈ A′,∀g ∈ G (16)

aijg((xijg(τ
f
ijg)− x̃i)2 + (yijg(τ

f
ijg)− ỹi)2 + h2

ijg(τ
f
ijg)) ≤ r̃2

j ,∀i ∈ V,∀j ∈ L,∀g ∈ G. (17)

Taking photographs at an unfavourable angular orientation (a.k.a. flight attitude) must be avoided.

For this, we consider given parameters γ̂ for the maximum pitch and µ̂ for the maximum roll angle, and

add constraints (18) and (19) that ensure that glider g is nearly in level flight at the moment it takes a

photograph of waypoint i:

− γ̂ ≤ aijgγijg(τoijg) ≤ γ̂,∀(i, j) ∈ A′,∀g ∈ G (18)

− µ̂ ≤ aijgµijg(τoijg) ≤ µ̂,∀(i, j) ∈ A′,∀g ∈ G. (19)

Next, we provide the constraints that describe the flight dynamics of the gliders. Constraints (20)

enforce the flight dynamics of glider g to be applied if this glider flies through arc (i, j). Constraints

(21–23) ensure the continuity of state, control and time variables is maintained if arc (i, j) precedes arc

(j, k) in a solution. Constraints (24) preserve the time variable within its bounds on arc (i, j).

ẏijg = fijg(yijg(τijg),uijg(τijg), τijg)aijg,∀(i, j) ∈ A,∀g ∈ G (20)

yjkg(τ
o
jkg)aijg = yijg(τ

f
ijg)aijgajkg,∀(i, j), (j, k) ∈ A,∀g ∈ G (21)

ujkg(τ
o
jkg)aijg = uijg(τ

f
ijg)aijgajkg,∀(i, j), (j, k) ∈ A,∀g ∈ G (22)

τojkgaijg = τfijgaijgajkg,∀(i, j), (j, k) ∈ A,∀g ∈ G (23)

τoijg ≤ τijg ≤ τfijg,∀(i, j) ∈ A,∀g ∈ G (24)

Finally, Constraints (25–28) define the domain of the optimisation variables:

aijg ∈ {0, 1},∀(i, j) ∈ A,∀g ∈ G (25)

yijg(τijg) ∈ R6,∀(i, j) ∈ A,∀g ∈ G (26)

uijg(τijg) ∈ R2,∀(i, j) ∈ A,∀g ∈ G (27)

τoijg, τ
f
ijg ∈ R,∀(i, j) ∈ A,∀g ∈ G. (28)

The formulation defined by Expressions (11–28) is a non-convex MINLP TO problem. In particular,

due to constraints (20), solving this formulation directly using off-the-shelf optimisation software is very225

challenging, if not impossible, even for small instances. Such conclusions are supported by our preliminary

computational experiments. Therefore, we aim to solve this problem via heuristic algorithms. In the next

sessions, we first show how to linearise the gliders’ EOMs subject to error bounding constraints, followed

by the presentation of the proposed STO algorithms. Next, we illustrate how our multi-phase method

can be integrated into a routing matheuristic.230

4. Linearisation of the equations of motion

The glider’s EOMs (1) completely describes the aerodynamics of the glider under the influence of wind

in a 3D environment. However, in Section 3.1 we imply (based on preliminary computational experiments)

that embedding these dynamics into a routing mathematical formulation leads to a computationally

intractable model, probably due to highly non-convex constraints.235

9

In order to simplify Equation (1) into a more numerically tractable form, we employ a linearisation

technique based on the steady-state conditions computed in Section 2.2. Several results in the literature

show how linear dynamic equations can be used to solve TO problems (e.g., Richards et al., 2002; Keviczky

et al., 2008; How et al., 2015).

For the sake of simplicity, in this section indices i, j and g will be omitted on state, control and time

variables. Let yeq and ueq be some equilibrium state and controls of arc (i, j) ∈ A. By defining auxiliary

variables δy(τ) = y(τ)−yeq and δu(τ) = u(τ)−ueq as perturbations of equilibriums of state and control

variables, one can apply the first-order Taylor expansion, here denoted by T (.), to the system dynamics

described in Equation (1). This leads to the following expression:

T (yeq,ueq, δy, δu, τ) = f(yeq,ueq, τ) +
∂f(yeq,ueq, τ)

∂y
δy(τ) +

∂f(yeq,ueq, τ)

∂u
δu(τ). (29)

By considering the characterisation of steady-states in Equation (2), the first term of Equation (29)240

equals zero by definition. We disregard the higher-order terms of Taylor’s expansion for convenience.

Matrices Jy =
∂f(yeq,ueq,τ)

∂y and Ju =
∂f(yeq,ueq,τ)

∂u represent the Jacobians of the EOMs (1) with

respect to state and control variables. Hence, we can approximate the EOMs (10) of the glider g flying

through arc (i, j) by the linear system dynamics in state-space form as shown in Equation (30).

ẏ = Jyδy(τ) + Juδu(τ), y(τo) = yo,u(τo) = uo. (30)

The linear EOMs (30) are expected to be a good approximation of Equation (1), provided that the

glider is restricted to small variations around the equilibrium conditions yeq and ueq. A simple numerical

integration experiment can be carried out to show that constraining the control variables u to small

perturbations around ueq leads to a satisfactory approximation of the actual system dynamics. In fact,245

our preliminary computational experiments showed that adding small perturbation constraints for u into

our optimisation framework is sufficient to decrease approximation errors to such an extent that they can

be disregarded. The following theorem provides a justification for our approach.

Theorem 1 (Bounding the linearisation error). Consider the initial value problem consisting of the

ordinary differential equation (1) and the initial value y(τ0) = y0, for a given continuous control function

u and value y0. Suppose that f is continuous and that y is a solution to this problem in some interval

I := [τ0 − α, τ0 + α] with some α > 0. Likewise, consider the initial value problem

˙̃y = Jy(ỹ(τ)− yeq) + Ju(ũ(τ)− ueq), ỹ(τ0) = ỹ0 (31)

with some continuous control function ũ and value ỹ0. Then, (31) has a unique solution ỹ. Suppose

further that there exists some ω ≥ 0 with

‖f(y,u(τ), τ)− Jy(y − yeq)− Ju(ũ(τ)− ueq)‖ ≤ ω (32)

for all (y, τ) from some compact set {y : ‖y − yeq‖ ≤ β} × I. Let L := ‖Jy‖. We then have the error

estimate

‖y(τ)− ỹ(τ)‖ ≤ ‖y0 − ỹ0‖eL|τ−τ0| +
ω

L
(eL|τ−τ0| − 1) (33)

for all τ from some subinterval of I.

We omit the proof of Theorem 1 since it follows directly from the Picard-Lindelöf theorem (Teschl,250

2012).

10

4.1. Numerical integration and bounding approximation errors

Traditional TO methods can be classified as indirect or direct. Indirect methods usually provide

solutions with higher accuracy but need good starting guesses. On the other hand, direct methods (e.g.,

direct collocation or direct transcription methods), do in general not need good starting guesses and are255

thus more popular for complex problems with path constraints. They work by discretising the equations

of motion by means of some numerical integration procedure and embedding the discretised differential

equations into the nonlinear optimisation problem. More information about numerical algorithms for

solving TO problems can be found, e.g., in Betts (2001).

In this paper, we employ a direct collocation method for optimising the trajectories of gliders. Let260

y(τ) and u(τ) be the state and control variables of a glider g flying through arc (i, j), where τ ∈ [τo, τf],

and let T = {0, . . . , N − 1} be the set of N collocation points (or time indices). By discretising the time

interval [τo, τf] over T , we can define a uniform time grid τt = τo+ηt, in which the index t ∈ T represents

a time instant τt within the interval [τo, τf] and η =
τf−τo
N is a uniform step size. Let yt and ut represent

the approximations of the state and control, respectively, at time τt.265

Preliminary experiments suggest that Euler’s discretisation usually leads to simpler optimisation prob-

lems that can be solved efficiently by existing solvers. However, we highlight that the proposed approach

can be easily adapted to employ any other integration methods, such as the trapezoidal or Runge-Kutta

methods. The Euler method applied to the linear dynamical system defined by Equation (30) leads to

the following discretised EOMs, with predefined initial conditions yo and uo:

yt+1 = yt + η(Jyδyt + Juδut) + εεεt,∀t ∈ T, (34)

y0 = yo,u0 = uo. (35)

Theorem 2 (Bounding the local integration error). Consider the initial value problem defined by Equa-

tions (30). Assume that ẏ is continuous for all y(τ), u(τ) and τ ∈ [τo, τf]. We denote the ∞-norm by

‖.‖. The local truncation error εεεt at the t-th Euler’s step can then be bounded by

‖εεεt‖ ≤
1

2
η2 (‖Jy‖‖ẏub‖+ ‖Ju‖‖u̇ub‖) ,∀t ∈ T. (36)

Here, ẏub = (ẋub, ẏub, ḣub, v̇ub, γ̇ub, φ̇ub)
> and u̇ub = (Ċlub, µ̇ub)

> define upper bounds on the values of

the derivatives of state and control variables, respectively.

Proof. By differentiating the continuous EOMs (30), we obtain

ÿ =
∂ẏ

∂τ
= Jyẏ + Juu̇.

By definition, Jy and Ju are bounded. This means that there exists an M ∈ R+ such that

‖Jyẏ + Juu̇‖ = ‖ÿ‖ ≤M, τ ∈ [τo, τf]. (37)

Since τt+1 = τt + η, Taylor’s theorem implies that

y(τt+1) = y(τt) + ηf(y(τt),u(τt), τ) +
1

2
η2ÿ(τ̃), τt < τ̃ < τt+1. (38)

Comparing Equation (38) with Equation (34) shows that:

εεεt =
1

2
η2ÿ(τ̃), τt < τ̃ < τt+1.

11

Recalling Expression (37), the following inequality is thus valid:

‖εεεt‖ ≤
1

2
η2 ‖(Jyẏub + Juu̇ub)‖ ≤

1

2
η2 (‖Jy‖‖ẏub‖+ ‖Ju‖‖u̇ub‖) ≤

1

2
η2M,∀t ∈ T. (39)

�

Within the algorithms proposed in this paper, estimate values for ẏub have been empirically computed

by using Matlab to simulate the flight of a glider under the steady-state conditions computed in Section 2.270

In addition, estimate values for ‖u̇ub‖ can usually be found in the flight dynamics literature, for example,

as in Mustapa & Saat (2016).

4.2. Reformulation of the infinite-dimensional problem

Following the discretisation of the glider’s EOMs it is necessary to reformulate the infinite-dimensional

TO problem presented in Section 3.1 as a discrete-time Non-linear Programming (NLP) problem. With

the introduction of new variables representing the error term εεεijgt, i, j ∈ V, g ∈ G, t ∈ T , the objective

function (11) is reformulated to penalise the solution error in the new objective function:

min

max
g∈G

 ∑
(i,j)∈A

(τfijg − τoijg)aijg

 + p
∑
g∈G

∑
(i,j)∈A

∑
t∈T
‖εεεijgt‖aijg

 . (40)

Here, p > 0 is a fixed penalty parameter that also serves as a constant conversion factor.

Theorem 2 allows us to bound the error terms as in Constraint (41) below.

‖εεεijgt‖ ≤
1

2
η2 (‖Jyijg‖‖ẏub‖+ ‖Juijg‖‖u̇ub‖) ,∀i, j ∈ V, g ∈ G, t ∈ T (41)

Here, we denote by Jyijg and Juijg the Jacobians, with respect to state and control variables, of the275

EOMs of glider g flying from waypoint i to waypoint j. For the sake of being succinct, in this section, we

will omit the reformulation of the remaining constraints. These will be fully stated in Section 5 where

the TO subproblems that we solve will be defined.

4.3. Interpolation of the discretised solutions

Euler integration steps replace the controls and system dynamics by piece-wise linear approximations.

Different integration methods might employ different approximations though. Therefore, after solving

the optimisation problem NLP one needs to reconstruct the controls’ and system dynamics’ trajectories.

