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Abstract

We introduce a family of symmetric convex bodies called generalized ellipsoids of degree d
(GE-ds), with ellipsoids corresponding to the case of d = 0. Generalized ellipsoids (GEs) retain
many geometric, algebraic, and algorithmic properties of ellipsoids. We show that the conditions
that the parameters of a GE must satisfy can be checked in strongly polynomial time, and that
one can search for GEs of a given degree by solving a semidefinite program whose size grows only
linearly with dimension. We give an example of a GE which does not have a second-order cone rep-
resentation, but show that every GE has a semidefinite representation whose size depends linearly
on both its dimension and degree. In terms of expressiveness, we prove that for any integer m ≥ 2,
every symmetric full-dimensional polytope with 2m facets and every intersection of m co-centered
ellipsoids can be represented exactly as a GE-d with d ≤ 2m − 3. Using this result, we show that
every symmetric convex body can be approximated arbitrarily well by a GE-d and we quantify the
quality of the approximation as a function of the degree d. Finally, we present applications of GEs
to several areas, such as time-varying portfolio optimization, stability analysis of switched linear
systems, robust-to-dynamics optimization, and robust polynomial regression.

Keywords: ellipsoids, convex bodies, conic optimization, semidefinite representations, polynomial
matrices.

1 Introduction

An ellipsoid in Euclidean space Rn is a set of the type

E = {x ∈ Rn | (x − x0)T P (x − x0) ≤ 1}, (1)

where P is a (symmetric) positive definite matrix and x0 ∈ Rn is a given vector. Ellipsoids are
among the most prominent examples of convex sets in applied and computational mathematics. In
optimization, they represent sublevel sets of objective functions of convex quadratic programs, feature
in the description of celebrated algorithms such as the ellipsoid method and Dikin’s method, and
serve as primary examples of uncertainty sets in robust optimization. In control and robotics, they
appear as sublevel sets of quadratic Lyapunov functions or in the description of the manipulability
set of a robotic system. In convex geometry, they are used to approximate convex bodies with an
approximation guarantee established by John’s ellipsoid theorem. In probability and statistics, they
appear as confidence regions for Gaussian or more generally elliptical distributions. These examples
are a small sample among many. We refer the reader to [45, Chap. 1] for some reasons why ellipsoids
are so ubiquitous in many areas.

Since ellipsoids are sublevel sets of strictly convex quadratic polynomials, a very natural general-
ization of ellipsoids would be to consider sublevel sets of strictly convex polynomials of degree higher
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than two. However, unless P=NP, the set of convex (or strictly convex) polynomials of degree at least
four does not admit a tractable description [8]. This implies that algorithms based on this approach
would in general not scale well with increasing dimension.

In this work, we propose a different generalization of ellipsoids to sets that we call generalized
ellipsoids of degree d (GE-ds), with ellipsoids corresponding to the case of d = 0. Generalized ellipsoids
(GEs) retain some key geometric and algebraic properties of ellipsoids, such as the properties of
being convex and semialgebraic. Importantly, they are also algorithmically tractable to search for
and optimize over. The reason for this tractability stems from the fact that our generalization (see
Definition 2.1) keeps the defining inequalities of a GE quadratic in x ∈ Rn, while adding a single
new variable on which these inequalities depend polynomially. Despite the univariate nature of this
dependence, we show that GEs can approximate any n-dimensional symmetric convex body to arbitrary
accuracy.

1.1 Organization and main contributions

The remainder of this paper is organized as follows. In Section 2, we give the definition of generalized
ellipsoids, justify our definition, and provide some examples.

In Section 3, we focus on recognition of GEs and search for GEs. In Section 3.1, we show that the
conditions that the parameters of a GE must satisfy can be checked in strongly polynomial time. In
particular, we show that one can check if a univariate polynomial matrix is positive semidefinite over
an interval (or the real line) in strongly polynomial time. This result may be of independent interest.
In Section 3.2, using the fact that certain low-degree sum of squares tests for positive semidefiniteness
of polynomial matrices are exact, we show that one can search for GEs of a given degree by solving
a single semidefinite program. In fact, the size of this semidefinite program grows only linearly with
dimension.

In Section 4, we investigate whether GEs can be represented as the feasible set of three increasingly
expressive families of tractable conic programs. This is relevant to applications involving optimization
over a GE. In Section 4.1, we show that when d ≥ 2, GE-ds cannot always be described by finitely
many convex quadratic constraints. In Section 4.2, we show that when d ≥ 16, GE-ds do not always
have a second-order cone representation. In Section 4.3, we show that every GE has a semidefinite
representation whose size depends linearly on both its dimension and degree.

In Section 5, we focus on the expressive power of GEs. We show that for any integer m ≥ 2, every
compact intersection of m “semiellipsoids”, and in particular every symmetric full-dimensional polytope
with 2m facets and every intersection of m co-centered ellipsoids, can be represented exactly as a GE-d
with d ≤ 2m − 3. A technical lemma that goes into this proof shows that for any dimension m ≥ 2,
there is a polynomial curve of degree 2m − 3 that lies within the unit simplex in Rm and visits every
one of its corners. We believe this statement and our game-theoretic proof of it may be of independent
interest. We then show that every symmetric convex body can be approximated arbitrarily well by a
GE-d and we quantify the quality of the approximation as a function of the degree d.

In Section 6, we present four applications involving GEs and provide some numerical examples.
In Section 6.1, we consider a time-varying extension of the minimum-variance portfolio optimization
problem in finance. In Section 6.2, we consider an application in dynamical systems and show that
asymptotically stable switched linear systems always admit a GE as an invariant set. In Section 6.3, we
show how GEs can provide inner approximations to feasible sets of robust-to-dynamics optimization
problems when the dynamical system is uncertain. In Section 6.4, we present an application of GEs
to the problem of polynomial regression in statistics when there is uncertainty in the measurements.

Finally, in Section 7, we list a few questions for future research.
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2 Definition of GEs

We begin by establishing some notation and terminology. We denote the set of real symmetric n × n
matrices by Sn. We write M ⪰ 0 if M ∈ Sn is positive semidefinite (psd) and M ≻ 0 if M is positive
definite (pd). We denote the set of n × n psd (resp. pd) matrices by Sn

+ (resp. Sn
++). The kernel of

M is denoted by Ker(M). We refer to a matrix with polynomial entries as a polynomial matrix. We
can now give the definition of our generalization of ellipsoids.

Definition 2.1. A set Ed ⊂ Rn is a generalized ellipsoid of degree d (GE-d) if it can be written as

Ed = {x ∈ Rn | (x − x0)T P (t)(x − x0) ≤ 1 ∀t ∈ [−1, 1]} (2)

for some vector x0 ∈ Rn and some univariate polynomial matrix P (t) of degree (at most) d that satisfies

• P (t) ⪰ 0 ∀t ∈ [−1, 1], and

• ⋂
t∈[−1,1]

Ker(P (t)) = {0}.

We refer to these two conditions as the “psd condition” and the “kernel condition”, respectively. We
say that a set is a generalized ellipsoid (GE) if it is a GE-d for some nonnegative integer d.

Observe that ellipsoids correspond precisely to GE-0s. Indeed, when d = 0, P (t) is a constant
matrix, say P (t) = P , and we have P ≻ 0 if and only if P ⪰ 0 and Ker(P ) = {0}. It is straightforward
to check that GEs are symmetric convex bodies (i.e., compact convex sets with non-empty interior
that are symmetric around their center). Throughout this paper, without loss of generality, we assume
that the center x0 of our GEs is at the origin. Figure 1 demonstrates a few examples of GEs, together
with the corresponding polynomial matrices P (t).

(a) P (t) =
[
1 t
t 1

]
(b) P (t) =

[
4t + 8 −3t − 1

−3t − 1 −4t + 12

]
(c) P (t) =

[
2 − t2 t

t 3 − t2

]

(d) P (t) =

6 − 4t 2 − 3t 1 − t
2 − 3t 3 − t −t
1 − t −t 2

 (e) P (t) =

4 − t2 t + 1 2 − t2

t + 1 2t2 + t + 2 t2 − t + 1
2 − t2 t2 − t + 1 2t2 + 2t + 4


Figure 1: Some examples of GEs with the corresponding P (t) matrices.

Note that a GE-d has a compact representation in terms of the coefficients of the polynomial matrix
P (t). The reason that the matrix P (t) in the definition of GEs depends on a single variable t, and
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that this dependence is polynomial, is justified by algorithmic tractability purposes (see Section 3 and
Section 4). Yet, this family of sets is quite expressive (see Section 5). For now, let us just justify
the kernel condition. When generalizing ellipsoids, one may find it more natural to consider positive
definiteness of P (t) for all t ∈ [−1, 1], or for some t ∈ [−1, 1]. Suppose P (t) ⪰ 0 ∀t ∈ [−1, 1] and
consider the following three candidate conditions:
(i) P (t) ≻ 0 ∀t ∈ [−1, 1], (ii) P (t) ≻ 0 for some t ∈ [−1, 1], (iii) ⋂

t∈[−1,1]
Ker(P (t)) = {0}.

Clearly, (i) ⇒ (ii) ⇒ (iii). However, (ii) ̸⇒ (i), as seen, e.g., by P (t) =
[
1 − t 0

0 1 + t

]
. Similarly,

(iii) ̸⇒ (ii); as seen, e.g., by

P (t) =
[

(1 + t)2 (1 − t)(1 + t)
(1 − t)(1 + t) (1 − t)2

]
.

Indeed, we have Ker(P (1)) ∩ Ker(P (−1)) = {0}, but P (t) is not pd for any t ∈ [−1, 1] as det(P (t)) is
identically zero. Hence, our choice of the kernel condition leads to a more inclusive definition.

We also note that a set of the type (2) with P (t) ⪰ 0 ∀t ∈ [−1, 1] is a convex body if and only if
the kernel condition is satisfied. We restate this claim in a lemma below in terms of norms that convex
bodies define. Recall that any ellipsoid E as in (1) defines an ellipsoid (quadratic) norm by

||x||E =
√

xT Px.

Similarly, for any generalized ellipsoid Ed as in (2), we can define a generalized ellipsoid norm of degree
d (GE-d-norm) by

||x||Ed
= max

t∈[−1,1]

√
xT P (t)x. (3)

The proof of the following lemma is straightforward and hence omitted.

Lemma 2.2. A function f : Rn → R of the type f(x) = max
t∈[−1,1]

√
xT P (t)x with P (t) ⪰ 0 ∀t ∈ [−1, 1]

is a norm if and only if
⋂

t∈[−1,1] Ker(P (t)) = {0}.

3 Recognition of GEs and Search for GEs

3.1 Efficient recognition of GEs

In this section, we show that GEs can be recognized in strongly polynomial time1; i.e, given the
coefficients of the entries of a univariate polynomial matrix P (t), we can check both the kernel condition
and the psd condition of Definition 2.1 in strongly polynomial time. In particular, the running time of
the recognition procedure is polynomial in both the dimension n and the degree d of the GE-d, and its
number of arithmetic operations does not depend on the encoding length of the coefficients of P (t).

