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We study decision problems under uncertainty, where the decision-maker has access to K data sources

that carry biased information about the underlying risk factors. The biases are measured by the mismatch

between the risk factor distribution and the K data-generating distributions with respect to an optimal

transport (OT) distance. In this situation the decision-maker can exploit the information contained in the

biased samples by solving a distributionally robust optimization (DRO) problem, where the ambiguity set is

defined as the intersection of K OT neighborhoods, each of which is centered at the empirical distribution on

the samples generated by a biased data source. We show that if the decision-maker has a prior belief about

the biases, then the out-of-sample performance of the DRO solution can improve with K—irrespective of

the magnitude of the biases. We also show that, under standard convexity assumptions, the proposed DRO

problem is computationally tractable if either K or the dimension of the risk factors is kept constant.

Key words : data-driven decision-making; distributionally robust optimization; optimal transport

1. Introduction

Stochastic optimization is the canonical framework for modeling decision problems under uncertainty

(Shapiro et al. 2021). A basic single-stage stochastic program seeks a decision θ ∈ Θ ⊆ Rn that

minimizes the expected value EP[ℓ(θ, ξ)] of an uncertainty-affected loss function ℓ(θ, ξ) with respect
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to the distribution P of the random vector ξ ∈ Ξ ⊆ Rd. However, in most real decision problems,

the distribution P is unobservable, implying that an essential input of the stochastic optimization

model is unknown. When the decision-maker has access to training samples {ξ̂i}Ni=1 from P, then

the stochastic program can be addressed with the sample average approximation (SAA) (Shapiro

et al. 2021, § 5), which minimizes the expected loss EP̂[ℓ(θ, ξ)] under the empirical distribution

P̂= 1
N

∑N

i=1 δξ̂i , or with methods from distributionally robust optimization (DRO) (Rahimian and

Mehrotra 2022), which minimize the worst-case expected loss supP∈P EP[ℓ(θ, ξ)] with respect to

all distributions in an ambiguity set P. Intuitively, P should contain all distributions that are

sufficiently likely to have generated the training samples. A popular choice is to define P as a ball

around P̂ with respect to a Wasserstein distance (Mohajerin Esfahani and Kuhn 2018, Zhao and

Guan 2018, Blanchet and Murthy 2019, Kuhn et al. 2019, Gao and Kleywegt 2023). If the radius

of this ball scales with N− 1
2 , then the optimal value of the DRO problem constitutes, in a precise

statistical sense, a safe estimator for the optimal value of the underlying true stochastic program

(Blanchet et al. 2021, Gao 2023). The optimal solution of the SAA problem typically performs well

in sample (that is, under the empirical distribution P̂) but poorly out of sample (that is, under the

unknown true distribution P). This phenomenon is often referred to as the optimizer’s curse (Smith

and Winkler 2006). Empirical evidence suggests that DRO mitigates the optimizer’s curse.

Unfortunately, all existing approaches to data-driven optimization become ineffective at small

sample sizes N . This is troubling because training data is scarce or even absent in many relevant

decision problems under uncertainty. For example, a manufacturer introducing a new product has

no historical sales data to predict the product’s demand distribution, which would help to plan pro-

duction. Similarly, an investor trading in new securities has no historical market data to predict the

securities’ return distribution, which would help to design a portfolio strategy. In addition, a retailer

expanding into a new market has no historical data on customer behavior to inform assortment

planning, a logistics manager has no historical data on resource availabilities after a supply chain

disruption to inform inventory decisions, and government authorities have no historical data on



Rychener, Esteban-Pérez, Morales and Kuhn: Wasserstein DRO with Heterogeneous Data Sources
3

how people react to a new pandemic, which would help to determine effective health interventions.

Broadly speaking, whenever an organization faces structural disruptions or implements strategic

changes, it enters into a new regime characterized by a lack of relevant data.

In the remainder of the paper we refer to the distribution P of the uncertain problem parame-

ters ξ as the target distribution, and we assume that there is insufficient (or no) data from P. In

this situation, one could try to leverage data from one or several source distributions Pk, k ∈ [K],

that are not too dissimilar from P. For example, a retailer expanding into a new market with an

unknown demand distribution may have access to demand data from other markets with a compa-

rable customer structure. Similarly, an investor trading in new securities with an unknown return

distribution may have access to return data from other securities issued by similar companies.

Suppose from now on that there are Nk ≥ 1 training samples from Pk, which can be used to

construct an empirical distribution P̂k that approximates Pk, k ∈ [K]. In addition, assume temporar-

ily that P1 coincides with the target distribution P (implying that P̂1 only suffers from statistical

errors but is not subject to a distribution shift), whereas Pk for k≥ 2 strictly differs from P (imply-

ing that P̂k suffers both from statistical errors and a distribution shift). We now discuss different

approaches for estimating the optimal value of the true stochastic program. A naïve approach

would be to ignore all biased training samples and to solve the SAA problem under P̂1 only. As

we assumed the target data to be scarce, however, this results in a fragile estimator with an unac-

ceptably high variance. Alternatively, one could rely on data pooling, which amounts to solving

the SAA problem under the mixture distribution
∑K

k=1Nk/(
∑K

k′=1Nk′)P̂k. If there is abundant

source data, the resulting estimator displays a small variance. As the pooled dataset is dominated

by biased samples, however, this estimator typically suffers from an unacceptably large bias. In

particular, it is likely to overestimate the variance of P (see Example 1 below). A better—geometry-

aware—method for aggregating the empirical source distributions is to calculate their Wasserstein

barycenter (Agueh and Carlier 2011). Recall that the barycenter ξ =
∑K

k=1 λkξk of K points ξk ∈Rd

with weights λk ≥ 0, k ∈ [K], is the unique solution of minξ∈Rd

∑K

k=1 λk∥ξ− ξk∥22. Analogously, the



Rychener, Esteban-Pérez, Morales and Kuhn: Wasserstein DRO with Heterogeneous Data Sources
4

p-Wasserstein barycenter of K distributions P̂k with weights λk ≥ 0, k ∈ [K], is defined as a solu-

tion P of minP∈P(Ξ)

∑K

k=1 λkWp(P, P̂k)
p, where Wp denotes the p-Wasserstein distance for some p≥ 1.

Wasserstein barycenters are widely used in machine learning (Claici et al. 2018, Dognin et al. 2019,

Montesuma and Mboula 2021, Srivastava et al. 2018, Zhuang et al. 2022) and computer vision (Barré

et al. 2020, Solomon et al. 2015). The statistical properties of empirical Wasserstein barycenters

are studied in (Le Gouic and Loubes 2017, Le Gouic et al. 2022, Panaretos and Zemel 2020), and

efficient methods for their computation are proposed in (Altschuler and Boix-Adsera 2021, Cuturi

and Doucet 2014). Any p-Wasserstein barycenter P of the empirical source distributions is discrete

and can thus be identified with an aggregated dataset. Solving the SAA problem under P yields a

more promising estimator than data pooling. The following example suggests indeed that, unlike

naïve mixtures, Wasserstein barycenters preserve stylized features of the source distributions.

Example 1 (Mixtures versus Wasserstein Barycenters). Assume that all source distri-

butions are univariate Gaussians with different means and identical variances, that is, Pk ∼N (µk, σ
2)

for all k ∈ [K]. If
∑K

k=1 λk = 1 and λk ≥ 0 for all k ∈ [K], then the mixture distribution
∑K

k=1 λkPk

fails to be Gaussian, and it has mean
∑K

k=1 λkµk and variance σ2+
∑K

k=1 λkµ
2
k− (

∑K

k=1 λkµk)
2 >σ2.

Using (Gelbrich 1990, Theorem 2.1), one can further show that the 2-Wasserstein barycenter of the

source distributions with weights λk, k ∈ [K], is the Gaussian distribution with mean
∑K

k=1 λkµk

and variance σ2. As the source distributions are supposed to capture stylized features of the target

distribution P, and as all source distributions are Gaussians and share the same variance σ2, it is

reasonable to expect that P is a Gaussian distribution with variance σ2. Thus, the 2-Wasserstein

barycenter is the more plausible model for P than the mixture of the source distributions. ▲

Despite the encouraging insights from Example 1, the 2-Wasserstein barycenter of two empirical

source distributions is highly sensitive to data perturbation (Zhuang et al. 2022, Example 2). In addi-

tion, its variance provides only a biased estimator for the variance of the 2-Wasserstein barycenter

of the true source distributions (see Proposition 2 below). Even worse, the 1-Wasserstein barycenter

either coincides with one of the source distributions or is highly degenerate (see Corollary 1 below).
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So far we have discussed several SAA models, which differ only in how the source data enters

the empirical distribution. Recall that SAA methods are generally susceptible to the optimizer’s

curse and may thus lead to disappointment in out-of-sample tests. Following Mohajerin Esfahani

and Kuhn (2018), it is therefore natural to robustify each of these SAA models against all distri-

butions in a Wasserstein ball centered at the corresponding empirical distribution. If this empirical

distribution converges (in an appropriate sense) to the target distribution, then the resulting DRO

models offer the usual statistical guarantees; see e.g., (Kuhn et al. 2019, § 3). In particular, if the

target distribution P is known to coincide with the 2-Wasserstein barycenter of the source distri-

butions Pk with weights λk, k ∈ [K], and if the empirical distribution is set to the 2-Wasserstein

barycenter of the empirical source distributions P̂k with the same weights λk, k ∈ [K], then the

optimal value of the DRO problem provides an upper confidence bound on the optimal value of the

true stochastic program (Lau and Liu 2022, Theorem 4.7). However, this guarantee is only available

if the weights λk, k ∈ [K], are known. In addition, the ambiguity set inherits all shortcomings of the

Wasserstein barycenter at its center—such as outlier sensitivity, degeneracy and biasedness.

In view of the challenges outlined above, we propose a new approach to data-driven decision-

making with K > 1 data sources. Recall that any useful source distribution Pk, k ∈ [K], must be

close to the target distribution P. It is thus reasonable to assume that the decision-maker has

a belief about the discrepancy between P and Pk with respect to some Wasserstein distance. As

the empirical distribution P̂k approximates Pk, any such belief naturally translates into an upper

bound on the Wasserstein distance between P and P̂k. Hence, the target distribution should reside

in the intersection of K Wasserstein balls, each of which is centered at one of the empirical source

distributions. This prompts us to introduce the class of multi-source DRO models whose ambiguity

sets are obtained by intersecting multiple Wasserstein balls associated with different data sources.

The main contributions of this paper can be summarized as follows.

• We introduce multi-source DRO and show that it is dually related to the problem of computing

the Wasserstein barycenter of the K empirical source distributions.
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• We show that if the loss function is piecewise concave in ξ ∈Rd, then the worst-case expected

loss over the intersection of the Wasserstein balls associated with the K data sources matches the

optimal value of a finite convex program. However, this convex program involves exponentially many

variables and constraints and is NP-hard. Leveraging recent results on Wasserstein barycenters by

Altschuler and Boix-Adsera (2021), we then prove that it becomes tractable if d or K is constant.

• We develop frequentist as well as Bayesian performance guarantees for multi-source DRO.

Specifically, we provide guidance for calibrating the Wasserstein radii such that the multi-source

DRO problem provides an upper confidence bound on the stochastic program under the target

distribution. We find that a frequentist decision-maker without any information about the distances

between the target and the source distributions does not benefit from source data. In contrast, we

show that a Bayesian decision-maker with prior beliefs about the distances between the target and

the source distributions can obtain stronger performance guarantees by using source data.

• Numerical experiments focusing on portfolio selection and assortment planning show that multi-

source DRO can outperform various single-source DRO schemes on synthetic as well as real data.

Our tractability results imply that solving a multi-source DRO problem is not fundamentally

harder than computing the Wasserstein barycenter of the source distributions. Thus, our multi-

source DRO problems belong to the same complexity class as the single-source DRO problems by

Lau and Liu (2022), which use the Wasserstein barycenter of the source distributions as the nominal

distribution. However, multi-source DRO is less sensitive to perturbations of the data.

Intersections of K = 2 ambiguity sets constructed from source and target data were first studied

in the context of distributionally robust linear regression (Taskesen et al. 2021). This work critically

relies on the quadratic nature of the least-squares loss, which implies that only the first and second

moments of the covariates and the responses are needed to evaluate the expected prediction loss.

More recently and independently of our work, intersections of K = 2 Wasserstein ambiguity sets

were studied in the context of logistic regression (Awasthi et al. 2022). The dual DRO problem

derived in this work is a special case of our Theorem 2. As the logistic loss fails to be (piecewise)
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concave, this dual problem does not admit an exact reformulation as a finite convex program.

Selvi et al. (2024) study a generalization of the model by Awasthi et al. (2022) that not only

accounts for K = 2 different data sources but also for adversarial attacks. They leverage tools

from adjustable robust optimization to solve their model approximately. Concurrent to our work,

Wang et al. (2024) introduce a contextual DRO model that provides protection against covariate

shifts. The underlying ambiguity set is given by an intersection of K = 2 1-Wasserstein balls, whose

centers correspond to different parametric and nonparametric estimators of the relevant conditional

distribution. These estimators are all constructed from one single data source. Wang et al. (2024)

also provide a duality result for a DRO problem with K ≥ 2 Wasserstein balls, which is similar

to our Theorem 2. Tanoumand et al. (2023) explore the intersection of a Wasserstein ball with an

ambiguity set derived from a goodness-of-fit test based on the linear-convex ordering of random

vectors. Their rationale for intersecting ambiguity sets is to reduce the conservativeness of the DRO

solutions. However, they construct both ambiguity sets from a single dataset, and therefore they do

not cater for multi-source DRO. Intersections of ambiguity sets also play a role in the analysis of

market equilibria when agents optimize coherent risk measures (Ralph and Smeers 2011). Indeed, it

can be shown that an equilibrium exists if the ambiguity sets underlying the coherent risk measures

of all agents have a non-empty intersection.

Decision-making under uncertainty with multiple data sources is reminiscent of domain adaptation

in machine learning (Zhao et al. 2020, Farahani et al. 2021, Montesuma and Mboula 2021) and also

resembles federated learning with heterogeneous clients (Mohri et al. 2019, Ro et al. 2021). Domain

adaptation leverages data from one or several source distributions to improve the performance of a

machine learning model on the target distribution (Singhal et al. 2023). This can be achieved, for

example, by using tools from optimal transport. Specifically, an optimal transport map between the

source and the target distribution can be used to convert a predictor trained on the source domain

to one on the target domain (Courty et al. 2014, 2016, Redko et al. 2017). However, these methods

are tailored to prediction tasks and cannot be readily extended to decision-making tasks.
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Heterogeneous data sources are also common in federated learning, where different devices share

data to train a machine learning model in a distributed manner—often under privacy constraints

(see, e.g., (Zhang et al. 2021) for a survey). Distributionally robust federated learning models trained

on a mixture of the client distributions with uncertain mixture weights are studied in (Deng et al.

2020, Sagawa et al. 2019, Xiong et al. 2023, Wang et al. 2023). A distributionally robust model with

a Wasserstein ball around the empirical mixture distribution is proposed in (Nguyen et al. 2022).

Data-driven optimization with heterogeneous data sources has not yet received much attention

in operations research and management science. It is known that if many unrelated data-driven

decision problems must be solved simulataneously, each having only access to a small amount of data,

then shrinking the empirical distribution of each individual problem towards an anchor distribution

constructed from the pooled data can improve upon naïve SAA approaches (Gupta and Kallus

2022). However, as all empirical distributions are shrunk towards the same anchor, this approach is

difficult to justify in the presence of distribution shifts. Also, we focus on a single decision problem.

The rest of the paper is structured as follows. Section 2 introduces optimal transport barycenters as

natural generalizations of Wasserstein barycenters. It further shows that 1-Wasserstein barycenters

are ill-conceived for practical use and that empirical 2-Wasserstein barycenters are biased. Section 3

formally introduces the multi-source DRO problem and shows that it is equivalent to a finite convex

program of exponential size if the loss function is piecewise concave. Section 4 shows that this

convex program is tractable if either d or K is constant. Section 5 establishes statistical performance

guarantees for multi-source DRO, and Section 6 reports on numerical experiments.