In this paper, this is done by using a linear interpolation of the control variables, which is appropriate for

Euler’s method. Let us define the independent variable τ in terms of subsequent time steps t and t+ 1,

i.e., τ ∈ [τt, τt+1]. An approximation for the control function can be written as in

u(τ) = ut +
τ − τt
η

(ut+1 − ut). (42)

The approximation for the system dynamics can likewise be defined as a linear function.280

5. Heuristic algorithms for trajectory optimisation

In this section, we propose efficient TO heuristics for finding a feasible glider’s trajectory passing

through the sequence of waypoints defined by a given route. Even for a fixed route, solving a TO problem

involving a set of waypoints is often a challenging and computationally expensive task (Fisch, 2011). For

this reason, the heuristics developed in this paper are based on the decomposition of trajectories into285

arcs that can be solved independently, thus reducing the overall difficulty of the problem.

12

With this concept in mind, our so-called STO heuristic can be summarised as follows. For a given glider

and its assigned route, we decompose the glider’s trajectory into several phases, each one corresponding

to an arc of the provided route. Next, each arc is modelled as a single-phase TO problem and then

sequentially solved from the beginning to the end of the glider’s route. Feasibility is maintained by290

linking the final conditions of each solved arc to the initial conditions of its subsequent one.

Two different methods are proposed for solving the single-phase TO subproblems. In the first ap-

proach, the subproblems are reformulated as NLP problems and directly solved by available NLP software.

In the second approach, for a fixed flight duration, the corresponding NLP can be reformulated as a SOCP

model. Next, arc flight times are heuristically minimised by a sequence of SOCPs. In the next sections,295

we discuss each component of our algorithms in detail.

5.1. General approach to the sequential trajectory optimisation heuristics

This section presents the STO heuristic developed to find feasible trajectories, i.e., feasible states and

controls for a glider flying through several waypoints. A feasible trajectory is basically a solution to an

infinite-dimensional problem defining the state and control variables of a dynamical system. Constructing300

a feasible trajectory under nonlinear constraints is, in general, a challenging problem (Zhou et al., 2017).

Our STO heuristic can be formally defined as follows. Let S be the set of all subsequences (or routes)

of V starting at 0 and ending at a landing point in L, such that every waypoint is visited at most once.

Without loss of generality, we can write an element r of S as r = (0, i1, . . . , ik, il), i1, . . . , ik ∈ V and

il ∈ L. The trajectory of a glider flying through route r is then divided into |r| − 1 phases according to305

each arc of the route. Next, each phase (arc) of the route is solved by means of a TO subproblem based

on the linearised EOMs presented in Section 4. The arcs of route r are connected in such a way that the

initial conditions of arc (j, k) equals the final conditions of arc (i, j) if waypoints i, j and k are present in

route r in this specific order.

Figure 5 illustrates the procedure described above. In this example, we are asked to find a feasible310

trajectory for the route r = (0, 1, 2, l), where 1, 2 ∈ V and l ∈ L. The initial conditions on arc (0, 1) are

set such that yo01 = yo, uo01 = uo and τo01 = 0, where yo and uo are known beforehand, see Figure 5(a).

The shortest flight duration (τf01 − τo01) on arc (0, 1) and its respective trajectory (y01(τ01),u01(τ01)) are

computed by solving a TO subproblem as explained in Sections 5.2 and 5.3. If no optimal trajectory

can be found for arc (0, 1), the algorithm stops and the route is considered infeasible. Otherwise, the315

solution corresponding to the arc (0, 1) is stored and the algorithm proceeds to the next arc, i.e., (1, 2).

The continuity of the trajectory along route r is maintained by setting the initial conditions of arc (1, 2)

equal to the final conditions of arc (0, 1) as in Figure 5(b). After the last arc (2, l) is processed as in

Figure 5(c), the route total flight time corresponding to route r can be computed as τf2l − τo01.

b

b

b

b

b

b

b

b

b

b

b

b

a

(yo
01,u

o
01, τ

o
01)

(yf
01,u

f
01, τ

f
01)

y 0
1
(τ
01
),
u 0

1
(τ
01
),
τ 0
1

yo
12 = yf

01,

uo
12 = uf

01,

τ o12 = τ f01

(yf
12,u

f
12, τ

f
12)

y 1
2
(τ
12
),
u 1

2
(τ
12
),
τ 1
2

0 0 0

1 1 1

2 2 2

l l l

y 2
l(
τ 2
l)
,u

2l
(τ
2l
),
τ 2
l

yo
2l = yf

12,
uo
2l = uf

12,

τ o2l = τ f12

(yf
2l,u

f
2l, τ

f
2l)

b c

Figure 5: Illustration of the proposed STO approach for a small example with two waypoints.

13

Algorithm 1 provides a pseudo-code of the procedure to find feasible trajectories for a glider’s route.320

The algorithm starts with the initialisation of the auxiliary variables ȳ, ū and τ̄ , and the initialisation

of the route flight duration f(r) (line 1). The main loop of our heuristic iterates over the arcs of route

r (lines 3–13). Next, the status of the current optimisation is initialised (line 4). The state and control

variables associated with arc (i, j) ∈ r are initialised with an empty value (line 5). Next, the starting

conditions yoij and uoij , and initial flight time τoij associated with arc (i, j) are initialised (lines 6–4). The325

TO subproblem associated with arc (i, j) ∈ r is solved by means of the TrajectoryOptimisation()

routine (line 7) either by solving a NLP single-phase subproblem directly or by means of an iterative

flight time minimisation algorithm based on a SOCP reformulation of the NLP subproblem. This step

will be further explained in the next sections. If an optimal solution is obtained, the route flight time is

incremented accordingly and the auxiliary coupling variables ȳ, ū and τ̄ are updated (lines 9–10) thus330

maintaining the continuity of the trajectory associated with route r. Otherwise, the algorithm terminates

and a very large route flight duration is returned (line 12). If an optimal trajectory is found for every arc

of route r, the algorithm returns the route’s flight time (line 13).

Algorithm 1 STO

1: Procedure STO(r)
2: ȳ← yo; ū← uo; τ̄ ← 0 f(r)← 0
3: for each arc (i, j) in route r do
4: status← not optimal
5: yij(τij)← NULL; uij(τij)← NULL

6: yo
ij ← ȳ; uo

ij ← ū; τoij ← τ̄

7: [status, τfij ,yij(τij),uij(τij), εεεij(τij)]← TrajectoryOptimisation(yo
ij ,u

o
ij , τ

o
ij)

8: if status = optimal then
9: f(r)← f(r) + τfij

10: ȳ← yf
ij , ū← uf

ij , τ̄ ← τfij
11: else
12: return ∞
13: return f(r)
14: end STO.

5.2. Single-phase nonlinear trajectory optimisation subproblem

In this section, we are interested in finding an optimal trajectory for a glider g flying through a single335

arc (i, j) ∈ A. In our first method, the TrajectoryOptimisation() routine (line 7 of STO) attempts to

find such optimal trajectory by directly solving its corresponding NLP formulation. Hereafter, we will

refer to this version of our algorithm as STO-NLP. For the sake of simplicity, the i, j and g subscripts on

state, control and time variables will be omitted for the rest of this section. The glider’s flight is governed

by the linearised EOMs (34), subject to the initial conditions of arc (i, j), represented by (35), and the340

upper bounds on the norms of the errors provided by Inequalities (36). Note that, since the arc’s flight

time τf (and therefore η) is unknown, EOMs (34) are still non-linear.

By assuming w.l.o.g. that waypoints are always visited in the last time step (denoted as tf), one can

define the visiting constraints for the glider flying to any waypoint in set V through Inequalities (43–46).

More precisely, Constraints (43) and (44) ensure that the glider will lie within the waypoint’s boundaries

at the last time step corresponding to the arc (i, j), whereas Constraints (45) and (46) guarantee that

the glider will be in an appropriate attitude to photograph the waypoint, i.e. the final yaw and roll angles

will be within a small interval predetermined, respectively, by parameters γ̂ and µ̂:

(xtf − x̄)2 + (ytf − ȳ)2 ≤ (htf + r̄)2 (43)

h ≤ htf ≤ h (44)

− γ̂ ≤ γtf ≤ γ̂ (45)

14

− µ̂ ≤ µtf ≤ µ̂. (46)

The constraint regarding landing sites can be defined similarly, i.e., for any arc (i, j), j ∈ L, Constraint

(47) ensures that the glider is within the landing site’s covering region at the last time step tf in that

arc:

(xtf − x̃)2 + (ytf − ỹ)2 + h2
tf ≤ r̃2. (47)

As discussed in Section 4, the glider’s EOMs have been linearised around some steady-state conditions.

In order to reduce the errors associated with the linearisation and discretisation of the EOMs, we introduce

small-perturbation constraints, as in Inequalities (48) and (49), on the control variables Cl (lift coefficient)

and µ (bank angle). Experiments showed that these constraints help to reduce the linearisation errors

without compromising our algorithm’s performance. With αt = t
N−1 , the small perturbation constraints

are defined as

α(Cleq − δ) + (1− α)Cllb ≤ Clt ≤ α(Cleq + δ) + (1− α)Club,∀t ∈ T, (48)

α(µeq − δ) + (1− α)µlb ≤ µt ≤ α(µeq + δ) + (1− α)µub,∀t ∈ T. (49)

By means of Constraints (48) and (49), at the first time steps associated with arc (i, j) the glider’s

control variables are allowed to vary between their lower and upper bounds. As time progresses, i.e. the

value of t increases, these bounds approach the control’s steady-state values, thus reducing the EOMs345

linearisation/discretisation errors.

The TO subproblem associated with arc (i, j) can be summarised as follows. The objective function

(50) reformulates Objective (40) for a single arc. Constraints (34–35) define the discretised EOMs of

the glider, while Constraints (36) bound the error associated with discretisation. W.l.o.g. we set τo = 0

for any arc (i, j). Constraint (51) defines the discretisation step size. In order to avoid arbitrarily small

flight times within the allowed error, Constraint (52) limits τf from below. This lower limit is computed

as the Euclidean distance between the waypoints’ locations divided by the maximum glider’s airspeed. If

the end point of arc (i, j) belongs to the set of waypoints, our optimisation subproblem includes visiting

Constraints (43–46). Otherwise, if the ending point is a landing site, i.e., j ∈ L, our subproblem includes

Constraint (47) instead. We also include the small perturbation Constraints (48–49). Finally, Constraints

(53) and (54) define the domain of the optimisation variables.

(NLP) min τf +
∑
t∈T
‖εεεt‖ (50)

s.t. (34–35)

(36)

η =
τf

N − 1
(51)

τf ≥ τ̄f (52)

(43–46) or (47)

(48–49)

εεεt,yt ∈ R6,ut ∈ R2,∀t ∈ T (53)

τf , η ∈ R (54)

5.3. Iterative flight time minimisation based on a single-phase SOCP subproblem

In the last section we presented a direct collocation method to optimise the trajectory of a single

glider flying through a given arc (i, j) ∈ A. However, as we will empirically show in Section 7, finding

15

such trajectories is a computationally expensive task. Therefore, in this section, we propose an iterative350

method for minimising the flight time by solving a series of SOCP subproblems. We will refer to this

version as Iterative TO (or i-TrajectoryOptimisation()). The so-called Iterative Sequential Trajec-

tory Optimisation (i-STO) version of our STO algorithm substitutes the TrajectoryOptimisation()

subroutine (Algorithm 1, line 7) by the i-TrajectoryOptimisation() procedure (Algorithm 2).

For a fixed flight time τf , subproblem NLP can be reformulated as the SOCP subproblem below.

The main differences between problem SOCP and NLP lie in the objective function (55), which only

involves the minimisation of the sum of the norm of errors (εεεt), and the absence of constraints (51) and

(52), since the final time τf is a known parameter in SOCP.