1We recall that a strongly polynomial time algorithm is an algorithm such that (i) it consists of the elementary
arithmetic operations: addition, subtraction, comparison, multiplication, and division, (ii) the number of elementary
operations depends polynomially on the dimension of the input to the algorithm, and (iii) the encoding length of the
numbers occurring during the algorithm is bounded by a polynomial function of the encoding length of the input. We
also recall that when we speak of polynomial time or strongly polynomial time algorithms, we are working in the Turing
model of computation where the input to the problem consists of rational numbers and hence has finite encoding length.
Here, the encoding length could for example be taken as the number of bits required in a binary representation of the
input. See [25] for more details. In our case, the input to the problem is the rational coefficients of the entries of P (t)
and the dimension of the input is the total number of coefficients which is (n+1

2 ) (d + 1).
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Lemma 3.1. Given a univariate polynomial matrix P (t), one can check in strongly polynomial time
whether

⋂
t∈[−1,1] Ker(P (t)) = {0}.

Proof. The kernel condition is equivalent to checking whether there is a vector x ̸= 0 such that
P (t)x = 0 ∀t ∈ [−1, 1]. Since a univariate polynomial vanishes on [−1, 1] if and only if all of its
coefficients are zero, this condition is equivalent to the existence of a solution x ̸= 0 to the linear
system Ax = 0, where the matrix A ∈ Rn(d+1)×n is such that Ax consists of the coefficients of the n
polynomials in P (t)x. To check existence of a nonzero solution, we can equivalentally check whether
the rank of A is less than n, which can be done in strongly polynomial time, e.g., by Edmonds’
implementation of Gaussian elimination (see, e.g., [25, Corollary 1.4.9.b]).

Next, we show that checking the psd condition in Definition 2.1 can be done in strongly polynomial
time. The following theorem, and the lemma it relies on, may be of independent interest.

Theorem 3.2. Given a univariate polynomial matrix P (t), one can check in strongly polynomial time
whether P (t) ⪰ 0 ∀t ∈ [−1, 1].

To prove this theorem, we first establish the following lemma which generalizes a result in [40].

Lemma 3.3. Given a univariate polynomial matrix P (t), one can check in strongly polynomial time
whether P (t) ⪰ 0 ∀t ∈ R.

Proof. For k = 1, . . . , n and t ∈ R, let P (t)k denote the k × k leading principal submatrix of P (t) and
define the univariate polynomial

pk,t(s) = det(P (t)k + sIk),

where Ik is the k ×k identity matrix. For k = 1, . . . , n and i = 0, . . . , k, let ck,i(t) denote the coefficient
of si in pk,t(s). We first claim that for any t ∈ R, P (t) ⪰ 0 if and only if ck,i(t) ≥ 0 for k = 1, . . . , n
and i = 0, . . . , k.

Fix t ∈ R and suppose first that P (t) ⪰ 0. Fix any k ∈ {1, . . . , n} and observe that the principal
submatrix P (t)k is also psd. For j = 1, . . . , k, let λj denote the (nonnegative) eigenvalues of P (t)k.
Then we can write

pk,t(s) =
k∏

j=1
(λj + s).

It is clear from this representation that all coefficients of pk,t(s) are nonnegative.
To see the converse, fix t ∈ R again and suppose ck,i(t) ≥ 0 for k = 1, . . . , n and i = 0, . . . , k. Since

the coefficients of pk,t(s) are nonnegative and not all equal to zero (observe ck,k(t) = 1), it follows that
pk,t(s) > 0 for all s > 0. By Sylvester’s criterion2, P (t) + sIn is positive definite for arbitrarily small
s > 0. Thus, P (t) is psd. This completes the proof of the claim.

It remains to show that one can test nonnegativity of each function ck,i(t) in strongly polynomial
time. For the remainder of the proof, fix k to be an integer between 1 and n and fix i to be an
integer between 0 and k. Observe that ck,i(t) is a polynomial in t of degree d(k − i). To obtain the
coefficients of ck,i(t), it suffices to evaluate this polynomial at d(k − i) + 1 distinct points and then
solve a nonsingular linear system for the coefficients of the interpolating polynomial (recall one can
solve a nonsingular linear system in strongly polynomial time; see, e.g., [25, Corollary 1.4.9.a]). To
evaluate ck,i(t) at a particular t, we need access to the coefficient of si in pk,t(s). To compute these
coefficients, it similarly suffices to evaluate the polynomial pk,t(s) at k + 1 distinct points and then
solve an associated linear system. Recall that the determinant of a constant matrix can be computed
in strongly polynomial time (see, e.g., [25, Corollary 1.4.9.c]); hence, each evaluation of pk,t(s) can

2Recall that Sylvester’s criterion states that an n × n symmetric matrix is positive definite if and only if its n leading
principal minors are all positive.
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be done in strongly polynomial time via the determinantal definition of pk,t(s). Hence, overall, we
can compute the coefficients of ck,i(t) by computing (d(k − i) + 1)(k + 1) determinants and solving
d(k − i) + 2 linear systems. With the coefficients of ck,i(t) at hand, one can check the nonnegativity of
each ck,i(t) in strongly polynomial time via the method of [40, Section 5].

Proof of Theorem 3.2. We claim that a polynomial matrix P (t) of degree d is psd for every t ∈ [−1, 1]
if and only if the polynomial matrix Q(t) = (t2 + 1)dP

(
t2−1
t2+1

)
is psd for every t ∈ R.

Suppose first that P (t) ⪰ 0 ∀t ∈ [−1, 1]. For every t ∈ R, we have t2−1
t2+1 ∈ [−1, 1), and thus,

P
(

t2−1
t2+1

)
⪰ 0. Since (t2 + 1)d is nonnegative, it follows that Q(t) ⪰ 0 ∀t ∈ R.

To see the converse, suppose for the sake of contradiction that P (t) ̸⪰ 0 for some t ∈ [−1, 1]. By
the closedness of the psd cone, there is some t̂ ∈ [−1, 1) such that P (t̂) ̸⪰ 0. Consider t̄ =

√
−1−t̂
−1+t̂

.
Observe Q(t̄) = (−1−t̂

−1+t̂
+ 1)dP (t̂). Since t̂ ∈ [−1, 1), we have −1−t̂

−1+t̂
+ 1 > 0. Therefore, Q(t̄) ̸⪰ 0, a

contradiction.
Thus, to check that P (t) is psd for every t ∈ [−1, 1], we can check if Q(t) is psd for every t ∈ R.

It is straightforward to see that the coefficients of Q(t) can be derived from those of P (t) in strongly
polynomial time. Hence, the result follows from Lemma 3.3.

3.2 Efficient search for GEs

In this section, we observe that the set of n × n polynomial matrices P (t) of degree d that satisfy
P (t) ⪰ 0 ∀t ∈ [−1, 1] has a semidefinite representation of size linear in d (resp. in n) for fixed n (resp.
fixed d). As semidefinite programs (SDPs) can be solved in polynomial time to arbitrary accuracy [47],
this observation leads to efficient algorithms for applications where one needs to search for GEs (see,
e.g., Section 6.1 and Section 6.3). It can also reformulate the problem of checking if a given polynomial
matrix P (t) satisfies P (t) ⪰ 0 ∀t ∈ [−1, 1] (i.e., the recognition question of the previous subsection) as a
semidefinite programming feasibility problem. However, it is currently unknown whether semidefinite
programming feasibility problems can be solved in polynomial time (let alone strongly polynomial
time), and this is the justification for our alternative algorithm in the proof of Theorem 3.2.

The semidefinite programming formulation that we present here arises from a connection to sum of
squares polynomials. We recall that a polynomial p : Rn → R is nonnegative if p(x) ≥ 0 for all x ∈ Rn

and a sum of squares (sos) if there exist polynomials q1(x), . . . , qm(x) such that p(x) = ∑m
i=1 q2

i (x).
A polynomial matrix Y : Rn → Sk is said to be an sos-matrix if Y (x) = A(x)T A(x) for some (not
necessarily square) polynomial matrix A(x). It is a classical fact in algebra that a univariate polynomial
matrix Y (t) is positive semidefinite for all t ∈ R if and only if it is an sos-matrix; see, e.g., [49, 50] for
some early proofs, [19, Theorem 7.1] for a short constructive proof that specifies the inner dimension in
the factorization, and [10] for more context, a decomposition algorithm, and connections to other areas.
For our purposes, we need a version of this statement that applies to univariate polynomial matrices
that are positive semidefinite over an interval. This variant appears for example in [22, Theorem 2.5]
and [37, Theorem 6.11].

Theorem 3.4. Let P (t) be a symmetric univariate polynomial matrix of degree d. If d is odd, then
P (t) ⪰ 0 ∀t ∈ [−1, 1] if and only if there exist sos-matrices X1(t) and X2(t) of degree d − 1 such that

P (t) = (t + 1)X1(t) + (1 − t)X2(t) ∀t ∈ R.

Similarly, if d is even, then P (t) ⪰ 0 ∀t ∈ [−1, 1] if and only if there exist sos-matrices X1(t) and
X2(t) of degree d and d − 2, respectively, such that

P (t) = X1(t) + (1 − t2)X2(t) ∀t ∈ R.
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As we describe next, Theorem 3.4 leads to a semidefinite representation of polynomial matrices
that are psd on [−1, 1]. This is essentially based on the following facts: (i) A polynomial matrix
Y : Rn → Sk is an sos-matrix if and only if the (scalar-valued) polynomial yT Y (x)y in the variables
(x1, . . . , xn, y1, . . . , yk) is a sum of squares; (ii) A polynomial p : Rn → R of degree 2d is a sum of
squares if and only if there exists a psd matrix Q such that p(x) = v(x)T Qv(x), where v(x) is the
vector of all monomials of degree up to d (see, e.g., [20, 39]).

Proposition 3.5. Let P (t) be a symmetric univariate n × n polynomial matrix of degree d. For a
positive integer d′, let

vd′(t, y) :=
(
y1, . . . , yn, y1t, . . . , ynt, . . . , y1td′

, . . . , yntd′)T

be the vector of all monomials of the form yℓt
k for ℓ = 1, . . . , n and k = 0, . . . , d′.

If d is odd, then P (t) ⪰ 0 ∀t ∈ [−1, 1] if and only if there exist positive semidefinite matrices Q1, Q2
of size (d+1

2 )n × (d+1
2 )n that satisfy the following equations (∀t ∈ R and ∀y ∈ Rn):

• P (t) = (t + 1)X1(t) + (1 − t)X2(t) ,
• yT Xi(t)y = v d−1

2
(t, y)T Qiv d−1

2
(t, y) for i = 1, 2.