Notation. For any Borel set Ξ⊆Rd, we use M+(Ξ), P(Ξ) and Pp(Ξ) to denote the convex cone

of all finite Borel measures on Ξ, the convex set of all probability distributions in M+(Ξ) and

the convex set of all probability distributions in P(Ξ) with finite p-th moment, respectively. For

any P ∈ P(Ξ) and Borel measurable transformation Φ : Ξ → Ξ′ between Borel sets Ξ ⊆ Rd and

Ξ′ ⊆ Rd′ , we denote by Φ#P the pushforward distribution of P under Φ. Thus, if ξ ∈ Ξ follows P,

then Φ(ξ) ∈ Ξ′ follows Φ#P. The conjugate f∗ of a convex function f : Rd → [−∞,∞] is defined
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through f∗(u) = supξ∈Rd⟨u, ξ⟩ − f(ξ). The indicator function δΞ of a closed convex set Ξ ⊆ Rd is

defined through δΞ(ξ) = 0 if ξ ∈Ξ, δΞ(ξ) =∞ otherwise. The conjugate of δΞ is termed the support

function of Ξ and is denoted by σΞ. The perspective of a closed convex function f(ξ) is defined as

tf(ξ/t) for t≥ 0, where 0f(ξ/0) is interpreted as σdom(f∗)(ξ). For any n∈N we set [n] = {1, . . . , n}.

2. Multi-Margin OT and OT Barycenters

This section introduces OT barycenters as natural generalizations of Wasserstein barycenters and

shows that they can be computed by solving multi-margin OT problems. Throughout the paper,

we let Ξ ⊆ Rd be a convex closed support set. The family of multi-margin transportation plans

associated with K probability distributions P1, . . . ,PK ∈P(Ξ) is defined as

Π(P1, . . . ,PK) =
{
π ∈P(ΞK) : π has marginals P1, . . . ,PK , respectively

}
(Pass 2015). If K = 2, then any π ∈ Π(P1,P2) is simply referred to as a transportation plan or a

coupling of P1 and P2. Optimal transport (OT) seeks a transportation plan of minimum cost with

respect to a cost function c : Ξ×Ξ→R+. We adopt the following standard assumption regarding c.

Assumption 1 (Transportation Cost Function). The function c(ξ1, ξ2) is lower semi-con-

tinuous, obeys the identity of indiscernibles (i.e., c(ξ1, ξ2) = 0 if and only if ξ1 = ξ2) and is lower

bounded by dp(ξ1, ξ2) for some metric d on Ξ with compact sublevel sets and some exponent p∈N.

The OT cost associated with two distributions P1,P2 ∈P(Ξ) is then defined as

C(P1,P2) = min
π∈Π(P1,P2)

∫
Ξ2

c(ξ1, ξ2)dπ(ξ1, ξ2).

Intuitively, the OT problem on the right-hand side of the above expression seeks the cheapest

transportation plan π for morphing P1 into P2, where the cost of moving unit mass from ξ1 to ξ2

amounts to c(ξ1, ξ2). The OT problem is guaranteed to be solvable under Assumption 1 (Villani

2009, Theorem 4.1). If c(ξ1, ξ2) = dp(ξ1, ξ2) for some metric d on Ξ and some exponent p ∈N, then

C(P1,P2)
1/p is termed the p-Wasserstein distance and is denoted by Wp(P1,P2).

We are now ready to define the OT barycenter of multiple distributions. It generalizes the notion

of the Wasserstein barycenter introduced by Agueh and Carlier (2011).
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Definition 1 (OT Barycenter). An OT Barycenter P⋆ of K distributions P1, . . . ,PK ∈P(Ξ)

with associated weights λ1, . . . , λK ≥ 0 is any solution of the minimization problem

min
P∈P(Ξ)

K∑
k=1

λkC(P,Pk). (OT-BC)

If C(P,Pk) =W p
p (P,Pk), then the OT barycenters are referred to as p-Wasserstein barycenters.

Assumption 2 (OT Cost). There exists ξ0 ∈Ξ with
∫
Ξ
c(ξ0, ξk)dPk(ξk)<∞ for all k ∈ [K].

The following lemma shows that OT barycenters must exist under Assumptions 1 and 2.

Lemma 1 (OT Barycenters). Assumptions 1 and 2 ensure that problem (OT-BC) is solvable.

Proof of Lemma 1 If λk = 0 for every k ∈ [K], then any P∈P(Ξ) solves (OT-BC), and thus the

claim trivially holds. From now on we may thus assume without loss of generality that λ1 > 0. In

this case, the objective function of (OT-BC) is bounded below by λ1C(P,P1). Assumption 2 further

implies that P= δξ0 is feasible in (OT-BC), and thus C̄ =
∑K

k=1 λkC(δξ0 ,Pk)<∞ provides an upper

bound on the optimal value of (OT-BC). Taken together, these insights reveal that we can restrict

the feasible set of problem (OT-BC) to B = {P ∈ P(Ξ) : C(P,P1) ≤ C̄/λ1} without affecting its

optimal value. The set B is weakly compact by (Shafieezadeh Abadeh et al. 2023, Proposition 2.5).

Furthermore, C(P,Pk) is weakly lower semi-continuous in P for every k ∈ [K] (Clément and Desch

2008, Lemma 5.2), and thus the objective function of problem (OT-BC) is weakly lower semi-

continuous. The minimum of (OT-BC) is thus attained thanks to Weierstrass’ theorem. ■

The next theorem shows that OT barycenters can be found by solving multi-margin OT problems.

It extends an existing result for 2-Wasserstein barycenters (Agueh and Carlier 2011, Anderes et al.

2016) to general OT barycenters. We include a short proof to keep the paper self-contained.

Theorem 1 (OT Barycenters and Multi-Margin Transportation Plans). Suppose that

Assumptions 1 and 2 hold, and define ϕ : ΞK → [0,∞] and Φ : ΞK →Ξ as the optimal value function

and a measurable selector of the set-valued solution map of the minimization problem

min
ξ∈Ξ

K∑
k=1

λkc(ξ, ξk) (1)
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parametrized by ξ1, . . . , ξK ∈Ξ. Then there is an OT barycenter of P1, . . . ,PK ∈P(Ξ) representable

as P⋆ =Φ#π
⋆, where π⋆ is an optimal solution of the multi-margin OT problem

min
π∈Π(P1,...,PK)

∫
ΞK

ϕ(ξ1, . . . , ξK)dπ(ξ1, . . . , ξK). (2)

If the measurable selector Φ is unique, then every OT barycenter is representable in this form.

Proof of Theorem 1 As in Lemma 1, we may assume without loss of generality that λ1 > 0.

By Assumption 1, the transportation cost function c is lower semi-continuous and has bounded

sublevel sets. The minimum of (1) is thus attained by Weierstrass’ Theorem. In addition, the argmin

multifunction of problem (1) admits a measurable selector thanks to (Rockafellar and Wets 2009,

Corollary 14.6 and Theorem 14.37). Thus, the functions ϕ and Φ are well-defined.

Assumptions 1 and 2 imply via Lemma 1 that (OT-BC) is solvable. In the following we will

construct a sequence of optimization problems that are all equivalent to (OT-BC). As usual, we say

that two optimization problems are equivalent if any feasible solution of the first problem can be

used to construct a feasible solution to the second problem with the same (or a smaller) objective

function value and vice versa. This correspondence holds in particular for all optimal solutions (if

they exist). Thus, if one of the two equivalent problems is solvable, then so is the other one.

In a first step we note that problem (OT-BC) is equivalent to

min

K∑
k=1

λk

∫
Ξ2

c(ξ, ξk)dπk(ξ, ξk)

s.t. P∈P(Ξ), πk ∈Π(P,Pk) ∀k ∈ [K].

(BC-1)

To see this, assume first that P is feasible in (OT-BC). By (Villani 2009, Theorem 4.1), there

exists an optimal transportation plan πk ∈Π(P,Pk) with C(P,Pk) =
∫
Ξ2 c(ξ, ξk)dπk(ξ, ξk) for every

k= 1, . . . ,K. By the definition of the OT cost, it is then clear that (P, π1, . . . , πK) is feasible in (BC-1)

and attains the same objective function value as P in (OT-BC). Conversely, if (P, π1, . . . , πK) is

feasible in (BC-1), then P is feasible in (OT-BC) with the same objective function value.

In a second step we prove that problem (BC-1) is equivalent to

min

∫
ΞK+1

K∑
k=1

λkc(ξ, ξk)dπ̄(ξ, ξ1, . . . , ξK)

s.t. P∈P(Ξ), π̄ ∈Π(P,P1, . . . ,PK).

(BC-2)
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To see this, assume first that (P, π1, . . . , πK) is feasible in (BC-1). An iterative application of the

gluing lemma (Villani 2009, Chapter 1) implies that the K couplings πk ∈Π(P,Pk), k ∈ [K], can be

merged to a multi-margin transportation plan π̄ ∈ Π(P,P1, . . . ,PK) satisfying P0,k#π̄ = πk, where

the truncation operator P0,k : Ξ× Ξk → Ξ2 is defined through P0,k(ξ, ξ1, . . . , ξK) = (ξ, ξk) for every

k ∈ [K]. By the measure-theoretic change-of-variables formula, we thus have

K∑
k=1

λk

∫
Ξ2

c(ξ, ξk)dπk(ξ, ξk) =

∫
ΞK+1

K∑
k=1

λkc(ξ, ξk)dπ̄(ξ, ξ1, . . . , ξK).

Hence, (P, π̄) is feasible in (BC-2) and attains the same objective function value as (P, π1, . . . , πK).

Conversely, if (P, π̄) is feasible in (BC-2), then (P, π1, . . . , πK) with πk = P0,k#π̄ for every k ∈ [K] is

feasible in (BC-1) and attains the same objective function value as (P, π̄).

Next, we show that problem (BC-2) is equivalent to

min

∫
ΞK

∫
Ξ

K∑
k=1

λkc(ξ, ξk)dπξ|ξ1,...,ξK (ξ|ξ1, . . . , ξK)dπ(ξ1, . . . , ξK)

s.t. π ∈Π(P1, . . . ,PK), πξ|ξ1,...,ξK ∈Pξ|ξ1,...,ξK ,

(BC-3)

where Pξ|ξ1,...,ξK denotes the family of all transition kernels πξ|ξ1,...,ξK satisfying the following two

conditions. First, πξ|ξ1,...,ξK (·|ξ1, . . . , ξK) is a probability distribution on Ξ for all (ξ1, . . . , ξK) ∈ ΞK .

In addition, πξ|ξ1,...,ξK (B|·) is a Borel-measurable function on ΞK for all Borel sets B ⊆Ξ.

To prove the equivalence of (BC-2) and (BC-3), assume first that (P, π̄) is feasible in (BC-2).

Next, define π ∈ Π(P1, . . . ,PK) as the marginal distribution of (ξ1, . . . , ξK) under π̄, and define

πξ|ξ1,...,ξK ∈ Pξ|ξ1,...,ξK as the regular conditional distribution of ξ given (ξ1, . . . , ξK) under π̄, which

exists thanks to (Dudley 2002, Theorem 10.2.2). Thus, (π,πξ|ξ1,...,ξK ) is feasible in (BC-3). By the law

of total probability, (P, π̄) and (π,πξ|ξ1,...,ξK ) attain the same objective function values. Conversely,

select any (π,πξ|ξ1,...,ξK ) feasible in (BC-3), and define π̄ ∈P(ΞK+1) through

π̄(B) =

∫
ΞK

∫
Ξ

1(ξ,ξ1,...,ξK)∈B dπξ|ξ1,...,ξK (ξ|ξ1, . . . , ξK)dπ(ξ1, . . . , ξK)

for every Borel set B ⊆ΞK+1. In addition, set P= P0#π̄, where P0 : Ξ×ΞK →Ξ is defined through

P0(ξ, ξ1, . . . , ξK) = ξ. We thus have π̄ ∈Π(P,P1, . . . ,PK), implying that (P, π̄) is feasible in (BC-2).

One also easily verifies that (π,πξ|ξ1,...,ξK ) and (P, π̄) attain the same objective function values.
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We are now ready to prove that problem (BC-3) is equivalent to

min
π∈Π(P1,...,PK)

∫
ΞK

min
πξ∈P(Ξ)

∫
Ξ

K∑
k=1

λkc(ξ, ξk)dπξ(ξ)dπ(ξ1, . . . , ξK). (BC-4)

Note first that (BC-4) is well defined. Indeed the inner minimization problem over the distribution πξ

in (BC-4) can be reformulated as

min
πξ∈P(Ξ)

∫
Ξ

K∑
k=1

λkc(ξ, ξk)dπξ(ξ) =min
ξ0∈Ξ

K∑
k=1

λkc(ξ0, ξk) = ϕ(ξ1, . . . , ξK), (3)

where the first equality holds because the integral with respect to πξ is minimized by the Dirac

distribution δΦ(ξ1,...,ξK) that places unit mass on the minimizer Φ(ξ1, . . . , ξK) of the integrand, while

the second equality follows from the definition of ϕ. By Assumption 2, the optimal value of the inner

minimization problem in (BC-4) is thus integrable under every π ∈Π(P1, . . . ,PK).

The equivalence of (BC-3) and (BC-4) follows from a standard interchangeability principle; see,

e.g., (Shapiro 2017, Proposition 2.1). As the inner problem in (BC-4) is solved by a Dirac distribu-

tion, however, it is easier to prove this equivalence directly instead of leveraging an abstract result.

To this end, assume first that (π,πξ|ξ1,...,ξK ) is feasible in (BC-3). Hence, π is feasible in (BC-4).

Note also that, for every fixed (ξ1, . . . , ξK), the probability distribution πξ|ξ1,...,ξK (·|ξ1, . . . , ξK) is

feasible (but generally suboptimal) in the inner problem in (BC-4). Thus, the objective function

value of π in (BC-4) is smaller than or equal to that of (π,πξ|ξ1,...,ξK ) in (BC-3). Conversely, if π

is feasible in (BC-4), then (π,πξ|ξ1,...,ξK ) is feasible in (BC-3), where πξ|ξ1,...,ξK is defined through

πξ|ξ1...,ξK (·|ξ1, . . . , ξK) = δΦ(ξ1,...,ξK)(·). Note that πξ|ξ1...,ξK defined in this way satisfies all properties

of a transition kernel because Φ is measurable. By construction, the objective function values of

(π,πξ|ξ1,...,ξK ) in problem (BC-4) and of π in problem (BC-3) match.

Substituting (3) into (BC-4) shows that (BC-4) is equivalent to (2). Hence, the orignal OT

barycenter problem (OT-BC) is equivalent to (2), as well, and (2) inherits solvability from (OT-BC).

Define now P⋆ =Φ#π
⋆, where π⋆ is any minimizer of the multi-margin OT problem (2). It remains

to be shown that P⋆ solves (OT-BC). Indeed, for any Borel set B ⊆Ξ we have

P⋆(B) =Φ#π
⋆(B) = π⋆(Φ−1(B))
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=

∫
ΞK

δΦ(ξ1,...,ξK)(B)dπ⋆(ξ1, . . . , ξK)

=

∫
ΞK

∫
B

dπ⋆
ξ|ξ1...,ξK (ξ|ξ1, . . . , ξK)dπ

⋆(ξ1, . . . , ξK)

=

∫
B×ΞK

dπ̄⋆(ξ, ξ1, . . . , ξK) = P0#π̄
⋆(B),

where the transition kernel π⋆
ξ|ξ1...,ξK is defined through π⋆

ξ|ξ1...,ξK (·|ξ1, . . . , ξK) = δΦ(ξ1,...,ξK)(·), and

the joint distribution π̄⋆ is obtained by combining the marginal distribution π⋆ with the conditional

distribution π⋆
ξ|ξ1...,ξK . As the Borel set B ⊆ Ξ was chosen arbitrarily, we have thus shown that

P⋆ = P0#π̄
⋆. The equivalences between the different optimization problems established above lead to

the following conclusion. As π⋆ solves (2) and (BC-4) by assumption, (π⋆, π⋆
ξ|ξ1...,ξK ) solves (BC-3),

(P⋆, π̄⋆) solves (BC-2), and P⋆ solves (OT-BC). In addition, it is now easy to see that if Φ is unique,

then every solution of (OT-BC) must be of the form P⋆ =Φ#π
⋆ for some solution π⋆ of (2). ■

Agueh and Carlier (2011) prove that the 2-Wasserstein barycenter is unique if the distributions

P1, . . . ,PK assign probability zero to all sets of Hausdorff dimension less than d. Conversely, The-

orem 1 suggests that the OT barycenter is not unique if either the multi-margin transportation

plan π⋆ or the minimizer map Φ fails to be unique. We illustrate each case with an example. These

examples are based on discrete distributions, which are supported on sets of Hausdorff dimension 0.