(SOCP) min
∑
t∈T
‖εεεt‖ (55)

s.t. (34–35)

(36)

(43–46) or (47)

(48–49)

(53–54)

The i-TrajectoryOptimisation() method, depicted in Algorithm 2 works as follows. The algorithm355

starts with the initialisation of the arc’s flight time τf with an estimated lower-bound for the flight

duration (which might be infeasible), here denoted as τ̄f (line 2), and the initialisation of the status of

the current arc (line 3). We estimate τ̄f as follows. For a given arc (i, j) ∈ A, let d̃ij = ||(x̄i, ȳi, h̄i) −
(x̄j , ȳj , h̄j)||2 be an estimate for the flight distance from i to j. With the maximum airspeed vmax, we

arrive at the estimate τ̄f = d̃ij/vmax. While τf is not greater than an upper limit τf,ub (lines 4–8),360

the SOCP subproblem is solved for the fixed τf (line 5). If an optimal trajectory is found (line 6), the

algorithm halts and returns the optimal solution (line 9). Otherwise, the arc’s estimated minimum flight

time is increased by δτ and a new SOCP round is attempted. However, if no optimal solution is found,

the while loop finishes and status ← not optimal is returned to STO.

Algorithm 2 Iterative TO

1: Procedure i-TrajectoryOptimisation(yo,uo, τo)
2: τf ← τ̄f

3: status← not optimal
4: while τf ≤ τf,ub do
5: [status, τf ,y(τ),u(τ), εεε(τ)]← SOCP(yo,uo, τo, τf)
6: if status = optimal then
7: brake
8: τf ← τf + δτ
9: return [status, τf ,y(τ),u(τ), εεε(τ)]

10: end i-TrajectoryOptimisation.

6. A matheuristic routing algorithm365

This section describes our proposed matheuristic algorithm for solving the GRTOP, called Iterated

Local Search (ILS)-STO. Our approach consists of a multi-start ILS (Lourenço et al., 2010) combined with

a Set Partitioning (SP) integer programming formulation, and the STO heuristics described in Section 5.

As before, for a given arc (i, j) ∈ A, let d̃ij = ||(x̄i, ȳi, h̄i)− (x̄j , ȳj , h̄j)||2 be an estimate for the flight

distance from i to j. Let ṽij be the equilibrium airspeed (veq, as computed in Section 2) between i and j.

We estimate the flight time between i and j as τ̃ij = d̃ij/ṽij . Hence, the total flight time of an arbitrary

16

route r can be estimated by

f̃(r) =
∑

(i,j)∈r

τ̃ij . (56)

Note that determining the value of f̃(r) is trivial since each τ̃ij , (i, j) ∈ A, can be pre-computed in

constant time. On the other hand, estimating approximation error values of a given route does not appear370

to be trivial. Therefore, such errors are not taken into consideration at this step. The estimate cost of a

solution s is thus computed as g̃(s) = maxr∈s f̃(r).

Computing the actual flight time and error values between waypoints i and j is computationally

expensive, because it requires solving the corresponding TO subproblems, as discussed in Section 5.

Therefore, we resort to the estimation described above while generating an initial solution and performing

local search to improve the scalability of the method. Yet, we are still forced at times to compute the

actual flight times and error values to then compute the actual (or true) objective value of a solution s

as follows:

g(s) = max
r∈s
{f(r)}+

∑
r∈s

∑
(i,j)∈r

∑
t∈T

εεεijt. (57)

We choose to limit the computation of Expression (57) to solutions that our routing heuristic has identified

as locally optimal. After each successful trajectory computation, the estimate flight time matrix is

updated with the corresponding actual (true) flight times of solution s. Therefore, the flight time matrix375

tends to converge to its actual values as the algorithm progresses.

Algorithm 3 shows the pseudocode of ILS-STO. The matheuristic procedure performs IR restarts (lines

3–17) where at each of them an initial solution is generated using a greedy randomised insertion heuristic

(line 4). The method iteratively tries, for IILS iterations, to improve the initial solution employing local

search (line 8) and perturbation (line 14) mechanisms using the estimate route costs f̃(·). The local380

search algorithm is described in Section 6.2, while the perturbation mechanism is described in Section

6.3. The actual cost of locally optimal solutions is computed using the aforementioned STO heuristics and

the estimate flight time matrix is updated from the true solution values stored in s (line 9). Recall that

computing (57) actually requires the solution of a sequence of nonlinear TO subproblems. Solving TOPs

is an inherently difficult task, therefore we expect step 9 to be the main bottleneck of our framework.385

If a solution s is improved after the local search phase, then the best current solution s′ is updated

(lines 10–12). Note that within local search (line 8) solutions are evaluated using f̃(·). Next, the pool

of routes (Rpool) is updated by adding the feasible routes from s (line 13). The best solution s∗ found

after each restart is updated in lines (16–17), if necessary. Finally, the algorithm tries to find the optimal

combination of feasible routes stored in Rpool by solving a SP-based problem (see Section 6.4) using a390

general purpose Mixed-Integer Linear Programming (MILP) solver (line 18).

6.1. Constructive procedure

Two insertion strategies, sequential and parallel, and two insertion criteria, nearest and cheapest, are

employed in the constructive procedure. At each restart, one strategy and criterion are chosen at random.

In the sequential strategy, one individual route is considered at each insertion iteration sequentially,395

whereas, in the parallel insertion, all routes are candidates to receive an unrouted waypoint. The nearest

insertion criterion selects the closest inserted waypoint for all unrouted ones and the insertion is performed

immediately after it in the corresponding route. The cheapest insertion computes the minimum insertion

cost and the waypoint associated with such a value is selected to be inserted in the corresponding position.

The routes generated by the constructive procedure will be used in the next step (local search) of our400

algorithm.

17

Algorithm 3 ILS-STO

1: Procedure ILS-STO(IR, IILS)

2: s∗ ← NULL; g∗ ←∞; Rpool← NULL

3: for i:=1, . . . , IR do
4: s← GenerateInitialSolution()

5: s′ ← auxiliary solution with very large cost (g(s′)←∞)
6: iter ← 0
7: while iter ≤ IILS do
8: s ← LocalSearch(s)
9: Compute g(s) as in Expression (57) and update flight time and error matrices

10: if g(s) < g(s′) and s is feasible then
11: s′ ← s
12: iter ← 0
13: Rpool← Rpool ∪ feasible routes from s
14: s ← Perturb(s′)
15: iter ← iter + 1
16: if g(s′) < g∗ then
17: s∗ ← s′; g∗ ← g(s′)
18: s∗ ← SP(s∗, Rpool); g∗ ← g(s∗)
19: return s∗, g∗

20: end ILS-STO.

6.2. Local search

We apply a Randomized Variable Neighbourhood Descent (RVND) procedure (Mladenovic & Hansen,

1997; Subramanian, 2012) for the local search. Let N be the set of inter-route neighbourhoods, that is,

those involving more than one route. We recall that a neighbourhood η of a solution s is a set of405

solutions that are close to s in a given search domain space. RVND starts by randomly choosing a

neighbourhood η ∈ N , and determining the best improving move. If no improvements have been found,

then a neighbourhood other than η is selected at random and so on until all neighbourhoods fail to

improve the best current solution. In case of improvement, then an RVND search is executed in the

modified routes only, with intra-route neighbourhoods, that is, operators involving moves within the410

route.

The classical vehicle routing inter-route neighbourhood operators implemented are:

• Shift(1,0) — A waypoint is moved from one route to another one.

• Swap(1,1) — A waypoint from one route is interchanged with a waypoint from another route.

• 2-opt∗ — Two arcs are removed, one from each pair of routes, and two arcs are inserted in such a415

way that two new routes are formed.

Note that the neighbourhood operators mentioned above are only applied when at least one of the

routes has an estimate flight time f̃(.) that is the estimate maximum route flight time of the current

solution (i.e., the f̃(.) corresponding to the makespan). In the case of Shift(1,0), we only consider

moving a waypoint from the route whose value f̃(.) matches the maximum. Any other move would not420

lead to an improvement in the makespan.

The following intra-route Travelling Salesman Problem (TSP)–based neighbourhood moves were im-

plemented:

• Reinsertion — One waypoint is removed and reinserted in another position of the route.

• Exchange — Two waypoints are interchanged.425

• 2-opt — Two arcs are removed and another two are inserted to form a new route.

The neighbour solutions associated with the intra-route operators are evaluated in the same way as in

the TSP. After performing the intra-route local search, the algorithm updates, if necessary, the estimate

maximum flight duration.

18

6.3. Perturbation430

Perturbations are necessary to escape local optimum solutions. In this paper, we apply simple yet

effective perturbation operators as follows. If a solution s contains more than one feasible route, we apply

random Shift(1,0) or Swap(1,1) operators between the makespan route and any other route from s

chosen at random. Otherwise, if there is only one feasible route in a solution, we perform a random

shuffle in a partial sequence of this route to obtain a new perturbed solution. The mechanisms described435

above are repeated a random number of times to achieve an effective perturbation step.

6.4. A Set Partitioning-based approach

Recall that f(r) is the actual (true) flight time of feasible route r ∈ S, being S the set of all routes

of V ′ starting at 0 and ending at l ∈ L. Also, let Si ⊆ S be the set of all feasible routes containing the

waypoint i ∈ V . Define yr as a binary variable that assumes value 1 if a route r ∈ S is in the solution

and 0 otherwise, and f∗ as the variable associated with the makespan. Also, let ε(r) represent the error

associated with route r. We can now write an SP-based formulation for the GRTOP as described in

Section 3 as follows:

min f∗ +
∑
r∈S
‖εεε(r)‖yr (58)

s.t.
∑
r∈Si

yr = 1 i ∈ V (59)

∑
r∈S

yr ≤ ng (60)

f∗ ≥ f(r)yr r ∈ S (61)

yr ∈ {0, 1}. r ∈ S (62)

Objective function (58) minimises the total solution cost as defined in Objective (40). Constraints

(59) state that there should be exactly one route associated with each waypoint i ∈ V . Constraint (60)

imposes an upper bound on the number of gliders. Constraints (61) are responsible for the makespan440

computation. Finally, Constraints (62) define the domain of the variables. Since it is prohibitively

expensive to determine all feasible routes, we solve a restricted version of formulation (58–62) which is

composed of a subset of all feasible routes obtained by ILS-STO.

7. Computational experiments

In this section, the computational performance of the proposed TO-based algorithms is evaluated,445

namely the i-STO and the STO-NLP variants. Moreover, we assess the performance of the integrated

routing and TO (ILS-STO) algorithm. In Section 7.1, we introduce the test instances used in our

computational experiments. Section 7.2 presents a comparison between the proposed algorithms and the

performance of different NLP software on the solution of TO subproblems. In Section 7.3, experiments

regarding the influence of the discretisation size on the proposed algorithms’ performance are carried450

out. The influence of the error bounding constraints on solution quality and computations is studied in

Section 7.4. Finally, Section 7.5 presents the computational results of the proposed ILS-STO integrated

matheuristic on the solution of the GRTOP.

Both versions of our TO heuristics and the integrated matheuristic ILS-STO were coded in C++ (and

compiled with gcc v. 9.3.0) and executed on an Intel i7 CPU with 3.60GHz and 24GB of RAM running455

under Linux Mint 20.2 64bits (kernel 5.4.0-90-generic). The NLP subproblems described in Section 5.2

were coded using the AMPL (v. 20220323) modelling language through its C++ API (v. 2.0.6). A list of

the employed NLP solvers is provided in Section 7.2. The SOCP subproblems described in Section 5.3

were coded and solved using the solver CPLEX (v. 12.7) limited to a single thread.

19

7.1. Benchmark instances460

To better assess the performance of the proposed algorithms, computational experiments were per-

formed across a range of different instances and under several scenarios. Here, we adopt the instances

generated by Coutinho et al. (2019). Such instances contain from 2 to 8 waypoints and up to 2 landing

sites and are defined over 1km2 (the so-called small range) and 25km2 (the so-called medium range)

areas. In addition, we create a set of new large-range randomly generated instances with a large number465

of waypoints to test our algorithms more comprehensively. All generated instances as well as an instance

generator coded in Python have been made available at Coutinho et al. (2022).