Similarly, if d is even, then P (t) ⪰ 0 ∀t ∈ [−1, 1] if and only if there exist positive semidefinite matrices
Q1, Q2 of size (d

2 + 1)n × (d
2 + 1)n and (d

2)n × (d
2)n, respectively, that satisfy the following equations

(∀t ∈ R and ∀y ∈ Rn):

• P (t) = X1(t) + (1 − t2)X2(t),
• yT X1(t)y = v d

2
(t, y)T Q1v d

2
(t, y),

• yT X2(t)y = v d
2 −1(t, y)T Q2v d

2 −1(t, y).

Since two polynomials are equal everywhere if and only if they have the same coefficients, Propos-
ition 3.5 reduces the task of checking the psd condition in Definition 2.1 to solving an SDP; see, e.g.,
[4, Proposition 2] for a more explicit representation of this SDP.
Remark 1. We make two remarks regarding computational considerations:

1. The sizes of the matrices Q1, Q2 in Proposition 3.5 grow only linearly with d (resp. with n) for
fixed n (resp. fixed d). This is in contrast to the SDP hierarchies that arise in a search for convex
homogeneous polynomials of degree d in n variables whose sublevel sets can also be considered
as a natural generalization of ellipsoids. The size of the semidefinite constraint, even in the first
level of this SDP hierarchy (see [3]), grows at the rate n

(
n+ d

2 −2
d
2 −1

)
.

2. For implementation purposes, many parsers (e.g., YALMIP [33] or SumOfSquares.jl [48]) directly
accept sum of squares constraints on a polynomial or polynomial matrix with unknown coefficients
and do the conversion to an SDP automatically. Therefore, for our purposes, one can use these
parsers to directly work with the representation in Theorem 3.4. The resulting SDPs can be
readily solved, e.g., by general-purpose interior point methods. While not the focus of this
paper, we suspect implementation improvements may be possible by exploiting the univariate
nature of the sum of squares constraints, for example using techniques from [34, 36, 38, 32, 26].

Finally, we note that by searching over polynomial matrices of degree d that satisfy the psd condition
in Definition 2.1, we are searching over the closure of the set of polynomial matrices that satisfy both
conditions in that definition. We can always check the kernel condition in Definition 2.1 via Lemma 3.1
as a post-processing step. This type of approach is common in applications of semidefinite and sum of
squares programming where the optimization set of interest is not closed.
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4 Conic Representation of GEs

In this section, we study whether GEs admit a representation as the feasible set of different families
of tractable conic programs. This is relevant for applications where one needs to optimize over a GE.
For the sake of clarity, we stress that in contrast to Section 3.2, where the representation was in the
space of coefficients of polynomial matrices, the representation questions that we are concerned with
in this section are in x space and relate to a fixed GE-d as defined in (2). The results of Section 3.2
show that one can use semidefinite programming to search for polynomial matrices which define a GE,
whereas the results of this section are concerned with the problem of optimizing over the set of vectors
contained in a given GE.

It is clear that one cannot always optimize over a given GE using linear programming. Indeed,
since ellipsoids in dimension two or higher have an infinite number of extreme points, already a GE-0
fails to be polyhedral. In our next three subsections, we ask if increasingly broader classes of convex
sets can represent GEs.

4.1 Can GEs be described by finitely many convex quadratic constraints?

Considering the definition of a GE-d in (2) and the fact that a GE-0 is an ellipsoid, a natural question
that comes to mind is whether a GE-d can always be described by finitely many convex quadratic
constraints. The next proposition shows that this is the case only when d = 0 or d = 1.

Proposition 4.1. The following are equivalent:

(i) for every GE-d Ed, there exists a nonnegative integer m and matrices P1, . . . Pm ⪰ 0 such that

Ed = {x ∈ Rn | xT Pix ≤ 1 i = 1, . . . , m};

(ii) d ∈ {0, 1}.

Proof. (ii) ⇒ (i): A GE-0 is precisely an ellipsoid so the claim is established with m = 1. We show
that a GE-1 can always be described by two convex quadratic constraints. Let

E1 = {x ∈ Rn | max
t∈[−1,1]

xT P (t)x ≤ 1}

be a GE-1. Since P (t) is a univariate polynomial matrix of degree 1, for a given x ∈ Rn, xT P (t)x is an
affine function in t, and therefore its maximum over [−1, 1] is attained at t = 1 or at t = −1. Hence,

E1 = {x ∈ Rn | max
t∈{−1,1}

xT P (t)x ≤ 1}

= {x ∈ Rn | xT P (1)x ≤ 1} ∩ {x ∈ Rn | xT P (−1)x ≤ 1}.

This establishes the claim with m = 2.3
(i) ⇒ (ii): We show that for d ≥ 2, there are GE-ds that cannot be described by finitely many

convex quadratic constraints. Consider the set given by E2 = {x ∈ R2 | maxt∈[−1,1] xT P (t)x ≤ 1} with

P (t) =
[
2 − t2 t

t 3 − t2

]
.

This set is depicted in Figure 1c. It is easy to verify that P (t) ≻ 0 ∀t ∈ [−1, 1], and therefore E2 is
a valid GE-2. For any given x ̸= 0, the function xT P (t)x = −(x2

1 + x2
2)t2 + 2x1x2t + 2x2

1 + 3x2
2 is a

3In fact, the intersection of any given two co-centered ellipsoids can be represented by a GE-1. This is a special case
of Theorem 5.1 in Section 5.
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concave quadratic polynomial in t and is maximized at t∗ = x1x2
x2

1+x2
2
. Observe that t∗ ∈ [−1, 1]. It is

then easy to verify that

E2 =
{

x ∈ R2
∣∣∣∣∣ x2

1x2
2

x2
1 + x2

2
+ 2x2

1 + 3x2
2 ≤ 1

}
.

Let h(x) := x2
1x2

2
x2

1+x2
2

+ 2x2
1 + 3x2

2 and assume for a contradiction that E2 can be described by finitely
many (convex) quadratic constraints, i.e., E2 = {x ∈ R2 | xT Pix ≤ 1 i = 1, . . . , m} for some (psd)
matrices P1, . . . , Pm. Let g(x) := max

i=1,...,m
xT Pix. Since g(x) and h(x) have the same 1-sublevel set and

the same degree of homogeneity, we have g(x) = h(x) for every x ∈ R2. It is straightforward to verify
that h(x1, 1) is not piecewise-quadratic while g(x1, 1) is. This is a contradiction.

4.2 Are GEs SOCP-representable?

Since second-order order cone programs (SOCPs) are more expressive than convex quadratically con-
strained programs, it is natural to ask if GEs are SOCP-representable sets. For n ≥ 1, recall the
definition of the n-dimensional second-order cone:

Ln :=

x ∈ Rn

∣∣∣∣∣∣
√√√√n−1∑

i=1
x2

i ≤ xn

 .

A set Ω ⊆ Rn is SOCP-representable if for some nonnegative integers k, m, a cone K ⊂ Rm which is
the product of second-order cones, some matrices A ∈ Rm×n and B ∈ Rm×k, and some vector b ∈ Rm,
one can write

Ω = {x ∈ Rn | ∃u ∈ Rk s.t. Ax + Bu + b ∈ K}.

See [14] for a reference on properties of SOCP-representable sets. Since sets defined by convex quadratic
constraints are SOCP-representable, we already know from Proposition 4.1 that GE-0s and GE-1s are
SOCP-representable. The next theorem shows that this is not the case for all GE-ds.

Theorem 4.2. There exists a GE-16 in dimension 9 that is not SOCP-representable.

Our proof relies on the following result from [23].

Theorem 4.3 (Corollary 1 of [23]). The set of nonnegative univariate polynomials of degree (at most)
4 is not SOCP-representable.

Proof of Theorem 4.2. Let ϕ(t) := (1, t, t2, . . . , t8)T . Define P (t) := ϕ(t)ϕ(t)T and

Ω := {x ∈ R9 | xT P (t)x ≤ 1 ∀t ∈ [−1, 1]}.

Observe that Ω is a valid GE as P (t) ⪰ 0 for all t ∈ [−1, 1] and the kernel condition is satisfied.
To see that the latter claim, suppose for the sake of contradiction that there exists a nonzero vector
y ∈ R9 such that P (t)y = 0 for all t ∈ [−1, 1]. This would imply that the univariate polynomial yT ϕ(t)
vanishes for all t ∈ [−1, 1], which can only happen if all its coefficients are zero, hence contradicting
the fact that y was a nonzero vector.

We claim that Ω is not SOCP-representable. Let Rd[t] denote the set of polynomials with real
coefficients in the variable t of degree at most d. We identify a vector x ∈ R9 with the degree-8
polynomial p(t) = xT ϕ(t). Using this identification, we can write

Ω = {p ∈ R8[t] | |p(t)| ≤ 1 ∀t ∈ [−1, 1]}.
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Suppose for the sake of contradiction that Ω was SOCP-representable. Consider the affine map
f : R4[t] → R8[t] which maps a degree-4 polynomial q(t) to the degree-8 polynomial

p(t) = 2(1 − t2)4q

( 2t

1 − t2

)
− 1.

Since taking the inverse image of a set under an affine map preserves SOCP-representability (see [14,
2.3.D]), it follows that the set

f−1(Ω) =
{

q ∈ R4[t]
∣∣∣∣ ∣∣∣∣2(1 − t2)4q

( 2t

1 − t2

)
− 1

∣∣∣∣ ≤ 1 ∀t ∈ [−1, 1]
}

is SOCP-representable. Note that t → 2t
1−t2 maps the interval (−1, 1) to the entire real line. Further-

more, this map possesses an inverse, s →
√

s2+1−1
s . Now, for any polynomial q ∈ R4[t], we have∣∣∣∣2(1 − t2)4q

( 2t

1 − t2

)
− 1

∣∣∣∣ ≤ 1 ∀t ∈ [−1, 1]

⇔ 0 ≤ (1 − t2)4q

( 2t

1 − t2

)
≤ 1 ∀t ∈ [−1, 1]

⇔ 0 ≤

1 −
(√

s2 + 1 − 1
s

)2
4

q(s) ≤ 1 ∀s ∈ R

⇔ 0 ≤ q(s) ≤ g(s) ∀s ∈ R,

where g(s) := (1 − (
√

s2+1−1
s )2)−4. Hence,

f−1(Ω) = {q ∈ R4[s] | 0 ≤ q(s) ≤ g(s) ∀s ∈ R}.

By [14, Proposition 2.3.1], it follows that the set{
(q, M) ∈ R4[s] × R

∣∣∣∣ M > 0, 0 ≤ q(s)
M

≤ g(s) ∀s ∈ R
}

is SOCP-representable. Since the map (q, M) → q is affine, it follows (see, e.g., [14, 2.3.C]) that the
set

{q ∈ R4[s] | ∃M > 0 s.t. 0 ≤ q(s) ≤ Mg(s) ∀s ∈ R}

is also SOCP-representable.
One can check that g(s) ≥ max(1, s4

16) for all s ∈ R. Therefore, for all q ∈ R4[s], there exists some
M > 0 such that q(s) ≤ Mg(s) for all s ∈ R. Thus, the above set is equal to the set

{q ∈ R4[s] | q(s) ≥ 0 ∀s ∈ R}.

