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Abstract

Finding good feasible points is crucial in mixed-integer programming.
For this purpose we combine a sufficient condition for consistency, called
granularity, with the moment-/sos-hierarchy from polynomial optimiza-
tion. If the mixed-integer problem is granular, we obtain feasible points
by solving continuous polynomial problems and rounding their optimal
points. The moment-/sos-hierarchy is hereby used to solve those continu-
ous polynomial problems, which generalizes known methods from the lit-
erature. Numerical examples from the MINLPLib illustrate our approach.

Keywords. Mixed-integer nonlinear programming, granularity, round-
ing, polynomial optimization, semidefinite programming

1 Introduction

Mixed-integer nonlinear minimization problems are a fundamental class of opti-
mization problems that involve both continuous and discrete variables as well as
nonlinear constraints. Due to their inherent complexity, solving mixed integer
problems to global optimality can be computationally very challenging [Jer73;
KM78]. Usually, these problems are solved by a branch-and-bound framework,
whose performance particularly relies on good upper bounds for the objective
function [Bel+13]. These upper bounds are usually given by the evaluation of
the objective function at feasible points.

In this article, we improve a method to find feasible points for mixed-integer
problems with polynomial objective function and polynomial constraints, so
called mixed-integer polynomial optimization problems (MIPOP). For this pur-
pose a condition of consistency called granularity is used and generalized by
using the moment-/sos-hierarchy from polynomial optimization.
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The notion of granularity for mixed-integer optimization was introduced in
[NSS19] and expanded in [NSS20] and [NS23]. Such an optimization problem
and its feasible set are considered granular when a certain nonempty inner paral-
lel set exists within the continuously relaxed feasible set. In this case a sufficient
condition for the existence of feasible points is obtained, the difficulties imposed
by the integrality constraints can be relaxed and a feasible point may be ex-
tracted.

For approximating the inner parallel set a global optimization method for
polynomial optimization problems (POP) can be used, the so called moment-
/sos-hierarchy introduced by Lasserre in [Las01]. It relies on nonnegativity
certificates for polynomials and the theory of moments. For a self-contained
introduction and for an overview about the topic, we refer to [Las09; Las15a;
Lau09; Nie23]. Theoretically, if some mild conditions hold, the moment-/sos-
hierarchy can be used to approximate a POP arbitrarily well. In practice in-
stead, solving this hierarchy of approximations may be rather computationally
expensive, since each step in the hierarchy is formulated as a semidefinite pro-
gram (SDP) and the sizes of the involved semidefinite matrices grow rapidly in
size for higher steps. In the case that some sparsity structure appears in POP,
the issue of growing complexity can be partially tackled and even instances with
several thousand variables and constraints can be solved [MW23].

Our contribution is to combine these two concepts. We calculate an inner
approximation of the inner parallel set for MIPOPs with a modification of the
original moment-/sos-hierarchy introduced in [Las15b]. This inner approxima-
tion is described by polynomials. If this inner approximation is nonempty, this
directly implies the nonemptiness of the inner parallel set and hence the granu-
larity of the original MIPOP. Now, a feasible point may be extracted by using a
local NLP-solver. This approach generalizes the approximation techniques for
calculating the inner parallel set from [NSS20].

The outline of our article is as follows: Firstly, the definitions and notations
for MIPOPs and for the moment-/sos-hierarchy are introduced in Section 2.
Then the inner parallel set and the notion of granularity are defined (cf. Sec-
tion 3). Further, an exact description of the inner parallel set in the convex case
is given (cf. Theorem 3.7). In Section 4 we explain, how polynomials, which
describe an inner approximation of the inner parallel set, can be calculated by
a modification of the moment-/sos-hierarchy. In the linear case (cf. Section 5)
this approximation is exact and coincides with the description in the literature
[NSS19]. For the nonlinear case we show that our approach generalizes the
method for approximating the inner parallel set in [NSS20] and an example is
given for illustration (cf. Example 6.4). With all this, we can set up our algo-
rithm (cf. Section 8) and propose some enhancements, especially for the binary
case (cf. Section 7). Finally, the performance of our algorithm is compared to
the solver SCIP [Bes+21] on examples from the MINLPLib [MIN24] (cf. Section
9).
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2 Definitions and notation

We consider polynomial mixed-integer nonlinear problems of the form

min
(x,y)∈Rn×Zm

f(x, y) (MIPOP)

s.t. gj(x, y) ≤ 0, j = 1, . . . , k

xl ≤ x ≤ xu,

yl ≤ y ≤ yu,

where f, g1, . . . , gk ∈ R[x, y] are real polynomials in n continuous variables x =
(x1, . . . , xn) and m integer variables y = (y1, . . . , ym). All variables shall be
bounded by known lower bounds xl ∈ Rn, yl ∈ Zm and upper bounds xu ∈ Rn,
yu ∈ Zm. Then let the feasible set of (MIPOP) be denoted by M , the NLP
relaxation of (MIPOP) by the minimization of f over

M̂ := {(x, y) ∈ Rn × Rm | ∀j : gj(x, y) ≤ 0, xl ≤ x ≤ xu, yl ≤ y ≤ yu},

and the box of the variable domains by

B := {(x, y) ∈ Rn × Rm | xl ≤ x ≤ xu, yl ≤ y ≤ yu}.

To formulate the moment-/sos-hierarchy, we first introduce some algebraic
definitions. For simplicity, we present them for the ring of real polynomials R[x]
in the variables x = (x1, . . . , xn), though they will later be used for polynomial
rings with additional variables.

Let d ∈ N0. Then R[x]d defines the vector space of real polynomials up
to degree d in x = (x1, . . . , xn) variables, Σ[x] the convex cone of sums of
squares of real polynomials and Σd[x] the subcone of sums of squares (sos) of
real polynomials up to degree 2d, i.e.

Σ[x] =

{
k∑

i=1

u2i | k ∈ N, ui ∈ R[x]

}
,

Σd[x] =

{
k∑

i=1

u2i | k ∈ N, ui ∈ R[x]d

}
.