The generation of the proposed larger instances was carried out as follows. We have generated

instances having n ∈ {10, . . . , 50} waypoints and m ∈ {3, 4, 5} landing zones. The maximum fleet size,

i.e. the maximum number of available gliders, is computed as ng = bn/2c. This value was adopted in the470

experiments presented in Section 7.5. Table 2 shows the values of the parameters defining waypoints and

landing zones as well as the dimensions of their containing volumes (units are indicated as necessary).

Notation in Table 2 follows the one defined in Section 3. Five different instances were created for each

combination of the number of waypoints and landing zones. Let U [a, b] denote the continuous uniform

distribution from a to b. The launching altitude ho, in km, has been chosen from U [4, 5]. These limits on475

the launching altitude are based on the values used by Crispin (2016) for the same physical glider model

flying over an area of 10km2. We will refer to the instances created in this section as large range instances

(represented by “L” in the instance name). These instances span an airspace of 100km2, according to

Table 2. For most of our experiments, the discretisation size N has been set to 50, unless otherwise

indicated.480

Table 2: Parameters defining the geometry of waypoints and landing zones.

Waypoints a b Landing sites a b
x̄(km) 0 10 x̃(km) 0 10
ȳ(km) 0 10 ỹ(km) 0 10

h̄ 0 0 h̃ 0 0
r̄(m) 10 25 r̃(m) 10 25

¯
h(m) 50 100 xo(km) 0 10
h̄(m) 200 300 yo(km) 0 10

Due to the extensive number of generated instances, it is not possible to report all of our currently avail-

able results. Moreover, such descriptions would become tedious and cumbersome. Therefore, instances

were grouped according to their class (small, medium and large range) and the number of waypoints. For

example, GRTOP-L10 represents the group of large range instances with 10 waypoints. Most results are

reported in summary tables containing minimum, maximum, average results and standard deviations for485

each group of instances. Full computational results can be found in this paper’s supplementary material.

7.2. Choosing an appropriate solver for the nonlinear subproblems

The main computational bottleneck of our routing algorithm lies in the repeated solution of NLPs

which are TO problems representing flight dynamics in their constraints. Our approach is flexible enough

to use any off-the-shelf NLP solver or a specially designed algorithm like i-STO. Comparing different490

solvers is not a trivial task, as various performance criteria like solution feasibility, optimality, and

computing times need to be taken into account (Pintér & Kampas, 2013). In this section, we compare

both versions of our STO algorithm with each other, where we use a variety of different NLP software

within STO-NLP (STO-NLP). Accordingly, these NLP solvers have to solve a variety of problems as

described in Subsection 5.2. For our tests we used the global optimisation solvers BARON (v. 21.1.13),495

LGO (v. 2015-01-17), Octeract Engine (v. 3.5.0) and Couenne (v. 0.5.7), and the local solvers WORHP (v.

1.14) and IPOPT (v. 3.12.13). As already stated, the SOCP subproblems generated by i-STO were solved

by CPLEX (v. 12.7).

20

The experiments presented here were executed as follows. For each instance of each group, a random

route was chosen and provided as input to the TO algorithms. For example, considering instances from500

the group GRTOP-S8, routes containing a random permutation of 8 waypoints and a random final landing

site were generated and used as input to i-STO and STO-NLP. Here the discretisation size was set to

N = 50 on each arc of the random routes. A time limit of 60s was imposed on all solvers for the solution

of each subproblem.

Table 3 shows the results of our experiments. Regarding STO-NLP, we highlight that solvers BARON,505

LGO, Couenne and WORHP all failed to yield feasible solutions within the specified time limit. These

were, therefore, omitted from our reports. In addition, we point out that STO-NLP’s version running

Octeract-engine was not able to solve all the instances from each group. Table 3 is organised in the

following way. Column Group shows each group of instances organised by the number of waypoints

and class. Average numbers per group of instances are presented in this table, but only for the ones510

in which a feasible solution was found. Next, column Est. shows a lower limit on the total flight

time of the provided random route, computed as explained in Section 5.2. Column #Oct. describes

how many instances from each group were solved by STO-NLP when the solver Octeract-engine was

employed. This is to emphasise that only i-STO and STO-NLP (running IPOPT) were capable of finding

solutions for all instances. The next columns are organised into subgroups showing the performance of515

each algorithm regarding flight times, errors, step sizes and computing times, respectively. Flight times

(subgroup Flight) are reported as the sum of flight times for each arc of a route. Errors (subgroup

Error) are calculated as the sum of the maximum error (i.e., the sum of the ∞-norm of εεε), among

all state variables, for each discretised time interval and each arc. For example, the errors for group

GRTOP-L50 are shown as the sum of N times 51 maximum error terms along the whole trajectory. Step520

sizes (subgroup Step) are presented as the average step size along the provided route, i.e., the sum of

each arc’s step size divided by the route’s length. Finally, subgroup Time presents the total running

times of the proposed algorithms. For each class of instances, the respective overall minimum, maximum,

average and standard deviation values are shown in rows Group min., Group max., Group avg. and

Group std., respectively. Bold numbers represent the minimum values among a subgroup of columns.525

The character “-” is shown if no results were obtained for the corresponding group of instances.

Table 3: Computational performance of the proposed algorithms for the three groups of instances and different optimisation
software.

Flight Error Step Time

Group Est. #Oct. i-STO IPOPT Oct. i-STO IPOPT Oct. i-STO IPOPT Oct. i-STO IPOPT Oct.

GRTOP-S2 44.040 10 45.240 63.105 63.190 16.656 16.450 16.411 0.231 0.322 0.322 0.174 0.822 44.151

GRTOP-S3 57.181 10 58.881 83.212 83.529 20.666 17.125 16.857 0.240 0.340 0.341 0.242 0.913 63.273

GRTOP-S4 77.170 10 79.270 102.893 103.097 19.158 14.466 13.959 0.270 0.350 0.351 0.284 1.093 71.738

GRTOP-S5 83.510 10 83.510 108.021 109.101 25.617 19.711 19.362 0.243 0.315 0.318 0.301 1.306 90.512

GRTOP-S6 100.341 9 101.141 121.004 122.322 25.707 15.220 13.418 0.258 0.309 0.312 0.375 1.422 82.850

GRTOP-S7 111.444 7 112.244 148.935 153.056 28.716 22.184 20.710 0.255 0.338 0.347 0.409 1.586 105.254

GRTOP-S8 120.249 10 122.149 153.384 152.459 29.152 24.335 23.074 0.249 0.313 0.311 0.466 1.748 119.921

GRTOP-S9 128.263 9 129.763 143.487 137.571 22.638 19.297 19.082 0.241 0.266 0.255 0.530 1.904 125.208

GRTOP-S10 147.109 7 148.409 187.511 198.877 30.167 26.229 27.252 0.252 0.319 0.338 0.559 2.145 142.114

Group min. 44.040 7 45.240 63.105 63.190 16.656 14.466 13.418 0.231 0.266 0.255 0.174 0.822 44.151

Group max. 147.109 10 148.409 187.511 198.877 30.167 26.229 27.252 0.270 0.350 0.351 0.559 2.145 142.114

Group avg. 96.405 9 97.660 123.833 125.933 24.118 19.610 19.163 0.249 0.317 0.318 0.370 1.446 93.753

Group std. 36.339 1 36.362 42.342 45.433 4.996 4.317 4.811 0.013 0.028 0.033 0.139 0.477 34.308

GRTOP-M2 174.382 5 174.382 348.120 365.127 128.719 51.794 43.878 0.890 1.776 1.863 0.186 1.030 80.757

GRTOP-M3 241.393 8 241.393 348.461 323.724 90.213 53.524 54.523 0.985 1.422 1.321 0.250 1.300 82.253

GRTOP-M4 338.984 3 338.984 553.776 544.354 124.556 68.145 49.482 1.153 1.884 1.852 0.298 1.481 104.516

GRTOP-M5 399.925 3 401.026 734.563 573.655 183.136 78.113 66.159 1.169 2.142 1.672 0.382 1.821 113.322

GRTOP-M6 435.047 6 435.047 746.151 559.348 204.697 74.039 55.617 1.110 1.903 1.427 0.424 1.910 125.741

GRTOP-M7 541.969 3 541.969 984.017 920.086 266.971 105.388 99.052 1.229 2.231 2.086 0.474 2.382 171.270

GRTOP-M8 558.258 1 558.258 996.227 777.047 341.388 100.467 63.980 1.139 2.033 1.586 0.520 2.764 141.049

GRTOP-M9 670.471 3 670.471 1183.688 1036.573 349.692 88.830 87.026 1.244 2.196 1.923 0.540 2.828 140.611

GRTOP-M10 777.656 0 777.656 1439.633 - 359.701 102.628 - 1.323 2.448 - 0.608 3.250 134.262

Group min. 174.382 0 174.382 348.120 323.724 90.213 51.794 43.878 0.890 1.422 1.321 0.186 1.030 80.757

Group max. 777.656 8 777.656 1439.633 1036.573 359.701 105.388 99.052 1.323 2.448 2.086 0.608 3.250 171.270

Group avg. 462.738 3 462.838 829.308 646.021 227.181 80.010 66.265 1.132 1.992 1.714 0.407 2.095 122.346

Group std. 211.536 2 211.506 394.102 265.910 106.579 20.824 20.302 0.146 0.338 0.278 0.151 0.805 31.752

GRTOP-L10 1541.169 0 1541.369 2754.741 - 470.405 279.582 - 2.621 4.685 - 0.588 3.981 107.912

Continued on next page

21

Table 3: Computational performance of the proposed algorithms for the three groups of instances and different optimisation
software.

Flight Error Step Time

Group Est. #Oct. i-STO IPOPT Oct. i-STO IPOPT Oct. i-STO IPOPT Oct. i-STO IPOPT Oct.

GRTOP-L20 2759.521 0 2759.521 4970.499 - 894.977 512.487 - 2.560 4.611 - 1.118 6.839 135.708

GRTOP-L30 4207.686 0 4207.686 7212.597 - 1194.836 655.380 - 2.683 4.600 - 1.644 9.778 89.105

GRTOP-L40 5351.336 0 5351.336 9428.211 - 1677.321 849.139 - 2.600 4.581 - 2.188 12.810 99.897

GRTOP-L50 6734.541 0 6735.007 11518.271 - 1851.402 1096.827 - 2.643 4.521 - 2.713 15.465 105.192

Group min. 1541.169 0 1541.369 2754.741 - 470.405 279.582 - 2.560 4.521 - 0.588 3.981 89.105

Group max. 6734.541 0 6735.007 11518.271 - 1851.402 1096.827 - 2.683 4.685 - 2.713 15.465 135.708

Group avg. 4124.280 0 4124.471 7165.333 - 1201.535 681.404 - 2.622 4.600 - 1.650 9.760 108.946

Group std. 2082.136 0 2082.232 3520.206 - 564.947 321.918 - 0.048 0.063 - 0.852 4.625 18.193

From the results in Table 3 one can observe that i-STO is very effective regarding flight time min-

imisation. This is due to its iterative strategy of increasing the flight time from a possibly infeasible

value (the estimated minimum τ̄f) up to when the first feasible trajectory is found. On average, i-STO

finds trajectories that are 21.14%, 24.98% and 42.44%, (for small, medium and large range instances,530

respectively) shorter in duration than the shortest trajectories found by STO-NLP (running either IPOPT

or Octeract-engine solvers). Nonetheless, this strategy reflects negatively on the error values found

by i-STO. Table 3 shows that STO-NLP (considering both NLP solvers) performs better than i-STO

regarding error values for all groups of instances. On average, considering the three classes of instances,

STO-NLP (considering the best run between IPOPT and Octeract-engine) finds errors that are 20.54%,535

70.83% and 43.29% smaller than i-STO, respectively.