SOCP-representability of this set contradicts Theorem 4.3.

4.3 Are GEs SDP-representable?

Since semidefinite programs are more expressive than second-order cone programs, it is natural to ask
if GEs are SDP-representable sets. In this section, we answer this question in the affirmative. Recall
that a set Ω ⊆ Rn is SDP-representable if

Ω =
{

x ∈ Rn

∣∣∣∣∣ ∃y ∈ Rk s.t. A0 +
n∑

i=1
xiAi +

k∑
i=1

yiBi ⪰ 0
}

for some integer k ≥ 0 and symmetric m × m matrices A0, A1, . . . , An, B1, . . . , Bk.
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Theorem 4.4. Every GE is an SDP-representable set.

Proof. We provide two different SDP representations, one which explicitly uses the decomposition in
Theorem 3.4, and one which implicitly uses the psd condition of Definition 2.1. The second repres-
entation will typically be of smaller size, but the first one can be smaller when the polynomial matrix
P (t) has a low-rank decomposition. See Remark 2 for a more precise comparison.
SDP representation 1: Let Ed ⊂ Rn be a GE-d defined by the n × n polynomial matrix P (t) of degree
d. Since P (t) ⪰ 0 for all t ∈ [−1, 1], recalling the definition of an sos-matrix, by Theorem 3.4 we can
write:

P (t) = B(t)T B(t) + (1 − t2)C(t)T C(t)
if d is even and

P (t) = (t + 1)B(t)T B(t) + (1 − t)C(t)T C(t)
if d is odd, where B(t) and C(t) are univariate polynomial matrices of respective sizes r1 ×n and r2 ×n.
As shown in [19, Theorem 7.1], there always exists a decomposition such that r1, r2 ≤ 2n. The degrees
of B(t) and C(t) are respectively d

2 and d
2 − 1 if d is even, or both equal to d−1

2 if d is odd.
Observe that by taking Schur complements, for any x ∈ Rn and t ∈ [−1, 1], we have

xT P (t)x ≤ 1 ⇔ Mx(t) :=

 Ir1 0 B(t)x
0 (1 − t2)Ir2 (1 − t2)C(t)x

xT B(t)T (1 − t2)xT C(t)T 1

 ⪰ 0

for d even, or

xT P (t)x ≤ 1 ⇔ Mx(t) :=

 (1 + t)Ir1 0 (1 + t)B(t)x
0 (1 − t)Ir2 (1 − t)C(t)x

(1 + t)xT B(t)T (1 − t)xT C(t)T 1

 ⪰ 0

for d odd. Then, we can write

Ed = {x ∈ Rn | Mx(t) ⪰ 0 ∀t ∈ [−1, 1]}.

Observe that in both cases, Mx(t) is a univariate polynomial matrix whose coefficients depend affinely
on x. Thus, in view of Proposition 3.5, the constraint that Mx(t) ⪰ 0 ∀t ∈ [−1, 1] can be reduced to
affine and semidefinite constraints on x. It follows that Ed is an SDP-representable set.
SDP representation 2: Let Ed ⊂ Rn be a GE-d defined by the n × n polynomial matrix P (t) of degree
d. We claim that Ed = Ēd, where

Ēd :=
{

x ∈ Rn

∣∣∣∣∣ ∃X ∈ Sn s.t.
[

X x
xT 1

]
⪰ 0, Tr(XP (t)) ≤ 1 ∀t ∈ [−1, 1]

}
.

The set Ēd is clearly SDP-representable since the constraint that Tr(XP (t)) ≤ 1 for all t ∈ [−1, 1]
can be reformulated as an SDP constraint in view of Proposition 3.5 (applied to the scalar-valued
polynomial 1 − Tr(XP (t))).

To see that Ed = Ēd, first observe that any x ∈ Ed also belongs to Ēd since the vector x and the
matrix X = xxT satisfy the constraints of Ēd. Conversely, for any x ∈ Ēd, fix a matrix X ∈ Sn such

that
[

X x
xT 1

]
⪰ 0 and Tr(XP (t)) ≤ 1 for all t ∈ [−1, 1]. By taking a Schur complement, the first

constraint implies that X ⪰ xxT . For all t ∈ [−1, 1], since P (t) ⪰ 0, we have

xT P (t)x = Tr(xxT P (t)) ≤ Tr(XP (t)) ≤ 1,

and therefore x ∈ Ed.
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Remark 2. Following the proof of Theorem 4.4 and Proposition 3.5, one can check that the size of the
semidefinite constraints necessary to represent a GE-d in dimension n via the first construction in the
proof of Theorem 4.4 is 

(d
4 + 1)(r1 + r2 + 1) d ≡ 0 mod 4

(d+3
4 )(r1 + r2 + 1) d ≡ 1 mod 4

(d+2
4 + 1)(r1 + r2 + 1) d ≡ 2 mod 4

(d+1
4 + 1)(r1 + r2 + 1) d ≡ 3 mod 4.

Given that by [19, Theorem 7.1] we can always take r1, r2 ≤ 2n, the size of the semidefinite constraints
grows only linearly with d (resp. with n) for fixed n (resp. fixed d).

Similarly, one can check that the size of the semidefinite constraints necessary to represent a GE-d
in dimension n via the second construction in the proof of Theorem 4.4 ismax

{
n + 1, d

2 + 1
}

d even
max

{
n + 1, d+1

2

}
d odd.

Thus, the size of the semidefinite constraints grows only linearly with max{n, d}.
By contrast, to our knowledge, sublevel sets of n-variate homogeneous convex polynomials of degree

d (which would also serve as a natural generalization ellipsoids) are not known to have a semidefinite
representation [27]. If one instead works with “sos-convex” polynomials (a stronger condition), then the
sublevel sets do have a semidefinite representation (see, e.g., [27, 31]), but the size of the semidefinite
constraint would be

(
n+ d

2
d
2

)
.

Remark 3. Note that the second SDP representation in the proof of Theorem 4.4 is directly in terms of
the polynomial matrix P (t). The first SDP representation, however, is in terms of polynomial matrices
B(t) and C(t) that appear in the decomposition of the polynomial matrix P (t). In some situations
(e.g., the application in Section 6.4, the construction in the proof of Theorem 4.2, or when dealing with
factor models), the matrix P (t) appears already in decomposed form. In situations where this is not
the case, there are multiple ways of obtaining polynomial matrices B(t) and C(t) from the polynomial
matrix P (t).

One option is to solve the SDP in Proposition 3.5 to find psd matrices Q1 and Q2 in a sum of
squares decomposition of yT Xi(t)y, for i = 1, 2, associated with the sos-matrices X1(t), X2(t) that
appear in Theorem 3.4. By performing a matrix decomposition of the form Qi = LT

i Li, i = 1, 2, we
can readily get an expression for B(t) and C(t); see, e.g., [44, Lemma 1]. We note that there are
alternative ways of factoring univariate sos-matrices; e.g., by using the algorithm proposed in [10], or
by following the proof of [19, Theorem 7.1].

Another option is to directly find a decomposition of the polynomial matrix Q(t) := (t2+1)dP ( t2−1
t2+1)

as R(t)T R(t) for a polynomial matrix R(t). Such a decomposition must exist (since Q(t) ⪰ 0 for all
t ∈ R) and can be found by methods mentioned in the previous paragraph. One can then convert
the decomposition of Q(t) into a suitable decomposition of P (t), e.g., by following the proof of [37,
Theorem 6.11].

4.3.1 Distance between two GEs

As an application of Theorem 4.4, we show here how one can compute the distance between two GEs.
The problem of computing distances between two convex sets has applications in many areas, for
example robotics, computer-aided design, and computer graphics [24, 6].

As a concrete example, consider the following two GEs

Ey = {x ∈ Rn | (x − cy)T Py(t)(x − cy) ≤ 1 ∀t ∈ [−1, 1]},
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Ez = {x ∈ Rn | (x − cz)T Pz(t)(x − cz) ≤ 1 ∀t ∈ [−1, 1]},

where

Py(t) =

6 − 4t 2 − 3t 1 − t
2 − 3t 3 − t −t
1 − t −t 2

 , Pz(t) =

2 − t2 t 0
t 3 − t2 0
0 0 1

 , cy =

0
0
0

 , cz =

 1
−1
1

 .

The distance between Ey and Ez is equal to

min
y,z

||y − z||2

s.t. y ∈ Ey

z ∈ Ez

=

min
y,z

||y − z||2

s.t. (y − cy)T Py(t)(y − cy) ≤ 1 ∀t ∈ [−1, 1]
(z − cz)T Pz(t)(z − cz) ≤ 1 ∀t ∈ [−1, 1].

As Ey is a GE-1, from the proof of Proposition 4.1, we have y + cy ∈ Ey if and only if

yT

10 5 2
5 4 1
2 1 2

 y ≤ 1 and yT

 2 −1 0
−1 2 −1
0 −1 2

 y ≤ 1. (4)

Since Pz(t) ⪰ 0 for all t ∈ [−1, 1] and its degree is even, by Theorem 3.4, we can find a representation
of the form

Pz(t) = B(t)T B(t) + (1 − t2)C(t)T C(t).

We can take for example

B(t) =


1√
2 0 0

0 0 −1
t√
2

√
2 0

 and C(t) =
[

0 1 0√
3
2 0 0

]
.

Following the first construction in the proof of Theorem 4.4, we have that z + cz ∈ Ez if and only if

I3 0


1√
2 0 0

0 0 −1
t√
2

√
2 0

 z

0 (1 − t2)I2 (1 − t2)
[

0 1 0√
3
2 0 0

]
z

zT


1√
2 0 0

0 0 −1
t√
2

√
2 0


T

(1 − t2)zT

[
0 1 0√

3
2 0 0

]T

1


⪰ 0 ∀t ∈ [−1, 1]. (5)

Thus, the problem of computing the distance between Ey and Ez can be reformulated as

min
y,z

∥(y + cy) − (z + cz)∥

s.t. (4), (5).
(6)

Alternatively, by the second construction in the proof of Theorem 4.4, we have that z + cz ∈ Ez if
and only if there is a matrix Z ∈ S3 such that[

Z z
zT 1

]
⪰ 0, Tr(ZPz(t)) ≤ 1 ∀t ∈ [−1, 1]. (7)
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Thus, the problem of computing the distance between Ey and Ez can be reformulated as

min
y,z,Z

∥(y + cy) − (z + cz)∥

s.t. (4), (7).
(8)

In view of Proposition 3.5, both (6) and (8) are semidefinite programming problems. By solving
either numerically, we find the distance between Ey and Ez to be 0.4635 to four digits of accuracy.
The two GEs and a line segment connecting points in each set that attain this minimum distance are
plotted in Figure 2.

Figure 2: The distance between the GEs Ey and Ez in Section 4.3.1.