The quadratic module generated by polynomials p1, . . . , pk ∈ R[x] is defined by

M(p1, . . . , pk) :=

u0 +
k∑

j=1

ujpj | u0, uj ∈ Σ[x]

 ⊆ R[x]

and the corresponding d-truncated quadratic module by

Md(p1, . . . , pk) :=

u0 +
k∑

j=1

ujpj | u0, uj ∈ Σd−νj
[x]

 ⊆ R[x]2d
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for d ∈ N, ν0 = 0 and νj = ⌈deg(pj)/2⌉. Further, let ζ := (ζα) ⊆ R be a sequence
indexed by the monomial basis (xα) and Lζ : R[x] → R the corresponding Riesz
functional, i.e.

f =
∑
α

fαx
α 7→ Lζ(f) =

∑
α

fαζα. (1)

Then the d-truncated moment matrix Md(ζ) is defined by

Md(ζ)α,β := Lζ(x
α+β) = ζα+β , α, β ∈ Nn

d

with columns and rows indexed by the monomial basis (xα)|α|≤d and Nn
d :=

{α ∈ Nn | |α| ≤ d} (|α| =
∑

i αi). For g =
∑

γ gγx
γ ∈ R[x] we also define the

localizing matrix

Md(gζ)α,β = Lζ(g(x)x
α+β) =

∑
γ

gγζα+β+γ , α, β ∈ Nn
d .

3 The inner parallel set and granularity

The inner parallel set and the notion of granularity were introduced by Neumann
et al. for feasible rounding in mixed-integer optimization [NSS19] and in the
following we stick to the notation therein and in [NSS20].

The inner parallel set of (MIPOP) is defined as

M̂− := {(x, y) ∈ Rn × Rm | (x, y) +K ⊆ M̂}

with K := {0} ×B∞( 12 ) and

B∞( 12 ) := B∞(0, 12 ) =
{
z ∈ Rm | ∀i : |zi| ≤ 1

2

}
⊆ Rm.

One can easily see that any rounding of a point (x, y) in M̂− lies in the original

feasible set M . More precisely, (qx, qy) is a rounding for a point (x, y) ∈ M̂− if
and only if

qx = x and qy ∈ Zm, |qyi − yi| ≤ 1
2 , i = 1, . . . ,m

hold. Note that roundings might not be unique. Now, it is easy to see that

(qx, qy) ∈ ((x, y) +K) ∩ (Rn × Zm) ⊆ M̂ ∩ (Rn × Zm) =M

holds. This yields the following results.

Lemma 3.1. [NSS19, Lemma 2.1] For any point (x, y) ∈ M̂−, any of its round-
ings (qx, qy) lies in M .

Proposition 3.2. [NSS20, Proposition 2.1] If the inner parallel set M̂− is
nonempty, then also M is nonempty.
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Proposition 3.2 motivates the definition of granularity.

Definition 3.3. [NSS20, Definition 2.1] We call the set M granular, if the

inner parallel set M̂− of M is nonempty. Moreover, we call a problem MIPOP
granular, if its feasible set M is granular.

Further, for each constraint gj analogous definitions can be established

Gj := {(x, y) ∈ B | gj(x, y) ≤ 0},
G−

j := {(x, y) ∈ Rn × Rm | (x, y) +K ⊆ Gj}

for all 1 ≤ j ≤ k. Note that the definition of G includes the box B and thus
slightly differs from the one in [NSS20]. Then

M̂− =
( k⋂
j=1

Gj

)−
=

k⋂
j=1

G−
j (2)

holds. The first equality is only the definition of M̂−, whereas the second one
easily follows from the definition of the inner parallel set.

Thus, for calculating the inner parallel set M̂− it is sufficient to concentrate
on the single sets G−

j . Using again the fact that taking intersections and inner
parallel sets can be interchanged, we obtain

G−
j =(B ∩ {(x, y) ∈ Rn × Rm | gj(x, y) ≤ 0})−

=B− ∩ {(x, y) ∈ Rn × Rm | gj(x, y) ≤ 0}−

with the inner parallel set

B− ={(x, y) ∈ Rn × Rm | ∀z ∈ B∞( 12 ) : x
l ≤ x ≤ xu, yl ≤ y + z ≤ yu}

={(x, y) ∈ Rn × Rm | xl ≤ x ≤ xu, yl + 1
2e ≤ y ≤ yu − 1

2e}

of B, where e denotes the vector of ones. We therefore obtain the description

G−
j ={(x, y) ∈ B− | ∀z ∈ B∞( 12 ) : gj(x, y + z) ≤ 0}

of G−
j by a semi-infinite constraint.
For nonlinear polynomials g these semi-infinite constraints are usually dif-

ficult to handle. Hence, one would like to generate tight inner approximations
of the sets G−

j with easy descriptions. This can be accomplished by finding
suitable polynomials hj ∈ R[x, y] such that

T−
j = {(x, y) ∈ B− | hj(x, y) ≤ 0} ⊆ G−

j . (3)

By (2) and (3) it holds

T− :=

k⋂
j=1

T−
j ⊆ M̂−.
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If the intersection T− is nonempty, then a feasible point for (MIPOP) can simply
be found by rounding any point in T−, as seen above. Therefore, solving the
continuous problem

min
(x,y)∈B−

f(x, y) (NLP)

s.t. hj(x, y) ≤ 0, j = 1, . . . , k

and evaluating f at any rounding of any of its optimal points yield a possibly
tight upper bound for the minimal value of the original mixed-integer problem
(MIPOP).

Remark 3.4. The best candidates for the polynomials hj are the functions

Jj : Rn × Rm → R, (x, y) 7→ max
z∈B∞( 1

2 )
gj(x, y + z).

These functions are well defined, since the maximum is attained on the compact
box B∞( 12 ), and yield an exact description of the inner parallel set, but they
are only continuous but not differentiable in general. This is a well known fact
from parametric optimization (e.g., [Ban+82, Theorem 4.2.1]), but since the
proof and the counterexample are short, we will give them here. Note that the
continuity of Jj implies the closedness of G−

j = {(x, y) ∈ B− | Jj(x, y) ≤ 0}.

