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Abstract

We analyze the inverse of integer programs (IPs) using the Gomory corner relaxation (GCR).

We prove the inverse GCR is equivalent to the inverse of a shortest path problem, yielding a

polyhedral representation of the GCR inverse-feasible region. We propose a linear program

formulation for the inverse GCR under L1 and L∞ norms. The inverse GCR bounds the inverse

IP optimal value as tightly as the inverse linear relaxation under mild conditions. We relate the

inverse feasible region of IP and the inverse feasible regions of GCRs.

Keywords: Inverse optimization; Integer programming; Gomory corner relaxation.

1 Introduction

Given a (forward) optimization problem and a feasible solution, the inverse-feasible region is the set

of objective vectors under which the given feasible solution is optimal to the forward problem. The

inverse optimization problem finds an inverse-feasible vector that is closest (by some given metric)

to a given target vector. Inverse optimization has many applications. Tarantola [33] applied inverse

optimization in geophysical sciences, such as estimating the epicenter of a seismic event. He also

showed applications in statistics, e.g., for linear regression. Inverse optimization is also useful in

healthcare: Estimating liver-transplant patients’ preferences over healthcare outcomes [16], medical

imaging [4], designing cancer treatment plans [3, 11], estimating the physical properties of solid

materials [9], and traffic equilibrium models [5].
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The inverse of integer programs (IPs) and the inverse of mixed integer programs (MIPs) are

particularly interesting because of their wide applicability. Schaefer [30] and Lamperski and Schae-

fer [27] established polyhedral representations of the inverse-feasible regions of IPs and MIPs using

the superadditive duality of the forward problems. This characterization enabled linear program-

ming (LP) formulations for inverse IPs and inverse MIPs. However, the number of variables and

constraints in these LP formulations grow super-exponentially (in the size of the forward problem)

and are thus intractable for most instances. Huang [23] reformulated the inverse IP as the inverse

of a shortest path problem; the number of vertices and arcs in the graph of this shortest path

problem grow super-exponentially (on the number of constraints in the forward IP).

Cutting plane algorithms have been proposed as an alternative to LP formulations for solving

inverse IPs and MIPs. Wang [35] provided a cutting plane algorithm for solving inverse MIPs by

repeatedly generating optimality cuts from the extreme points of the convex hull of the feasible

region of the forward problem. His empirical analysis demonstrated the algorithm’s tractability for

small inverse MIPs. The algorithm was improved upon by Duan and Wang [14], who introduced a

heuristic algorithm for computing the extreme points and bounds for Wang’s algorithm [35]. Bodur

et al. [8] introduced another cutting plane algorithm for solving inverse MIPs, which generates

optimality cuts from interior points of the convex hull of the feasible region of the forward problem.

Their empirical analysis showed runtime improvements over Wang’s algorithm [35] because the

interior points are often easier to compute than the extreme points. These cutting plane algorithms

are far more tractable than the LP formulations proposed by Schaefer [30] and Lamperski and

Schaefer [27], but the cutting plane algorithms do not characterize the polyhedral structure of the

inverse-feasible regions of IPs and MIPs. Inverse IP and inverse MIPs remain theoretically and

computationally challenging.

IPs and MIPs are often studied by relaxing the integrality constraints, obtaining the LP relax-

ation. Therefore, a natural approach to studying inverse IP and inverse MIPs is to solve inverse

LP problems, which typically exhibit more structure. Zhang and Liu [37] proposed a solution for

general inverse LP problems under the L1 norm, from which they obtained strongly polynomial

algorithms for solving the inverse minimum cost flow problem and the inverse assignment problem.