5 How Expressive are GEs?

We have already seen that GEs can express some nontrivial convex sets; e.g., the set of univariate
polynomials p : R → R such that |p(t)| ≤ 1 for t ∈ [−1, 1] (see the proof of Theorem 4.2). In this
section, we show that every symmetric full-dimensional polytope and every finite intersection of co-
centered ellipsoids can be represented exactly as a GE (Corollary 5.6, following from Theorem 5.1).
We then use this result to show that every convex body can be approximated arbitrarily well by a GE.
We also quantify the quality of the approximation as a function of the degree of the GE (Theorem 5.7).

Let us begin with a definition. We call a set T ⊆ Rn a semiellipsoid if it can be written as
T = {x ∈ Rn | xT Px ≤ 1} for some positive semidefinite matrix P . Note that a compact semiellipsoid
is always a GE-0.

Theorem 5.1. For every integer m ≥ 2, a compact intersection of m semiellipsoids is a GE-d with
d ≤ 2m − 3.

The proof of Theorem 5.1 relies on the following lemma, which could be of independent interest.
The lemma states that in any dimension m, there exists a polynomial curve that stays within the unit
simplex in Rm and visits every corner.

Lemma 5.2 (Polynomial tour of the simplex). For every integer m ≥ 2, there exist univariate poly-
nomials p1, . . . , pm of degree at most 2m − 3 satisfying

1. pi(t) ≥ 0 ∀t ∈ [−1, 1], i = 1, . . . , m,

2.
∑m

i=1 pi(t) = 1 ∀t ∈ [−1, 1], and

3. for every i = 1, . . . , m, ∃ti ∈ [−1, 1] such that pi(ti) = 1.
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The proof of this lemma utilizes a nonconstructive argument inspired by game theory and may be
of independent interest as a proof technique. We note that all but two of the m polynomials can be
taken to have degree at most 2m − 4, but the degree bound of 2m − 3 in Lemma 5.2 is the lowest
possible (see Lemma 5.5). We first recall the following result from game theory.

Theorem 5.3 (Debreu, Glicksberg, Fan; see, e.g., [21]). Consider a game with N players indexed
by i = 1, . . . , N . Suppose that for each i, player i chooses an action ai from a nonempty, compact,
and convex set Ai ⊆ RM and receives a payoff of ui(a1, . . . , aN ). If for each i, the function ui is
continuous in a1, . . . , aN and quasiconcave in ai (over Ai), then the game possesses a pure-strategy
Nash equilibrium; i.e., there exist actions ā1 ∈ A1, . . . , āN ∈ AN , such that for every i = 1, . . . , N , we
have

ui(ā1, . . . , āN ) = max
ai∈Ai

ui(ai, ā−i), (9)

where the index −i represents all players besides player i.

Proof of Lemma 5.2. We set up a game whose pure-strategy Nash equilibria correspond to roots of
polynomials that satisfy the three conditions in the lemma. Consider the following game with players
indexed by i = 1, . . . , m and action sets Ai ⊆ [−1, 1]. Players 1 and m must respectively play −1 and
1 (i.e., A1 = {−1} and Am = {1}), and their payoffs are taken to be 0. For i = 2, . . . , m − 1, player i
chooses an action ai ∈ [−1, 1] and receives a payoff of

ui(a) = −f(ai−1 − ai) − f(ai − ai+1) + (1 − a2
i )

∏
1<j<i

f(ai − aj)
∏

i<j<m

f(aj − ai), (10)

where a := (a1, . . . , am) and the function f is defined as

f(x) =
{

0 x < 0
x2 x ≥ 0

.

The first two terms in the payoff function incentivize player i to take an action ai that belongs to the
interval (ai−1, ai+1). The third term essentially incentivizes player i to increase the geometric mean
of the deviations between her action and the actions of the others. This third term will soon be used
when we construct the polynomials desired by the lemma. As an example, a plot of u3(a3, a−3) is
shown in Figure 3 for the case m = 5 and where a−3 corresponds to the actions of players 1, 2, 4, 5 at
a pure-strategy Nash equilibrium.

The functions ui are continuous in a, since the function f is continuous. Next, we claim that for
each i = 2, . . . , m − 1, the function ui is quasiconcave in ai. Fix some i and a−i, and consider ui as a
function of only ai. Consider three cases:

• ai−1 ≥ ai+1: In this case, the second derivative of ui with respect to ai is −4 in the interval
(ai+1, ai−1) and −2 outside of the interval [ai+1, ai−1]. Thus, ui is strictly concave with respect
to ai.

• ai−1 < ai+1 and max
j<i

aj ≥ min
j>i

aj : In this case, ui is equal to −f(ai−1 − ai) − f(ai − ai+1). Given
that −f is concave, it follows that ui is concave.

• ai−1 < ai+1 and max
j<i

aj < min
j>i

aj : In this case, we first claim that ui is quasiconcave when

ai ∈ [max
j<i

aj , min
j>i

aj ] where ui is equal to (1 − a2
i )∏j ̸∈{1,i,m}(ai − aj)2. Since this polynomial is

real-rooted, by interlacing, it must have a root between any two roots of its derivative. Thus, in
this interval, ui is either quasiconvex or quasiconcave in ai (see, e.g., [18, Section 3.4.2]). Since ui
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Figure 3: The payoff function u3(a3, a−3) of the third player for the case m = 5 and where a−3 =
(a1, a2, a4, a5) = (−1, −

√
0.6,

√
0.6, 1) corresponds to the actions of the other players at a pure-strategy

Nash equilibrium for the game appearing in the proof of Lemma 5.2.

vanishes at max
j<i

aj and min
j>i

aj and is positive in between, it must be quasiconcave over the interval
[max

j<i
aj , min

j>i
aj ]. To extend the quasiconcavity argument to all of [−1, 1], observe that ui vanishes

in the intervals [ai−1, max
j<i

aj ] and [min
j>i

aj , ai+1]. As ui is nonpositive outside of the interval
(ai−1, ai+1), our previous argument implies that for any α > 0, the α-superlevel set of ui is convex.
In addition, for any α ≤ 0, we have {ai ∈ R | ui(ai, a−i) ≥ α} = [ai−1 −

√
−α, ai+1 +

√
−α].

Thus, ui is quasiconcave in ai.

By Theorem 5.3 (applied with N = m, M = 1), there exist actions ā1, . . . , ām ∈ [−1, 1], such that for
every i = 1, . . . , m we have

ui(ā1, . . . , ām) = max
ai∈[−1,1]

ui(ai, ā−i). (11)

Fix such actions ā := (ā1, . . . , ām). We next claim that ā1 < ā2 < · · · < ām. First observe that by the
definition of the payoff function ui in (10) and in view of (11), for every i = 2, . . . , m − 1, we have

• if āi−1 > āi+1, then āi ∈ (āi+1, āi−1),
• if āi−1 ≤ āi+1, then āi ∈ [āi−1, āi+1],

◦ if we further have max
j<i

āj = āi−1 < āi+1 = min
j>i

āj , then āi ∈ (āi−1, āi+1).

We first show that ā1 ≤ ā2 ≤ · · · ≤ ām by induction. Since ā1 = −1 and ā2 ∈ [−1, 1], we have ā1 ≤ ā2.
Now assume by induction that āi−1 ≤ āi for some i < m. Suppose for the sake of contradiction
that āi > āi+1. If āi−1 > āi+1, we have āi ∈ (āi+1, āi−1) and in particular āi < āi−1, contradicting
the inductive hypothesis. If āi−1 ≤ āi+1, we have āi ∈ [āi−1, āi+1] and in particular, āi ≤ āi+1, a
contradiction. Thus, we have āi ≤ āi+1 and by induction ā1 ≤ · · · ≤ ām.

Suppose for the sake of contradiction that (at least) two actions are equal. Let k ∈ {1, . . . , m} be
the smallest index corresponding to an action in a set of equal actions of maximum cardinality. Either
āk ̸= −1 or āk ̸= 1. Assume without loss of generality that āk ̸= −1. Since ā1 = −1, we must have
k > 1. By minimality of k, we must have āk−1 < āk. Since we have ā1 ≤ ā2 ≤ · · · ≤ ām, we have that
max
j<k

āj = āk−1 and āk+1 = min
j>k

āj . Since we further have āk−1 < āk = āk+1, by the last (sub)-bullet
above, we must have that āk ∈ (āk−1, āk+1), and in particular āk < āk+1, contradicting the fact that
the equal action set has size at least two. Thus, ā1 < · · · < ām.
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Going back to the statement of the lemma, we define, for i = 1, . . . , m, ti = āi and

pi(t) = qi(t)
qi(ti)

,

where
q1(t) = (1 − t)

∏
j ̸∈{1,m}

(t − tj)2, qm(t) = (1 + t)
∏

j ̸∈{1,m}
(t − tj)2,

qi(t) = (1 − t2)
∏

j ̸∈{1,i,m}
(t − tj)2 i = 2, . . . , m − 1.

Note that since no two members of {ā1, . . . , ām} coincide, we have qi(ti) ̸= 0 for i = 1, . . . , m, and
therefore the polynomials pi(t) are well defined. With this construction, property 3 of Lemma 5.2 is
immediate from the definition of pi(t) as pi(ti) = 1. Property 1 is also straightforward to check since
each pi(t) is a positive scaling of a product of squares multiplied by either (1 − t),(1 + t), or (1 − t2)
which are all nonnegative for t ∈ [−1, 1].

It remains to verify property 2. Fix an arbitrary index i ∈ {2, . . . , m − 1}. First observe that since
ā1 ≤ ā2 ≤ · · · ≤ ām, for ai ∈ (āi−1, āi+1), the payoff function ui(ai, ā−i) = qi(ai). Then by (11), the
point ti = āi is a local maximum of qi(t) and thus also of pi(t). Combined with the fact that pi(ti) = 1,
it follows that the point ti is a double root of 1−pi(t). Additionally, for k ∈ {1, . . . , i−1, i+1, . . . , m},
ti is a double root of pk(t) by construction. Hence, ti is a double root of 1−

∑m
ℓ=1 pℓ(t). The polynomial

1 −
∑m

ℓ=1 pℓ(t) also has roots at −1 and 1. Thus, counting with multiplicity, 1 −
∑m

ℓ=1 pℓ(t) has 2m − 2
roots. However, since for ℓ = 1, . . . , m, each pℓ(t) has degree at most 2m−3, the degree of 1−

∑m
ℓ=1 pℓ(t)

is at most 2m−3. Since a degree-d nonzero polynomial has at most d roots, it follows that 1−
∑m

ℓ=1 pℓ(t)
is identically zero. Therefore, ∑m

ℓ=1 pℓ(t) = 1 for all t.

Figure 4 demonstrates polynomials pi(t) that satisfy the three conditions of Lemma 5.2 for the case
m = 5. These polynomials were found by a numerical search for a Nash equilibrium for the game set
up in the proof of Lemma 5.2. Interestingly, this equilibrium corresponds to the roots of the Legendre
polynomial of degree 3. The next lemma proves that the roots of Legendre polynomials (see, e.g., [1,
Chapter 22] for a definition) always provide a Nash equilibrium to our game.4

Figure 4: Polynomials pi(t) satisfying the three conditions of Lemma 5.2 for m = 5.