Lemma 3.5. Let g ∈ R[x, y]. Then the function

J : Rn × Rm → R, (x, y) 7→ max
z∈B∞( 1

2 )
g(x, y + z)

is continuous.

Proof. To prove the continuity of J , we show lower and upper semicontinuity
separately. Let (xk, yk)k be a sequence in Rn×Rm converging to a point (x, y) ∈
Rn × Rm. Further, choose z ∈ B∞( 12 ), resp. zk ∈ B∞( 12 ), such that J(x, y) =
g(x, y + z), resp. J(xk, yk) = g(xk, yk + zk).

Lower semicontinuity: Choose a subsequence (xkl
, ykl

)l of (xk, yk)k such that
lim infk→∞ J(xk, yk) = liml→∞ J(xkl

, ykl
). Then

lim inf
k→∞

J(xk, yk) = lim
l→∞

J(xkl
, ykl

) = lim
l→∞

g(xkl
, ykl

+ zkl
)

≥ lim
l→∞

g(xkl
, ykl

+ z) = g(x, y + z) = J(x, y).

Upper semicontinuity [Las15b, Lemma 1]: Choose a subsequence (xkj , ykj )j
of (xk, yk)k such that lim supk→∞ J(xk, yk) = limj→∞ J(xkj

, ykj
). Using the

Bolzano–Weierstrass theorem, we can assume (xkj
, ykj

, zkj
)j → (x, y, z∗) for

j → ∞ for some z∗ ∈ B∞( 12 ). Then

lim sup
k→∞

J(xk, yk) = lim
j→∞

J(xkj
, ykj

) = lim
l→∞

g(xkj
, ykj

+ zkj
)

= g(x, y + z∗) ≤ g(x, y + z) = J(x, y).
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Example 3.6. Consider the polynomial g(y) = y2 − 1. Then

J(y) = max
z∈B∞( 1

2 )
g(y + z) = max{g(y − 1

2 ), g(y +
1
2 )}

is not differentiable at 0 and, in particular, not a polynomial.

As touched on in Example 3.6 one can give a polynomial description of
the inner parallel set in the case that all gj ’s are convex. But the number of
polynomials needed for this description grows exponentially in the number of
integer variables. Hence, this result is less suited for practical computation in
the case of a high number of integer variables.

Theorem 3.7. Write B = Bx × By ⊆ Rn × Rm, where Bx, resp. By, is the
box corresponding to the bounds on the variables x, resp. y. Let g ∈ R[x, y] be
convex on By for each x ∈ Bx. Then

G− = {(x, y) ∈ B− | ∀i ∈ {1, . . . , 2m} : g(x, y + vi) ≤ 0},

where the vi’s are the 2m vertices of B∞( 12 ).

Proof. Since the function ψ(x,y)(z) := g(x, y + z) is convex on B∞( 12 ) for each
(x, y), we obtain from the vertex theorem of convex maximization (cf. [Roc70,
Corollary 32.3.4])

max
z∈B∞

(
1
2

) g(x, y + z) = max
i=1,...,2m

g(x, y + vi),

where the vi’s are the 2m vertices of B∞( 12 ). Hence

G− = {(x, y) ∈ B− | ∀z ∈ B∞( 12 ) : g(x, y + z) ≤ 0}
= {(x, y) ∈ B− | max

z∈B∞

(
1
2

) g(x, y + z) ≤ 0}

= {(x, y) ∈ B− | ∀i ∈ {1, . . . , 2m} : g(x, y + vi) ≤ 0}.

In the following we will need to assume that the set B− has nonempty
interior. For the continuous variables this means that xli < xui holds in all
components i. This is not a restriction since in the case that the lower bound
equals the upper bound in one component, we can just fix the corresponding
variable. For the integer variables this means that no binary variables (or integer
variables which only attain two consecutive integer values) are allowed. This
seems to be a significant drawback, but can be easily tackled by enlarging the
set B, resp. B− in the y-components, which is the topic of Section 7. For better
readability, the index j is dropped from now on.
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4 Finding polynomial overestimators

Let g ∈ R[x, y]. In this section we explain, how we can calculate a polynomial
h ∈ R[x, y] such that it yields a tight inner approximation of the set G− via the
moment-/sos-hierarchy introduced by Lasserre [Las01; Lau09; Las15b]. Such a
polynomial h can be calculated by solving the following polynomial optimization
problem

inf
h∈R[x,y]

∫
B−

h(x, y) dλ(x, y) (POP)

s.t. h(x, y) ≥ g(x, y + z) for all (x, y, z) ∈ S,

where

S := {(x, y, z) ∈ Rn × R2m | (x, y) ∈ B−, z ∈ B∞( 12 )}.

Interpreting (POP), one wants to find a polynomial h with minimal integral
value with respect to the Lebesgue measure λ, but which lies above g on the
set S. This is equivalent to finding a polynomial h lying above g such that the
area between g and h is minimal. Since the objective of (POP) is an integral
over the set B−, we need that B− is not a null set, i.e. the interior of B− has
to be nonempty. Further, the following proposition holds:

Proposition 4.1. If h is feasible for (POP), then

T−
h := {(x, y) ∈ B− | h(x, y) ≤ 0} ⊆ G−.

Proof. Let (x, y) ∈ T−
h , then (x, y) ∈ B− and h(x, y) ≤ 0 hold. Since h lies

above g on the set S, we have g(x, y+z) ≤ h(x, y) ≤ 0 for all z ∈ B∞( 12 ), which
yields (x, y) ∈ G−.

As intended, a solution h of (POP) supplies a subset of the set G−. The
opposite of Proposition 4.1 is not true in general:

Example 4.2. Let g(y) = (y + 2)(y − 1), B = [−1, 1] and h(y) = y − 1. Then
G− = T−

h = B− = [− 1
2 ,

1
2 ], but for y′ = z′ = 1

2 , we have (y′, z′) ∈ S and
h(y′) = − 1

2 < 0 = g(y′ + z′).