Zhang and Liu [38] proposed a solution for inverse LP problems when both the given feasible so-

lution and an optimal solution under the original objective vector are composed of only zeros and
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ones, which is common in network flow problems. Ahuja and Orlin [2] showed that if a problem

with a linear objective function is polynomially solvable, as is the case for LP problems, then the

inverse of that problem under the L1 or L∞ norm is also polynomially solvable. Tavaslıoğlu et

al. [34] studied the polyhedral structure of the inverse-feasible region of LP problems, while Chan

et al. [12] introduced a goodness-of-fit framework for evaluating inverse LP problems where the

provided feasible solution for the forward LP problem cannot be made optimal outside of the trivial

zero-objective case.

The Gomory corner relaxation (GCR) is an alternative method for relaxing IPs, obtained by

relaxing the nonnegativity constraint of each variable in a basis of the LP relaxation while preserving

variable integrality [19]. Gomory [20] noted that the forward GCR reveals the underlying structure

of the original IP; for example, the facets of the convex hull of the feasible region of the GCR

provide cutting planes for the original IP. Gomory [19], Hoşten and Thomas [22], and Richard

and Dey [29] enumerated several classes of IP instances where the optimal solutions for the GCR

are also optimal solutions for the original IP. Fischetti and Monaci [17] demonstrated that for

many problem instances, the gap between the IP and GCR optimal values is much tighter the gap

between the IP and LP relaxation optimal values. Köppe et al. [26] characterized the geometry of

several reformulations of the GCR. The GCR can be further relaxed to obtain the master group

relaxation, which can be applied to broader classes of problems because of its more general structure

[29]. The GCR is NP-hard [28], and the most efficient known algorithms for solving the GCR exhibit

polynomial runtime complexity with respect to the size of the determinant of the basis matrix of

the LP relaxation, which can be very large [28, 29]. Several algorithms for solving the forward

GCR reduce the GCR to an instance of the shortest path problem [13, 26, 29], a technique first

developed by Shapiro [31].

We show that the inverse GCR can be solved as the inverse of a shortest path problem, which

manipulates a graph’s arc weights such that a given path becomes shortest from among all paths

that connect the associated origin and destination vertices. The inverse shortest path problem has

been extensively studied. The forward shortest path problem can be reduced to a minimum cost

flow problem, so the inverse of the shortest path problem under the L1 norm can be solved using

a strongly polynomial algorithm provided by Zhang and Liu [37]. Ahuja and Orlin [2] showed that

the inverse shortest path problem under the L1 norm can be reduced to a forward shortest path
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problem. Zhang et al. [39] proposed a column generation framework for solving a variant of the

inverse shortest path problem where several given paths each need to become shortest from among

paths that connect their respective origin and destination vertices. Burton and Toint [10] proposed

a quadratic programming formulation for solving the inverse shortest path problem under the L2

norm. Xu and Zhang [36] characterized the feasible region of the inverse shortest path problem as

a polyhedral cone.

We represent the inverse-feasible region of the GCR as a nonempty polyhedral cone and propose

an LP formulation for the inverse GCR under the L1 and L∞ norms. We show that the inverse

GCR bounds the inverse IP optimal value as tightly as the bounds provided by the inverse LP,

assuming nondegeneracy. Our formulation of the inverse GCR is much smaller than the exact

inverse IP formulation proposed by Schaefer [30].

We study the structure of inverse-feasible regions of IP and GCRs. We demonstrate that solving

the inverse of a set of GCR problems, each defined by a different basis of the LP relaxation, provides

more information about the inverse of IP than solving only one inverse GCR problem. We also

show that the conic hull of the inverse-feasible regions of this set of GCR problems is a subset

of the inverse-feasible region of IP. We provide the conditions under which the union of inverse-

feasible regions of GCRs is the same as the inverse-feasible region of IP. Additionally, we identify

the conditions under which the union of the inverse-feasible regions of GCR is a superset of the

inverse-feasible region of the LP relaxation. In the absence of degeneracy, we show that the inverse-

feasible region of GCR for some basis always performs as well as the inverse-feasible region of LP

relaxation in terms of covering the inverse-feasible region of IP.