Example 2 (Non-Unique Multi-Margin Transportation plan). The OT barycenter of

the distributions P1 =
1
2
(δ(1,1)+δ(0,0)) and P2 =

1
2
(δ(0,1)+δ(1,0)) in P2(R2) with λ1 = λ2 = 1, d(ξ, ξ′) =

∥ξ − ξ′∥2 and p= 2 is not unique. Indeed, while the minimizer map Φ(ξ1, ξ2) =
1
2
(ξ1 + ξ2) of prob-

lem (1) is unique, both π⋆1 = 1
2
(δ((1,1),(1,0)) + δ((0,0),(0,1))) as well as π⋆2 = 1

2
(δ((1,1),(0,1)) + δ((0,0),(1,0)))

solve the multi-margin OT problem (2). By Theorem 1, both P⋆1 = 1
2
(δ(1,0.5) + δ(0,0.5)) as well as

P⋆2 = 1
2
(δ(0.5,1) + δ(0.5,0)) thus constitute minimizers of the OT barycenter problem (OT-BC). ▲

Example 3 (Non-Unique Minimizer Map). The OT barycenter of two distributions P1 ̸= P2

in P2(R2) with λ1 = λ2 = 1 and d(ξ, ξ′) = ∥ξ − ξ′∥2 is not unique. Indeed, while the multi-margin

transportation plan π⋆ that solves (2) may or may not be unique in this situation, both Φ⋆1(ξ1, ξ2) =

ξ1 and Φ⋆2(ξ1, ξ2) = ξ2 constitute minimizer maps for problem (1). As π⋆ ∈ Π(P1,P2), Theorem 1

thus implies that both P1 =Φ⋆1
# π

⋆ and P2 =Φ⋆2
# π

⋆ solve the OT barycenter problem (OT-BC). ▲
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Theorem 1 also implies that all 2-Wasserstein barycenters of two distributions that can be obtained

by changing their weights reside on the 2-Wasserstein geodesic between these distributions.

Proposition 1 (2-Wasserstein Barycenters Trace Out Geodesics). If P1,P2 ∈ P2(Rd)

are continuous distributions, then the 2-Wasserstein barycenter of P1 and P2 with respective weights

λ and 1−λ traces out the 2-Wasserstein geodesic between P1 and P2 as λ is swept from 0 to 1.

Proof of Proposition 1 As P1 and P2 are continuous, the 2-Wasserstein geodesic between P1

and P2 coincides with the family of all probability distributions of the form (Tλ)#π
⋆ for λ ∈ [0,1],

where Tλ(ξ1, ξ2) = λξ1 + (1− λ)ξ2, and π⋆ solves the OT problem between P1 and P2 with squared

Euclidean transportation cost (Panaretos and Zemel 2020, p. 46). Using the notation of Theorem 1

with K = 2, λ1 = λ and λ2 = 1−λ, one readily verifies that Φ(ξ1, ξ2) = Tλ(ξ1, ξ2) and

ϕ(ξ1, ξ2) =min
ξ∈Rd

λ∥ξ1 − ξ∥22 +(1−λ)∥ξ2 − ξ∥22 = λ(1−λ)∥ξ1 − ξ2∥22

are the unique minimizer and the optimal value of problem (1), respectively. As ϕ is a nonnegative

multiple of the squared Euclidean transportation cost, π⋆ solves the multi-margin OT problem (2).

Theorem 1 thus implies that (Tλ)#π
⋆ constitutes a 2-Wasserstein barycenter of P1 and P2 with

weights λ and 1− λ, respectively. As P1 and P2 are continuous, this barycenter is unique (Agueh

and Carlier 2011). Hence, the barycenters of P1 and P2 trace out the geodesic from P1 to P2. ■

To close this section, we show that if distances between distributions are measured by a Wasser-

stein distance of order 1 or 2, then the resulting OT barycenters may have undesirable properties. We

first show that the 1-Wasserstein barycenter of K = 2 distributions coincides with the distribution

that has the larger weight and is degenerate if both distributions have the same weight.

Corollary 1 (1-Wasserstein Barycenter of Two Distributions). If P1,P2 ∈ P(Ξ) sat-

isfy
∫
Ξ
∥ξ∥dPk(ξ)<∞ for k = 1,2 and if d(ξ, ξ′) = ∥ξ− ξ′∥, then a 1-Wasserstein barycenter of P1

and P2 with respective weights λ1, λ2 ≥ 0 is given by P1 if λ1 ≥ λ2 and by P2 if λ1 ≤ λ2.

Proof of Corollary 1 The claim follows directly from Theorem 1. Indeed, if λ1 ≥ λ2, then

Φ(ξ1, ξ2) = ξ1 is a measurable selector of the argmin multifunction of problem (1). Thus, if π⋆ solves

problem (2), then ξ1#π⋆ = P1 solves the OT barycenter problem (OT-BC) thanks to Theorem 1. ■
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Corollary 1 suggests that 1-Wasserstein barycenters have little conceptual appeal. In contrast,

2-Wasserstein barycenters are widely used in computer graphics (Solomon et al. 2015), machine

learning (Dognin et al. 2019, Montesuma and Mboula 2021), Bayesian inference (Srivastava et al.

2018) and statistics (Claici et al. 2018, Barré et al. 2020) etc. In all of these applications, however, the

reference distributions P1, . . . ,PK are typically unknown. Given Nk independent samples {ξ̂k,j}Nk
j=1

from Pk, k= 1, . . . ,K, one can approximate the unobservable distribution Pk with the corresponding

empirical distribution P̂k =
1
Nk

∑Nk
j=1 δξ̂k,j . The unknown 2-Wasserstein barycenter P⋆ of P1, . . . ,PK

can thus be estimated by the empirical 2-Wasserstein barycenter P̂ of P̂1, . . . , P̂K , which is itself a

discrete distribution. The next proposition shows that this estimator is biased. In this proposition,

we use P -VAR(ξ) = EP[∥ξ −EP[ξ]∥22] to denote the trace of the covariance matrix of ξ ∈ Rd under

the distribution P ∈ P2(Ξ). For brevity, we will sometimes refer to P -VAR(ξ) as the variance of ξ.

It is easy to verify that P -VAR(ξ) =minξ0∈ΞEP[∥ξ− ξ0∥22], where the minimization problem over ξ0

is solved by EP[ξ]. This formula shows that P -VAR(ξ) is concave in P.

Proposition 2 (Empirical OT Barycenters are Biased). Set c(ξ1, ξ2) = ∥ξ1 − ξ2∥22 and

Ξ=Rd, and select λ1, . . . , λK > 0. Define P⋆ as the OT barycenter of K mutually different continu-

ous distributions P1, . . . ,PK ∈P2(Ξ). Similarly, define P̂ as an OT barycenter of P̂1, . . . , P̂K, where

P̂k denotes the empirical distribution corresponding to Nk random samples from Pk, k ∈ [K]. Then,

we have E[P̂ -VAR(ξ)]< P⋆ -VAR(ξ), where the expectation is with respect to all samples.

As the transportation cost function c(ξ1, ξ2) is quadratic and the distributions P1, . . . ,PK are

square-integrable, Assumptions 1 and 2 both hold under the conditions of Proposition 2. Hence, P⋆

exists thanks to Lemma 1, and it is unique thanks to (Agueh and Carlier 2011, Proposition 3.5).

The empirical OT barycenter P̂ trivially exists because P̂1, . . . , P̂K are discrete.

Proof of Proposition 2 The proof consists of two parts. In the first part we use Theorem 1

to show that the multi-margin transportation plan π⋆ that induces P⋆ has a variance-maximizing

property. In the second part we exploit this variance-maximizing property to prove that P̂ is biased.
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Part I Assume without loss of generality that
∑K

k=1 λk = 1, and let π ∈ Π(P1, . . . ,PK) be any

multi-martin transportation plan feasible in (2). Next, construct a joint distribution Qπ of the ran-

dom vector (ξ, ξ1, . . . , ξK)∈ΞK+1 under which the marginal distribution of (ξ1, . . . , ξK) is given by π,

and the distribution of ξ conditional on (ξ1, . . . , ξK) is given by
∑K

k=1 λkδξk . Note that the marginal

distribution
∑K

k=1 λkPk and the variance Qπ -VAR(ξ) of ξ under Qπ are actually independent of π.

Using the same notation as in Theorem 1, one readily verifies that

Qπ -VAR(ξ|ξ1, . . . , ξK) =min
ξ0∈Ξ

K∑
k=1

λk∥ξ0 − ξk∥22 = ϕ(ξ1, . . . , ξK)

and that the minimization problem over ξ0 is uniquely solved by EQπ [ξ|ξ1, . . . , ξK ] = Φ(ξ1, . . . , ξK).

By the law of total variance, we thus have

Qπ -VAR(ξ) =EQπ [Qπ -VAR(ξ|ξ1, . . . , ξK)] +Qπ -VAR(EQπ [ξ|ξ1, . . . , ξK ])

=EQπ [ϕ(ξ1, . . . , ξK)] +Qπ -VAR(Φ(ξ1, . . . , ξK))

=Eπ[ϕ(ξ1, . . . , ξK)] +Φ#π -VAR(ξ),

(4)

where the last equality holds because π is the marginal of (ξ1, . . . , ξK) under Qπ, which in turn

implies that the pushforward distribution Φ#π is the marginal of Φ(ξ1, . . . , ξK) under π. As the

minimizer function Φ is unique, Theorem 1 implies that the OT barycenter P⋆ must coincide with

Φ#π
⋆ for some solution π⋆ of the multi-margin OT problem (2), which minimizes Eπ[ϕ(ξ1, . . . , ξK)]

across all π ∈Π(P1, . . . ,PK). Recall now that Qπ -VAR(ξ) is independent of π. We may thus conclude

from (4) that π⋆ must maximize the variance Φ#π -VAR(ξ) across all π ∈Π(P1, . . . ,PK).

Part II We now use the insights of Part I to prove that P̂ is biased. To this end, let π̂ ∈

Π(P̂1, . . . , P̂K) be a multi-margin transportation plan with P̂=Φ#π̂. Note that π̂ exists thanks to

Theorem 1. Note also that the discrete distributions P̂ and π̂ constitute random objects because

they depend on the random samples underlying the empirical distributions P̂1, . . . , P̂K . By (Rock-

afellar and Wets 2009, Theorem 14.37), we may assume without loss of generality that both the

locations as well as the probabilities of the atoms of P̂ and π̂ depend measurably on these samples.1

1 Strictly speaking, this is an assumption about P̂ and should be mentioned in the proposition statement. As it can

be imposed without loss of generality, we hide it in the proof for better readability of the proposition statement.
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Next, define the distribution π=E[π̂] through π(B) =E[π̂(B)] for every Borel set B ⊆ΞK , which is

well-defined because π̂(B) is a nonnegative measurable function of the samples. It is easy to verify

that π ∈Π(P1, . . . ,PK), that is, π is feasible in (2). In summary, we may conclude that

E[P̂ -VAR(ξ)] =E[Φ#π̂ -VAR(ξ)] =E [π̂ -VAR(Φ(ξ1, . . . , ξK))]

≤E[π̂] -VAR(Φ(ξ1, . . . , ξK)) = π -VAR(Φ(ξ1, . . . , ξK)) =Φ#π -VAR(ξ)

<Φ#π
⋆ -VAR(ξ) = P⋆ -VAR(ξ).

Here, the first inequality follows from Jensen’s inequality, which applies because the variance of any

random vector is concave in that random vector’s distribution. The second inequality follows from

the variance-maximizing property of π⋆ established in Part I. This inequality is strict if π⋆ ̸= π.

Indeed, the multi-margin OT plan π⋆ is the unique minimizer of Eπ[ϕ(ξ1, . . . , ξK)] (by (Agueh and

Carlier 2011, Theorem 4.1)) and therefore also the unique maximizer of Φ#π -VAR(ξ) (by Part I).

It remains to be shown that π⋆ ̸= π = E[π̂]. By (Agueh and Carlier 2011, Theorem 4.1) and

(Gangbo and Święch 1998, Theorem 2.1), there exists a bijective transformation T : Ξ → Ξ with

T#P1 = P2 and π⋆(ξ2 = T (ξ1)) = 1. Select now two Borel sets A,B ⊆ Ξ with A ∩ B = ∅ and

P1(A), P1(B)> 0. Such sets exist because P1 is continuous. We thus have

π⋆(ξ1 ∈A, ξ2 ∈ T (B)) = π⋆(ξ1 ∈A, ξ1 ∈B) = 0,

where the first equality holds because π⋆(ξ2 = T (ξ1)) = 1 and T is bijective, while the second

equality holds because A ∩ B = ∅. Next, observe that the event in which P̂1 is supported on A

and P̂2 is supported on T (B) has a strictly positive probability equal to P1(A)
N1P2(T (B))N2 =

P1(A)
N1P1(B)N2 > 0. In this event, we have π̂(ξ1 ∈ A, ξ2 ∈ T (B)) = 1 because P̂1 and P̂2 are the

marginal distributions of ξ1 and ξ2 under π̂, respectively. This reasoning implies that

E[π̂](ξ1 ∈A, ξ2 ∈ T2(B)) =E[π̂(ξ1 ∈A, ξ2 ∈ T2(B))]≥ P1(A)
N1P2(T (B))N2 > 0.

We thus have E[π̂](ξ1 ∈A, ξ2 ∈ T2(B))>π⋆(ξ1 ∈A, ξ2 ∈ T2(B)), which implies that π⋆ ̸=E[π̂]. ■

Having covered the basic theory of OT barycenters, we now turn to data-driven decision-making.
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3. Multi-Source DRO

From now on we consider a stochastic optimization problem of the form

min
θ∈Θ

∫
Ξ

ℓ(θ, ξ)dP(ξ), (5)

which minimizes the expected value of an uncertainty-affected loss function ℓ : Ξ×Θ→ R over a

feasible set Θ⊆Rn. We henceforth assume that ℓ(θ, ξ) is lower semi-continuous in θ for every fixed

ξ ∈ Ξ and upper semi-continuous in ξ for every fixed θ ∈ Θ. We also assume that Θ is closed. In

most applications of stochastic programming, the target distribution P, which is needed to evaluate

the expected loss of any fixed decision θ, is unknown. Given samples from P, however, one can

approximate P with an estimated distribution P̂ constructed from the data. Solving (5) under P̂

instead of P may lead to overfitting effects if data is scarce. That is, the optimal solution computed

under P̂ may underperform under P, a phenomenon known as the optimizer’s curse (Smith and

Winkler 2006). As a possible remedy, it has been proposed to solve a DRO problem of the form

inf
θ∈Θ

sup
P∈Bε(P̂)

∫
Ξ

ℓ(θ, ξ)dP(ξ), (6)

where Bε(P̂) = {P∈P(Ξ) : C(P, P̂)≤ ε} denotes the set of all distributions whose OT distance to P̂

is at most ε≥ 0 (Pflug et al. 2012). The DRO problem (6) pretends that an evil adversary can morph

the estimated distribution P̂ into some undesirable shape at a finite transportation budget ε. It turns

out that preparing for destructive actions of a fictitious adversary can mitigate the optimizer’s curse.

The statistical and computational properties of OT-based DRO are studied in (Mohajerin Esfahani

and Kuhn 2018, Zhao and Guan 2018, Blanchet and Murthy 2019, Gao and Kleywegt 2023).

In this paper we address more challenging decision-making situations in which data from the

target distribution P is extremely scarce or even unavailable. Instead, we assume to have access to

data from K > 1 source distributions Pk ∈ P(Ξ), k ∈ [K], which are believed to be similar to P.

Each source distribution Pk can thus be approximated by an estimated distribution P̂k ∈ P(Ξ)

constructed from the respective source data. In this situation, one might solve the DRO problem (6)

for a reference distribution P̂ that is defined as a mixture or as an OT barycenter of the reference
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distributions P̂k, k ∈ [K] (Lau and Liu 2022). However, mixtures often fail to retain stylized features

of the target distribution (see Example 1), and OT barycenters are plagued by the shortcomings

highlighted in Section 2. This prompts us to introduce the multi-source DRO problem

inf
θ∈Θ

sup
P∈∩K

k=1
Bεk

(P̂k)

∫
Ξ

ℓ(θ, ξ)dP(ξ), (MS-DRO)

which seeks to minimize the worst-case expected loss across all distributions in the intersection of K

OT ambiguity sets. This ambiguity set contains all distributions that can be obtained by reshaping

the reference distribution P̂k at a transportation cost of at most εk for every k ∈ [K].