Remark 4.3. If allowing not only polynomials to maximize over, an optimal
solution of (POP) is the function J from Lemma 3.5. Since J is only continu-
ous, but no polynomial in general, (POP) does not always attain its minimum.
Nonetheless there is some convergence behavior as we will see at the end of this
section.

In the case that J is indeed a polynomial and the interior of B− is nonempty,
it is even the unique solution of (POP). This can be seen easily: Let h′ be a poly-
nomial that is feasible for (POP), i.e. h′ ≥ J on B−. If

∫
B− J(x, y) dλ(x, y) =∫

B− h
′(x, y) dλ(x, y), we obtain J = h′ (on Rn × Rm), since the interior of B−

is nonempty.
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Note that the variables of the optimization problem above are the coefficients
of the polynomial h: Write h =

∑
α,β cα,βx

αyβ , where α ∈ Nn
0 , β ∈ Nm

0 are
multi-indices and cα,β ∈ R is the corresponding coefficient, then∫

B−
h(x, y) dλ(x, y) =

∑
α,β

cα,β

∫
B−

xαyβ dλ(x, y).

Since the box B− is known, the moments can be calculated in advance and
hence they are only constants in the optimization problem, whereas the cα,β ’s
are the variables over which we want to optimize.

Furthermore, the box S can be written as a semialgebraic set, i.e. a set that
is described by finitely many polynomial equalities and inequalities. We first
define a short notation for describing the bound constraints with polynomials.
Let a, b ∈ R with a ≤ b and define the univariate polynomial

φa,b(x) := (x− a)(b− x).

Then φa,b(x) ≥ 0 describes the interval [a, b]. We set

φi(x, y, z) = φxl
i,x

u
i
(xi) for i = 1, . . . , n,

φi(x, y, z) = φ
yl+

1
2 e,y

u− 1
2 e
(yi) for i = n+ 1, . . . , n+m,

φi(x, y, z) = φ
− 1

2 ,
1
2
(zi) for i = n+m+ 1, . . . , n+ 2m.

In this way we obtain a polynomial description of S:

S = {(x, y, z) ∈ Rn × R2m | ∀i ∈ {1, . . . , n+ 2m} : φi(x, y, z) ≥ 0}.

Now (POP) has the general form of a polynomial optimization problem that
can be tackled by a hierarchy of sos and moment relaxations introduced by
Lasserre [Las01; Las15b]. The hierarchy of sos relaxations can be stated as
follows:

ρd = min
h,σi,θj

∫
B−

h(x, y) dλ(x, y) (SOSd)

s.t. h(x, y)− g(x, y + z) = σ0(x, y, z) +

n+2m∑
i=1

σi(x, y, z)φi(x, y, z),

h ∈ R[x, y]2d, σ0 ∈ Σd[x, y, z], σi ∈ Σd−1[x, y, z], i = 1, . . . , n+ 2m,

where d ∈ N with d ≥ ⌈deg(g)/2⌉ denotes the order of the relaxation. In
(SOSd) the ”≥”-condition from (POP) is changed to a sum of squares constraint
bounded by a degree d. The degree of h is bounded by 2d, but can also be fixed
to any arbitrary degree ≤ 2d. Since the solution h of (SOSd) is also feasible for
(POP), Proposition 4.4 follows from Proposition 4.1. It allows the calculation
of an approximation of the solution of (POP).

Proposition 4.4. If h is feasible for (SOSd), then T
−
h ⊆ G−.
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Note that (SOSd) is a simplification of the hierarchy introduced in [Las15b].
The method therein can be applied to a more general semialgebraic set S.

Using the truncated quadratic modules from Section 2 for x, y and z instead
of x, the sos-constraint in (SOSd) simplifies to

h(x, y)− g(x, y + z) ∈ Md(φ1, . . . , φn+2m) ⊆ R[x, y, z]2d.

Naturally, one could also use the linear box constraints for describing the box S.
But this description of the semialgebraic set yields a slightly weaker hierarchy
as shown by the following lemma.

Lemma 4.5. Let a, b ∈ R with a < b. Then

1. x− a, b− x ∈ M1(φa,b),

2. φa,b /∈ M1(x− a, b− x) and

3. φa,b ∈ M2(x− a, b− x).

Proof. The first and third statement follow from the following identities:

x− a =
1

b− a
((x− a)2 + (x− a)(b− x)) ∈ M1(φa,b),

b− x =
1

b− a
((−x+ b)2 + (x− a)(b− x)) ∈ M1(φa,b),

φa,b =
1

b− a
((b− x)2(x− a) + (x− a)2(b− x)) ∈ M2(x− a, b− x).

Showing the second statement, we assume that φa,b ∈ M1(x− a, b− x). Then

φa,b = σ0 + σ1(x− a) + σ2(b− x)

with σ0 ∈ Σ1[x] and σ1, σ2 ∈ R. Since deg(φa,b) = 2 and σ1, σ2 ∈ R, also
deg(σ0) = 2 and the leading coefficients of φa,b and σ0 coincide. But the leading
coefficients have different signs, which is a contradiction.

Using the Riesz functional, moment matrices and localizing matrices in-
troduced in Section 2, we can state the hierarchy of moment relaxations (cf.
[Las15b]), which are the duals of the semidefinite problems (SOSd):

ρd = min
ζ∈Nn+2m

2d

Lζ(g(x, y + z)) (MOMd)

s.t. Md(ζ) ⪰ 0

Md−1(φj(x, y, z)ζ) ⪰ 0, j = 1, . . . , n+ 2m,

Lζ(x
αyβ) = ξ(α,β), α ∈ Nn

2d, β ∈ Nm
2d

where

ξ(α,β) :=
1

λ(B−)

∫
B−

xαyβ dλ(x, y)
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with α ∈ Nn
2d, β ∈ Nm

2d and λ(B−) =
∫
B− 1 dλ(x, y). Recalling the definition of

the Riesz functional in (1) ζα,β,γ = Lζ(x
αyβzγ) holds for all α ∈ Nn

2d, β, γ ∈ Nm
2d.

Thus the last line in (MOMd) fixes the values of the variables ζα,β,0 to the values
ξ(α,β) for all α ∈ Nn

2d, β ∈ Nm
2d.