2 Preliminaries

2.1 Gomory Corner Relaxation

Given A ∈ Zm×n, b ∈ Zm, and c ∈ Rn, let IP denote the following IP problem, which we assume

has nonempty feasible region. Let LP denote the LP relaxation of IP:

min{c⊺x | Ax = b, x ≥ 0, x ∈ Zn}, (IP)

min{c⊺x | Ax = b, x ≥ 0, x ∈ Rn}. (LP)
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Let B,N ⊆ {1, ..., n} respectively denote the indices of the basic and nonbasic variables of a

basic solution for LP. Assume A is full row rank and let m ≤ n, so |B| = m, |N | = n − m and

B ∩ N = ∅. Let cB, xB (cN , xN ) denote the vectors comprised of the B-indexed (N -indexed)

components of c, x, respectively. Let AB (AN ) be the matrix comprised of the B-indexed (N -

indexed) columns of A. Observe that AB is nonsingular. Then, the GCR of IP with respect to B,

denoted by GB, is obtained by relaxing the nonnegativity constraints of the decision variables in

the selected basis B [29]:

min{c⊺BxB + c⊺NxN | ABxB +ANxN = b, xN ≥ 0, x ∈ Zn}. (GB)

For a given d ∈ Rn, let IPd, LPd, GB,d denote the problems IP,LP,GB, where the original

objective vector c has been replaced by d. The feasible regions of IPd, LPd, GB,d remain the same

as the feasible regions of the original problems IP, LP, GB, respectively.

For a given optimization problem P, let z(P) denote the optimal objective value, and let Opt(P)

denote the set of optimal solutions.

Remark 1. We allow B to be an infeasible basis of LP. Though Gomory [19] also allows B to be

an infeasible basis, he assumes B is an optimal basis to find conditions where solving GB also solves

IP. Richard and Dey [29] and Fischetti and Monaci [17] assume B is an optimal basis. Allowing

B to be an infeasible basis, as done by Köppe et al. [26], permits a more general representation

of the inverse GCR. Our results hold for both feasible and infeasible bases of LP. In Section 4.2,

we will show if d is in the inverse-feasible region of GB, where B is a feasible basis for LP, then B

must be an optimal basis for LPd.

2.2 Gomory Corner Relaxation as a Shortest Path Problem

We summarize how the GCR is reformulated as an instance of the shortest path problem as de-

scribed by Richard and Dey [29], based on a reformulation first proposed by Shapiro [31].

Lemma 1. [29] There exist unimodular matrices S, T ∈ Zm×m and a vector w ∈ Zm
+ such that

SABT = diag(w), where diag(w) is the m × m matrix whose diagonal is given by w and whose

off-diagonal entries are all zero.
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The formulation in Lemma 1 is the Smith Normal Form of AB [32]. There are several efficient

algorithms for computing S, T , and w [7, 15, 24, 25]. S, T , and w (as well as several objects we

will define later) all depend on the selected basis B, but we decline to notate this dependence on

B for clarity.

For a given vector u ∈ Zm, we define the modulo operator u(mod w) to denote anm-dimensional

vector whose ith component is given by (u(mod w))i = ui mod wi for each i ∈ [m] = {1, ...,m}.

For example, if u = (3, 5,−2) and w = (2, 3, 3), then u(mod w) = (1, 2, 1).

We define linear function r : Rn → Rn−m by r(d) = dN − (A−1
B AN )⊺dB to denote the reduced

costs of the N -indexed variables in the basic solution xB = A−1
B b, xN = 0 for LPd. Observe that r

depends on the selected basis B. We use this notation to define a directed graph G with the vertex

set V and the arc set E as follows:

V :=
∏

i∈[m]

{0, 1, ..., wi − 1}, E :=
⋃

j∈[n−m]

Ej ,

where, for each j ∈ [n−m], (SAN )j is the jth column vector of SAN , and

Ej :=
{(

u,
(
u+ (SAN )j

)
(mod w)

)
| u ∈ V

}
.