The reason behind this behaviour can be explained by the fact that i-STO relegates the minimisation

of the error term to a “secondary” objective for a given (fixed) flight duration (5.3). The i-STO’s error

values could be improved by adopting a less greedy flight minimisation strategy. However, preliminary

experiments showed that adopting a different minimisation algorithm (e.g., the bisection method) would540

significantly increase computing times. Since i-STO is called many times during the execution of the

routing algorithm, we decided by design to go for the less computationally expensive strategy, i.e., the

greedy one. As opposed to i-STO, STO-NLP tackles the flight time and error minimisation in the same

objective (Section 5.2). That means it can better explore the trade-off between these two terms during

the trajectory computation.545

Concerning integration step sizes (subgroup Step), i-STO shows a better refinement, in terms of

length (duration), than STO-NLP. Recall that the step size reflects how often the state of each glider is

verified and how fine the control over each glider’s flight is. For each class of instances (small, medium

and large), i-STO is on average providing control over each glider every 0.25, 1.13 and 2.62 seconds,

respectively. Note also that the small, medium and large classes of instances are defined over areas that550

are 1km2, 25km2 and 100km2 in size, respectively. Therefore, i-STO provides a good level of refinement

for control points and reference trajectories given the size of the airspace considered in each class of

instance.

Lastly, columns in subgroup Time show that i-STO is much faster regarding computing times than

STO-NLP. On average, the former is 74.41%, 80.57% and 83.09% faster than the fastest STO-NLP555

version (running IPOPT). This is due to two main reasons. First, i-STO’s subproblems consist of SOCPs

problems (convex by definition) that are, in the current state-of-the-art, solved much more efficiently

than the STO-NLP’s nonconvex NLP subproblems. Second, the greedy flight time minimisation approach

adopted in i-STO allows for fast computation of feasible trajectories for each arc of a route within STO’s

general decomposition framework. One can also notice that, in general, computing times of the global560

optimisation solver Octeract-engine are prohibitive within the proposed algorithm. Therefore, from

now on all of our experiments involving STO-NLP will employ IPOPT as an NLP subproblem solver.

22

7.3. Discretisation step size

In this section, we study the effects of varying the discretisation step size of the proposed algorithms.

These tests were executed as follows. For each instance, a random route was generated and fed to i-STO565

and STO-NLP for different values of N , namely, 20, 40, 80 and 100. As indicated in Section 7.2, the

software IPOPT was used for solving STO-NLP’s subproblems. All other parameters are set as in the

experiments in the previous section.

Tables 4 and 5 show the results of our tests for i-STO and STO-NLP, respectively. Columns have

been grouped according to their respective discretisation step size. The meaning of each column remains570

the same as in previous tables. We have omitted flight time results from Tables 4 and 5 since we could

not observe significant variations due to the changing discretisation step sizes. Full results can be found

in this paper’s online supplement.

Table 4: Computational performance of i-STO for different discretisation sizes.

N=20 N=40 N=80 N=100

Group Error Step Time Error Step Time Error Step Time Error Step Time

GRTOP-S min. 42.695 0.631 0.070 23.287 0.308 0.150 11.902 0.153 0.348 9.643 0.123 0.461

GRTOP-S max. 83.057 0.714 0.244 38.182 0.348 0.502 20.713 0.172 1.248 15.859 0.137 1.622

GRTOP-S avg. 65.539 0.662 0.156 30.971 0.324 0.319 15.461 0.161 0.793 11.838 0.129 1.039

GRTOP-S std. 14.865 0.029 0.064 5.376 0.014 0.128 2.948 0.007 0.335 2.152 0.005 0.423

GRTOP-M min. 158.614 2.428 0.067 88.173 1.183 0.139 52.313 0.584 0.295 46.840 0.466 0.379

GRTOP-M max. 666.851 3.471 0.261 427.923 1.691 0.448 207.399 0.835 0.995 155.978 0.666 1.350

GRTOP-M avg. 438.431 3.013 0.164 277.485 1.468 0.308 129.447 0.725 0.661 97.468 0.578 0.900

GRTOP-M std. 184.935 0.354 0.069 121.249 0.173 0.115 54.017 0.085 0.259 39.061 0.068 0.364

GRTOP-L min. 799.644 6.332 0.232 497.918 3.085 0.469 271.429 1.524 0.968 214.846 1.216 1.243

GRTOP-L max. 3851.251 6.754 1.051 2391.316 3.290 2.187 1358.063 1.625 4.578 1080.871 1.296 5.811

GRTOP-L avg. 2293.483 6.581 0.639 1435.946 3.206 1.330 815.280 1.583 2.780 647.869 1.263 3.537

GRTOP-L std. 1202.390 0.166 0.329 744.778 0.081 0.689 427.711 0.040 1.447 341.901 0.032 1.833

Table 5: Computational performance of STO-NLP for different discretisation sizes.

N=20 N=40 N=80 N=100

Group Error Step Time Error Step Time Error Step Time Error Step Time

GRTOP-S min. 28.024 0.704 0.344 14.974 0.343 0.661 10.129 0.170 1.427 8.806 0.135 1.869

GRTOP-S max. 50.319 0.968 1.013 32.301 0.461 1.750 20.745 0.225 3.886 16.575 0.180 5.033

GRTOP-S avg. 40.787 0.858 0.674 24.104 0.413 1.194 14.952 0.203 2.689 12.075 0.162 3.504

GRTOP-S std. 8.171 0.091 0.237 6.147 0.041 0.396 3.774 0.019 0.919 2.780 0.016 1.140

GRTOP-M min. 100.955 3.479 0.462 60.020 1.678 0.841 39.132 0.835 1.689 33.542 0.668 2.395

GRTOP-M max. 228.210 6.144 1.486 128.657 3.023 2.673 80.763 1.507 5.077 70.126 1.204 7.169

GRTOP-M avg. 168.665 5.064 0.933 96.608 2.494 1.698 59.710 1.241 3.273 52.918 0.991 4.748

GRTOP-M std. 50.828 0.845 0.375 27.647 0.428 0.670 16.157 0.214 1.219 14.101 0.171 1.740

GRTOP-L min. 567.325 10.555 1.698 336.740 5.233 3.091 194.656 2.629 6.205 168.756 2.104 7.605

GRTOP-L max. 2000.871 11.790 6.926 1320.929 5.923 12.601 747.056 2.985 24.678 671.836 2.388 31.112

GRTOP-L avg. 1253.402 11.154 4.304 800.712 5.560 7.808 456.521 2.798 15.412 407.554 2.239 19.277

GRTOP-L std. 566.218 0.478 2.090 388.978 0.265 3.813 218.948 0.136 7.420 198.454 0.108 9.392

Our results show that both algorithms scale well regarding increasing discretisation sizes. However,

a few differences can be observed when comparing STO-NLP and i-STO. We noticed that computing575

times for STO-NLP increase more dramatically as N increases. Average computing times for each group

of instances (GRTOP-S, GRTOP-M and GRTOP-L) increase by 0.88, 0.74 and 2.90 seconds for i-STO when N

goes from 20 to 100, while for STO-NLP these differences are 2.83, 3.82 and 14.97 seconds, respectively.

Similar conclusions can be drawn about step sizes. Errors are expected to decrease as N increases (Zhao,

2004). Such observations can also be made about our results. As opposed to computing times and step580

sizes, i-STO seems to be more sensitive to variations in N with respect to these attributes than STO-NLP.

While errors decrease by 53.70, 340.96 and 1645.61 on average (per group of instances) for i-STO, theses

23

differences are 28.71, 115.75, and 845.85, for STO-NLP, respectively.

Figure 6 summarises our findings and gives a few more insights about our experiments. This figure

is arranged in the following way. Each row shows plots for average errors, step sizes and computing585

times in the vertical axis for each group of instances. Horizontal axes represent the value of N . The first

two columns (Error and Step size) show that, on average, as N approaches 100 the solution of i-STO’s

subproblems approximates the solution of the NLP subproblems generated by STO-NLP. At the same

time, i-STO scales much better concerning computing times than STO-NLP. Accordingly, for smaller

discretisation step sizes, i-STO is capable of efficiently finding good quality solutions with competitive590

computing times.

20 40 80 100

20

40

60

Er
ro

r

i-STO
STO-NLP

20 40 80 100

0.2

0.4

0.6

0.8
St

ep
 si

ze
Small instances

i-STO
STO-NLP

20 40 80 100
0

1

2

3

Ti
m

e(
s)

i-STO
STO-NLP

20 40 80 100

100

200

300

400

Er
ro

r

i-STO
STO-NLP

20 40 80 100

1

2

3

4

5

St
ep

 si
ze

Medium instances
i-STO
STO-NLP

20 40 80 100
0

2

4

Ti
m

e(
s)

i-STO
STO-NLP

20 40 80 100

500

1000

1500

2000

Er
ro

r

i-STO
STO-NLP

20 40 80 100

2.5

5.0

7.5

10.0

St
ep

 si
ze

Large instances
i-STO
STO-NLP

20 40 80 100
0

5

10

15

20

Ti
m

e(
s)

i-STO
STO-NLP

Discretisation size

Figure 6: Average error, step size and computing times against the discretisation size for the three groups of instances.

7.4. Influence of the error bounding constraints on solution quality and algorithmic performance

In this section, we test the effectiveness of the error bounding constraints (41) and the error min-

imisation term in the objective function (40). With this purpose in mind, the following experiment was

designed. We have considered three scenarios: (i) the first one (Scn1) consists of the current model;595

(ii) in the second one (Scn2), we relax the error bounding constraints (41) while keeping the rest of

the model unchanged; (iii) in the third scenario (Scn3), we keep the error bounding constraints, but

remove the error minimisation term from the objective function (40). For each instance, both i-STO and

STO-NLP algorithms were initialised with the same random route across all scenarios. The remaining

settings follow from the experiments on Section 7.2.600

Tables 6 and 7 show the results of our experiments. Columns in these tables have been grouped

according to each scenario defined above. The meaning of each column remains the same as in the

previous sections.

From the results in Tables 6 and 7 it is clear that the error bounding constraints and the minimisation

of the error improve the solutions found by both i-STO and STO-NLP algorithms in the following sense.605

Let us define, for a given algorithm and group of instances, the average error gap between two different

scenarios i and j as gapij = 100×(max{Errori, Errorj}−min{Errori, Errorj})/max{Errori, Errorj}.
Thus, considering i-STO’s results and the three groups of instances (GRTOP-S, GRTOP-M and GRTOP-L), one

can notice that the gaps between scenarios Scn1 and Scn2 are 75.46%, 28.67% and 8.40%, respectively.

While the gaps between scenarios Scn1 and Scn3 are 74.2%, 87.08% and 95.93%, respectively. Similar610

figures can be observed regarding STO-NLP. The gaps between Scn1 and Scn2 are 21.23%, 0.72% and

24

0.21%, and the gaps between Scn1 and Scn3 are 34.11%, 91.98% and 96.36%, respectively for the three

groups of instances. Therefore, keeping both the error bounding constraints (41) and the second term of

the objective function (40) in the TO subproblems helps to keep errors small. In addition, Scn2 provides

for smaller errors than Scn3, which suggests that the error minimisation term in the objective function615

has a bigger influence on keeping errors small.

Regarding flight times, the proposed algorithms behave slightly differently regarding the three gen-

erated scenarios. For i-STO, no significant changes in flight times could be detected for scenarios Scn1,

Scn2 and Scn3, considering all three classes of instances. We believe this is due to the prioritisation of

the flight time minimisation during the iterative solution of its TO subproblems. The same can be said620

about STO-NLP and scenarios Scn1 and Scn2.

However, some interesting observations can be made regarding the flight times found by STO-NLP

under Scn3. Let us recall that in Scn3 the error term is removed from the objective function, meaning

that only the flight time is minimised subject to the error bounding and other constraints. In Scn3,

STO-NLP is capable of finding average, minimum and maximum flight times that are very similar to the625

values found by i-STO in all three scenarios. Such results can be interpreted as a confirmation of the

effectiveness of i-STO’s iterative flight minimisation strategy. By comparing STO-NLP and i-STO under

Scn3, one notices that STO-NLP finds error values that are, on average, 37.39% smaller than the errors

found by i-STO. However, STO-NLP’s computing times are on average 94.21% higher than its iterative

counterpart.630

Finally, a trade-off can be acknowledged between the performance of both TO algorithms flight times,

errors and computing times. Keeping in mind that in an integrated routing and TO framework the TO

code must be called multiple times, we opted for employing only i-STO in the next set of experiments.