In Theorem 4.7 we state convergence results from [Las15b]: The first part
states that the solutions h∗d of the hierarchy converges in the L1-norm to the
continuous function J . The second one states that, if d is large enough, the
set T−

h∗
d
coincides with the inner parallel set G− up to a set of small Lebesgue

volume. For proving the convergence, the quadratic module M(φ1, . . . , φn+2m)
must be Archimedean, i.e. there must exist some N ∈ N such that

N −
n∑

i=1

x2i −
m∑
j=1

y2j −
m∑
j=1

z2j ∈ M(φ1, . . . , φn+2m).

This is ensured by the following lemma.

Lemma 4.6. Let a, b ∈ R with a ≤ b. Then there exists some N ∈ N such that

N − x2 ∈ M(φa,b)

Proof. From Lemma 4.5 we obtain x− a, b− x ∈ M(φa,b). Choose Ñ ∈ N such

that Ñ ≥ max{|a|, |b|, |ab|}. Then

x+ Ñ = x− a+ (Ñ + a) ∈ M(φa,b),

since (Ñ + a) ≥ 0. Similarly, Ñ − x, φa,b + (Ñ + ab) ∈ M(φa,b). Now

(1 + |a|+ |b|)Ñ − x2 = φa,b + (Ñ + ab)

+
|a|
2

(
(1 + sgn(a))(Ñ − x) + (1− sgn(a))(x+ Ñ)

)
+

|b|
2

(
(1 + sgn(b))(Ñ − x) + (1− sgn(b))(x+ Ñ)

)
∈ M(φa,b).

The statement follows for N = ⌈(1 + |a|+ |b|)Ñ⌉ ∈ N.

Theorem 4.7. [Las15b, Theorem 5, Theorem 3] Let S := B− × B∞( 12 ) have
nonempty interior. Then there is no duality gap between the semidefinite pro-
gram (SOSd) and its dual (MOMd). Moreover, (SOSd) (resp. (MOMd)) has an
optimal solution hd ∈ R[x, y]2d (resp. ζ = (ζαβγ), (α, β, γ) ∈ Nn+2m

2d ) and

lim
d→∞

∫
B−

|hd(x, y)− J(x, y)| d(x, y) = 0,

where J is defined as in Lemma 3.5. Further, let G− have nonempty interior
and {(x, y) ∈ B− | J(x, y) = 0} Lebesgue measure zero. Then

λ(G−\T−
hd
) → 0 as d→ ∞, (4)

where λ(·) is the Lebesgue measure of a Borel set in Rn × Rm.
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Although Theorem 4.7 suggests that a higher order of the hierarchy yields
a better approximation of the inner parallel set G−, this is only true asymptot-
ically, since the convergence in (4) is not monotone, as the following example
illustrates.

Example 4.8. Let g(y) = y2 − 1 and B = [−1, 1]. From Example 3.6 or
Theorem 3.7 we obtain

J(y) = max
z∈B∞

(
1
2

) g(y + z) = max{g(y − 1
2 ), g(y +

1
2 )}

and G− = [− 1
2 ,

1
2 ]. The solution h1 of SOS1 is the zero polynomial and thus

T−
h1

= G−, but the solution of SOS2 is the polynomial

h2(y) ≈ 2.73206y2 − 0.605664

with T−
h2

≈ [−0.471, 0.471] ⊊ G−.

5 The linear case

In this section we consider different linearity assumptions for the function g and
their consequences for properties of the function J from Lemma 3.5 and the
inner parallel set G−.

Lemma 5.1. Let a ∈ R[x]d, b1, . . . , bm ∈ R[x], b := (b1, . . . , bm) and

g(x, y) := a(x) +

m∑
j=1

bj(x)yj .

Then the following assertions hold.

i) J(x, y) = g(x, y) + 1
2∥b(x)∥1.

ii) If, in addition, b is a constant function, i.e., bj ∈ R, j = 1, . . .m, then

J(x, y) = g(x, y) + 1
2∥b∥1 ∈ R[x, y]max{d,1}.

iii) If, in addition, a ∈ R[x]1, say a(x) =
∑n

i=1 aixi + g0, with ai, g0 ∈ R,
i = 1, . . . , n, then J is the linear function

J(x, y) = g(x, y) + 1
2∥b∥1 =

n∑
i=1

aixi +

m∑
j=1

bjyj + g0 +
1
2∥b∥1. (5)

Proof. The first assertion is due to

J(x, y) = max
z∈B∞( 1

2 )

a(x) + m∑
j=1

bj(x)(yj + zj)
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= a(x) +

m∑
j=1

bj(x)yj + max
z∈B∞( 1

2 )

m∑
j=1

bj(x)zj

= g(x, y) + 1
2 max
z∈B∞(1)

m∑
j=1

bj(x)zj

= g(x, y) + 1
2∥b(x)∥1,

where the last identity follows since the ℓ1-norm is the dual norm of the ℓ∞-norm
([BV04, A.1.6]).

Under the additional assumption of the second assertion, the functions g
and, thus, J lie in R[x, y]max{d,1}, so that it follows from the first assertion. The
third assertion is an immediate consequence of the second assertion.

The closed-form description of the inner parallel set

G− = {(x, y) ∈ B− | g(x, y) + 1
2∥b∥1 ≤ 0},

under the assumption of the third assertion in Lemma 5.1 was already given in
[NSS19, Proposition 2.1]. This result can also be derived from Theorem 3.7 and
is also respected by (POP):

Lemma 5.2. Let g ∈ R[x, y]1 be a linear polynomial of the form (5) and S :=
B− × B∞( 12 ) defined as above and with nonempty interior. Then h(x, y) =
g(x, y) + 1

2∥b∥1 is the unique optimal solution for (POP).

Proof. From Lemma 5.1 iii), h = J follows. This shows the feasibility of h for
(POP). Remark 4.3 yields the optimality and uniqueness.

Using an inhomogeneous version of Farkas’ Lemma [Nie23, Theorem 1.3.4]
we show that the first order relaxation SOS1 is as good as the result from
[NSS19].