Since S and T are unimodular, | detAB| =
∏

i∈[m]

wi, and therefore, |V | = |detAB| and |E| =

(n−m)| detAB|.

Let SB denote the problem of finding a shortest path from source vertex 0 to destination vertex

Sb(mod w) in graph G, where each arc in Ej is weighted by r(c)j . For a given d ∈ Rn, let SB,d

denote the same problem of finding a shortest 0-to-Sb(mod w) path in G, except each arc in Ej is

weighted by r(d)j instead of r(c)j .

Consider any vector y ∈ Zn−m
+ . For problem SB, consider all paths that start from source vertex

0 and are composed of some permutation of exactly yj arcs from Ej for each j ∈ [n−m]. (E.g., if

y = (1, 2), consider the path that traverses one E1 arc then two E2 arcs, the path that traverses one

E2 arc then one E1 arc then one E2 arc, and the path that traverses two E2 arcs then one E1 arc.)

Such a path always exists because each vertex is the tail of an Ej arc for each j ∈ [n−m]. Each Ej

arc has the same weight r(c)j , so all of these paths have the same weight r(c)⊺y. All of these paths
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also have the same destination vertex (SAN )y (mod w). Thus, if we consider all of these paths to

be (possibly infeasible) solutions for SB, then y provides their objective value (path weight r(c)⊺y)

and feasibility (if the destination vertex (SAN )y (mod w) is equal to Sb(mod w)). We therefore

represent potential solutions for SB as vectors from Zn−m
+ , where the vector y ∈ Zn−m

+ corresponds

to a path starting at vertex 0 that is composed of some permutation of exactly yj arcs from Ej .

Lemma 2 formalizes the relationship between GB,d and SB,d for a given d ∈ Rn. The lemma

is given by Richard and Dey [29] for GB and SB, and their results hold more generally for GB,d

and SB,d because their proof does not depend on if B is an optimal/feasible basis of the linear

relaxation. Their proof offers the following intuition: x is a feasible solution for GB,d if and only

if xN is a 0-to-Sb(mod w) path for SB,d and xB = A−1
B b − A−1

B ANxN . The objective value of

a solution x for GB,d differs from the weight of the path xN for SB,d by exactly a fixed value:

d⊺x = r(d)⊺xN + c⊺BA
−1
B d.

Lemma 2. [29] For a given d ∈ Rn, we have x ∈ Opt(GB,d) if and only if xN ∈ Opt(SB,d) and

xB = A−1
B b−A−1

B ANxN .

This shortest path reformulation SB of GB will be used to represent the inverse GCR as the

inverse of a shortest path problem.

2.3 Inverse Optimization

Let P be an optimization problem from among IP,LP,GB,SB. Let x◦ be a feasible solution for

P. The inverse-feasible region of P with respect to x◦, denoted by IFR(P, x◦), is the set of vectors

d ∈ Rn for which x◦ is an optimal solution for Pd:

IFR(P, x◦) = {d ∈ Rn | x◦ ∈ Opt(Pd)}.

The inverse problem of P with respect to x◦, denoted by Inv(P, x◦), is the problem of finding

a vector d ∈ IFR(P, x◦) that minimizes the (possibly weighted) Lp norm of d− c:

Inv(P, x◦) :min{∥d− c∥p | d ∈ IFR(P, x◦)}.

We now give a motivating example where the inverse IP is exactly solved by the inverse GCR
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but is not exactly solved by the inverse LP relaxation. We later show that generally, the inverse

GCR may be easier to compute than the inverse IP while providing a better approximation of the

inverse IP than that of the inverse LP relaxation.

Example 1. Suppose the feasible region of IP is given by {(x1, x2) ∈ Z2 | x1+2x2 = 3, x1, x2 ≥ 0}.