Table 6: Influence of the error bounding constraints and error minimisation on solution quality and the computational
performance of the i-STO algorithm.

Scn1 Scn2 Scn3

Group Flight Error Step Time Flight Error Step Time Flight Error Step Time

GRTOP-S min. 45.240 16.656 0.231 0.235 44.040 29.752 0.225 0.176 45.140 49.054 0.230 0.078

GRTOP-S max. 149.207 27.508 0.271 0.635 148.107 164.174 0.271 0.502 149.406 123.446 0.271 0.176

GRTOP-S avg. 98.643 22.075 0.252 0.434 97.725 89.952 0.250 0.335 98.534 87.309 0.252 0.126

GRTOP-S std. 36.329 3.794 0.015 0.147 36.291 44.850 0.016 0.122 36.417 25.274 0.015 0.033

GRTOP-M min. 172.564 108.810 0.880 0.219 172.264 139.560 0.879 0.193 172.464 601.691 0.880 0.046

GRTOP-M max. 749.223 361.788 1.277 0.583 749.223 469.813 1.277 0.593 749.223 2834.994 1.277 0.176

GRTOP-M avg. 457.720 216.435 1.125 0.388 457.629 303.436 1.124 0.377 457.665 1675.767 1.124 0.099

GRTOP-M std. 203.788 89.808 0.143 0.139 203.847 126.857 0.144 0.150 203.796 786.044 0.143 0.046

GRTOP-L min. 1527.501 400.465 2.510 0.625 1527.301 443.031 2.510 0.634 1527.301 12039.599 2.510 0.233

GRTOP-L max. 6455.703 1821.976 2.598 2.813 6455.569 2004.684 2.597 2.625 6455.636 44729.947 2.597 1.368

GRTOP-L avg. 3989.213 1157.720 2.556 1.711 3989.098 1263.888 2.555 1.622 3989.117 28422.584 2.555 0.750

GRTOP-L std. 1968.323 570.170 0.036 0.879 1968.358 623.906 0.036 0.803 1968.382 12997.827 0.036 0.446

Table 7: Influence of the error bounding constraints and error minimisation on solution quality and the computational
performance of the STO-NLP algorithm.

Scn1 Scn2 Scn3

Group Flight Error Step Time Flight Error Step Time Flight Error Step Time

GRTOP-S min. 63.105 14.500 0.284 1.058 62.972 14.730 0.284 0.976 45.260 14.498 0.231 0.747

GRTOP-S max. 178.564 27.074 0.364 2.334 178.091 37.566 0.363 2.107 149.603 46.098 0.271 1.946

GRTOP-S avg. 126.163 20.048 0.328 1.702 125.844 25.450 0.327 1.504 98.667 30.425 0.252 1.352

GRTOP-S std. 42.330 4.361 0.029 0.467 42.113 7.512 0.029 0.414 36.474 10.977 0.015 0.417

GRTOP-M min. 333.147 52.686 1.579 1.231 332.797 54.751 1.578 1.149 172.488 305.889 0.880 0.915

GRTOP-M max. 1298.328 104.255 2.340 3.086 1298.329 104.255 2.340 2.914 749.223 1750.475 1.277 3.348

GRTOP-M avg. 791.746 80.516 1.963 2.049 791.611 81.103 1.962 1.931 457.669 1004.125 1.124 1.945

GRTOP-M std. 345.603 20.388 0.272 0.683 345.681 19.620 0.273 0.638 203.790 511.862 0.143 0.871

Continued on next page

25

Table 7: Influence of the error bounding constraints and error minimisation on solution quality and the computational
performance of the STO-NLP algorithm.

Scn1 Scn2 Scn3

Group Flight Error Step Time Flight Error Step Time Flight Error Step Time

GRTOP-L min. 2670.641 260.145 4.271 3.927 2671.596 260.220 4.271 3.864 1527.301 6794.300 2.510 3.984

GRTOP-L max. 11094.943 1023.943 4.565 16.445 11094.067 1024.559 4.564 14.762 6455.503 28762.080 2.597 24.574

GRTOP-L avg. 6857.822 646.933 4.411 10.168 6867.216 648.294 4.418 9.237 3989.079 17794.343 2.555 12.956

GRTOP-L std. 3347.965 298.297 0.129 5.031 3347.117 298.622 0.125 4.364 1968.335 8723.192 0.036 8.155

7.5. Routing a fleet of gliders

In this section, we analyse the performance of the proposed i-STO algorithms when it is used together635

with our vehicle routing metaheuristic. The overall efficiency of the algorithm, in terms of the size of

instances solved, is explored first. We then assess if the set partitioning formulation refinement stage

has a beneficial effect on the solution approach. Next, we provide some insights on the impact of the

fleet size on the time required to collect aerial information, and how fast information on ground targets

will be available with variable fleet size and varying number of points of interest. Finally, based on real-640

world scenarios, we perform computational experiments to illustrate the application of gliders in disaster

assessment.

We ran ILS-STO for each problem instance; the average results obtained per group are reported in

Table 8. In this set of experiments, the discretisation size was set to N = 50 points and a time limit

of 60s was imposed for the solution of TO subproblems. Recall that the maximum fleet size was set to645

ng = bn/2c, where n is the number of waypoints in a given instance. In this table, column Group keeps

the same meaning as in the previous tables. Util. (%) represents the fleet utilisation, which is computed

as the number of gliders used in the solution divided by the maximum number of gliders available in the

fleet. Column Obj. presents the objective function value, while Mks and Error represent the objective’s

makespan and error terms, respectively. We also provide a Max.err column, showing the error in the650

route in which the error component is the highest. Flight provides the sum of the flight times of all

the airborne gliders. Iter is the number of LS iterations. Finally, column Time(s) is the average CPU

time in seconds spent by ILS-STO, whereas TO (%) is the percentage of CPU time spent by the TO

algorithm.

Table 8: Average aggregate computational results of the ILS-i-STO heuristic for the three groups of instances.

Group Util.(%) Obj. Mks Error Max.err Flight Iter Time(s) TO(%)

GRTOP-S2 100.000 64.913 46.725 18.188 18.188 46.725 30.000 5.506 99.891

GRTOP-S3 100.000 77.228 57.872 19.356 19.356 57.872 30.000 8.095 99.871

GRTOP-S4 100.000 72.796 48.935 23.861 16.458 90.457 33.400 13.785 99.891

GRTOP-S5 100.000 79.217 52.463 26.753 17.821 97.525 33.400 14.898 99.857

GRTOP-S6 83.000 77.690 50.127 27.563 15.278 111.213 42.300 23.226 99.848

GRTOP-S7 83.000 80.838 52.269 28.569 15.979 117.549 42.500 26.527 99.838

GRTOP-S8 80.000 87.330 48.187 39.143 18.240 140.989 51.500 40.083 99.846

GRTOP-S9 72.500 75.265 49.035 26.230 12.822 130.973 44.200 34.957 99.820

GRTOP-S10 66.000 94.037 51.307 42.730 19.345 157.484 51.800 50.613 99.830

Group min. 66.000 64.913 46.725 18.188 12.822 46.725 30.000 5.506 99.820

Group max. 100.000 94.037 57.872 42.730 19.356 157.484 51.800 50.613 99.891

Group avg. 86.409 78.933 51.047 28.483 16.878 105.000 40.082 24.892 99.855

Group std. 13.532 9.435 3.713 8.765 2.321 39.261 8.671 16.286 0.027

GRTOP-M2 100.000 259.755 166.709 93.046 93.046 166.709 30.000 5.843 99.893

GRTOP-M3 100.000 274.704 198.594 76.109 76.109 198.594 30.000 7.607 99.861

GRTOP-M4 100.000 341.574 188.452 153.123 120.794 351.325 32.300 12.203 99.861

GRTOP-M5 100.000 388.995 214.225 174.770 129.024 402.024 33.200 14.291 99.849

GRTOP-M6 83.000 406.498 195.787 210.712 143.945 424.693 36.400 19.522 99.833

GRTOP-M7 79.600 384.393 207.787 176.606 118.812 442.352 43.300 26.594 99.826

GRTOP-M8 75.000 479.049 213.018 266.031 137.422 573.584 45.100 32.814 99.827

GRTOP-M9 85.000 454.998 216.592 238.406 147.697 650.236 48.500 38.520 99.811

Continued on next page

26

Table 8: Average aggregate computational results of the ILS-i-STO heuristic for the three groups of instances.

Group Util.(%) Obj. Mks Error Max.err Flight Iter Time(s) TO(%)

GRTOP-M10 76.000 455.902 218.465 237.437 115.454 713.730 53.300 49.715 99.812

Group min. 75.000 259.755 166.709 76.109 76.109 166.709 30.000 5.843 99.811

Group max. 100.000 479.049 218.465 266.031 147.697 713.730 53.300 49.715 99.893

Group avg. 88.509 380.425 200.437 178.944 118.737 436.699 39.582 23.879 99.843

Group std. 10.887 81.625 18.482 68.988 25.365 197.479 8.942 15.952 0.029

GRTOP-L10 77.333 689.669 417.535 272.133 134.627 1373.611 49.333 42.626 99.821

GRTOP-L20 66.667 919.388 415.534 503.854 164.173 2264.470 53.667 93.009 99.774

GRTOP-L30 63.667 1148.661 406.837 741.824 199.116 3172.100 52.800 137.937 99.789

GRTOP-L40 70.000 1477.538 433.503 1044.035 198.355 4647.002 52.467 180.800 99.779

GRTOP-L50 72.533 1599.269 407.710 1191.560 222.127 5489.059 52.800 234.308 99.772

Group min. 63.667 689.669 406.837 272.133 134.627 1373.611 49.333 42.626 99.772

Group max. 77.333 1599.269 433.503 1191.560 222.127 5489.059 53.667 234.308 99.821

Group avg. 70.171 1160.495 417.351 745.300 182.164 3401.273 52.010 137.945 99.790

Group std. 5.413 375.536 10.949 376.757 35.024 1683.415 1.743 76.157 0.020

The overall average utilisation of the fleet is 81.70% on average across all instances and varies from655

70.17% (for the instances with a large area and a large number of gliders) to 86.41% for the smaller

instances. This demonstrates the need for a fleet of gliders, and that a high utilisation rate is achieved

to minimise the makespan. The algorithm can also be used to identify a suitable number of gliders given

the number of waypoints to be surveyed. In particular, on average roughly 10 gliders are used to survey

instances with 50 waypoints efficiently.660

The makespan represents on average 64.64%, 52.69% and 35.96% of the overall Obj., for the small,

medium and large instances, respectively. The overall routing time (i.e., the sum of the flying times of

all gliders) compares favourably to the solution makespan, showcasing that all gliders employed in the

mission are on average flying routes of comparable length to the longest. By multiplying the average

makespan by the average number of gliders used for each group of instances we obtain 5051.38 seconds665

(approx. 84 minutes), whereas the overall average flight time for all gliders and instance groups is 3942.97

seconds (approx. 65 minutes), representing a gap of roughly only 20%. That shows a good utilisation of

all gliders in the fleet and comparable flying durations.

Assessing solution quality is not an easy task, as this combines errors in the position and orientation

of each glider and in the control variables at each time-discretisation point. It is though interesting670

to notice that the average total errors are 28.48, 178.94 and 745.30 for the small, medium and large

instances respectively. We recall that the coordinates of the gliders over time and thus those error terms

are measured in meters, and the overall flying range (or airspace) for the small, medium, and large

instances span 1, 25, and 100 km2. These errors seem therefore relatively small when compared with the

number of time-discretisation points, the number of gliders and the scale of the airspace. The Max.err675

column showcases that the glider routes with the maximum sum of error terms are still within reasonable

values.

The computing times of the proposed algorithm are quite small, and even the largest instances with

50 waypoints require on average 234.31 seconds. The small and medium size instances require on average

24.89 and 23.88 seconds, as it seems a larger range does not affect the algorithm computing times. The680

larger set of instances requires on average 137.95 seconds. This suggests that the new TO optimisation

algorithm combined with a fast and effective metaheuristic allows for solving much larger instances. The

number of local search iterations varies between 39.58 and 52.01, and tends to increase with the size of

the instance.