Theorem 5.3. (Inhomogeneous Farkas’ Lemma) For given A ∈ Rm×n and
b ∈ Rm suppose that the set S := {x ∈ Rn | Ax ≥ b} is nonempty. Let c ∈ Rn

and d ∈ R such that c⊤x − d ≥ 0 on S, then there exist σ ∈ Rm
≥0 and ν ∈ R≥0

such that

c⊤x− d = σ⊤(Ax− b) + ν.

Remark 5.4. Using the definition of the truncated quadratic module from
Section 2 Farkas’ Lemma 5.3 implies that

c⊤x− d ∈ M1(a
⊤
1 x− b1, . . . , a

⊤
mx− bm),

where a1, . . . , am ∈ Rn denote the rows of A.

Proposition 5.5. Let g ∈ R[x, y]1 be a linear polynomial of the form (5) and
S := B−×B∞( 12 ) defined as above and with nonempty interior. Then h(x, y) =
g(x, y) + 1

2∥b∥1 is the unique optimal solution of SOS1.

13



Proof. From Lemma 5.2 it follows that h(x, y)− g(x, y+ z) ≥ 0 on S. Since the
box S is described by linear inequalities, we can conclude

h(x, y)− g(x, y + z) ∈ M1(φ1, . . . , φn+2m)

with Lemma 4.5, Farkas’ Lemma 5.3 and Remark 5.4. Thus, h is feasible for
SOS1. Optimality and uniqueness follow from Lemma 5.2.

6 The nonlinear case

In [NSS20], the approach for dealing with general nonlinear functions is similar
to the linear case. The authors look for h of the form h = g(x, y) + ν, i.e. they
want to find ν ∈ R such that

T−
ν := {(x, y) ∈ B− | g(x, y) + ν ≤ 0}

⊆ {(x, y) ∈ B− | ∀z ∈ B∞( 12 ) : g(x, y + z) ≤ 0} =: G−.

This constant ν stems from a global Lipschitz condition with respect to the
variables y uniformly in the variables x for the polynomial g on the set B, i.e.
the following assumption shall hold for g:

Assumption 6.1. [NSS20, Assumption 3.1] There exists some L∞ ≥ 0 such
that for all x ∈ Rn and y1, y2 ∈ Rm with xl ≤ x ≤ xu and yl ≤ y1, y2 ≤ yu, we
have

|g(x, y1)− g(x, y2)| ≤ L∞∥(x, y1)− (x, y2)∥∞ = L∞∥y1 − y2∥∞.

Since g is a polynomial and all variables are bounded, such a Lipschitz
constant always exists. With ν∞ := L∞/2 one can show the following lemma.

Lemma 6.2. [NSS20, Lemma 3.1] Under Assumption 6.1, we have T−
ν∞

⊆ G−.

This fact is also respected by (POP) in the case that g is a polynomial:

Lemma 6.3. Let g ∈ R[x, y] and S := B− × B∞( 12 ) defined as above. Then
h(x, y) = g(x, y) + ν∞ is feasible for (POP).

Proof. Let (x, y, z) ∈ S, then

g(x, y + z)− g(x, y) ≤ |g(x, y + z)− g(x, y)| ≤ L∞∥z∥∞ = 1
2L∞ = ν∞.

Setting h(x, y) = g(x, y) + ν in (SOSd), we can now calculate upper bounds
for

ν∗ = min{ν ∈ R | L = 2ν satisfies Assumption 6.1}.

In the following example we show that our method using the moment-/sos-
hierarchy yields a better value for ν than the method proposed in [NSS20].
In this example, our value for ν is even optimal. Even better results can be
achieved by letting h be an arbitrary polynomial.
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Example 6.4. Consider the convex polynomial

g(y) = 3y21 − y1y2 + 2y22 − 9

on the box B = {y ∈ R2 | −e ≤ y ≤ 2e} with e denoting the vector of ones. The
Lipschitz constant calculated in [NSS20, Example 4.3, Example 4.4] is L∞ = 19
and therefore ν∞ = 9.5. Since

3y21 − y1y2 + 2y22 =
1

8

(
23y21 + (y1 − 4y2)

2
)

is a sum of two squares, it follows that g(y)+ν∞ is a strictly positive polynomial
and hence T−

ν∞
= ∅. Solving SOS1, resp. SOS2, we obtain ν1 ≈ 8.074376, resp.

ν2 = 8.1 For both values we obtain that T−
ν1

and T−
ν2

are nonempty (see Figure 1).
Also, we cannot find a larger ν than ν2: For y = (1.5,−0.5) and z = (0.5,−0.5)
we have (y, z) ∈ S and g(y) + 8 = g(y + z).

But our approach is more general than only finding a constant ν. Instead of
looking for h of the form h = g(x, y) + ν, we look for an arbitrary polynomial h
as long as we fix the degree. For this example we fix the degree of h to 2. Then
the solution for SOS2 is the polynomial

h2(y1, y2) ≈ 5.32525y21 − 2.49835y1y2 + 3.61356y22

− 0.28848y1 − 0.34123y2 − 5.79652

As one can see in Figure 1, h2 yields a very large set T−
h2
.

(a) Inner parallel set (b) T−
ν2

(c) T−
h2

Figure 1: Example 6.4. The blue ellipse is the zero level set of g and the fat
black dots are the feasible integer points. The inner parallel set calculated with
Theorem 3.7 is shown in red. Its approximations T−

ν2
(Lipschitz approach) and

T−
h2

(quadratic approach) are shown in purple.

1If the linear description for the box constraints is used, SOS1 will be infeasible (cf. Lemma
4.5).
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7 Enlargements

7.1 Enlargement of bounds

Up to now, we assumed that the interior of the set B− has to be nonempty, which
excludes problems with binary variables or integer variables, which behave like
binaries (i.e. which only attain two consecutive integer values). This drawback
can be addressed by enlarging the set B, resp. B− as shown in [NSS20, Section
4]. We start with a general definition of an enlargement as given in [NSS20].