Let x◦ = (1, 1), see Figure 1. Since (3, 0) is the only other feasible solution for IP, IFR(IP, x◦) =

{d ∈ R2 | − 2d1 + d2 ≤ 0}. The convex hull of the feasible region of GB, B = {2} is the ray

with origin x◦ and direction (2,−1), so IFR(GB, x◦) = IFR(IP, x◦). IFR(LP, x◦) = span{(1, 2)}

by inspection of Figure 1 or direct computation [1, 35]. Thus, IFR(LP, x◦) ⊊ IFR(GB, x◦) =

IFR(IP, x◦).

Finally, Inv(LP, x◦) ≥ Inv(GB, x◦) = Inv(IP, x◦) because each inverse problem has the same

objective function. Inv(LP, x◦) > Inv(IP, x◦) for many given target objective vectors c; for

example, if c ∈ IFR(IP, x◦) \ IFR(LP, x◦), then Inv(LP, x◦) > 0 = Inv(GB, x◦) = Inv(IP, x◦).

See, Figure 2.

Figure 1: The feasible region of IP in Example 1 is shown by the filled diamond at x◦ = (1, 1) and
the filled circle at (3, 0). The feasible region of GB, B = {2} is unbounded; two points that are
feasible for GB but infeasible for IP are shown by the crosses. The feasible region of LP is shown
by the line segment between (0, 1.5) and (3, 0).
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Figure 2: IFR(GB, x◦) = IFR(IP, x◦) are shown as the shaded region, and IFR(LP, x◦) is shown
as the solid line.

3 Characterizing the Inverse of Integer Programs

Let B be the set of all bases of LP (both feasible and infeasible), and consider a feasible solution

x◦ for IP. For any B ∈ B, the intersection of the feasible regions of LP and GB is exactly the

feasible region of IP because the constraints of LP enforce nonnegativity and the constraints of

GB enforce integrality. Furthermore, if
⋂

B∈B
B = ∅, then the intersection of the feasible regions of

GB, B ∈ B is exactly the feasible region of IP because the constraints of GB, B ∈ B collectively

enforce nonnegativity for all decision variables. Thus, it may be possible to obtain large portions

of IFR(IP, x◦) using IFR(LP, x◦) and all IFR(GB, x◦), B ∈ B.

Though we focus on the inverse of the GCR and its relationship with the inverse LP relaxation,

our findings in this section apply to any IP relaxation, such as the master group relaxation [19, 29]

or the Lagrangean relaxation [6].

Lemma 3. Let x◦ be a feasible solution for IP, and let R be a relaxation of IP. Then, IFR(R, x◦) ⊆

IFR(IP, x◦), and z(Inv(R, x◦)) ≥ z(Inv(IP, x◦)).

Proof. Consider any d ∈ IFR(R, x◦), so x◦ ∈ Opt(Rd). Since Rd is a relaxation of IPd, x◦ ∈

Opt(IPd). Thus, d ∈ IFR(IPd, x◦) and IFR(R, x◦) ⊆ IFR(IP, x◦). Inv(R, x◦) and Inv(IP, x◦)
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have the same objective function, so z(Inv(R, x◦)) ≥ z(Inv(IP, x◦)).

From Proposition 1, in cases where
⋃

B∈B
IFR(GB, x◦) ̸= IFR(IP, x◦), we may be able to contain

more of IFR(IP, x◦) using cone({IFR(GB, x◦), B ∈ B}).

Proposition 1. Let x◦ be a feasible solution for IP, and let R1, ...,Rr be relaxations of IP. Then,⋃
i∈[r]

IFR(Ri, x
◦) ⊆ cone({IFR(Ri, x

◦), i ∈ [r]}) ⊆ IFR(IP, x◦).

Proof. We first show IFR(IP, x◦) is a polyhedral cone. Schaefer [30] proved that IFR(IP, x◦) is

a polyhedron. IFR(IP, x◦) is a cone because if d ∈ IFR(IP, x◦), then td ∈ IFR(IP, x◦) for any

t ∈ R+ [6].