In the remainder of this section we identify conditions under which the multi-source DRO prob-

lem (MS-DRO) is equivalent to a finite convex program susceptible to numerical solution. To this

end, we first dualize the inner maximization problem over P to obtain an equivalent minimization

problem that can be combined with the outer minimization over θ. For ease of exposition, we tem-

porarily hide the dependence of the loss function on θ, in which case the inner maximization problem

in (MS-DRO) simplifies to the following primal uncertainty quantification problem

sup
P∈∩K

k=1
Bεk

(P̂k)

∫
Ξ

ℓ(ξ)dP(ξ). (P-UQ)

Our convex reformulation results rely on the assumption that all reference distributions are discrete.

Assumption 3 (Reference Distributions). The k-th reference distribution is representable

as P̂k =
∑Nk

j=1 pk,jδξ̂k,j with atoms {ξ̂k,j}Nk
j=1 and strictly positive probabilities {pk,j}Nk

j=1 for all k ∈ [K].

In view of Assumption 3 it is useful to define A=×K
k=1[Nk] as a set ofK-dimensional multi-indices.

Each α∈A uniquely identifies a combination of atoms from the K discrete reference distributions.

In addition, we will also need the following growth condition on the loss function.

Assumption 4 (Growth Condition). There exist ξ′ ∈ Ξ, g′ > 0 and p′ ∈ N such that ℓ(ξ) ≤

g′(1+ dp
′
(ξ, ξ′)) for all ξ ∈Ξ, where the d is the same metric as in Assumption 1.

We are now ready to derive the dual of the uncertainty quantification problem (P-UQ). In the

following we use E to denote the set of all ε= (ε1, . . . , εK)∈RK
+ for which (P-UQ) is feasible.



Rychener, Esteban-Pérez, Morales and Kuhn: Wasserstein DRO with Heterogeneous Data Sources
21

Theorem 2 (Strong Duality). If Assumptions 1, 3 and 4 hold with p′ ≤ p, then the primal

uncertainty quantification problem (P-UQ) admits the dual

inf
K∑

k=1

εkλk +
K∑

k=1

Nk∑
j=1

pk,j γk,j

s.t. λk ∈R+, γk ∈RNk ∀k ∈ [K]

sup
ξ∈Ξ

ℓ(ξ)−
K∑

k=1

λkc(ξ, ξ̂k,αk
)≤

K∑
k=1

γk,αk
∀α∈A.

(D-UQ)

Strong (i.e., gap-free) duality holds for all ε /∈ ∂E.

If each reference distribution has the same number of atoms, that is, if Nk =N for all k ∈ [K],

then |A|=NK . Hence, the number of constraints in problem (D-UQ) grows exponentially with K.

The proof of Theorem 2 relies on a decomposability result for multi-margin transportation plans.

Lemma 2 (Multi-Margin Transportation Plans). If Assumption 3 holds, then for any π̄ ∈

Π(P, P̂1, . . . , P̂K) there exist finite Borel measures να ∈M+(Ξ), α∈A, with π̄=
∑

α∈A να⊗δα, where

δα is a shorthand for the Dirac distribution on ΞK that concentrates unit mass at (ξ̂1,α1
, . . . , ξ̂K,αK

).

Proof of Lemma 2 Fix an arbitrary π̄ ∈Π(P, P̂1, . . . , P̂K). Next, for any α∈A, construct a non-

negative measure να ∈M+(Ξ) by setting να(B) = π̄(ξ ∈ B, ξk = ξ̂k,αk
∀k = 1, . . . ,K) for all Borel

sets B ⊆Ξ. By construction, να thus constitutes a rescaled probability measure. As any probability

measure is a Radon measure, we may conclude that να is indeed a Radon measure for every α∈A. It

remains to be shown that the measures να, α∈A, constructed in this way satisfy π̄=
∑

α∈A να⊗δα.

To this end, note that for any Borel sets B,B1, . . . ,BK ⊆Ξ we have

π̄ (ξ ∈B, ξk ∈Bk ∀k) =
∑
α∈A:

ξ̂k,αk
∈Bk∀k

π̄
Ä
ξ ∈B, ξk = ξ̂k,αk

∀k
ä

=
∑
α∈A:

ξ̂k,αk
∈Bk∀k

να(ξ ∈B) =
∑
α∈A

να(ξ ∈B)δα(ξk ∈Bk ∀k),

where the first equality follows from the law of total probability, while the second and the third

equalities exploit the definitions of να and δα, respectively. The identity π̄ =
∑

α∈A να ⊗ δα now

follows because the sets of the form B×B1 × · · ·×BK generate the Borel σ-algebra on ΞK+1. ■
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Proof of Theorem 2. Recall that C(P, P̂k) denotes the optimal value of a minimization problem

over transportation plans and is solvable thanks to Assumption 1; see (Villani 2009, Theorem 4.1).

Consequently, the constraint C(P, P̂k)≤ εk is equivalent to the requirement that there exists πk ∈

Π(P, P̂k) with
∫
Ξ2 c(ξ, ξk)dπk(ξ, ξk)≤ εk. This in turn implies that problem (P-UQ) is equivalent to

sup

∫
Ξ

ℓ(ξ)dP(ξ)

s.t. P∈P(Ξ), πk ∈Π(P, P̂k) ∀k ∈ [K]∫
Ξ2

c(ξ, ξk)dπk(ξ, ξk)≤ εk ∀k ∈ [K].

(7)

Next, fix any distribution P∈P(Ξ) and transportation plans πk ∈Π(P, P̂k) for k ∈ [K]. An iterative

application of the Gluing Lemma (Villani 2009, Chapter 1) then shows that there must exist a

multi-margin transportation plan π̄ ∈Π(P, P̂1, . . . , P̂K) with P0,k#π̄= πk for all k ∈ [K], where P0,k :

ΞK+1 →Ξ2 is defined as usual through P0,k(ξ, ξ1, . . . , ξK) = (ξ, ξk). Appending π̄ as a decision variable

to problem (7) and enforcing the constraints that link π̄ to πk, we obtain

sup

∫
Ξ

ℓ(ξ)dP(ξ)

s.t. P∈P(Ξ), π̄ ∈Π(P, P̂1, . . . , P̂K), πk ∈Π(P, P̂k) ∀k ∈ [K]

P0,k#π̄= πk ∀k ∈ [K]∫
Ξ×Ξ

c(ξ, ξk)dπk(ξ, ξk)≤ εk ∀k ∈ [K].

By the measure-theoretic change-of-variables formula, problem (P-UQ) is thus equivalent to

sup

∫
Ξ

ℓ(ξ)dP(ξ)

s.t. P∈P(Ξ), π̄ ∈Π(P, P̂1, . . . , P̂K)∫
ΞK+1

c(ξ, ξk)dπ̄(ξ, ξ1, . . . , ξK)≤ εk ∀k ∈ [K].

(8)

By Lemma 2, every multi-margin transportation plan π̄ ∈ Π(P, P̂1, . . . , P̂K) can be represented as

π̄ =
∑

α∈A να ⊗ δα for some finite Borel measures να ∈M+(Ξ), α ∈A, where δα is a shorthand for
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the Dirac point mass at (ξ̂1,α1
, . . . , ξ̂K,αK

). Thus, problem (8) is equivalent to

sup
∑
α∈A

∫
Ξ

ℓ(ξ)dνα(ξ)

s.t. να ∈M+(Ξ) ∀α∈A∑
α∈A:
αk=j

∫
Ξ

dνα(ξ) = pk,j ∀j ∈ [Nk], ∀k ∈ [K]

∑
α∈A

∫
Ξ

c(ξ, ξ̂k,αk
)dνα(ξ)≤ εk ∀k ∈ [K],

(9)

which can be viewed as a semi-infinite linear program over |A|=
∏K

k=1Nk Borel measures.

Assigning Lagrange multipliers γk,j ∈ R and λk ∈ R+ to the probability matching and OT con-

straints, respectively, the Lagrangian dual of problem (9) can be represented as

inf
λ≥0, γ

sup
{να}α⊆M+(Ξ)

K∑
k=1

λkεk +

K∑
k=1

Nk∑
j=1

γk,j pk,j −
K∑

k=1

λk

(∑
α∈A

∫
Ξ

c(ξ, ξ̂k,αk
)dνα(ξ)

)

−
K∑

k=1

Nk∑
j=1

γk,j
∑
α∈A:
αk=j

∫
Ξ

dνα(ξ)+
∑
α∈A

∫
Ξ

ℓ(ξ)dνα(ξ).

(10)

Routine rearrangements can then be used to show that problem (10) is equivalent to

inf
λ≥0, γ

K∑
k=1

εkλk +

K∑
k=1

Nk∑
j=1

pk,j γk,j +
∑
α∈A

sup
να∈M+(Ξ)

∫
Ξ

(
ℓ(ξ)−

K∑
k=1

λkc(ξ, ξ̂k,αk
)−

K∑
k=1

γk,αk

)
dνα(ξ).

Note that the supremum over να evaluates to infinity unless the following robust constraint holds.

ℓ(ξ)−
K∑

k=1

λkc(ξ, ξ̂k,αk
)−

K∑
k=1

γk,αk
≤ 0 ∀ξ ∈Ξ

If this robust constraint holds, on the other hand, then the supremum over να vanishes. Hence, the

dual problem (10) is indeed equivalent to (D-UQ).

It remains to be shown that strong duality holds. Note first that, as Assumptions 1 and 4 hold

for some p′ ≤ p, problem (P-UQ) and its equivalent reformulation (9) cannot be unbounded, and

problem (D-UQ) is guaranteed to be feasible. In addition, the optimal values of (9) and (D-UQ)

are ostensibly concave in ε. Using now standard perturbation arguments, one can show that these

functions coincide and that strong duality holds for all ε ̸= ∂E (Rockafellar 1974, Shapiro 2001). ■
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Problem (D-UQ) can be viewed as a robust optimization problem with exponentially many robust

constraints indexed by α∈A. Each constraint involves an embedded maximization problem over all

uncertainty realizations ξ ∈Ξ, which is generically hard. Under the following convexity assumption,

however, the robust constraints can be reformulated in terms of finitely many convex constraints.

Assumption 5 (Convexity). The support set Ξ is convex, the transportation cost function

c(ξ, ξ′) is convex in ξ for every fixed ξ′ ∈ Ξ, and the loss function is representable as ℓ(ξ) =

maxl∈[L] ℓl(ξ) for some concave component functions ℓl : Ξ→R, l ∈ [L].

The next theorem follows from now standard reformulation techniques developed in (Ben-Tal

et al. 2015, Zhen et al. 2023) and is therefore stated without proof.

Theorem 3 (Reformulation as a Finite Convex Program). If Assumption 5 holds, then

the dual uncertainty quantification problem (D-UQ) is equivalent to the finite convex program

inf
K∑

k=1

εkλk +
K∑

k=1

Nk∑
j=1

pk,j γk,j

s.t. λk ∈R+, γk ∈RNk , uα,l ∈Rd, vα,l ∈Rd, wα,l,k ∈Rd ∀α∈A, ∀k ∈ [K], ∀l ∈ [L]

[−ℓl]∗(uα,l)+σΞ(vα,l)+

K∑
k=1

λkc
∗1
Å
wα,l,k

λk

, ξ̂k,αk

ã
≤

K∑
k=1

γk,αk
∀α∈A, ∀l ∈ [L]

uα,l + vα,l +
K∑

k=1

wα,l,k = 0 ∀α∈A, ∀l ∈ [L],

(11)

where c∗1(u, ξ̂) is the convex conjugate of the function c(ξ, ξ̂) with respect to its first argument ξ.

We emphasize that problem (11) is indeed convex because the conjugate of the convex component

function −ℓl, the support function of the convex set Ξ and the perspective of the partial conjugate of

the convex cost function c are all convex. However, the number of decision variables and constraints

of problem (11) scales with |A| and is thus exponential in the number K of reference distributions.

The following corollary derives a simplification of problem (11) under polyhedrality conditions.
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Corollary 2 (Piecewise Affine Loss Function). Suppose that Ξ = {ξ : Cξ ≤ g} for some

C ∈Rm×d and g ∈Rm, c(ξ, ξ′) = ∥ξ− ξ′∥p for some norm ∥ · ∥ on Rd and exponent p∈N∪{∞} and

that ℓ(ξ) =maxl∈[L]⟨al, ξ⟩+ bl for some al ∈Rd and bl ∈R, l ∈ [L]. Then, problem (11) simplifies to

inf
K∑

k=1

εkλk +
K∑

k=1

Nk∑
j=1

pk,j γk,j

s.t. λk ∈R+, γk ∈RNk , zα,l ∈Rm
+ , wα,l,k ∈Rd ∀α∈A, ∀k ∈ [K], ∀l ∈ [L]

bl +
K∑

k=1

Å
⟨wα,l,k, ξ̂k,αk

⟩+φ(q)λk

∥∥∥∥wα,l,k

λk

∥∥∥∥q
∗

ã
+ ⟨zα,l, g⟩ ≤

K∑
k=1

γk,αk
∀α∈A, ∀l ∈ [L]

al −CT zα,l =
K∑

k=1

wα,l,k ∀α∈A, ∀l ∈ [L]

where ∥·∥∗ is the norm dual to ∥·∥, q ∈N∪{∞} is the conjugate index of p satisfying 1/p+1/q= 1,

and φ(q) = (q− 1)q−1/qq for q > 1 and φ(1) = 1.

Note that Assumption 5 is automatically satisfied under the conditions of Corollary 2. Note also

that Corollary 2 extends (Mohajerin Esfahani and Kuhn 2018, Corollary 5.1) and (Zhen et al. 2023,

§ 6) to K > 1. The proof of Corollary 2 relies on now standard techniques and is thus omitted.

In the remainder of this section we will show that problem (P-UQ) admits a worst-case distribution

with (sparse) discrete support.

Proposition 3 (Sparse Worst-Case Distribution). If Assumptions 1, 3 and 4 hold, then

problem (P-UQ) is solved by a discrete distribution supported on at most 1+
∑K

k=1Nk points.

Proposition 3 can be seen as a generalization of (Gao and Kleywegt 2023, Corollary 2), which

focuses on the special case whenK = 1; see also (Yue et al. 2022, Theorem 4). It is perhaps surprising

that problem (P-UQ) admits a worst-case distribution with only O(
∑K

k=1Nk) atoms even though

the convex reformulation (11) of (P-UQ) involves O(
∏K

k=1Nk) variables and constraints.

Proof of Proposition 3 Assumptions 1, 3 and 4 imply via a straightforward generalization of

(Yue et al. 2022, Theorem 3) that (P-UQ) is solvable. In addition, from the proof of Theorem 2
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we know that (P-UQ) is equivalent to problem (8). By using the definition of Π(P, P̂1, . . . , P̂K) and

eliminating the decision variable P, one then easily verifies that problem (8) is equivalent to

sup

∫
ΞK+1

ℓ(ξ)dπ̄(ξ, ξ1, . . . , ξK)

s.t. π̄ ∈M+(Ξ
K+1)∫

ΞK+1

dπ̄(ξ, ξ1, . . . , ξK) = 1∫
ΞK+1

1ξk=ξ̂k,j
dπ̄(ξ, ξ1, . . . , ξK) = pk,j ∀j ∈ [Nk], ∀k ∈ [K]∫

ΞK+1

c(ξ, ξk)dπ̄(ξ, ξ1, . . . , ξK)≤ εk ∀k ∈ [K].

(12)

Note that problem (12) optimizes over the convex cone of nonnegative Borel measures on ΞK+1.

The normalization constraint ensures that each feasible Borel measure π̄ is in fact a probability

distribution. As the probabilities {pk,j}Nk
j=1 associated with the atoms of the k-th reference distribu-

tion P̂k sum to 1, the probability constraints ensure together with the normalization constraint that

any feasible probability distribution π̄ is supported on Z =Ξ× Ξ̂1 × · · ·× Ξ̂K , where Ξ̂k = {ξ̂k,j}Nk
j=1

for every k ∈ [K]. We may thus restrict the integration domains of all integrals in (12) to Z without

restricting the problem’s feasible set. As
∑Nk

j=1 pk,j = 1 for all k ∈ [K], it then becomes evident that

the normalization constraint makes one of the probability constraints redundant for every k ∈ [K].

In summary, these arguments imply that problem (12) can be reformulated as

sup

∫
Z

ℓ(ξ)dπ̄(ξ, ξ1, . . . , ξK)

s.t. π̄ ∈M+(Z)∫
Z

dπ̄(ξ, ξ1, . . . , ξK) = 1∫
Z

1ξk=ξ̂k,j
dπ̄(ξ, ξ1, . . . , ξK) = pk,j ∀j ∈ [Nk − 1], ∀k ∈ [K]∫

Z

c(ξ, ξk)dπ̄(ξ, ξ1, . . . , ξK)≤ εk ∀k ∈ [K].