4In view of the explicit construction of a Nash equilibrium in Lemma 5.4, we do not actually need to invoke Theorem 5.3
for our purposes. However, we include Theorem 5.3 to highlight that the game theory approach could potentially be used
more generally to prove existence of polynomials with certain desired properties even when a Nash equilibrium cannot
be constructed explicitly.
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Lemma 5.4. Let ā1 = −1, ām = 1, and let ā2, . . . , ām−1 be the roots of the Legendre polynomial of
degree m − 2, arranged in ascending order. Then the actions ā1, . . . , ām form a pure-strategy Nash
equilibrium of the game defined in the proof of Lemma 5.2.

Proof. Since the action sets of players 1 and m are singletons, it is trivial that (9) holds for i = 1, m.
Fix an arbitrary index i ∈ {2, . . . , m − 1}. From the definition of the payoff function ui in (10),
ui(ai, ā−i) is only positive in the interval (āi−1, āi+1), where it is equal to the polynomial function
(1 − a2

i )∏j ̸∈{1,i,m}(ai − āj)2. Thus,

max
ai∈[−1,1]

ui(ai, ā−i) = max
ai∈(āi−1,āi+1)

ui(ai, ā−i) = max
ai∈(āi−1,āi+1)

(1 − a2
i )

∏
j ̸∈{1,i,m}

(ai − āj)2.

This polynomial is zero at āi−1 and āi+1 and positive in the interval (āi−1, āi+1). As argued in the
proof of Lemma 5.2, the derivative of this polynomial has at most one root over (āi−1, āi+1). Therefore,
any root of the derivative in this interval attains the maximum. Thus, in order to show that

ui(āi, ā−i) = max
ai∈(āi−1,āi+1)

(1 − a2
i )

∏
j ̸∈{1,i,m}

(ai − āj)2,

if suffices to show that
d

dai

(1 − a2
i )

∏
j ̸∈{1,i,m}

(ai − āj)2

∣∣∣∣∣∣
ai=āi

= 0.

To this end, we recall that due to the properties of the Legendre polynomials, the polynomial function
ℓm−2(t) := ∏m−1

i=2 (t − āi) satisfies the Legendre differential equation (see, e.g., [1, 22.6.13]):

(1 − t2)ℓ′′
m−2(t) − 2tℓ′

m−2(t) + (m − 2)(m − 1)ℓm−2(t) = 0 ∀t.

One can then check that

d

dai

(1 − a2
i )

∏
j ̸∈{1,i,m}

(ai − āj)2

∣∣∣∣∣∣
ai=āi

=

 ∏
j ̸∈{1,i,m}

(āi − āj)

((1 − ā2
i )ℓ′′

m−2(āi) − 2āiℓ
′
m−2(āi) + (m − 2)(m − 1)ℓm−2(āi)

)
= 0.

Lemma 5.5. For m ≥ 2, let {p1, . . . , pm} be any set of polynomials satisfying the three properties of
Lemma 5.2. Then at least one of these polynomials must have degree at least 2m − 3.

Proof. The claim is trivial for m = 2, so assume m ≥ 3. Let t1, . . . , tm ∈ [−1, 1] be any set of points
such that pi(ti) = 1 for i = 1, . . . , m. The properties of Lemma 5.2 imply that the points t1, . . . , tm

are distinct and that pi(tj) = 0 for i ̸= j. If −1 or 1 are in the set {t1, . . . , tm}, fix i such that
ti ∈ {−1, 1}; otherwise choose i arbitrarily. If both −1 and 1 are in the set {t1, . . . , tm}, fix j such
that {ti, tj} = {−1, 1}; otherwise choose any j ̸= i. For each k ̸∈ {i, j}, since pi(tk) = 0, pi(t) ≥ 0
for t ∈ [−1, 1], and tk ̸∈ {−1, 1}, tk must be a root of pi(t) of multiplicity at least two. Furthermore,
since tj is a root of pi(t), counting with multiplicities, pi(t) must have at least 2(m − 2) + 1 = 2m − 3
roots.

We now shift our focus back to GEs and show that they can represent any compact finite intersection
of semiellipsoids.
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Proof of Theorem 5.1. Let T ⊂ Rn be a compact finite intersection of m semiellipsoids. Then there
exist matrices P1, . . . , Pm ∈ Sn

+ such that T = ⋂m
i=1{x ∈ Rn | xT Pix ≤ 1}. Let {p1, . . . , pm} be

polynomials of degree at most 2m − 3 satisfying the three properties in Lemma 5.2. Define the
polynomial matrix P (t) and the set T̄ as follows:

P (t) =
m∑

i=1
pi(t)Pi and T̄ =

⋂
t∈[−1,1]

{x ∈ Rn | xT P (t)x ≤ 1}.

We claim that T̄ = T and that T̄ is a GE-d (with d ≤ 2m − 3). To see that T̄ ⊆ T , recall first that,
by Lemma 5.2, for each i = 1, . . . , m, ∃ti ∈ [−1, 1] such that pi(ti) = 1. Then we have

T̄ =
⋂

t∈[−1,1]
{x ∈ Rn | xT P (t)x ≤ 1} ⊆

m⋂
i=1

{x ∈ Rn | xT P (ti)x ≤ 1} =
m⋂

i=1
{x ∈ Rn | xT Pix ≤ 1} = T.

To see that T ⊆ T̄ , take x ∈ T and t ∈ [−1, 1]. Recall by Lemma 5.2 that ∑m
i=1 pi(t) = 1. Then we

have
xT P (t)x =

m∑
i=1

pi(t)xT Pix ≤ max
i=1,...,m

xT Pix ≤ 1.

Thus, x ∈ T̄ . Finally, we note that T̄ is a valid GE-d. The psd condition holds since for i = 1, . . . , m,
pi(t) ≥ 0 for all t ∈ [−1, 1], and Pi ⪰ 0. The kernel condition holds since T̄ is compact (as T is
compact).

Corollary 5.6. Every symmetric full-dimensional polytope and every finite intersection of co-centered
ellipsoids is a GE.

Proof. The claim for a finite intersection of co-centered ellipsoids is immediate from Theorem 5.1. Let
T ⊂ Rn be a symmetric full-dimensional polytope. By translation, we may assume T is symmetric
around the origin; from this and full-dimensionality, it follows that T contains the origin in its interior.
Thus, we may write

T = {x ∈ Rn | |aT
i x| ≤ 1 i = 1, . . . , m}

for some vectors a1, . . . , am ∈ Rn. Therefore, the description of T can be rewritten as

T =
m⋂

i=1
{x ∈ Rn | xT (aia

T
i )x ≤ 1}.

As T is evidently a (compact) finite intersection of semiellipsoids, the claim follows from Theorem 5.1.

We now show that every symmetric convex body can be approximated arbitrarily well by a GE.
Theorem 5.7. There exists ε0 > 0 such that for any ε ∈ (0, ε0) and for any symmetric convex body
C ⊂ Rn, there is a GE-d Ed, with d ≤ 2

(
1

2
√

ε
log(1

ε )
)n

− 3, satisfying

Ed ⊆ C ⊆ (1 + ε)Ed. (12)

Proof. Let Co := {y ∈ Rn | ⟨x, y⟩ ≤ 1} be the polar dual of C. Since Co is a convex body, by [13,
Corollary 1.2], there exists ε0 > 0 (ε0(1

2) in the language of that paper) such that for any ε ∈ (0, ε0),
there exists a symmetric (full-dimensional) polytope T ⊂ Rn with at most

(
1

2
√

ε
log(1

ε )
)n

vertices that
satisfies T ⊆ Co ⊆ (1 + ε)T . By duality, we have 1

1+εT o ⊆ C ⊆ T o. Then, the set Ed := 1
1+εT o

satisfies (12). Since Ed is a scaling of the polar dual of T , it is symmetric, full-dimensional, and the
number of its facets is at most

(
1

2
√

ε
log(1

ε )
)n

(see, e.g., [12, Chap. 4]). By Corollary 5.6, Ed is a GE-d
with d ≤ 2

(
1

2
√

ε
log(1

ε )
)n

− 3.
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6 Applications

In this section, we present four potential applications involving GEs.

6.1 Minimum-variance portfolio optimization with time-varying covariance

In its simplest form, the minimum-variance portfolio optimization problem in finance takes the form

min
x∈Rn

xT Σx

s.t. 1T x = 1, x ≥ 0,

where, for i = 1, . . . , n, the ith entry of the portfolio x ∈ Rn determines the fraction of our wealth
that we invest in asset i. Here, 1 denotes the vector of all ones, the nonnegativity constraint on x
is entrywise, and Σ ∈ Sn

+ is the covariance matrix of the underlying asset returns5 over a fixed time
period and is assumed to be known.6

We consider a generalization of this problem where we commit to a portfolio at the start of a period
(say at time t = −1), but allow ourselves to liquidate the portfolio at any time within a given horizon
(say at anytime t ∈ [−1, 1]). In this setting, the covariance matrix is no longer constant and depends
on the liquidation time. In other words, there is a function Σ : [−1, 1] → Sn

+, such that Σ(t) is the
covariance matrix of the asset returns at time t. Then to find a portfolio that minimizes the worst-case
variance of the returns over all possible liquidation times, we must solve the problem

min
x∈Rn

max
t∈[−1,1]

xT Σ(t)x

s.t. 1T x = 1, x ≥ 0.

It is unreasonable to assume access to the function Σ(t). Instead, we assume we have noisy measure-
ments Σ1, . . . , Σm ∈ Sn of this function at times t1, . . . , tm ∈ [−1, 1] during similar past periods. Given
this data, one might consider minimizing the worst-case variance with respect to the measurements.
This corresponds to solving

min
x∈Rn

max
i=1,...,m

xT Σ̂ix

s.t. 1T x = 1, x ≥ 0,
(13)

where Σ̂i is the nearest (e.g., in Frobenius distance) psd matrix to Σi.
As a model-based alternative, we propose to fit a polynomial matrix P (t) to the measurements

Σ1, . . . , Σm by solving

min
P ∈Sn

d
[t]

m∑
i=1

∥P (ti) − Σi∥2
F

s.t. P (t) ⪰ 0 ∀t ∈ [−1, 1],
(14)

where Sn
d [t] denotes the set of symmetric n × n univariate polynomial matrices of degree (at most)

d and ∥ · ∥F denotes the Frobenius norm. Note that the constraint in (14) ensures that our model

5The return of asset i over a period is given by
pi

end−pi
beg

pi
beg

, where pi
beg (resp. pi

end) is the price of the asset at the
beginning (resp. the end) of the period.

6In the Markowitz variant of this problem, one has an additional linear constraint that imposes a lower bound on the
expected return of the portfolio. Such a constraint can be easily incorporated into our framework. However, our focus
here is on the variance of the portfolio since we want to highlight how time-varying versions of convex quadratic programs
can give rise to GEs.
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produces a valid covariance matrix at all times. In view of Proposition 3.5, this constrained regression
problem can be formulated as an SDP.