The most remarkable computing time aspect though is highlighted in column TO(%), where the685

percentage of time spent in the TO algorithm is given. It can be noticed that this is consistently over

99% of the overall computing time for all instance sizes, proving that the TO problem remains the most

challenging and time-consuming component of the algorithm. This is the part of the code which still

27

represents a bottleneck, and further heuristic approximations might be necessary to either solve larger

instances or obtain solutions in faster computing times. Figure 7 shows feasible solutions of two different690

instances.

(a) Solution of grtopL 203 2.

(b) Solution of grtopL 203 5.

Figure 7: Depiction of the optimal solutions of two large range instances.

Table 9 shows the effect of applying the SP-based approach after the multi-start ILS procedure. The

average objective function values before and after solving the SP formulation are reported (namely, ILS

and SP). Column Gap(%) shows the average percentage improvement achieved using the SP module.

This improvement is calculated as 100× [(ILS− SP)/ILS]. Finally, columns Time(s) and SP(s) report695

the average computing times and the time spent by the SP module, respectively, in seconds.

Overall, the SP-based approach improves the objective function value on average by 2.17%, 2.45% and

28

18.78% on the small, medium and large sets, respectively. We highlight that the time required to solve

the SP formulation (never higher than fractions of a second) is negligible when compared against the

overall running times of ILS-STO. These results suggest that the SP module is useful in our framework,700

as it helps the method to improve the average objective function value with little added computational

effort, especially on larger instances.

Table 9: Effectiveness of the SP postprocessing for the three groups of instances (average aggregate results).

Group ILS SP Gap(%) Time(s) SP(s)

GRTOP-S2 64.913 64.913 0.000 5.506 0.001

GRTOP-S3 77.228 77.228 0.000 8.095 0.002

GRTOP-S4 72.796 72.796 0.000 13.785 0.002

GRTOP-S5 79.217 79.217 0.000 14.898 0.003

GRTOP-S6 77.690 77.690 0.000 23.226 0.052

GRTOP-S7 80.884 80.838 0.060 26.527 0.113

GRTOP-S8 91.199 87.330 3.413 40.083 0.089

GRTOP-S9 78.805 75.265 4.376 34.957 0.044

GRTOP-S10 101.916 94.037 7.986 50.613 0.131

Group min. 64.913 64.913 0.000 5.506 0.001

Group max. 101.916 94.037 7.986 50.613 0.131

Group avg. 81.043 78.933 2.166 24.892 0.052

Group std. 12.049 9.435 3.115 16.286 0.052

GRTOP-M2 259.755 259.755 0.000 5.843 0.001

GRTOP-M3 274.704 274.704 0.000 7.607 0.002

GRTOP-M4 341.574 341.574 0.000 12.203 0.003

GRTOP-M5 388.995 388.995 0.000 14.291 0.010

GRTOP-M6 406.674 406.498 0.032 19.522 0.004

GRTOP-M7 405.759 384.393 3.405 26.594 0.072

GRTOP-M8 501.734 479.049 3.565 32.814 0.052

GRTOP-M9 473.289 454.998 4.105 38.520 0.122

GRTOP-M10 492.412 455.902 7.911 49.715 0.088

Group min. 259.755 259.755 0.000 5.843 0.001

Group max. 501.734 479.049 7.911 49.715 0.122

Group avg. 391.490 380.425 2.448 23.879 0.043

Group std. 91.683 81.625 3.021 15.952 0.048

GRTOP-L10 737.372 689.669 6.142 42.626 0.037

GRTOP-L20 1103.945 919.388 16.718 93.009 0.158

GRTOP-L30 1456.170 1148.661 20.988 137.937 0.141

GRTOP-L40 2057.323 1477.538 27.662 180.800 0.153

GRTOP-L50 2180.542 1599.269 26.156 234.308 0.102

Group min. 737.372 689.669 6.142 42.626 0.037

Group max. 2180.542 1599.269 27.662 234.308 0.158

Group avg. 1493.324 1160.495 18.781 137.945 0.113

Group std. 604.573 375.536 8.789 76.157 0.051

Finally, we present some results regarding the effects of the fleet size on the makespan. Table 10

presents the average aggregate results obtained on the GRTOP-L groups with 10, 20, 30, 40, and 50

waypoints, by varying the fleet size from only 1 glider to ng = bn/2c. In this table, column Fleet shows705

the maximum number of available gliders (fleet size). The remaining columns keep the same meaning

as in the previous tables. In order to keep our presentation short and convenient, for each group of

instances we have omitted some of the rows. Complete results can be accessed through this paper’s

online supplement.

Table 10: Average aggregate results for the three groups of instances with varying maximum fleet sizes.

Group Fleet Util.(%) Obj. Mks Error Max.err Flight Iter Time(s) TO(%)

GRTOP-L10

1 100.000 1138.482 782.872 355.610 355.610 782.872 32.933 21.862 99.489

2 100.000 734.669 519.214 215.454 146.080 998.128 40.000 28.437 99.745

3 90.933 683.981 454.167 229.813 135.740 1135.767 40.867 30.526 99.766

Continued on next page

29

Table 10: Average aggregate results for the three groups of instances with varying maximum fleet sizes.

Group Fleet Util.(%) Obj. Mks Error Max.err Flight Iter Time(s) TO(%)

4 88.333 666.122 436.726 229.396 110.432 1369.235 47.133 37.575 99.808

5 74.667 671.138 411.200 259.938 136.315 1315.040 47.733 39.701 99.830

GRTOP-L20

4 100.000 883.030 470.362 412.668 169.190 1725.958 53.933 78.586 99.679

5 94.667 888.979 433.996 454.983 174.613 1859.691 51.333 77.346 99.709

6 89.800 890.779 424.597 466.181 160.660 2005.099 49.533 75.138 99.729

7 80.533 901.320 425.823 475.497 162.994 2025.237 50.333 78.830 99.757

8 76.400 906.420 420.242 486.177 160.010 2151.568 55.733 89.677 99.779

GRTOP-L30

5 100.000 1071.940 454.102 617.837 207.057 2096.440 53.133 113.738 99.633

6 94.333 1078.550 435.643 642.908 225.865 2234.441 49.133 106.632 99.631

7 83.400 1078.425 450.357 628.067 181.439 2336.764 53.067 117.160 99.678

11 82.400 1094.466 406.778 687.687 180.955 3122.643 49.933 118.587 99.754

12 73.533 1096.742 411.090 685.651 165.351 3044.727 56.467 134.185 99.766

GRTOP-L40

5 100.000 1296.447 494.401 802.045 310.651 2278.822 48.200 135.378 99.472

6 90.933 1243.192 485.050 758.142 254.481 2393.350 50.133 142.035 99.535

10 88.000 1353.788 431.569 922.221 233.566 3271.919 52.600 158.638 99.711

15 75.800 1433.193 420.232 1012.961 248.507 4027.680 44.333 139.329 99.746

20 70.000 1575.472 428.647 1146.824 207.722 4664.651 55.667 185.048 99.794

GRTOP-L50

5 100.000 1261.953 514.298 747.655 230.758 2376.447 48.867 169.451 99.322

10 92.667 1276.980 402.422 874.559 205.865 3272.497 60.333 223.269 99.653

15 74.800 1359.261 410.144 949.116 211.921 3786.545 53.933 206.559 99.708

20 67.333 1450.429 420.988 1029.440 210.947 4392.169 49.933 197.949 99.722

25 68.267 1484.163 423.477 1060.686 186.266 5339.435 57.400 238.754 99.744

One can observe that the utilisation tends to decrease as the fleet size increases, especially for smaller710

instances. In addition, the makespan also decreases as there are more gliders available for visiting

waypoints. However, due to airspace defined for this group of instances, the makespan tends to converge

to roughly 400 seconds as more gliders are allowed. The sum of errors tends to increase as more gliders

are added to the solution. This is expected since the addition of more gliders means that more EOMs

need to be solved within our framework. CPU times tend to be smaller for instances with fewer gliders,715

however, the increase in computing time is typically smaller than the benefit obtained by reducing the

makespan up to its convergence value.

Figure 8 illustrates how much the average makespan improves, per instance group, as one glider is

added to the fleet. From Figure 8 we can verify that the average improvements are substantial when the

initial few gliders are added, but not that prominent after the fleet size reaches a certain number. It is720

also possible to see that such improvements tend to increase with the size of the instance. We highlight

that this type of analysis may potentially help practitioners determine a fleet size appropriate to the

application.

The numerical results in this section indicate that our approach provides consistent solutions for

problems with up to 25 gliders and up to 50 waypoints. Our routing algorithm provides solutions with725

good utilisation of the given glider fleet under reasonable computing times. Numerical errors bestowed

on the solutions due to the discretisation of time-dependent dynamics scale well with problem sizes.

8. Concluding remarks

In this paper, we presented heuristic approaches for efficiently solving the GRTOP. In the GRTOP,

flight dynamics takes a major role in route and trajectory planning. We modelled the problem as a730

multi-phase Optimal Control (OC) problem, in which the flight dynamics are allowed to change within

a given route. Different flight modes were considered to compute steady-flight conditions, which in turn

were used for linearising the gliders’ EOMs. Next, by applying a numerical integration method, namely,

direct collocation, we transformed the infinite-dimensional OC problem into an MINLP with a bounded

error approximation. In this formulation, each phase of the TO is associated with an arc in a directed735

graph.

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Fleet size

0

200

400

600

800

1000

1200

M
ak

es
pa

n

Group

GRTOP-L10
GRTOP-L20
GRTOP-L30
GRTOP-L40
GRTOP-L50

Figure 8: Average makespan improvement as one glider is added to the fleet.

The so-called ILS-STO framework takes advantage of the model’s structure and is composed of two

main building blocks: (i) two STO algorithms to find feasible trajectories for a fixed sequence of waypoints;

and (ii) a routing ILS-based matheuristic, which combines iterated local search and a set-partitioning

formulation, for finding sequences of waypoints that can be evaluated by STO.740

Our STO approach decomposes the multi-phase TO problem into a sequence of single-phase subprob-

lems, which are solved either by an NLP solver (STO-NLP) or by an iterative method (i-STO). Next,

each subproblem is solved according to the sequence defined by the provided route. A feasible trajectory

is then constructed by patching the solutions of each subproblem together in the provided order.

We performed several numerical experiments on instances from the literature and 75 new randomly745

generated instances to understand the behaviour of the different TO algorithms. Our results showed that

STO-NLP and i-STO performed very differently in terms of solution values and accuracy. In summary, we

observed that STO-NLP is capable of finding solutions with smaller error values at the expense of higher

computing times. On the other hand, i-STO finds solutions with a lower makespan and higher error

error, but in shorter computing times. We also showed that both algorithms scale well with increasing750

discretisation sizes.

Further computational experiments showed that ILS-STO is capable of finding feasible GRTOP solu-

tions in short computing times. The time required to find a locally optimal solution was never worse than

235 seconds. Our experiments also showed that the SP-based formulation often helps with improving

the objective function value. In addition, we studied the effects of varying the maximum allowed number755

of gliders in the fleet on the obtained solutions. Results showed that a fleet containing between 7 and

10 gliders usually produces better solutions in terms of makespan and fleet utilisation for the considered

instances.

Future research avenues involving GRTOP or related problems may consider alternative objective

functions, such as optimising the fleet size and mission costs. Alternatively, equity objectives (e.g.,760

optimising latency or the latest arrival) could also be taken into account. Moreover, the launching

position of the gliders can also be optimised as it might affect surveying operation times. Finally, by

employing more accurate gliding dynamics one could achieve more realistic solutions. We expect that

such an approach would require more sophisticated TO methods though.

Regarding the ILS-STO algorithm, our next research steps would include embedding STO into the765

local search phase of ILS. For example, let r1 = (0, 1, 2, 3, 4, 5, 6, 7) be the current best solution with cost

c1. Let us suppose that the neighbour solution r2 = (0, 1, 2, 3, 4, 6, 5, 7) needs to be evaluated, i.e., the

31

solution cost c2 must be computed. Note that these solutions are identical until the fifth position, therefore

STO would run only from the sixth position onwards since the cost of the segment 0−1−2−3−4 would

remain the same. The challenge of performing such modification to our method consists of integrating770

the local search and STO without overly compromising the running times of the algorithm.