Definition and Remark 7.1. Let M be the feasible set of (MIPOP) and M̂

its relaxed feasible set. Then a set M̃ is an enlargement of the set M̂ if M̂ ⊆ M̃
and

M = M̃ ∩ (Rn × Zm).

The inner parallel set M̃− of M̃ is called enlarged inner parallel set of M̂ . Note
that M̂ ⊆ M̃ implies M̂− ⊆ M̃−.

The definition of an enlargement is now very general. But since we are
not considering the feasible set in total, but every constraint on its own, we
are only interested in enlargements of the box B. For this, let σ = (σl, σu) ∈
[0, 1)m × [0, 1)m, then

Bσ = {(x, y) ∈ Rn × Rm | xl ≤ x ≤ xu, yl − σl ≤ y ≤ yu + σu}

is an enlargement for B and

B−
σ = {(x, y) ∈ Rn × Rm | xl ≤ x ≤ xu, yl − σl + 1

2e ≤ y ≤ yu + σu − 1
2e}

its enlarged inner parallel set. Assuming with out loss of generality xl < xu

and yl < yu in all components, this means that the interior of B−
σ is nonempty

for all σ = (σl, σu) ∈ (0, 1)m × (0, 1)m, even when binary variables appear in
(MIPOP). Hence we can solve the polynomial optimization problem (POP)
(resp. the approximation (SOSd)) by replacing the set B−

σ by B− (resp. the
polynomials describing the corresponding semialgebraic set).

7.2 Enlargement of constraints

But not only enlargements of the bounds are possible. In the case of purely
integer constraints, i.e. if gj(x, y) = gj(y) ∈ Z[y], one can subtract any constant
τj ∈ [0, 1) such that

∀y ∈ Zm : gj(y) ≤ 0 ⇐⇒ gj(y)− τj ≤ 0.

Under some conditions it is even possible to choose a larger τj . For more details
we refer to [NSS20, Example 4.2].

Note that if we have an optimal solution hd of (SOSd) then hd − τ is also
an optimal solution of (SOSd) after replacing g(y) with g(y)− τ . Hence we can
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subtract τ from hd after solving (SOSd).

Combining both enlargement ideas, we can solve now

min
(x,y)∈B−

σ

f(x, y) (NLPσ,τ )

s.t. hj(x, y)− τj ≤ 0, j = 1, . . . , k

with suitable enlargement parameters σ = (σl, σu) ∈ (0, 1)m × (0, 1)m and
τ ∈ Rk

≥0 instead of (NLP). We expect that the feasible set T−
σ,τ of (NLPσ,τ ) is

enlarged compared to the feasible set T− of (NLP) and we thus find (better)
feasible points for (MIPOP), but this is not guaranteed in general. Whereas
enlarging the constraints yields the inclusion T−

σ,τ1 ⊆ T−
σ,τ2 for τ1 ≤ τ2 compo-

nentwise, we cannot state anything about possible inclusions if we enlarge the
bounds. This is due to the fact that we do not compute the approximation
of the inner parallel set directly, but only computing an approximation by a
polynomial description. In some cases enlarging might even have the opposite
of the desired effect, i.e. the feasible set might shrink, as the following example
shows. Thus, enlarging bounds needs to be done carefully.

Example 7.2. Consider the polynomial from Example 6.4

g(y) = 3y21 − y1y2 + 2y22 − 9

on the box B = {y ∈ R2 | −3e ≤ y ≤ 3e} with e denoting the vector of
ones. We now set σl = σu = δe. Then solving SOS2 for δ1 = 0 and δ2 = 0.99
yields the quadratic polynomials hδ1 and hδ2 whose sublevel sets are shown in
Figure 2. We see that enlarging the bounds yields a worse approximation of
the inner parallel set. This is not surprising, since if the box is larger, then the
semialgebraic set S in (POP) is larger, i.e. the polynomial inequality needs to
be satisfied at more points.

8 An algorithm for finding feasible points with
the moment-/sos-hierarchy

We can now state our algorithm FRA-SOS (feasible rounding approach with sos-
hierarchy) for finding feasible points for mixed-integer polynomial optimization
problems (MIPOP).

Bound tightening

Example 7.2 gives rise to consider a direct improvement for FRA-SOS. The
quality of the approximation of the inner parallel set depends in some cases
heavily on the size of the box B, resp. B−. If the box B is as small as possi-
ble, the approximation of the inner parallel set can be improved. This can be
achieved by a well known method form mixed-integer optimization: bound tight-
ening [Bel+13]. In common solvers like SCIP or Gurobi some presolve-procedure

17



(a) T−
hδ1

(b) T−
hδ2

Figure 2: The inner parallel set and its approximations with different enlarge-
ment parameters from Example 7.2.

Algorithm FRA-SOS

Require: (MIPOP), σ = (σl, σu) ∈ R2m
+ , τ ∈ Rk, d ∈ N,

Ensure: feasible point (qx, qy) for (MIPOP) (if possible)
for each constraint gj(x, y) do

if no integer variable appears in gj(x, y) then
hj = gj(x, y)

else if integer variables appear linearly in gj(x, y) then
hj = gj(x, y) +

1
2∥b∥1

else if any integer variables appears nonlinearly in gj(x, y) then
compute hj by solving (SOSd) with enlargement parameters σl and σu

end if
end for
Solve (NLPσ,τ )
if (NLPσ,τ ) is feasible then

round any solution (x∗, y∗) of (NLPσ,τ ) to (qx, qy)
return (qx, qy)

end if

is implemented, which can derive tighter bounds for the original optimization
problem (e.g. implied bounds or feasibility-based bound tightening). For our
numerical tests we would like to investigate this advantage as well. Since we
are dealing with mixed-integer polynomial optimization problems, we can use
the moment-/sos-hierarchy for this purpose. Probably, this is not very efficient,
because we need to solve for each variable two semidefinite programs, but can
be easily replaced by more elaborated methods.