(13)

Consider now any maximizer π̄⋆ of problem (13), which exists because (P-UQ) is solvable by assump-

tion and because (13) is equivalent to (P-UQ). Next, define ε⋆k =
∫
Z
c(ξ, ξk)dπ̄

⋆(ξ, ξ1, . . . , ξK), and
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note that ε⋆k ≤ εk for every k ∈ [K]. By construction, problem (13) is thus equivalent to

sup

∫
Z

ℓ(ξ)dπ̄(ξ, ξ1, . . . , ξK)

s.t. π̄ ∈M+(Z)∫
Z

dπ̄(ξ, ξ1, . . . , ξK) = 1∫
Z

1ξk=ξ̂k,j
dπ̄(ξ, ξ1, . . . , ξK) = pk,j ∀j ∈ [Nk − 1], ∀k ∈ [K]∫

Z

c(ξ, ξk)dπ̄(ξ, ξ1, . . . , ξK) = ε⋆k ∀k ∈ [K],

(14)

which is also solved by π̄⋆. Problem (14) can be viewed as an infinite-dimensional linear program in

standard form. Indeed, the decision variable π̄ is subject to a continuum of nonnegativity constraints

as well as to a finite number of linear equality constraints. Standard-form linear programs in finitely

many dimensions are solved by basic feasible solutions. Intuitively, in the context of the infinite-

dimensional linear program (14), a basic feasible solution is a discrete Borel measure whose number

of atoms equals the number N = 1+
∑K

k=1Nk of linear equality constraints. This intuition can be

formalized. Specifically, by (Pinelis 2016, Corollary 5 and Proposition 6(v)) and (Yue et al. 2022,

Proposition 1), problem (14) is equivalent to

sup

∫
Z

ℓ(ξ)dπ̄(ξ, ξ1, . . . , ξK)

s.t. π̄ ∈DN(Z)∫
Z

dπ̄(ξ, ξ1, . . . , ξK) = 1∫
Z

1ξk=ξ̂k,j
dπ̄(ξ, ξ1, . . . , ξK) = pk,j ∀j ∈ [Nk − 1], ∀k ∈ [K]∫

Z

c(ξ, ξk)dπ̄(ξ, ξ1, . . . , ξK) = ε⋆k ∀k ∈ [K],

(15)

where DN(Z) denotes the set of all discrete Borel measures in M+(Z) that are supported on at

most N points. It remains to be shown that the supremum of problem (15) is attained. By using

similar techniques as in (Yue et al. 2022, § 5), however, it is easy to show that the objective

function and the feasible set of problem (15) are weakly upper semi-continuous and weakly compact,

respectively. The solvability of problem (15) thus follows from Weierstrass’ theorem.
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In summary, we have shown that problems (12)–(15) all admit a minimizer π̄⋆ supported on at

most N points. Hence, the marginal distribution P⋆ of ξ under π̄⋆ solves the uncertainty quantifi-

cation problem (P-UQ) and is also a discrete distribution supported on at most N points. ■

To close this section, we highlight the striking similarity between our dual uncertainty quantifica-

tion problem (D-UQ) and the following dual of the OT barycenter problem (OT-BC) with discrete

marginals Pk = P̂k, k ∈ [K], which is derived in (Altschuler and Boix-Adsera 2021, p. 5).

sup
K∑

k=1

Nk∑
j=1

pk,j γk,j

s.t. γk ∈RNk ∀k ∈ [K]

inf
ξ∈Ξ

K∑
k=1

λkc(ξ, ξ̂k,αk
)≥

K∑
k=1

γk,αk
∀α∈A

This problem is equivalent to (D-UQ) if the the Lagrange multipliers λk, k ∈ [K], are identified with

the (fixed) weights of the reference distributions in (OT-BC) and if the loss function ℓ(ξ) is set to 0.

4. Computational Complexity of Multi-Source DRO

We now demonstrate that the primal uncertainty quantification problem (P-UQ), which constitutes

a critical component of multi-source DRO, is generically intractable. We then show that (P-UQ)

becomes tractable under widely used convexity assumptions if either the number K of OT ambiguity

sets or the dimension d of the uncertain parameter ξ is kept constant. The main results of this section

are inspired by Altschuler and Boix-Adsera (2021). We thus relegate their proofs to Appendix A.

We first prove that the following feasibility version of(P-UQ) is already NP-hard.

UQ Feasibility

Instance. Discrete distributions P̂k ∈P(Rd) and radii εk ≥ 0 for all k ∈ [K].

Goal. For Ξ=Rd, ℓ(ξ) = 0 and c(ξ, ξ′) = ∥ξ− ξ′∥22, decide if the primal uncertainty quantification

problem (P-UQ) is feasible and, if not, find an infeasibility certificate given by a recession direction

(λ∞, γ∞) of the dual feasible set along which the objective function of (D-UQ) strictly decreases.

Note that if (λ∞, γ∞) is an infeasibility certificate, then (λ0, γ0)+ t ·(λ∞, γ∞) is feasible in (D-UQ)

for every (λ0, γ0) feasible in (D-UQ) and for every t≥ 0, and
∑K

k=1 εkλ
∞
k +

∑K

k=1

∑Nk
j=1 pk,j γ

∞
k,j < 0.
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The UQ Feasibility problem is well-defined by virtue of Theorem 2, which asserts that (P-UQ)

and (D-UQ) are strong duals for all radii εk ≥ 0, k ∈ [K]. Indeed, this implies that an infeasibility

certificate (λ∞, γ∞) is guaranteed to exist whenever (P-UQ) is infeasible.

Theorem 4 (NP-Hardness). The UQ Feasibility problem is NP-hard.

We now show that (P-UQ) becomes tractable under standard regularity conditions if either K

or d is fixed. This finding mirrors the known tractability results for OT barycenters by Altschuler

and Boix-Adsera (2021). For simplicity of exposition, we assume throughout this discussion that

Nk =N for all k ∈ [K]. We also assume that logU represents an upper bound on the number of

bits needed to encode any radius εk, any probability pk,j and any component of ξ̂k,j for all j ∈ [N ]

and k ∈ [K]. Our tractability results rely on three minimal assumptions. All of them stipulate that

certain elementary computations involving the problem data can be carried out in polynomial time.

We tacitly assume that the polynomials bounding the worst-case runtimes of these computations

are known. The first assumption concerns the generalized Moreau envelope problem shown below.

ℓ⋆(λ) = sup
ξ∈Ξ

ℓ(ξ)−
K∑

k=1

λkc(ξ, ξ̂k) (16)

Assumption 6 (Generalized Moreau Envelope). There exists an oracle for solving (16). If

ℓ⋆(λ)<∞, then the oracle outputs an optimal solution of (16). If ℓ⋆(λ) =∞, then the oracle outputs

a closed halfspace Λ⊆RK such that λ /∈Λ and λ′ ∈Λ for every λ′ ∈RK with ℓ⋆(λ′)<∞. The oracle

runs in time polynomial in d, K, N , logU and the bit sizes of λ1, . . . , λK ≥ 0 and ξ̂1, . . . , ξ̂K ∈Rd.

Assumption 6 will allow us to construct an efficient separation oracle for the feasible set of

problem (D-UQ). It is satisfied, for example, if c is a convex function with efficiently computable

subgradients, ℓ is the pointwise maximum of finitely many concave functions with efficiently com-

putable supergradients and Ξ is a compact convex set that admits an efficient separation oracle. In

this case, the generalized Moreau envelope problem (16) is susceptible to the ellipsoid algorithm.

We emphasize that Assumption 6 is restrictive in that it requires the supremum of problem (16)

to be attained and a corresponding maximizer to be computable exactly and in polynomial time. As
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we will see in Remark 1 below, the tractability results of this section remain valid even if we have

only access to an approximate Moreau envelope oracle. For ease of exposition, however, we present

the key ideas of this section under the simplifying assumption that an exact oracle is available.

The next assumption requires the loss function to admit an efficient zeroth-order oracle.

Assumption 7 (Computational Properties of ℓ). The loss ℓ(ξ) can be computed in time

polynomial in the bit length of ξ ∈Rd.

The last assumption concerns the transportation cost function c. Before we can state this assump-

tion, we first need to introduce the notion of a c-diagram.

Definition 2 (c -Diagram). For any transportation cost function c satisfying Assumption 1,

the c-diagram associated with points ξ1, . . . , ξN ∈Ξ and weights γ1, . . . , γN ∈R is the family of cells

Ξi = {ξ ∈Ξ : c(ξ, ξi)− γi < c(ξ, ξj)− γj ∀j ∈ [N ], j ̸= i} ∀i∈ [N ].

Note that if c(ξ, ξ′) = ∥ξ − ξ′∥22 is the quadratic transportation cost function and all weights γi,

i∈ [N ], are equal, then the c-diagram coincides with the Voronoi diagram induced by ξi, i∈ [N ].

Assumption 8 (Computational Properties of c). The following hold.

(i) The cost c(ξ, ξ′) can be computed in time polynomial in the bit length of ξ, ξ′ ∈Rd.

(ii) If {Ξi}Ni=1 is any c-diagram, then ∪N
i=1cl(Ξi) = Ξ.

(iii) If {Ξk,i}Ni=1, k ∈ [K], are K different c-diagrams, then the set A′ = {α∈A : Cα ̸= ∅} defined

in terms of the cells Cα =∩K
k=1Ξk,αk

, α∈A, can be computed in time poly(N,K, logU).

Assumption 8(i) is unrestrictive and usually trivial to check. Assumptions 8(ii) and (iii) will be

instrumental for constructing a separation oracle for the feasible set of (D-UQ) that runs in time

poly(N,K, logU). One readily verifies that Assumption 8(ii) holds whenever c is convex and satisfies

Assumption 1. By (Altschuler and Boix-Adsera 2021, Lemma 18), Assumption 8(iii) is satisfied

if c(ξ, ξ′) = ∥ξ − ξ′∥22. In addition, it is also satisfied, for example, if c(ξ, ξ′) is given by ∥ξ − ξ′∥1,

∥ξ− ξ′∥∞ or ∥ξ− ξ′∥2; see (Altschuler and Boix-Adsera 2021, Section 5.1).

We are now ready to state our main tractability result for problem (D-UQ).
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Theorem 5 (Tractability of (D-UQ)). Suppose that Assumptions 6, 7 and 8(i) hold, and

there is δ > 0 such that all δ-optimal solutions of (D-UQ) belong to the ball of radius R around 0,

where R is computable in time poly(N,d,K, logU). Then, the optimal value of (D-UQ) can be com-

puted to any accuracy δ > 0 in time poly(N,d, logU, log 1/δ) (with exponential dependence on K). If

additionally Assumptions 8(ii) and 8(iii) hold, then the optimal value of (D-UQ) can be computed

to any accuracy δ > 0 in time poly(N,K, logU, log 1/δ) (with exponential dependence on d).

Theorem 5 is proved by showing that—under appropriate conditions—the feasible set of prob-

lem (D-UQ) admits two different separation oracles with exponential dependence on d or K, respec-

tively. Thus, given either of the two separation oracles, (D-UQ) can be solved with the ellipsoid

algorithm (Ben-Tal and Nemirovski 2001, Theorem 5.2.1). The polynomial time solvability of prob-

lem (D-UQ) for fixed K is expected in view of Theorem 3, which reformulates (D-UQ) as a convex

program with O(NK ·d ·L) decision variables and constraints. However, the insight that (D-UQ) can

sometimes even be solved in time polynomial in K for fixed d is perhaps more surprising and mirrors

recent results by Altschuler and Boix-Adsera (2021) for Wasserstein barycenters. The assumption

that R can be computed in time poly(d,K,N, logU) seems difficult to check. One can show, how-

ever, that this assumption holds if there exists a discrete distribution PS ∈P(Ξ) with C(PS, P̂k)< εk

for all k ∈ [K], which can be encoded in poly(d,K,N, logU) bits, and if Assumption 4 holds with a

known growth constant g′, which can be encoded in logU bits. Details are omitted for brevity.

Remark 1 (Weak Separation Oracles). Assumption 6 is too restrictive for many problems

of practical interest. Indeed, it is easy to construct instances of (D-UQ) for which the optimal values

of the embedded maximization problems are irrational or not even attained. In these cases, the

Moreau envelope oracle cannot run in polynomial time or does not even exist, respectively. However,

Theorem 5 remains valid if the Moreau envelope oracle of Assumption 6 outputs only a δ-optimal

solution of the underlying optimization problem for any prescribed tolerance δ > 0 (Grötschel et al.

2012, Corollary 4.2.7). This relaxation complicates the proof of Theorem 5 but is standard. ▲
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5. Statistical Guarantees

We now investigate the relation between the multi-source DRO problem (MS-DRO) and the original

stochastic optimization problem (5). To this end, we distinguish five scenarios characterized by

increasingly realistic informational assumptions about the unknown target distribution P.

Scenario 1. Assume that we know K source distributions Pk, k ∈ [K], which are all different

from P. In addition, even though P is unknown, the p-Wasserstein distance between P and Pk

has a known upper bound rk ≥ 0 for all k ∈ [K]. As an example, imagine that a retailer expands

into a new country, where the demands of the offered products follow an unknown distribution P.

However, the retailer is already active in K other countries and knows the respective demand distri-

butions Pk, k ∈ [K]. While demand distributions invariably differ across countries, it is reasonable to

assume that each Pk provides some useful information about P. Specifically, the retailer might know

that Wp(P,Pk)≤ rk, where Wp denotes the p-Wasserstein distance on Pp(Ξ) induced by a metric d

on Ξ. Hence, P is known to belong to ∩K
k=1Bp

rk
(Pk), where Bp

rk
(Pk) = {P∈P(Ξ) :Wp(P,Pk)≤ rk} is

the p-Wasserstein ball of radius rk around Pk. The multi-source DRO problem with ambiguity set

∩K
k=1Bp

rk
(Pk) thus provides a deterministic upper bound on the corresponding stochastic program.

Scenario 2. As in scenario 1, we continue to assume that Wp(P,Pk) has a known upper bound rk ≥

0. In contrast to scenario 1, however, we no longer assume that Pk is known. Instead, we only assume

to have access to Nk independent samples ξ̂k,j, j ∈ [Nk], from Pk. In the remainder of this section,

we denote the corresponding empirical distribution by P̂k =
1
Nk

∑Nk
j=1 δξ̂k,j . Note that P̂k constitutes

a random object governed by the joint distribution PNk
k of the given independent samples from Pk.

It is well known that P̂k approximates Pk in p-Wasserstein distance provided that Pk is light-tailed.

Definition 3 (Light-Tailed Distributions). A distribution P∈P(Ξ) is (a,A)-light tailed for

some positive constants a,A> 0 if EP[exp(∥ξ∥a)]≤A.

Most of the subsequent results will depend on the following assumption.

Assumption 9 (Light-Tailed Reference Distributions). There exist a > p and A> 0 such

that all reference distributions Pk, k ∈ [K], are (a,A)-light tailed.
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Lemma 3 (Concentration Inequalities Fournier and Guillin (2015)). Suppose that p ̸=

d/2 and that Assumption 9 holds. Then, there exist constants c1, c2 > 0 that depend only on a, A

and d such that PNk
k [Pk ∈Bp

εk
(P̂k)]≥ 1−β(εk,Nk) for all εk ∈R+ and Nk ∈N, where

β(εk,Nk) =


c1 exp

Ä
−c2Nkε

max{d/p,2}
k

ä
if εk ≤ 1,

c1 exp
Ä
−c2Nkε

a/p
k

ä
if εk > 1.

Lemma 3 readily extends to p= d/2 at the expense of a more intricate formula for β(εk,Nk). Given

a fixed significance level βk ∈ (0,1], one can solve the equation β(εk,Nk) = βk for εk to obtain

ε(βk,Nk) =


Å
log(c1/βk)

c2Nk

ãmin{p/d,1/2}

if Nk ≥
log(c1/βk)

c2
,Å

log(c1/βk)

c2Nk

ãp/a

if Nk <
log(c1/βk)

c2
.

Lemma 3 then implies that the p-Wasserstein ball Bp
εk
(P̂k) represents a (1−βk)-confidence set for Pk

whenever its radius satisfies εk ≥ ε(βk,Nk); see also (Kuhn et al. 2019, Theorem 18).

The following proposition leverages Lemma 3 to construct a confidence set for the unknown

distribution P. This is possible even though there is no data from P. In the following, we use P[K] =

⊗K
k=1P

Nk
k as a shorthand for the joint distribution of the samples ξ̂k,j for all j ∈ [Nk] and k ∈ [K].