Let P ∗(t) be an optimal solution to (14). To find our portfolio, we propose to solve the following
problem:

min
x∈Rn

max
t∈[−1,1]

xT P ∗(t)x

s.t. 1T x = 1, x ≥ 0.
(15)

This problem searches for a portfolio which has minimum GE-d-norm defined by P ∗(t) (see (3) in
Section 2 for a definition). By Theorem 4.4, problem (15) can be formulated as an SDP.

6.1.1 Numerical example

As a numerical example, we consider a universe of n = 10 assets such that the covariance matrix of
their returns at time t is given by the (non-polynomial) function

Σ(t) = 6 sin (t + 1)A1AT
1 + 2(1 − t2)A2AT

2 + (t + 1)2A3AT
3 , (16)

where the entries of the matrices A1, A2, A3 ∈ R10×2 were generated independently and according to
the standard Gaussian distribution. Note that Σ(t) ⪰ 0 for t ∈ [−1, 1] and that Σ(−1) = 0 as there
is no uncertainty in the return at the beginning of the period. As described before, we do not assume
access to the function Σ(t), but instead to m = 500 noisy measurements Σ1, . . . , Σ500 of it at equally
spaced times t1, . . . , t500 in the interval [−1, 1]. More specifically, we let Σi = Σ(ti) + Zi, where Zi is
a 10 × 10 symmetric matrix with upper triangular entries drawn independently from a Gaussian with
mean zero and standard deviation 30.

In Figure 5, we compare the variance of four different portfolios with respect to the true covariance
matrix Σ(t) in (16). The curves correspond to xT

∗ Σ(t)x∗, where x∗ ∈ {x
(13)
∗ , xGE−0

∗ , xGE−1
∗ , xGE−2

∗ }.
Here, x

(13)
∗ is optimal to (13), and xGE−0

∗ , xGE−1
∗ , xGE−2

∗ are optimal to (15) with d = 0, 1, 2, respectively.
Note that to find the latter three portfolios, we first solve (14) for d = 0, 1, 2 to obtain the optimal
matrix P ∗(t) that goes as input to (15). We observe that the GE-based portfolios have lower variance
throughout time than the portfolio coming from the solution to (13). In this example, the improvement
seems to saturate at degree d = 2. The worst-case variances of the four portfolios (with respect to the
true covariance matrix Σ(t)) are reported in Table 1.

Figure 5: Comparing the variance of the four portfolios discussed in Section 6.1.1 with respect to the
true covariance matrix Σ(t).
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x∗ = x
(13)
∗ x∗ = xGE−0

∗ x∗ = xGE−1
∗ x∗ = xGE−2

∗

max
t∈[−1,1]

xT
∗ Σ(t)x∗ 1.5179 0.7981 0.3745 0.3649

Table 1: The worst-case variance max
t∈[−1,1]

xT
∗ Σ(t)x∗ for four different portfolios x∗.

6.2 Joint spectral radius and stability of switched linear systems

In this section, we show that asymptotically stable switched linear systems always admit a GE as an
invariant set. Equivalently, we show that if the joint spectral radius of a set of matrices is less than
one, then there must exist a “contracting” GE-d-norm.

Recall that the spectral radius ρ(A) of a matrix A ∈ Rn×n is defined as

ρ(A) = lim
k→∞

||Ak||1/k,

where || · || is any matrix norm. This quantity coincides with the maximum of the absolute values of
the eigenvalues of A. The discrete-time linear dynamical system xk+1 = Axk, where xk ∈ Rn is the
state of the system at time k ∈ N, is said to be asymptotically stable if for any starting state x0 ∈ Rn,
xk → 0 as k → ∞. It is straightforward to establish that a linear system is asymptotically stable if
and only if ρ(A) < 1.

The joint spectral radius ρ(A) of a set of matrices A := {A1, . . . , Am} ⊆ Rn×n is defined as

ρ(A) := lim
k→∞

max
σ∈{1,...,m}k

||Aσk
. . . Aσ1 ||1/k,

where || · || is any matrix norm [41]. Note that when A contains a single matrix, the definition of the
joint spectral radius (JSR) simplifies to that of the spectral radius. However, computing the JSR is
significantly more challenging than computing the spectral radius; for example the problem of testing
if ρ(A) ≤ 1 is undecidable already when m = 2 [17, 15]. The JSR has a close connection to stability
of a discrete-time switched linear system, i.e., a dynamical system of the type xk+1 = Akxk, where
the matrix Ak ∈ Rn×n can vary arbitrarily in each iteration within the set A. We say that a switched
linear system is asymptotically stable if for any starting state x0 ∈ Rn and any sequence of products
of matrices in A, xk → 0 as k → ∞. One can show that this property holds if and only if ρ(A) < 1;
see, e.g., [30]. Therefore, much research has focused on providing conditions that guarantee the JSR is
less than one. Theorem 6.2 below shows that GEs can always provide such a condition. This theorem
can be seen as a direct generalization of the following classical result in linear systems theory.

Theorem 6.1 (see, e.g., Theorem 8.4 in [28]). For a matrix A ∈ Rn×n, we have ρ(A) < 1 if and only
if there exists a contracting quadratic norm; i.e., a function V : Rn → R of the form V (x) =

√
xT Qx,

with Q ≻ 0, such that V (Ax) < V (x) ∀x ̸= 0.

Geometrically, the above theorem implies that if a linear system is asymptotically stable, then there
is an ellipsoid (given by any sublevel set of the quadratic norm) that is invariant under the trajectories,
i.e., trajectories starting in this ellipsoid remain in the ellipsoid for all time. It is well known that the
existence of such an ellipsoid is no longer necessary for asymptotic stability of switched linear systems
involving at least two matrices. The following theorem implies that the existence of an invariant GE
is however a necessary condition. The theorem is stated in the language of GE-d-norms (recall the
definition from (3) in Section 2).

Theorem 6.2. For a set of matrices A := {A1, . . . , Am} ⊆ Rn×n, we have ρ(A) < 1 if and only if there
exists a contracting GE-d-norm; i.e., a function V : Rn → R of the form V (x) = maxt∈[−1,1]

√
xT P (t)x,
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where P (t) is a univariate polynomial matrix of degree d satisfying the psd and the kernel conditions
in Definition 2.1, such that V (Ax) < V (x) ∀x ̸= 0 and ∀A ∈ A.

The “if” direction of Theorem 6.2 follows from Lyapunov’s global stability theorem; see, e.g., [7,
Section 1] and references therein (in the language of that paper, our GE-d-norm is a “common” or
“simultaneous” Lyapunov function). The “only if” direction of Theorem 6.2 can be shown by first
invoking a nonconstructive converse Lyapunov theorem which states that if ρ(A) < 1, then there exists
a contracting norm; see, e.g., [41] or [30, page 24]. This abstract norm however can be approximated
arbitrarily well by a GE-d-norm. This is a consequence of our Theorem 5.7, which proves that any
symmetric convex body can be approximated arbitrarily well by a GE-d. The “only if” direction of
Theorem 6.2 also follows from Theorem 6.3, which provides a quantitative version of the statement.
This theorem generalizes the main result of [9, 16] (which corresponds to l = 1) from ellipsoids to
generalized ellipsoids.

Theorem 6.3. Let A := {A1, . . . , Am} ⊆ Rn×n. For a positive integer ℓ, if ρ(A) < 1
2ℓ√n

, then there
exists a contracting GE-d-norm with d ≤ max{2mℓ−1 − 3, 0}.

Proof. Suppose ρ(A) < 1
2ℓ√n

. Then it follows from [7, Theorem 6.1] that there exist mℓ−1 matrices
P1, . . . , Pmℓ−1 ∈ Sn

++ such that the function W (x) = maxi∈{1,...,mℓ−1}
√

xT Pix satisfies W (Ax) < W (x),
∀x ̸= 0 and ∀A ∈ A. If m = 1 or ℓ = 1, the GE-0-norm V (x) =

√
xT P1x is evidently contracting. Now

assume m, ℓ ≥ 2. It follows from Corollary 5.6 that there exists a polynomial matrix P (t) of degree
d ≤ 2mℓ−1 − 3 such that the GE-d-norm V (x) = maxt∈[−1,1]

√
xT P (t)x = W (x) for all x ∈ Rn. The

claim follows.

6.2.1 An example

Consider the set of matrices Aγ = {γA1, γA2} ⊆ R2×2 parameterized by a scalar γ ≥ 0 and with

A1 =
[
1 0
1 0

]
, A2 =

[
0 1
0 −1

]
.

These matrices that have been studied e.g. in [9] to demonstrate that the JSR can be less than
one without existence of a contracting quadratic norm (recall the definition from the statement of
Theorem 6.1). Indeed, one can show that ρ(Aγ) < 1 for any γ < 1, while a contracting quadratic norm
exists only when γ < 1√

2 . By contrast, we observe that a contracting GE-1-norm exists for any γ < 1.
Let

P (t) = 1
2

[
1 − t 0

0 1 + t

]
.

It is straightforward to verify that P (t) ⪰ 0 ∀t ∈ [−1, 1] and that ⋂
t∈[−1,1]

Ker(P (t)) = {0}. Let

V (x) := max
t∈[−1,1]

√
xT P (t)x = max

t∈[−1,1]

√
1 − t

2 x2
1 + 1 + t

2 x2
2 = max{|x1|, |x2|}

be the associated GE-1-norm. We have V (γA1x) = γ|x1| and V (γA2x) = γ|x2|. It follows that
V (γAix) < V (x), ∀γ < 1, ∀x ̸= 0, and for i = 1, 2.
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6.3 Robust-to-dynamics optimization

A robust-to-dynamics optimization (RDO) problem is an optimization problem of the form

min
x∈Rn

f(x)

s.t. x, g(x), g(g(x)), . . . ∈ Ω,
(17)

where f : Rn → R, Ω ⊆ Rn, and g : Rn → Rn is a map that represents a dynamical system xk+1 = g(xk)
with k = 0, 1, 2, . . . denoting the index of time. In words, the goal of the RDO problem is to optimize
f over the set S ⊆ Ω of initial conditions that forever remain in Ω under g. We refer the reader to [5]
for more context and to [2] for applications of this problem to safe learning.

In [5], algorithms that provide tractable inner and outer approximations to the feasible set S of (17)
are provided for certain subclasses of the RDO problem. A particular focus is on the case where Ω is
a polyhedron and g is a linear map. More specifically, in this setting, Ω = {x ∈ Rn | Hx ≤ 1} where
H ∈ Rm×n is a given matrix and g(x) = Ax where A ∈ Rn×n is stable7, i.e. has spectral radius less
than one. Note that any polytope with the origin in its interior can be written in the form of Ω. We
refer the reader to [5, Section 2.1.1] (and also [2, Proposition 16]) to see why the assumptions that Ω
contains the origin in its interior and that A is stable are made. These assumptions are only slightly
stronger than the natural requirement that S is not a measure-zero set.