For tightening the lower and upper bounds of the variables in (MIPOP), we
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solve the following polynomial optimization problems.

min
(x,y)∈Rn×Rm

± v

s.t. gj(x, y) ≤ 0, j = 1, . . . , k

xl ≤ x ≤ xu,

yl ≤ y ≤ yu,

where v ∈ (x, y) is the variable to be tightened. This can be done by using the
classical moment-/sos-hierarchy introduced in [Las01].

9 Numerical Study

The main purpose of this computational study is to apply the moment-/sos-
hierarchy for calculating feasible points for general mixed-integer polynomial
nonlinear problem from practice using the concept of granularity developed by
Neumann et al. [NSS19; NSS20]. For this we consider test examples from the
MINLPLib [MIN24].

We implement FRA-SOS in Julia 1.9 using the modeling language JuMP

[Bez+17]. Further we used the software tool TSSOS for solving the moment-
/sos-hierarchy to exploit sparsity of the mixed-integer polynomial optimization
problems [MW21]. We modified the objective in the source code to solve the
problems (SOSd). For solving the nonlinear problems (NLPσ,τ ), we used the
(local) solver Ipopt [COI16; WB06]. Finally we compared the results with the
mixed-integer solver SCIP [Bes+21]. All tests were carried out on an Apple M1

Pro with 32 GB of RAM.
For our numerical study, we set the enlargement parameters σ = σl = σu =

1− 10−4e and τj = 1− 10−4 for all j with gj(x, y) = gj(y) ∈ Z[y].
Sometimes the moment-/sos-hierarchy can cause numerical issues, if high

degree monomials are involved [Wak+06, Section 5.6]. To avoid these numerical
issues, all variables are scaled before solving (SOSd), such that they are in
the interval [−1, 1]. This is possible, because all variables are assumed to be
bounded. Further, each polynomial is divided through the absolute value of
its coefficient with the maximal absolute value. The scaling is also done, if
the moment-/sos-hierarchy is used to tighten the bounds of the variables as
described in Section 8.

In total 108 inequality-constrained polynomial instances from the MINLPLib
are considered. All variables have to be bounded or can be bounded efficiently by
using the bound tightening from Section 8. Most of the instances (70 problems)
have only integer variables appearing in linear constraints. For these problems,
we can use the approach for linear constraints as seen in Section 5. For numerical
results, we refer to [NSS20]. The remaining 38 instances have integer variables
appearing in nonlinear constraints and are interesting for using the moment-
/sos-hierarchy to calculate an approximation of the inner parallel set. In total,
we are able to obtain a feasible point for 44 out of 108 instances. Further, we
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obtain feasible points for 24 out of 38 instances, where integer variables appear
nonlinearly.

In Table 1, the results for these 24 instances are shown. The columns of the
table read as follows.

• name: name of instance in the MINLPLib,

• variables: (total number of variables, number of integer variables, number
of binary variables),

• constraints: (total number of constraints, number of constraints with inte-
ger variables, number of constraint with integer variables appearing non-
linearly),

• appr.: approach of calculating the polynomial h in (SOSd):

– ”h”: for each constraint gj with nonlinear integer variables a poly-
nomial hj of degree 2d is calculated such that T−

hj
approximates G−

j

– ”g−h”: for each constraint gj with nonlinear integer variables a poly-
nomial hj of degree 2d is calculated such that T−

gj−hj
approximates

G−
j ,

– ”g−ν”: for each constraint gj with nonlinear integer variables a con-
stant νj is calculated such that T−

gj−νj
approximates G−

j (cf. Section
6),

• ord.: order d in (SOSd),

• objective: value f(qx, qy) of the feasible point (qx, qy) found by FRA-SOS,

• BT/SOS/NLP: solving time in seconds for bound tightening, (SOSd) and
(NLPσ,τ ).

• w/o BT: solving time in seconds for FRA-SOS without bound tightening
(sum of times for (SOSd) and (NLPσ,τ )).

• SCIP: time in seconds for SCIP to find a feasible point, which is at least
as good as the point found by FRA-SOS.

• opt.: optimal value reported by MINLPLib. If no optimal value is known,
this is marked by *.

As seen from the table, we can use for most of the problems the first order
of the hierarchy to calculate a feasible point, since the problems are quadratic.
Only the two instances nvs07 and nvs21 have polynomial constraints of higher
order. For the sonet instances the approaches ”g−h” and ”g−ν” are reported,
since the approach ”h” was not successful. The reason for this may be that for
the instances involving only binary variables the concept of granularity is not
that suited despite of the use of enlargements.
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Since most of the problems are small-sized, the times for bound tightening,
solving (SOSd) and (NLPσ,τ ) are quite fast. For the larger binary problems,
there was no bound tightening carried out.

For 10 out of 24 problems SCIP finds faster feasible points that are at least as
good as those found by FRA-SOS. For 10 problems, our algorithm is comparable
with SCIP in time (yellow in Table 1), if bound tightening is not considered (see
discussion in Section 8). Finally, although SCIP is a very fast mixed-integer
solver, FRA-SOS was able to outperform SCIP on four of the larger nvs instances
(green in Table 1). This behavior might indicate that FRA-SOS may be suitable
to quickly find good feasible points of practical problems which possess the
same structure as the nvs instances, i.e., problems which have constraints with
nonbinary and nonlinear integer variables. To verify this indication, one would
naturally need far more examples than provided by the MINLPLib.
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10 Conclusions

In this article, we propose a feasible rounding approach for mixed-integer poly-
nomial optimization problems. The concept of granularity for mixed-integer
problems introduced by Neumann et al. in [NSS19; NSS20] is combined with
the moment-/sos-hierarchy from polynomial optimization. Further, we general-
ized the numerical method proposed in [NSS20]. Instead of calculating only a
Lipschitz constant, we can calculate directly polynomial descriptions of approx-
imations of the inner parallel set. Thus, our approach is theoretically at least
as good and yields better practical results. Testing our approach on examples
from the MINLPLib, we can calculate feasible points for a significantly share of
considered problems in our numerical study. Although the number of adequate
test problems from the MINLPLib is limited, the numerical results indicate that
the approach proposed in this article may be suitable for quickly finding good
feasible points for polynomial inequality constrained problems with nonbinary
and nonlinear integer variables.
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