Proposition 4 (Known Distribution Shifts). Suppose that p ̸= d/2 and that Assumption 9

holds. If Wp(Pk,P)≤ rk and if εk ≥ rk + ε(βk,Nk) for some βk ∈ (0,1] and for all k ∈ [K], then

P[K]

(
P∈

K⋂
k=1

Bp
εk
(P̂k)

)
≥ 1−

K∑
k=1

βk.

The ambiguity set ∩K
k=1Bp

εk
(P̂k) inherits the randomness of the empirical distributions. In particular,

it may be empty with a small positive probability. Depending on the realizations of P̂k, k ∈ [K], one

should thus select sufficiently large radii εk ≥ rk + ε(βk,Nk) that lead to a nonempty ambiguity set.

Proof of Proposition 4 By the definition of the p-Wasserstein balls, we have

P[K]

(
P∈

K⋂
k=1

Bp
εk
(P̂k)

)
= P[K]

Ä
Wp(P, P̂k)≤ εk ∀k ∈ [K]

ä
≥ 1−

K∑
k=1

PNk
k

Ä
Wp(P, P̂k)> εk

ä
≥ 1−

K∑
k=1

PNk
k

Ä
Wp(P,Pk)+Wp(Pk, P̂k)> εk

ä
≥ 1−

K∑
k=1

βk,
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where the first inequality exploits De Morgan’s laws and the union bound, whereas the second

inequality follows from the triangle inequality. The third inequality holds thanks to Lemma 3, which

applies because εk −Wp(P,Pk)≥ εk − rk ≥ ε(βk,Nk) for all k ∈ [K]. Thus, the claim follows. ■

Proposition 4 implies that the optimal value of the multi-source DRO problem (MS-DRO) with

ambiguity set ∩K
k=1Bp

εk
(P̂k) provides a (1−

∑K

k=1 βk)-upper confidence bound on the optimal value

of the original stochastic optimization problem (5). Note that different choices of the parameters βk,

k ∈ [K], yield different bounds with the same confidence level. Hence, these bounds can be tuned.

Scenario 3. As in scenario 2, we continue to assume that P as well as all reference distributions Pk,

k ∈ [K], are unknown. In contrast to scenario 2, however, we now assume that P= P1 and that we

have no information about the p-Wasserstein distance between P and Pk for k≥ 2. Instead, we only

have access to independent samples from all source distributions and can thus construct empirical

distributions P̂k, k ∈ [K], as in scenario 2. It is now natural to set εk =Wp(P̂1, P̂k) + ε(β1,N1),

k ∈ [K], for some β1 ∈ (0,1]. In this case, one can show that the ambiguity set ∩K
k=1Bp

εk
(P̂k) contains P

with probability at least 1−β1. To see this, note first that the inequality Wp(P, P̂1)≤ r1 implies

Wp(P, P̂k)≤Wp(P, P̂1)+Wp(P̂1, P̂k)≤Wp(P̂1, P̂k)+ r1 = rk,

where the equality follows from the definitions of r1 and rk. Therefore, we have Bp
ε1
(P̂1)⊆Bp

εk
(P̂k) for

all k ∈ [K], and thus the ambiguity set ∩K
k=1Bp

εk
(P̂k) collapses to the crisp Wasserstein ball Bp

ε1
(P̂1).

Lemma 3 then implies that P∈∩K
k=1Bp

εk
(P̂k) with probability at least 1−β1. Thus, (MS-DRO) pro-

vides again an upper confidence bound on (5). However, the data from the reference distributions Pk

with k ̸= 1 is wasted. It is unclear how to make use of this data without additional assumptions.

Scenario 4. As in scenario 3, we assume that P = P1 and that the reference distributions PK ,

k ∈ [K], are only accessible via data. In contrast to scenario 3, however, we now adopt a Bayesian

perspective, that is, we assume that the decision-maker has a prior belief about the Wasserstein

distances between the reference distributions. Arguably, the main motivation for using data from

reference distributions is the belief that P is in some sense “close” to Pk (and thus also to P̂k).
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In the following, we treat not only the samples {ξ̂k,j}Nk
j=1, k ∈ [K], but also the reference distribu-

tions Pk, k ∈ [K], as random objects on an abstract probability space (Ω,F , µ). We assume that the

distributions Pk, k ∈ [K], satisfy Assumption 9 µ-almost surely. The only property of µ to be used

below is that, conditional on any fixed realizations of Pk, k ∈ [K], all samples are mutually inde-

pendent under µ, and the conditional distribution of ξ̂k,j under µ coincides with Pk for all j ∈ [NK ]

and k ∈ [K]. We also define Fk as the cumulative distribution function of Wp(P1,Pk) under µ. This

function captures the decision-maker’s prior beliefs about the proximity between P1 and Pk.

In Bayesian statistics, the prior beliefs are updated when new evidence emerges. In the example at

hand, the decision-maker observes the p-Wasserstein distance between P̂1 and P̂k, which we denote

as r̂k ∈R+. The prior beliefs can then be updated by conditioning on the event Wp(P̂1, P̂k)≤ r̂k.

Remark 2. Note that conditioning on the eventWp(P̂1, P̂k) = r̂k would provide a stronger update

of the prior. We nevertheless prefer to condition on the less informative event Wp(P̂1, P̂k)≤ r̂k for

two reasons. First, it enhances the transparency of the subsequent derivations and obviates the need

to mobilize advanced measure-theoretic tools. In addition, we aim to derive an upper confidence

bound on Wp(P1, P̂k). As P1 is close to P̂1 by virtue of Lemma 3, such a confidence bound is within

reach if P̂1 and P̂k are known to be close. The extra information that P̂1 and P̂k are “not too close,”

which is available in the event Wp(P̂1, P̂k) = r̂k, cannot meaningfully strengthen this bound. ▲

Proposition 5 (Bayesian Measure Concentration). If µ and Fk, k ∈ [K], are constructed

as above, then we have µ(P1 ∈Bp
εk
(P̂k)|Wp(P̂1, P̂k)≤ r̂k)≥ 1− βFk

(εk, r̂k,N1,Nk) for all εk, r̂k ∈R+

with εk ≥ r̂k and for all N1,Nk ∈N, k ∈ [K], where

βFk
(εk, r̂k,N1,Nk) =

β(εk − r̂k,N1) ·
(∫ εk

0
β(εk − rk,Nk)dFk(rk)+ 1−Fk(εk)

)
µ
Ä
Wp(P̂1, P̂k)≤ r̂k

ä . (17)

Proof of Proposition 5 Bayes’ rule implies that

µ
(
Wp(P1, P̂k)> εk

∣∣∣Wp(P̂1, P̂k)≤ r̂k

)
=
µ
(
Wp(P̂1, P̂k)≤ r̂k

∣∣∣Wp(P1, P̂k)> εk

)
·µ
Ä
Wp(P1, P̂k)> εk

ä
µ
Ä
Wp(P̂1, P̂k)≤ r̂k

ä .

(18)
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The evidence in the denominator of the above expression is strictly positive for otherwise it would

have been (µ-almost surely) impossible to observe r̂k. The likelihood term in the numerator satisfies

µ
(
Wp(P̂1, P̂k)≤ r̂k

∣∣∣Wp(P1, P̂k)> εk

)
≤ µ

(
Wp(P1, P̂k)−Wp(P1, P̂1)≤ r̂k

∣∣∣Wp(P1, P̂k)> εk

)
≤ µ

(
Wp(P1, P̂1)> εk − r̂k

∣∣∣Wp(P1, P̂k)> εk

)
=Eµ

[
µ
(
Wp(P1, P̂1)> εk − r̂k

∣∣∣P1, . . . ,PK

)∣∣∣Wp(P1, P̂k)> εk

]
≤ β(εk − r̂k,N1),

where the equality follows from the law of total expectation and the observation that P̂1 and P̂k

are independent under µ conditional on any fixed realizations of the reference distributions Pk′ ,

k′ ∈ [K]. The last inequality follows from Lemma 3, which applies because, conditional on any

fixed realizations of the reference distributions, P̂1 is governed by the distribution PN1
1 under µ

and because the reference distributions satisfy Assumption 9 µ-almost surely. Similarly, the prior

probability in the numerator of (18) can be re-expressed as

µ
Ä
Wp(P1, P̂k)> εk

ä
≤ µ
Ä
Wp(P1,Pk)+Wp(Pk, P̂k)> εk

ä
=

∫ ∞

0

µ
(
Wp(P1,Pk)+Wp(Pk, P̂k)> εk

∣∣∣Wp(P1,Pk) = rk

)
dFk(rk)

=

∫ ∞

0

µ
(
Wp(Pk, P̂k)> εk − rk

∣∣∣Wp(P1,Pk) = rk

)
dFk(rk).

If εk ≥ rk, then the integrand of the last expression can be further simplified to

µ
(
Wp(Pk, P̂k)> εk − rk

∣∣∣Wp(P1,Pk) = rk

)
=Eµ

[
µ
(
Wp(Pk, P̂k)> εk − rk

∣∣∣P1, . . . ,PK

)∣∣∣Wp(P1,Pk) = rk

]
≤ β(εk − rk,Nk),

where the first equality exploits the law of total expectation and the trivial observation that

Wp(P1,Pk) reduces to a constant when we condition on Pk′ , k′ ∈ [K]. The inequality follows from

Lemma 3, which applies because, conditional on any fixed realizations of the reference distribu-

tions, P̂k is governed by the distribution PNk
k under µ and because the reference distributions satisfy

Assumption 9 µ-almost surely. Combining the above estimates shows that the prior satisfies

µ
Ä
Wp(P1, P̂k)> εk

ä
≤
∫ εk

0

β(εk − rk,Nk)dFk(rk)+ 1−Fk(εk).
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Substituting our estimates for the likelihood and the prior into (18) finally yields

µ
(
Wp(P1, P̂k)> εk

∣∣∣Wp(P̂1, P̂k)≤ r̂k

)
≤
β(εk − r̂k,N1) ·

(∫ εk
0
β(εk − rk,Nk)dFk(rk)+ 1−Fk(εk)

)
µ
Ä
Wp(P̂1, P̂k)≤ r̂k

ä .

The last expression coincides with βF (εk, r̂k,N1,Nk). We may therefore conclude that

µ
(
P1 ∈Bp

εk
(P̂k)

∣∣∣Wp(P̂1, P̂k)≤ r̂k

)
= 1−µ

(
Wp(P1, P̂k)> εk

∣∣∣Wp(P̂1, P̂k)≤ r̂k ∀k ∈ [K]
)

≥ 1−βFk
(εk, r̂k,N1,Nk),

and thus the claim follows. ■

We highlight that βFk
(εk, r̂k,N1,Nk) is non-increasing in εk. Indeed, the denominator in (17) is

positive and independent of εk. In addition, both terms in the numerator are nonnegative and non-

increasing in εk whenever εk ≥ r̂k. Note that the derivative of the second term can be expressed

as
∫ εk
0
∂εβ(εk − rk,Nk)dFk(rk) by virtue of the Reynolds theorem. Hence, it is strictly negative.

Proposition 5 and the union bound imply that, given any fixed βk ∈ (0,1], k ∈ [K], we have

µ

(
P∈

K⋂
k=1

Bp
εk
(P̂k)

∣∣∣∣∣Wp(P̂1, P̂k)≤ r̂k

)
≥ 1−

K∑
k=1

βk

whenever εk ≥ εFk
(βk, r̂k,N1,Nk) for all k ∈ [K], where

εFk
(βk, r̂k,N1,Nk) = inf

{
εk ≥ 0 : βFk

(εk, r̂k,N1,Nk)≤ βk

}
.

Thus, (MS-DRO) provides a meaningful upper confidence bound on (5) that does not waste data.

Figure 1 shows the normalized Bayesian significance level βFk
(εk, r̂k,N1,Nk)/βFk

(r̂k, r̂k,N1,Nk)

as a function of the normalized Wasserstein radius cp/a2 (εk − r̂k) for the 2-Wasserstein distance

on P2(R5) when there are N1 = 5 target samples and Nk = 50 source samples. Here, P1 and Pk

are light-tailed with critical exponent a= 5, and the 2-Wasserstein distance between P1 and Pk is

believed to follow a normal distribution with mean r̂k and variance σ2 = 0.2c
−2p/a
2 (strong prior),

σ2 = 0.5c
−2p/a
2 (weak prior) or +∞ (no prior). The chosen normalizations ensure that the curves in

Figure 1 are independent of the unknown constants c1, c2 and µ(W2(P̂1, P̂k)≤ r̂k). As expected, we

observe that a stronger prior leads to stronger statistical guarantees.
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Figure 1 Normalized Bayesian significance level as a function of the normalized Wasserstein radius cp/a2 (εk− r̂k) when

there is no prior (solid blue line), a weak prior (dashed orange line) and a strong prior (dotted green line).

Scenario 5. Consider now a special case of scenario 4, which arises when the decision-maker

observes no data from the target distribution P1 = P at all (that is, when N1 = 0). From the proof

of Proposition 5 we already know that the prior probability obeys the estimate

µ
Ä
Wp(P1, P̂k)> εk

ä
≤
∫ εk

0

β(εk − rk,Nk)dFk(rk)+ 1−Fk(εk). (19)

As there is no data from P1, this prior probability cannot be updated. However, given any significance

level βk ∈ (0,1], one can increase εk until the right hand side of (19) drops below βk. Constructing εk

in this manner for every k ∈ [K] enables us again to show that (MS-DRO) provides a (1−
∑K

k=1 βk)-

upper confidence bound on the optimal value of the original stochastic program.

Remark 3 (Relationships between Scenarios). Note first that scenario 1 can be obtained

as a special case of scenario 2 if the number of training samples from each source tends to infinity.

Next, it is easy to see that scenario 2 emerges as a special case of scenario 5 under Dirac priors,

that is, if Fk(εk) = 0 for εk < rk and Fk(εk) = 1 for εk ≥ rk, k ∈ [K]. Similarly, scenario 4 is obtained

from scenario 5 by a Bayesian update after observing samples from P1. Finally, scenario 3 emerges

as a special case of scenario 4 as the priors become less informative. The information available to

the decision-maker in the different scenarios is summarized in Table 1. ▲

6. Experiments

We now test the proposed DRO scheme with heterogeneous data sources in the context of a portfolio

selection problem (see Section 6.1) as well as an assortment optimization problem (see Section 6.2).
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Scenario Acess to P Access to Pk Information on distribution shift
1 ✗ ✓ Wp(P,Pk)≤ rk
2 ✗ samples from Pk Wp(P,Pk)≤ rk
3 samples from P samples from Pk ✗
4 samples from P samples from Pk Wp(P,Pk)∼ Fk

5 ✗ samples from Pk Wp(P,Pk)∼ Fk

Table 1 Comparison of the different scenarios

6.1. Portfolio Selection

Consider the problem of investing a given amount of capital into d assets with uncertain rates of

return ξ ∈ Rd. The portfolio weight vector θ ∈ Rd collects the percentage weights of the capital

allocated to the available assets. In the absence of short-sales, it ranges over the d-dimensional unit

simplex Θ. The goal is to minimize the expected value of the portfolio loss −⟨θ, ξ⟩ adjusted by

the portfolio risk, measured by the conditional value-at-risk (CVaR) of −⟨θ, ξ⟩ at level η ∈ (0,1].

Denoting the investor’s risk aversion as ρ≥ 0, the portfolio selection problem can thus be expressed as

inf
θ∈Θ

EP [−⟨θ, ξ⟩] + ρ ·P-CVaRη(−⟨θ, ξ⟩),

where P denotes the target distribution of the asset returns. Replacing the CVaR by its definition

due to Rockafellar and Uryasev (2000), this problem simplifies to

inf
θ∈Θ, τ∈R

∫
Ξ

max
t∈{1,2}

{at⟨θ, ξ⟩+ btτ} dP(ξ), (20)

where a1 =−1, a2 =−1− ρ
η
, b1 = ρ, and b2 = ρ(1− 1

η
); see, e.g., (Mohajerin Esfahani and Kuhn 2018,

§ 7.1). We henceforth assume that the target distribution P is unknown but close to K = 2 source

distributions P1 and P2. While P1 and P2 are unknown, too, the investor has access to respective

empirical distributions P̂1 and P̂2 and can thus construct the following instance of (MS-DRO).

inf
θ∈Θ, τ∈R

sup
P∈

⋂2
k=1 Bεk

(P̂k)

∫
Ξ

max
t∈{1,2}

{at⟨θ, ξ⟩+ btτ} dP(ξ). (21)

The ambiguity set in (21) is defined as the intersection of two 1-Wasserstein balls induced by the

transportation cost function c(ξ, ξ′) = ∥ξ− ξ′∥1. By Corollary 2, problem (21) can be reformulated

as a tractable linear program and is thus susceptible to highly efficient optimization algorithms.
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(b) Sensitivity with respect to m

Figure 2 Impact of m and λ on the portfolio weights. The assets are ordered from bottom (asset 1) to top (asset 10).