In this section, we extend this setting to the case where the matrix A is unknown, but must belong
to the convex hull of two given matrices Â and Ǎ. The input to our problem is a matrix H ∈ Rm×n

representing the polytope Ω = {x ∈ Rn | Hx ≤ 1} and two matrices Â, Ǎ ∈ Rn×n. Given this input,
we wish to characterize the set

S := {x ∈ Rn | HAkx ≤ 1 k = 0, 1, . . . , ∀A ∈ conv(Â, Ǎ)}. (18)

The approach that we present will also work in the more general setting where the matrix A is only
known to belong to a given polynomial curve in matrix space. As is done in [5], outer approximations
to S can be obtained by truncating the infinite time horizon, and in our case sampling from conv(Â, Ǎ);
we carry out an outer approximation of this form in the numerical example below. As is the case in [5],
finding inner approximations to S are more challenging however. The following theorem shows how
one can inner approximate S with a GE via semidefinite programming.

Theorem 6.4. Let S be as in (18). If Ed is a GE-d defined by a polynomial matrix P (t) of degree d
which satisfies the constraints

P (t) − A(t)T P (t)A(t) ⪰ 0 ∀t ∈ [−1, 1]
P (t) ⪰ hih

T
i ∀t ∈ [−1, 1] i = 1, . . . , m,

(19)

where A(t) := 1+t
2 Â + 1−t

2 Ǎ and hT
i is the ith row of H, then Ed ⊆ S.

Proof. For each t ∈ [−1, 1], define Ed(t) := {x ∈ Rn | xT P (t)x ≤ 1}. By the first constraint in (19), we
have x ∈ Ed(t) ⇒ A(t)x ∈ Ed(t). From this, it follows that x ∈ Ed(t) ⇒ Ak(t)x ∈ Ed(t) for all k ≥ 0.
By the second constraint in (19), we have x ∈ Ed(t) ⇒ Hx ≤ 1. Then we have

x ∈ Ed =
⋂

t∈[−1,1]
Ed(t) ⇒ HAk(t)x ≤ 1 ∀t ∈ [−1, 1] k = 0, 1, . . . ,

which gives the desired result since the set {A(t) | t ∈ [−1, 1]} = conv(Â, Ǎ).
7A terminology more consistent with Section 6.2 would have been “asymptotically stable”, but in this section we drop

the word asymptotic for simplicity.
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We note that if Ω is compact and if any matrix in conv(Â, Ǎ) has spectral radius more than one,
then the set S in (18) will have measure zero [2, Proposition 16]. To avoid this situation, similarly to
what is done in [5], we work with the assumption that all matrices in conv(Â, Ǎ) are stable. Under this
assumption, the following lemma ensures that there is always a suitable polynomial matrix P (t) which
satisfies the constraints of (19). The second constraint in (19) is not mentioned in this lemma since it
can always be satisfied simply by scaling up the matrix P (t). In the language of dynamical systems,
this lemma states that if all matrices in the convex hull are stable, then there must exist a polynomially-
varying quadratic Lyapunov function xT P (t)x for the associated linear dynamical systems.

Lemma 6.5 (Special case of Lemma 24 of [2]). For two matrices Â, Ǎ ∈ Rn×n, every matrix in the
set conv(Â, Ǎ) is stable if and only if there exists a polynomial matrix P : R → Sn such that

1. P (t) ≻ 0 ∀t ∈ [−1, 1],

2. P (t) − A(t)T P (t)A(t) ≻ 0 ∀t ∈ [−1, 1],

where A(t) := 1+t
2 Â + 1−t

2 Ǎ.

We have just shown that the following optimization problem

min
P ∈Sn

d
[t], γ∈R

γ

s.t. P (t) ⪯ γI ∀t ∈ [−1, 1]
P (t) ⪰ 0 ∀t ∈ [−1, 1]
P (t) − A(t)T P (t)A(t) ⪰ 0 ∀t ∈ [−1, 1]
P (t) ⪰ hih

T
i ∀t ∈ [−1, 1] i = 1, . . . , m,

(20)

where A(t) := 1+t
2 Â + 1−t

2 Ǎ, is feasible for a polynomial matrix P (t) of sufficiently large degree. Note
that (20) is a semidefinite program; see Section 3.2. The GE-d associated with the polynomial matrix
P (t) is an inner approximation to the set S defined in (18). The objective and the first constraint in
this SDP are maximizing the radius of a ball contained in this GE-d.

6.3.1 Numerical example

As an example, we seek to characterize the set S as defined in (18) with the following input:

H =


−1 0
1 0
0 −1
0 1

 , Â =
[
−0.9 0.6
−1.6 1.1

]
, Ǎ =

[
1.1 0.6

−1.6 −0.9

]
.

We solve the SDP in (20) to find a polynomial matrix P (t) of degree d. For d = 0, the problem is
infeasible. For d = 1, 2, the problem is feasible and we denote the GEs defined by the optimal solutions
by E1, E2, respectively. In Figure 6, we plot the sets Ω, E1, E2, as well as the set

S10 :=
{

x ∈ Rn | HAk(t)x ≤ 1 ∀t ∈
{

−1, − 9
10 , . . . ,

9
10 , 1

}
k = 0, 1, . . . 10

}
,

which is clearly an outer approximation of the set S. Since S must be sandwiched between the sets E2
and S10, we can conclude that E2 provides a good inner approximation to S.
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Figure 6: The sets associated with the numerical example in Section 6.3.1. The GE-2 denoted by E2
provides a good inner approximation of the set S defined in (18).

6.4 Polynomial regression robust to a shift

A classic task in statistics is to fit a polynomial function p : R → R to observations (xi, yi) for
i = 1, . . . , m. A standard approach to find a polynomial fit of degree (at most) d is that of least-
squares polynomial regression, which solves the problem

min
c∈Rd+1

∥Φ(x)c − y∥2 , (21)

where c ∈ Rd+1 is the vector of coefficients of p, the vectors x, y ∈ Rm have their ith entry equal to
xi, yi, respectively, and Φ : Rm → Rm×(d+1) is the polynomial matrix with the ith row of Φ(z) equal
to (1, zi, z2

i , . . . , zd
i ). In some applications, due to metrological limitations, one may have some error in

measuring the points xi. In particular, one may wish to find a function which provides a good fit to
the observations even if the points xi were slightly shifted. In this section, we describe how GEs arise
when solving this problem.

More concretely, to find a polynomial that fits the observations well even if the points xi are shifted
by up to ε units to the left or right, one can write

min
c∈Rd+1

max
t∈[−1,1]

∥Φ(x + εt)c − y∥2 . (22)

This problem can be reformulated as

min
c∈Rd+1,γ∈R

γ

s.t.
[

c
1

]T

P (t)
[

c
1

]
≤ γ ∀t ∈ [−1, 1],

(23)

for
P (t) =

[
Φ(x + εt)T Φ(x + εt) −Φ(x + εt)T y

−yT Φ(x + εt) yT y

]
.

Note that P (t) ⪰ 0 for all t ∈ [−1, 1] and it is straightforward to check that P (t) satisfies the kernel
condition under the mild assumption that there are a pair of observations (xi, yi) and (xj , yj) in the
dataset such that xi ̸= xj and yi ̸= yj . Therefore, problem (22) corresponds to finding a coefficient
vector c such that the appended vector [c, 1]T is minimal with respect to the GE-2d-norm defined by
P (t) (see (3) in Section 2). By Theorem 4.4, this problem can be reformulated as an SDP.
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6.4.1 Numerical example

For our experiment, we take m = 10, the points xi to be uniformly spaced between −1 and 1, and
yi = f(xi) where f is the Runge function f(x) := 1

1+25x2 . We fit a degree-9 polynomial to these
observations both with the standard least-squares approach and with the shift-robust approach. We
take the shift tolerance ε to be equal to 0.05. In Figure 7, we plot the observations (xi, yi) as well as
(xi ± 0.05, yi). We also plot the polynomials corresponding to the solutions of (21) and (22), labelled
as pLS and pGE , respectively. We can calculate the worst-case errors for these polynomials:

max
t∈[−1,1]

∥pLS(x + 0.05t) − y∥2 = 0.8086,

max
t∈[−1,1]

∥pGE(x + 0.05t) − y∥2 = 0.0447.

Here we see that pGE is significantly more robust to a small shift of the points and is overall much
smoother than pLS .

Figure 7: Observations and fitted polynomials associated with the numerical example in Section 6.4.1.

7 Future Research Directions

We conclude with a few questions for future research. Our first two questions concern extensions of
some results from Section 5.

• We showed that every symmetric convex body can be approximated arbitrarily well by a GE. Our
approximation factor relies on results on polytopic approximation of convex bodies. A related
question is: how well can one approximate an n-dimensional symmetric convex body with a
finite intersection of m (co-centered) ellipsoids, with m growing potentially with n? Since we
have shown that a GE-d, with d = 2m−3, can exactly represent an intersection of m co-centered
ellipsoids (see Corollary 5.6 and Theorem 5.1), progress on this question can potentially improve
our approximation factor in Theorem 5.7.

• Let us call a set Ω ⊆ Rn GE-d-representable if for some nonnegative integers k, m, a GE-d
Ed ⊂ Rm, some matrices A ∈ Rm×n and B ∈ Rm×k, and some vector b ∈ Rm, one can write

Ω = {x ∈ Rn | ∃u ∈ Rk s.t. Ax + Bu + b ∈ Ed}.
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We say that a set is GE-representable if it is GE-d-representable for some nonnegative integer
d. It would be interesting to study the expressiveness of GE-representable sets; in particular, do
GE-representable sets fall in between SOCP and SDP-representable sets?

Finally, we highlight some results (among many) about ellipsoids which we believe might be interesting
to extend to generalized ellipsoids.

• Motivated by problems in subspace identification and factor analysis, the ellipsoid fitting con-
jecture [42, 43] concerns the maximum number of independent standard Gaussian vectors in Rn

such that with high probability, there exists an ellipsoid (i.e., a GE-0), passing through them.
Recently, great progress has been made on this problem which resolves the conjecture up to a
constant [46, 11, 29]. How does this maximum number change when one replaces a GE-0 with a
GE-d for a fixed value of d?

• In [35], it is shown that the standard SDP relaxation for the (nonconvex) problem of maximizing
an arbitrary homogeneous quadratic function over the intersection of m ellipsoids provides an
approximation ratio of 1

2 log(2m2) . Can one derive a similar result for maximization of quadratic
functions over a GE-d and obtain an approximation ratio in terms of d? Note that one cannot
directly apply the result of [35] since for d ≥ 2, a GE-d can be the intersection of an infinite
number of ellipsoids.
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[33] J. Löfberg, “YALMIP: A toolbox for modeling and optimization in MATLAB”, In Proceedings
of the IEEE International Conference on Robotics and Automation, (2004), 284–289.
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