Clearly,
⋃

i∈[r]
IFR(Ri, x

◦) ⊆ cone({IFR(Ri, x
◦), i ∈ [r]}). Next, IFR(IP, x◦) is a polyhe-

dral cone and IFR(Ri, x
◦) ⊆ IFR(IP, x◦) for each i ∈ [r], so cone({IFR(Ri, x

◦), i ∈ [r]}) ⊆

cone(IFR(IP, x◦)) = IFR(IP, x◦).

IFR(IP, x◦) can be fully contained by the inverse-feasible regions of relaxations of IP.

Theorem 1. Let x◦ be a feasible solution for IP, and let R1, ...,Rr be relaxations of IP. Suppose

for any selection of one feasible solution for each of Ri, i ∈ [r], there exists a convex combination

of those feasible solutions that lies within conv({Ax = b, x ≥ 0, x ∈ Zn}). Then,
⋃

i∈[r]
IFR(Ri, x

◦) =

IFR(IP, x◦).

Proof. Lemma 3 implies
⋃

i∈[r]
IFR(Ri, x

◦) ⊆ IFR(IP, x◦). We show IFR(IP, x◦) ⊆
⋃

i∈[r]
IFR(Ri, x

◦).

By contradiction, suppose there exists d ∈ IFR(IP, x◦) \
⋃

i∈[r]
IFR(Ri, x

◦). Then, for each i ∈ [r],

d ∈ IFR(IP, x◦) \ IFR(Ri, x
◦), so there exists a feasible solution yi for Ri such that d⊺yi < d⊺x◦.

Let w be the convex combination of yi, i ∈ [r] where w ∈ conv({Ax = b, x ≥ 0, x ∈ Zn}). Since

w is a convex combination of yi, i ∈ [r], we have d⊺w < d⊺x◦. Also, since w ∈ conv({Ax = b, x ≥

0, x ∈ Zn}) and d ∈ IFR(IP, x◦), d⊺w ≥ d⊺x◦. This contradiction indicates that IFR(IP, x◦) ⊆⋃
i∈[r]

IFR(Ri, x
◦).
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4 Inverse Gomory Corner Relaxation

4.1 Inverse-Feasible Region of Shortest Path Reformulation

This subsection provides a polyhedral representation of IFR(SB, x◦N ), where x◦N encodes some

given 0-to-Sb(mod w) path. Ahuja et al. [1] derived conditions for a given path to be a shortest

path, which we apply to x◦N for problem SB,d to obtain Lemma 4.

Lemma 4. For a given d ∈ Rn, x◦N is a shortest 0-to-Sb(mod w) path for problem SB,d if and

only if for each vertex u ∈ V , there exists an associated yu ∈ R such that

y0 = 0, (1a)

ySb(mod w) = r(d)⊺x◦N , (1b)

yv − yu ≤ r(d)j , ∀(u, v) ∈ Ej , ∀j ∈ [n−m]. (1c)

IFR(SB, x◦N ) is the set of all d ∈ Rn such that x◦N is a shortest 0-to-Sb(mod w) path for

problem SB,d, so we formulate IFR(SB, x◦N ) by defining the set of all d ∈ Rn that satisfy the

conditions in Lemma 4 given by (1a), (1b), (1c).

Proposition 2.

IFR(SB, x◦N ) = {d ∈ Rn | ∃y ∈ R|V | such that (1a), (1b), (1c)}

= projRn{d ∈ Rn, y ∈ R|V | | (1a), (1b), (1c)},

which is a polyhedral cone that contains 0.

Note that Inv(SB, x◦N ) is a special case of the general inverse shortest path problem (e.g.,

studied by Zhang and Liu [37] and Ahuja and Orlin [2]) because each arc in Ej has the same

weight.