6.1.1. Sensitivity Analysis In the first experiment we use synthetic data to analyze the

impact of the radii ε1 and ε2 on the optimal portfolio. Throughout this experiment we assume that

there are d= 10 assets. We further assume that the asset returns are mutually independent under

both source distributions and that ξi ∼N (i%,1%) under P1, whereas ξi ∼N ((11−i)%,1%) under P2

for all i ∈ [d]. We also measure risk by the CVaR at level η = 20% and set ρ= 10. In addition, we

construct two empirical distributions P̂1 and P̂2 from N1 =N2 = 30 independent training samples

from P1 and P2, respectively. Finally, we set the radii of the two 1-Wasserstein balls to

ε1 = λ · (1+m) ·W1(P̂1, P̂2) and ε2 = (1−λ) · (1+m) ·W1(P̂1, P̂2),

where m ∈ R+ captures the absolute and λ ∈ [0,1] the relative degree of ambiguity of the two

source distributions. This construction ensures that ∩2
k=1Bεk(P̂k) is nonempty. Figure 2 visualizes

the dependence of the optimal portfolio weights obtained from problem (21) on λ andm. Specifically,

Figure 2a shows that, as λ increases (decreases), assets with low (high) indices are assigned more

weight. Indeed, the ambiguity set of problem (21) degenerates to {P̂2} as λ tends to 1 and to {P̂1}

as λ tends to 0, and assets with high (low) indices perform well under P1 ≈ P̂1 (P2 ≈ P̂2). Figure 2b

shows that, asm increases, the portfolio weights all become approximately equal, that is, the equally-

weighted portfolio appears to be optimal under high ambiguity. This observation is in agreement

with theoretical findings for distributionally robust single-source portfolio selection problems due to

Pflug et al. (2012); see also (Mohajerin Esfahani and Kuhn 2018, Proposition 7.2).
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6.1.2. Backtest on Synthetic Data In the second experiment we compare the optimal port-

folios resulting from the multi-source DRO problem (21) against several other distributionally robust

portfolios in terms of their out-of-sample means, standard deviations and Sharpe ratios. In contrast

to Section 6.1.1, we now assume that the asset returns are representable as ξi = ψ+ ζi, where ψ is

a systematic risk factor affecting all assets, whereas ζi is an idiosyncratic risk factor affecting only

the i-th asset. More specifically, we assume that ψ ∼N (0,2%) and ζi ∼N (ri,1%), i ∈ [10], follow

independent normal distributions. We use two different models for the expected returns. In model 1,

we set ri =+0.4% if i≤ 2 and ri =−0.4% if i > 2. In model 2, on the other hand, we set ri =+0.2%

if i≤ 5 and ri =−0.4% if i > 5. Thus, assets 1 and 2 have high expected returns and assets 6–10

have low expected returns in both models. However, assets 3, 4 and 5 have low expected returns

in model 1 and high expected returns in model 2. The distributions P1 and P2 are then defined as

the distribution of ξ in model 1 and model 2, respectively. Throughout this experiment we assume

that P1 coincides with the target distribution P and that we have access to N1 = 5 samples from P1

and to N2 = 30 samples from P2. All other problem parameters are chosen as in Section 6.1.1.

The purpose of this stylized example is to show that if data from the target distribution P1 is

scarce, then one can leverage data from the source distribution P2 to improve the performance of the

optimal portfolio. Intuitively, the (abundant) source data provides an initial guess for the unknown

target distribution, and the (scarce) target data allows us to improve this initial guess.

We compare the optimal portfolios of the multi-source DRO problem (21) against several baselines.

Every baseline portfolio is obtained by solving a single-source version of problem (21), which involves

only a single 1-Wasserstein ball. The center of this ball is set to the empirical distribution on the

target data, the source data, the pooled data (that is, the union of the target and source data),

or a 1-Wasserstein barycenter of the empirical distributions corresponding to the target and the

source data. The latter approach is inspired by (Lau and Liu 2022). As in Section 6.1.1, we set the

Wasserstein radii in problem (21) to ε1 = λ ·(1+m) ·W1(P̂1, P̂2) and ε2 = (1−λ) ·(1+m) ·W1(P̂1, P̂2),

where λ ranges from 0 to 1 in steps of 0.1, and m∈ {0.002,0.005,0.01,0.02}. The Wasserstein radius

in the single-source DRO problems used to construct the baseline portfolios is chosen from

{0.005,0.01,0.05,0.1,0.2,0.5,1,2,5,10,20,50,100,200,500}.
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In all cases, we select hyperparameters from the underlying search grids that maximize the average

portfolio return across five (additional) independent validation samples from P1.

For all portfolios under consideration, we compute the expected value, the standard deviation

and the Sharpe ratio of the corresponding portfolio return under the target distribution P1. Table 2

reports the means and standard errors of these performance metrics across 10 independent simulation

runs. We observe that the multi-source DRO portfolios achieve the highest expected returns and

Sharpe ratios. Optimizing only in view of the scarce target data results in noisy portfolios that are

susceptible to the optimizer’s curse and thus perform poorly. Similarly, optimizing only in view of

the source data results in biased portfolios because of the distribution shift from P2 to P1. Indeed,

under the source distribution P2, it would be optimal to distribute the available capital evenly across

the assets 1–5. However, this strategy invests 3/5 of the available capital in assets that destroy

wealth under the target distribution P1. Optimizing in view of the pooled data does not significantly

improve performance because the target samples are outnumbered by the source samples and have

thus only a minor impact on the optimal portfolio. These shortcomings are mitigated by optimizing

in view of a 1-Wasserstein barycenter between the empirical distributions P̂1 and P̂2. By Corollary 1,

however, if P̂1 and P̂2 are assigned the same weights, then either of them constitutes a 1-Wasserstein

barycenter. In the experiment we choose the one that generates the smaller worst-case risk on

the validation dataset. The portfolios obtained via multi-source DRO significantly outperform all

baselines in terms of Sharpe ratio and expected return. On the other hand, their returns display the

highest standard deviations. This is neither surprising nor troubling. The optimal portfolio under

complete knowledge of the target distribution P1 allocates the available capital evenly to assets 1

and 2. While this portfolio evidently maximizes expected return, it suffers from poor diversification.

It is easy to show that the lowest possible portfolio standard deviation is obtained by investing

equal amounts of money in all assets (even those with negative expected returns).

6.1.3. Backtest on Real Data In the third experiment the asset universe consists of d= 3

regional sector indices (Agriculture and Food Chain, Commodity Producers and Infrastructure)
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Table 2 Out-of-sample performance of optimal portfolios on synthetic data (mean (std. error) over 10 replications)

Single-source DRO Single-source DRO Single-source DRO Single-source DRO Multi-source DRO
on target data on source data on pooled data on barycenter

Sharpe ratio 0.002 (0.017) −0.024 (0.009) −0.021 (0.012) 0.007 (0.014) 0.034 (0.024)
Expected value 0.01 (0.067) −0.097 (0.036) −0.084 (0.047) 0.03 (0.059) 0.143 (0.1)
Standard deviation 4.035 (0.018) 4.018 (0.016) 4.02 (0.017) 4.034 (0.018) 4.084 (0.022)

provided by MSCI, which follow the Global Industry Classification Standard (GICS). Each index

includes large and mid cap companies from a particular geographical region (Europe, USA or

Pacific) denominated in US dollars. We believe that the European and US economies are suffi-

ciently similar so that the European index return distributions provide a strong prior for those

of the US and vice versa. However, we believe that the index return distributions of the Pacific

area are not informative for those of Europe and the US. Note that the three sector indices

were chosen because they cover basic industries and thus exist in all considered geographical

regions. We then define P1 and P2 as the index return distributions corresponding to (any) two

different regions. These distributions are unknown, but we can construct respective empirical

distributions P̂1 and P̂2 from historical return data available from the MSCI online database

(https://www.msci.com/end-of-day-data-regional). As in Section 6.1.2, we compare the opti-

mal portfolios of the multi-source DRO problem (21) against those of different single-source DRO

baselines. Also, we use the same risk aversion parameters and the same search grids for the hyper-

parameters (λ and m for multi-source DRO and ε for single-source DRO) as in Section 6.1.2.

The training, test and validation datasets cover monthly return data over the periods from January

2008 to December 2014, from January 2015 to December 2015, and from January 2016 to December

2021, respectively. In each simulation run, we randomly sample N1 ∈ {5,10,20,50} return vectors

from the training dataset of the target distribution P1 and N2 = 5 return vectors from the training

dataset of the source distribution P2. These samples are used to construct P̂1 and P̂2, respectively.

In addition, we sample 5 return vectors from the validation dataset of the target distribution, which

are used to tune the hyperparameters. For each portfolio under consideration, we then compute the

empirical Sharpe ratio on the test samples of the target distribution. Table 3 reports the means and

standard errors of these empirical Sharpe ratios across 10 independent simulation runs for different

https://www.msci.com/end-of-day-data-regional
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Table 3 Out-of-sample Sharpe ratios of optimal portfolios on real data (mean (std. error) over 10 replications)

Source Target N1 Single-s. DRO on Single-s. DRO on Single-s. DRO on Single-s. DRO on Multi-s. DRO
target distribution source distribution pooled data barycenter

Europe

Pacific

5 0.059 (0.004) 0.054 (0.006) 0.052 (0.005) 0.052 (0.003) 0.039 (0.006)
10 0.047 (0.005) 0.04 (0.004) 0.043 (0.0) 0.036 (0.004) 0.035 (0.006)
20 0.052 (0.004) 0.049 (0.008) 0.049 (0.006) 0.042 (0.006) 0.035 (0.006)
50 0.051 (0.004) 0.047 (0.005) 0.047 (0.003) 0.045 (0.004) 0.028 (0.004)

USA

5 0.101 (0.01) 0.107 (0.006) 0.103 (0.007) 0.112 (0.008) 0.113 (0.003)
10 0.095 (0.007) 0.103 (0.007) 0.104 (0.007) 0.108 (0.006) 0.112 (0.004)
20 0.094 (0.008) 0.092 (0.009) 0.103 (0.007) 0.107 (0.008) 0.116 (0.004)
50 0.105 (0.006) 0.095 (0.008) 0.105 (0.006) 0.113 (0.005) 0.115 (0.004)

Pacific

Europe

5 0.111 (0.009) 0.088 (0.0) 0.088 (0.0) 0.096 (0.008) 0.123 (0.014)
10 0.112 (0.012) 0.088 (0.0) 0.088 (0.0) 0.111 (0.012) 0.126 (0.014)
20 0.107 (0.01) 0.088 (0.0) 0.088 (0.0) 0.106 (0.01) 0.111 (0.012)
50 0.113 (0.01) 0.089 (0.0) 0.088 (0.0) 0.101 (0.008) 0.145 (0.011)

USA

5 0.109 (0.006) 0.115 (0.006) 0.115 (0.006) 0.113 (0.006) 0.116 (0.006)
10 0.088 (0.006) 0.11 (0.007) 0.11 (0.007) 0.109 (0.008) 0.113 (0.006)
20 0.099 (0.007) 0.107 (0.007) 0.106 (0.006) 0.114 (0.006) 0.114 (0.006)
50 0.111 (0.005) 0.119 (0.004) 0.119 (0.004) 0.119 (0.004) 0.119 (0.004)

USA

Europe

5 0.117 (0.014) 0.091 (0.001) 0.09 (0.001) 0.116 (0.014) 0.144 (0.013)
10 0.117 (0.014) 0.091 (0.001) 0.091 (0.001) 0.117 (0.014) 0.151 (0.014)
20 0.119 (0.011) 0.09 (0.001) 0.095 (0.005) 0.108 (0.009) 0.15 (0.011)
50 0.11 (0.01) 0.091 (0.001) 0.091 (0.002) 0.11 (0.01) 0.141 (0.013)

Pacific

5 0.046 (0.007) 0.049 (0.002) 0.051 (0.004) 0.042 (0.004) 0.046 (0.006)
10 0.07 (0.004) 0.06 (0.004) 0.058 (0.004) 0.058 (0.005) 0.046 (0.006)
20 0.048 (0.004) 0.053 (0.003) 0.049 (0.003) 0.047 (0.003) 0.041 (0.004)
50 0.047 (0.003) 0.052 (0.003) 0.048 (0.003) 0.047 (0.003) 0.046 (0.002)

choices of source and target regions and for different choices of the target sample size N1. We observe

that multi-source DRO outperforms single-source DRO when the source data originates from a

similar market (e.g., European data can help to improve portfolios in the US but not in the Pacific

area). When the source and target distributions differ too much, it is better to use single-source

DRO based solely on the target data.

6.2. Assortment Optimization

A firm operates two stores in different geographical regions, each of which sells d different products.

For simplicity we assume that the products are perfect substitutes. The firm aims to open a third

store in a new region. Due to space constraints, only a subset of B ≤ d products can be offered in the

new store. If pi ≥ 0 denotes the (given) price and ξi ≥ 0 the (uncertain) demand of the i-th product

for every i∈ [d], then the firm faces the following stylized assortment optimization problem.

max
θ∈{0,1}d

{
EP

[
d∑

i=1

θipiξi

]
:

d∑
i=1

θi ≤B

}
(22)

This problem seeks a subset of at most B products, encoded by the binary vector θ, that maximizes

expected revenue. The expectation is evaluated with respect to the joint demand distribution P in
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Figure 3 Kernel density estimates of the marginal demand distributions in region J (blue), S (organge) and C (green).

the region of the new store. We henceforth assume that P is unknown but close to the K = 2 demand

distributions P1 and P2 in the regions of the existing stores. While P1 and P2 are unknown, too,

the firm has access to respective empirical distributions P̂1 and P̂2 and can thus solve an instance

of (MS-DRO) corresponding to (22). The underlying ambiguity set is defined as the intersection of

two 1-Wasserstein balls induced by the transportation cost function c(ξ, ξ′) = ∥ξ − ξ′∥1. By Corol-

lary 2, this instance of (MS-DRO) can be reformulated as a mixed-integer linear program.

In our experiments we set d = 10 and B = 3, and we define pi = 0.01 × i for all i ∈ [d]. The

training, validation and test datasets are constructed from historical product demand data from Kag-

gle (https://www.kaggle.com/datasets/felixzhao/productdemandforecasting). This dataset

contains order quantities for multiple products in three different geographical regions designated

by J, S and C, respectively. Among the products that are available in all three regions, we select

the 10 most popular ones in terms of average demand. Kernel density estimates of the marginal

demand distributions of all products are shown in Figure 3. We assume that the new store is located

in region J and that the two existing stores are located in regions S and C. This choice is motivated

by the observation that the demand distributions in region J are sometimes more similar to those in

region S (see products 4, 6, 7, 9 and 10 in Figure 3) and sometimes more similar to those in region C

(see products 1, 2, 3, 5 and 8 in Figure 3). Hence, none of the two source distributions provides a

consistently better approximation for P, and thus it makes sense to use data from both sources.