Finally, it would be interesting to extend the ILS-STO algorithm to other autonomous systems such

as unmanned underwater vehicles and powered UAVs. By replacing the gliders’ dynamics with the

appropriate EOMs one could easily apply the methodology presented in this article for solving many

classes of unmanned vehicle routing and TO problems.775

Acknowledgements

The authors would like to thank the RNLI and Dr. Andràs Sóbester from the University of Southamp-

ton for suggesting this problem. The first author received grants from CNPq [Grant no. 202241/2041-9].

The work reported in this paper was undertaken as part of the Made Smarter Innovation: Centre for

People-Led Digitalisation, at the University of Bath, University of Nottingham, and Loughborough Uni-780

versity. The last author received funding from CNPq [Grants no. 406245/2021-5 and 309580/2021-8] and

by the Paráıba State Research Foundation (FAPESQ) [Grant no. 041/2023].

References

Agatz, N., Bouman, P., & Schmidt, M. (2018). Optimization approaches for the traveling salesman

problem with drone. Transportation Science, 52 , 965–981. doi:10.1287/trsc.2017.0791.785

Aretoulaki, E., Ponis, S. T., & Plakas, G. (2023). Complementarity, interoperability, and level of inte-

gration of humanitarian drones with emerging digital technologies: A state-of-the-art systematic liter-

ature review of mathematical models. Drones, 7 . URL: https://www.mdpi.com/2504-446X/7/5/301.

doi:10.3390/drones7050301.

Betts, J. T. (2001). Practical methods for optimal control using nonlinear programming volume 1 of790

Advances in design and control . Philadelphia, PA: Society for Industrial and Applied Mathematics.

doi:10.1137/1.9780898718577.

Blanchard, H. P. (1967). ELEMENTARY GLIDING: A Manual approved by the British Gliding Associ-

ation for Pupil Glider Pilots. Kimberley House, Vaughan Way, Leicester: British Gliding Association.

Coutinho, W., Fliege, J., & Battarra, M. (2022). Glider routing and trajectory optimisation instances.795

URL: https://github.com/waltonpcoutinho/GRTOP instances.

Coutinho, W. P., Battarra, M., & Fliege, J. (2018). The unmanned aerial vehicle routing and trajectory

optimisation problem, a taxonomic review. Computers & Industrial Engineering , 120 , 116 – 128.

doi:j.cie.2018.04.037.

Coutinho, W. P., Fliege, J., & Battarra, M. (2016). A conic-programing-based approach for trajectory800

optimisation of unmanned gliders. In J. Bleach (Ed.), 58th Annual Conference on Operational Research

Society, OR 2016 (pp. 183–187). The Operational Research Society.

Coutinho, W. P., Fliege, J., & Battarra, M. (2019). Glider routing and trajectory optimisation in disaster

assessment. European Journal of Operational Research, 274 , 1138–1154. doi:j.ejor.2018.10.057.

Crispin, C. (2016). Path Planning Algorithms for Atmospheric Science Applications of Autonomous805

Aircraft Systems. Ph.D. Thesis University of Southampton Southampton, UK.

32

https://doi.org/10.1287/trsc.2017.0791
https://www.mdpi.com/2504-446X/7/5/301
https://doi.org/10.3390/drones7050301
https://doi.org/10.1137/1.9780898718577
https://github.com/waltonpcoutinho/GRTOP_instances
https://doi.org/j.cie.2018.04.037
https://doi.org/j.ejor.2018.10.057

Fisch, F. (2011). Development of a Framework for the Solution of High-Fidelity Trajectory Optimization

Problems and Bilevel Optimal Control Problems. Ph.D. Thesis Technical University of Munich Munich,

Germany.

How, J. P., Frazzoli, E., & Chowdhary, G. V. (2015). Linear Flight Control Techniques for Unmanned810

Aerial Vehicles. In K. P. Valavanis, & G. J. Vachtsevanos (Eds.), Handbook of Unmanned Aerial

Vehicles (pp. 529–576). Springer Netherlands. doi:10.1007/978-90-481-9707-1˙49.

Kanistras, K., Martins, G., Rutherford, M., & Valavanis, K. (2015). Survey of unmanned aerial vehicles

(uavs) for traffic monitoring. In Handbook of Unmanned Aerial Vehicles (pp. 2643–2666). Dordrecht:

Springer Netherlands. doi:10.1007/978-90-481-9707-1˙122.815

Keane, A., Scanlan, J., Lock, A., Ferraro, M., Spillane, P., & Breen, J. (2017). Maritime flight trials

of the Southampton university laser sintered aircraft: Project abatross. The Aeronautical Journal

of the Royal Aeronautical Society , 121 , 1502–1529. URL: https://eprints.soton.ac.uk/411713/.

doi:10.1017/aer.2017.71.

Keviczky, T., Borrelli, F., Fregene, K., Godbole, D., & Balas, G. (2008). Decentralized Receding Horizon820

Control and Coordination of Autonomous Vehicle Formations. IEEE Transactions on Control Systems

Technology , 16 , 19–33.

Khoufi, I., Laouiti, A., & Adjih, C. (2019). A survey of recent extended variants of the traveling salesman

and vehicle routing problems for unmanned aerial vehicles. Drones, 3 . URL: https://www.mdpi.com/

2504-446X/3/3/66. doi:10.3390/drones3030066.825

Lourenço, H. R., Martin, O. C., & Stützle, T. (2010). Iterated local search: Framework and applications.

In M. Gendreau, & J.-Y. Potvin (Eds.), Handbook of Metaheuristics (pp. 363–397). Springer US volume

146 of International Series in Operations Research & Management Science. doi:10.1007/978-1-4419-

1665-5˙12.

Mersheeva, V. (2015). UAV Routing Problem for Area Monitoring in a Disaster Situation. Ph.D. Thesis830

Alpen-Adria-Universität Klagenfurt Austria.

Mladenovic, N., & Hansen, P. (1997). Variable neighborhood search. Computers & Operations Research,

24 , 1097–1100. doi:10.1016/S0305-0548(97)00031-2.

Morandi, N., Leus, R., Matuschke, J., & Yaman, H. (2023). The traveling salesman problem with drones:

The benefits of retraversing the arcs. Transportation Science, (pp. 1–19). doi:10.1287/trsc.2022.0230.835

Article in Advance.

Mustapa, Z., & Saat, S. (2016). Autonomous attitude control of a quadcopter unmanned aerial vehicle

(uav). Journal of Telecommunication, Electronic and Computer Engineering , 7 , 153–160.

Nedjati, A., Vizvari, B., & Izbirak, G. (2016). Post-earthquake response by small UAV helicopters.

Natural Hazards, 80 , 1669–1688. doi:10.1007/s11069-015-2046-6.840

Nex, F., & Remondino, F. (2013). UAV for 3d mapping applications: a review. Applied Geomatics, 6 ,

1–15. doi:10.1007/s12518-013-0120-x.

Öztürk, D. T., & Köksalan, M. (2023). Biobjective route planning of an unmanned air ve-

hicle in continuous space. Transportation Research Part B: Methodological , 168 , 151–169.

doi:10.1016/j.trb.2023.01.001.845

Pintér, J., & Kampas, F. (2013). Benchmarking nonlinear optimization software in technical computing

environments. TOP , 21 , 133–162. doi:https://doi.org/10.1007/s11750-011-0209-5.

33

https://doi.org/10.1007/978-90-481-9707-1_49
https://doi.org/10.1007/978-90-481-9707-1_122
https://eprints.soton.ac.uk/411713/
https://doi.org/10.1017/aer.2017.71
https://www.mdpi.com/2504-446X/3/3/66
https://www.mdpi.com/2504-446X/3/3/66
https://www.mdpi.com/2504-446X/3/3/66
https://doi.org/10.3390/drones3030066
https://doi.org/10.1007/978-1-4419-1665-5_12
https://doi.org/10.1007/978-1-4419-1665-5_12
https://doi.org/10.1007/978-1-4419-1665-5_12
https://doi.org/10.1016/S0305-0548(97)00031-2
https://doi.org/10.1287/trsc.2022.0230
https://doi.org/10.1007/s11069-015-2046-6
https://doi.org/10.1007/s12518-013-0120-x
https://doi.org/10.1016/j.trb.2023.01.001
https://doi.org/https://doi.org/10.1007/s11750-011-0209-5

Richards, A., Schouwenaars, T., How, J. P., & Feron, E. (2002). Spacecraft Trajectory Planning with

Avoidance Constraints Using Mixed-Integer Linear Programming. Journal of Guidance, Control, and

Dynamics, 25 , 755–764. doi:10.2514/2.4943.850

Russell, J. (1996). Performance and Stability of Aircraft . Oxford: Butterworth-Heinemann.

doi:10.1016/B978-0-340-63170-6.X5000-2.

Rysdyk, R. (2006). Unmanned Aerial Vehicle Path Following for Target Observation in Wind. Journal

of Guidance, Control, and Dynamics, 29 , 1092–1100. doi:10.2514/1.19101.

Stengel, R. F. (2004). Flight Dynamics. Princeton University Press. doi:10.2307/j.ctt1287kgx.855

Subramanian, A. (2012). Heuristic, Exact and Hybrid Approaches for Vehicle Routing Problems. Ph.D.

Thesis Universidade Federal Fluminense Niterói, Brazil.

Teschl, G. (2012). Ordinary differential equations and dynamical systems volume 140. American Mathe-

matical Soc.

Xia, Y., Batta, R., & Nagi, R. (2017). Controlling a fleet of unmanned aerial vehicles to collect uncertain860

information in a threat environment. Operations Research, 65 , 674–692. doi:10.1287/opre.2017.1590.

Yuan, C., Zhang, Y., & Liu, Z. (2015). A survey on technologies for automatic forest fire monitoring, de-

tection, and fighting using unmanned aerial vehicles and remote sensing techniques. Canadian Journal

of Forest Research, 45 , 783–792. doi:10.1139/cjfr-2014-0347.

Zhao, Y. J. (2004). Optimal patterns of glider dynamic soaring. Optimal Control Applications and865

Methods, 25 , 67–89. doi:10.1002/oca.739.

Zhou, F., Li, X., & Ma, J. (2017). Parsimonious shooting heuristic for trajectory design of connected

automated traffic part i: Theoretical analysis with generalized time geography. Transportation Research

Part B: Methodological , 95 , 394–420. doi:10.1016/j.trb.2016.05.007.

34

https://doi.org/10.2514/2.4943
https://doi.org/10.1016/B978-0-340-63170-6.X5000-2
https://doi.org/10.2514/1.19101
https://doi.org/10.2307/j.ctt1287kgx
https://doi.org/10.1287/opre.2017.1590
https://doi.org/10.1139/cjfr-2014-0347
https://doi.org/10.1002/oca.739
https://doi.org/10.1016/j.trb.2016.05.007

	Introduction
	Flight dynamics
	Preliminaries
	Equilibrium flight modes
	Steady-level flight conditions
	Steady-descent flight

	Problem definition
	A Multi-phase mixed-Integer trajectory optimisation formulation

	Linearisation of the equations of motion
	Numerical integration and bounding approximation errors
	Reformulation of the infinite-dimensional problem
	Interpolation of the discretised solutions

	Heuristic algorithms for trajectory optimisation
	General approach to the sequential trajectory optimisation heuristics
	Single-phase nonlinear trajectory optimisation subproblem
	Iterative flight time minimisation based on a single-phase SOCP subproblem

	A matheuristic routing algorithm
	Constructive procedure
	Local search
	Perturbation
	A Set Partitioning-based approach

	Computational experiments
	Benchmark instances
	Choosing an appropriate solver for the nonlinear subproblems
	Discretisation step size
	Influence of the error bounding constraints on solution quality and algorithmic performance
	Routing a fleet of gliders

	Concluding remarks