As in Section 6.1.2, we compare the optimal solutions of the multi-source DRO problem against

those of different single-source DRO baselines. We use the same parametrization for the radii of

the Wasserstein balls and the same search grids for all hyperparameters (λ and m in multi-source

https://www.kaggle.com/datasets/felixzhao/productdemandforecasting
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Table 4 Out-of-sample expected revenue of optimal product portfolios (mean (std. error) over 50 replications)

N1 N2 Single-s. DRO on Single-s. DRO on Single-s. DRO on Single-s. DRO on Multi-s. DRO
distribution P̂1 distribution P̂2 pooled data barycenter

25

25 485.82 (41.38) 424.02 (31.78) 466.95 (31.39) 465.45 (38.88) 507.25 (18.35)
50 499.72 (39.18) 436.07 (36.59) 482.39 (28.48) 483.29 (41.97) 489.50 (28.62)
75 490.15 (37.08) 460.22 (26.53) 474.18 (31.37) 483.54 (34.28) 501.91 (18.86)

100 511.38 (33.67) 429.77 (41.68) 476.26 (25.17) 482.80 (39.65) 521.38 (17.45)
50 25 482.97 (33.25) 469.61 (31.32) 495.78 (15.07) 474.53 (31.33) 515.70 (16.19)

50 483.40 (27.96) 450.81 (31.01) 486.00 (15.10) 474.99 (29.04) 506.45 (14.28)
75 459.22 (34.86) 448.90 (29.64) 471.02 (21.68) 457.32 (33.39) 508.48 (21.13)

100 480.09 (31.86) 464.28 (30.30) 480.90 (20.34) 483.12 (25.40) 514.36 (16.51)
75 25 472.61 (27.54) 455.59 (29.32) 481.00 (17.28) 466.65 (30.37) 510.46 (13.53)

50 468.62 (28.61) 456.25 (30.65) 476.89 (19.65) 462.41 (30.28) 513.03 (16.80)
75 478.82 (27.72) 447.56 (29.20) 497.11 (15.06) 462.17 (31.01) 511.79 (13.22)

100 470.48 (24.51) 445.45 (31.54) 479.66 (17.03) 451.81 (27.77) 506.35 (17.90)
100 25 492.03 (22.29) 472.98 (28.43) 498.45 (15.02) 491.31 (19.52) 520.69 (10.99)

50 480.81 (24.30) 471.65 (28.21) 483.77 (14.06) 482.63 (20.46) 505.78 (16.60)
75 472.79 (21.61) 473.64 (29.72) 486.44 (14.47) 479.74 (17.67) 514.36 (16.51)

100 472.15 (26.71) 458.26 (30.04) 493.11 (15.02) 474.90 (27.56) 517.13 (11.58)

DRO and ε in single-source DRO) as in Section 6.1.2. In all cases, we select hyperparameters from

the underlying search grids that maximize the average revenue across ten independent validation

samples. The validation samples are drawn from the same distribution as the training samples. For

methods that use data from P1 as well as P2, we select five validation samples from each distribution.

We compute the expected revenues of all optimal assortments on a dataset of 3,372 test samples.

Table 4 reports the means and standard errors of these expected revenues across 50 independent

simulation runs for different choices of the source sample sizes N1 and N2. We observe that multi-

source DRO consistently outperforms all baselines. The dominance of multi-source DRO is linked to

the structure of the two source distributions, none of which provides a globally better approximation

for the target distribution. Thus, using both data sources is better than using only one. In addition,

multi-source DRO makes better use of the two data sources than traditional DRO with a Wasserstein

ball centered at a mixture or at a Wasserstein barycenter of the empirical source distributions.
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Appendix A: Proofs of Section 4

Proof of Theorem 4 Throughout this proof we focus on OT barycenter and uncertainty quantification

problems with quadratic transportation cost functions c(ξ, ξ′) = ∥ξ − ξ′∥22 and full support sets Ξ = Rd.

Computing the optimal value of the OT barycenter problem (OT-BC) with uniform weights λ1 = · · ·= λK = 1

is known to be NP-hard even if all distributions P1, . . . ,PK are discrete (Altschuler and Boix-Adsera 2022,

Theorem 1.1). We can thus prove NP-hardness of the UQ Feasibility problem by reduction from the OT

barycenter problem. To this end, fix any instance of the OT barycenter problem specified by K discrete

distributions P̂1, . . . , P̂K with at most N atoms and uniform weights. Next, define E as the set of all radii ε=

(ε1, . . . , εK) for which the uncertainty quantification problem (P-UQ) with reference distributions P̂1, . . . , P̂K

and vanishing loss function ℓ(ξ) = 0 is feasible. As λk = 1 for every k ∈ [K], (OT-BC) is equivalent to

min
ε∈E

K∑
k=1

εk. (23)

Indeed, if P is feasible in (OT-BC), then ε defined through εk = C(P, P̂k), k ∈ [K], is feasible in (23) with

the same objective value. Thus, the minimum of (23) is smaller or equal to that of (OT-BC). Conversely,

if ε is feasible in (23), then the definition of E implies that there exists P ∈ P(Ξ) with C(P, P̂k) ≤ εk for

every k ∈ [K], and P has the same or a lower objective value than
∑K

k=1 εk. Thus, the minimum of (OT-BC)

is smaller or equal to that of (23). Next, note that E is convex and closed because the OT distance is convex

and weakly lower semicontinuous in its arguments. Note also that the UQ Feasibility problem with fixed

discrete distributions P̂1, . . . , P̂K serves as a separation oracle for (23). Indeed, for any ε̄ ∈ RK , the UQ

Feasibility problem either confirms that ε̄∈ E (which happens if and only if (P-UQ) is feasible) or enables

us to construct a halfspace H that contains E but not ε̄. If ε̄ /∈ E and ε̄k < 0 for some k ∈ [K], then we can

simply set H= {ε∈Rd : εk ≥ 0}. If ε̄ /∈ E and ε̄k ≥ 0 for every k ∈ [K], on the other hand, then we can set

H=

{
ε∈Rd :

K∑
k=1

εkλ
∞
k +

K∑
k=1

Nk∑
j=1

pk,jγ
∞
k,j ≥ 0

}
,

where (λ∞, γ∞) is the recession direction of the feasible set of (D-UQ) returned by the UQ Feasibility

oracle. As the objective function of (D-UQ) with ε= ε̄ decreases along (λ∞, γ∞), it is clear that ε̄ /∈H. To

show that E ⊆H, assume for the sake of contradiction that there exists ε̃∈ E with ε̃ ̸∈ H. Thus, (λ0, γ0)+ t ·

(λ∞, γ∞) is feasible in (D-UQ) for any t≥ 0 and for any feasible solution (λ0, γ0) of (D-UQ), and we have

lim
t→∞

K∑
k=1

ε̃k(λ
0
k + tλ∞

k )+

K∑
k=1

Nk∑
j=1

pk,j(γ
0
k,j + tγ∞

k,j) =−∞.
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This implies that (D-UQ) is unbounded, which in turn implies via weak duality that (9) is infeasible. However,

this contradicts our assumption that ε̃∈ E . We may thus conclude that E ⊆H.

Next, we construct a ball that is guaranteed to contain all minimizers of (23). To this end, note that every

distribution on Rd is feasible in the OT barycenter problem (OT-BC). For example, P̂1 is feasible and has

a finite objective function value R=
∑K

k=1C(P̂1, P̂k), which provides an upper bound on the optimal value

of (OT-BC). As (OT-BC) and (23) are equivalent, this implies that all minimizers of (23) must be contained

in the simplex {ε∈RK
+ :
∑K

k=1 εk ≤R}, which in turn resides within the ball of radius R around 0. Note that

since C(P̂1, P̂k) represents the optimal value of a linear program with poly(d,K) variables and constraints,

R can be encoded with poly(d,K, logU) bits, where logU denotes the bit complexity of each parameter

needed to describe the reference distributions (i.e., the probabilities as well as the locations of their atoms).

Trivially, E further contains balls of any positive radius because ε∈ E implies that ε′ ∈ E for every ε′ ≥ ε.

Given the separation oracle for E constructed above as well as the ball of radius R that contains all

minimizers of (23), we can compute the optimal value of (23) to any absolute accuracy δ > 0 with the

ellipsoid algorithm using poly(d,K, logU, log 1
δ
) calls to the UQ Feasibility oracle (Ben-Tal and Nemirovski

2001, Theorem 5.2.1). Recall that the OT barycenter problem (OT-BC) can be reformulated as a multi-

margin OT problem, which is equivalent to a linear program with O(NK) variables and constraints and

with objective function coefficients that can be computed via poly(d,K, logU) arithmetic operations (see

Theorem 1). Hence, the (equal) optimal values of (OT-BC) and (23) can be encoded with poly(d,K,N, logU)

bits. Selecting the accuracy δ of the ellipsoid algorithm to satisfy log(1/δ) = poly(d, k,N, logU), we can thus

compute the exact optimal value of (23) by rounding the output of the ellipsoid algorithm to the nearest

multiple of δ. In summary, we have thus conceived an algorithm for computing the optimal value of the NP-

hard OT barycenter problem (OT-BC), which requires only poly(d,K,N, logU) calls to the UQ Feasibility

oracle. Consequently, the UQ Feasibility oracle must be NP-hard, too. ■

Recall that, for ease of exposition, we have assumed throughout Section 4 that Nk =N for all k ∈ [K].

We have also assumed that logU represents an upper bound on the number of bits needed to encode any

radius εk, any probability pk,j and any component of ξ̂k,j for all j ∈ [N ] and k ∈ [K].

Before proving Theorem 5, we first construct two different separation oracles for the feasible set D of

problem (D-UQ). A separation oracle for D decides whether a given point (λ,γ)∈RK+KN belongs to D and,
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if not, constructs a closed halfspace H⊆RK+KN with (λ,γ) /∈H and D⊆H. The following lemma constructs

the first of the two separation oracles. This oracle runs in polynomial time provided that K is fixed.

Lemma 4 (Polynomial-Time Separation Oracle for Fixed K). If Assumptions 6, 7 and 8(i) hold,

then there is a separation oracle for D that runs in time polynomial in d, N , logU and the bit size of (λ,γ).

Proof of Lemma 4 We construct a separation oracle for D as follows. Given a test point (λ,γ), we first

check if λ≥ 0. Otherwise, if λk < 0 for some k ∈ [K], the closed halfspace H= {(λ′, γ′) ∈ RK+KN : λ′
k ≥ 0}

contains D but not (λ,γ). For any fixed multi-index α∈A we then use the generalized Moreau envelope oracle

from Assumption 6 to compute the supremum on the left hand side of the α-th robust constraint in (D-UQ),

which we denote here by ℓ⋆α(λ). If ℓ⋆α(λ) = ∞, then the oracle outputs a closed halfspace Λ ⊆ RK such

that λ /∈Λ and λ′ ∈Λ for every λ′ ∈RK with ℓ⋆(λ′)<∞. Thus, the closed halfspace H=Λ×RKN contains D

but not (λ,γ). If
∑K

k=1 γk,αk
< ℓ⋆α(λ)<∞, on the other hand, then the oracle outputs a maximizer ξ⋆ ∈ Ξ

for the optimization problem embedded in the α-th robust constraint in (D-UQ). The closed halfspace

H=

{
(λ′, γ′)∈RK+KN : ℓ(ξ⋆)−

K∑
k=1

λ′
kc(ξ

⋆, ξ̂kαk
)≤

K∑
k=1

γ′
k,αk

}

then contains every feasible solution (λ′, γ′) ∈D because ℓ(ξ⋆)−
∑K

k=1 λ
′
kc(ξ

⋆, ξ̂kαk
)≤ ℓ⋆α(λ

′)≤
∑K

k=1 γ
′
k,αk

,

where the first inequality holds because ξ⋆ is feasible but not necessarily optimal in the embedded optimiza-

tion problem associated with λ′, and the second inequality follows from the definition of the feasible set D.

On the other hand, (λ,γ) /∈H because ℓ(ξ⋆)−
∑K

k=1 λkc(ξ
⋆, ξ̂kαk

) = ℓ⋆α(λ)>
∑K

k=1 γk,αk
, where the equality

holds because ξ⋆ is optimal in the embedded optimization problem associated with λ. If ℓ⋆α(λ)≤
∑K

k=1 γk,αk
,

finally, then we have verified that the α-th robust constraint in (D-UQ) is satisfied. If λ≥ 0 and all |A|=NK

robust constraints are satisfied, then we can conclude that (λ,γ) ∈ D. The procedure outlined above thus

correctly decides whether (λ,γ)∈D and, if not, outputs a halfspace H that contains D but not (λ,γ).

The runtime of the proposed procedure is dominated by the NK calls to the Moreau envelope oracle. By

Assumptions 6, 7 and 8(i), the runtime of each call grows polynomially with d, K, N , logU and the bit size

of (λ,γ). Thus, if K is fixed, the oracle runs in time polynomial in d, N , logU and the bit size of (λ,γ). ■

Perhaps surprisingly, one can construct a second oracle that runs in time polynomial in K if d is fixed.

This construction relies on the following lemma inspired by (Altschuler and Boix-Adsera 2021, Lemma 17).
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Lemma 5 (Constraint Elimination). If Assumptions 1 and 8(ii) hold and λk ≥ 0 for all k ∈ [K], then

max
α∈A

sup
ξ∈Ξ

ℓ(ξ)−
K∑

k=1

Ä
λkc(ξ, ξ̂k,αk

)+ γk,αk

ä
= max

α∈A′
sup
ξ∈Ξ

ℓ(ξ)−
K∑

k=1

Ä
λkc(ξ, ξ̂k,αk

)+ γk,αk

ä
,

where A′ = {α∈A : Cα ̸= ∅} is defined in terms of the cells Cα =∩K
k=1Ξk,αk

, α∈A, with

Ξk,i = {ξ ∈Ξ : λkc(ξ, ξk,i)+ γk,i <λkc(ξ, ξk,j)+ γk,j ∀j ∈ [N ], j ̸= i} ∀k ∈ [K], ∀i∈ [N ].

Proof of Lemma 5 Since A′ ⊆A, the maximum over A′ is smaller than or equal to the maximum over A.

To prove the reverse inequality, note that the maximum over A can be expressed as

sup
ξ∈Ξ

max
α∈A

ℓ(ξ, θ)−
K∑

k=1

Ä
λkc(ξ, ξ̂k,αk

)+ γk,αk

ä
= max

α′∈A′
sup
ξ∈Cα′

max
α∈A

ℓ(ξ, θ)−
K∑

k=1

Ä
λkc(ξ, ξ̂k,αk

)+ γk,αk

ä
= max

α′∈A′
sup
ξ∈Cα′

ℓ(ξ, θ)−
K∑

k=1

Ä
λkc(ξ, ξ̂k,α′

k
)− γk,α′

k

ä
≤ max

α′∈A′
sup
ξ∈Ξ

ℓ(ξ, θ)−
K∑

k=1

Ä
λkc(ξ, ξ̂k,α′

k
)+ γk,α′

k

ä
,

where the first equality holds because ∪α′∈A′cl(Cα′) = Ξ thanks to Assumption 8(ii) and because ℓ and c

are upper and lower semicontinuous, respectively (see Assumption 1). The second equality exploits the

construction of the cells Cα′ , α′ ∈A′, and the inequality holds because Cα′ ⊆Ξ for every α′ ∈A′. ■

Lemma 5 implies that, among all NK robust constraints in (D-UQ), it suffices to retain only those indexed

by α ∈ A′. The others can be eliminated without affecting the solution of (D-UQ). By Assumption 8(iii),

the reduced index set can be computed in time poly(N,K, logU) for any fixed dimension d. This implies in

particular that |A′| = poly(N,K, logU), which is much smaller than |A| =NK for large K. The following

lemma constructs the second separation oracle, which runs in polynomial time provided that d is fixed.

Lemma 6 (Polynomial-Time Separation Oracle for Fixed d). If Assumptions 6, 7 and 8 hold, then

there is a separation oracle for D that runs in time polynomial in K, N , logU and the bit size of (λ,γ).

Proof of Lemma 6 The desired separation oracle is constructed as in the proof of Lemma 4. However,

the Moreau envelope oracle from Assumption 6 is only called for robust constraints indexed by some α∈A′.

As |A′|= poly(N,K, logU) and because of the assumed efficiency of the Moreau envelope oracle, the time

needed for all |A′| oracle calls grows polynomially with d, K, N , logU and the bit size of (λ,γ). Also, by

Assumption 8(iii), the reduced index set A′ can be computed in time poly(K,N, logU). The overall runtime

of the constructed separation oracle thus grows polynomially with K, N , logU and the bit size of (λ,γ). ■
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We emphasize that all known algorithms for computing the reduced index set A′ have a runtime that

grows either exponentially with d or with K; see the discussion in (Altschuler and Boix-Adsera 2021).

The proof of Theorem 5 follows now almost immediately from Lemmas 4 and 6.

Proof of Theorem 5 The assumptions of the theorem imply via Lemmas 4 and 6 that the feasible set

of (D-UQ) admits a separation oracle that runs in time poly(d,N, logU) and poly(K,N logU), respectively.

Thus, problem (D-UQ) can be solved efficiently with the ellipsoid algorithm (Ben-Tal and Nemirovski 2001,

Theorem 5.2.1). The initial ellipsoid may be set to the ball of radius R around 0, which can be computed

in time poly(d,K,N logU). As the transportation cost function is nonnegative, it is clear that if (λ,γ) is

feasible in (D-UQ), then any (λ′, γ′)≥ (λ,γ) is also feasible in (D-UQ). Hence, we may assume without loss

of generality that the intersection of the initial ellipsoid and the feasible set of problem (D-UQ) contains

some ball of radius 1. The ellipsoid algorithm with the first (second) separation oracle thus computes the

optimal value of (D-UQ) to within any accuracy δ in time poly(d,N, logU, log 1
δ
) (poly(K,N logU, log 1

δ
)). ■
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