4.2 Feasible Region and Linear Programming Formulation of the Inverse Go-

mory Corner Relaxation

Theorem 2. For a given feasible solution x◦ for GB, IFR(SB, x◦N ) = IFR(GB, x◦).
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Proof. Since x◦ is a feasible solution for GB, we have x◦B = A−1
B b−A−1

B ANx◦N . Then, by Lemma 2,

d ∈ IFR(GB, x◦) ⇐⇒ x◦ ∈ Opt(GB,d)

⇐⇒ x◦N ∈ Opt(SB,d)

⇐⇒ d ∈ IFR(SB, x◦N ).

Theorem 2 implies that the inverse GCR is equivalent to the inverse of a shortest path problem,

which also implies the GCR inverse-feasible region is a nonempty polyhedral cone by Proposition

2.

Most research on the GCR assumes B is an optimal basis of LP (e.g., [17, 19, 29]). Proposition

3 addresses this condition.

Proposition 3. Consider a feasible basis B for LP and a feasible solution x◦ for GB. Then, B is

an optimal basis of LPd for all d ∈ IFR(GB, x◦).

Proof. By contradiction, suppose there exists d ∈ IFR(GB, x◦) such that B is a non-optimal

feasible basis of LPd, and let N = [n] \ B. Non-optimality implies that at least one of the N -

indexed reduced costs of LPd must be negative [6]. The arc weights of SB are defined by the

N -indexed reduced costs, so there exists j ∈ [n−m] such that the arcs in Ej have negative weight.

Since there are finitely many vertices, and each vertex is the tail of an arc from Ej , we can then

construct a negative-weight cycle by repeatedly augmenting a path with arcs from Ej until a cycle

is formed [29]. The existence of a negative-weight cycle implies x◦N is not a shortest path, so

d ̸∈ IFR(SB, x◦N ) = IFR(GB, x◦).

Corollary 1. Let x◦ be a feasible solution for IP. Consider a feasible basis B for LP and the

associated basic feasible solution x∗B = A−1
B b, x∗N = 0. Then, IFR(GB, x◦) ⊆ IFR(LP, x∗).

We obtain the following LP formulation for Inv(GB, x◦) under the L1 norm. The constraints

are derived from Proposition 2, and we linearize the objective function min∥d− c∥1 by substituting

d := c− e+ f for e, f ∈ Rn
+.

Proposition 4. For a given feasible solution x◦ for GB, an optimal solution for Inv(GB, x◦) under

the L1 norm weighted by a given w ∈ Rn
+ is equal to c − e∗ + f∗, where e∗, f∗, y∗ is an optimal
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solution for the following LP problem:

min

n∑
k=1

wk(ek + fk) (2a)

s.t. y0 = 0, (2b)

ySb(mod w) = (r(c)− r(e) + r(f))⊺x◦N , (2c)

yv − yu ≤ r(c)j − r(e)j + r(f)j ,∀(u, v) ∈ Ej , ∀j ∈ [n−m], (2d)

e, f ∈ Rn
+, y ∈ R|V |. (2e)

The LP in (2) can be modified to solve Inv(GB, x◦) under the L∞ norm [2]. The LP formulation

for Inv(GB, x◦) can be quite large depending on detAB.

5 Comparing Inverse Formulations

5.1 Comparison with Inverse Linear Programming Relaxation

Theorems 3 and 4 show how the GCR inverse-feasible regions may contain as much of the IP

inverse-feasible region as the LP relaxation inverse-feasible region. We compare the optimal values

of the inverse IP, inverse GCR, and inverse LP relaxation.

Theorem 3. Let x◦ be a feasible solution for IP that is a basic feasible solution for LP. Let

B̄ ⊆ B be the set of feasible bases B of LP that satisfy x◦B = A−1
B b, x◦N = 0. Then, IFR(LP, x◦) =⋃

B∈B̄
IFR(GB, x◦).

Proof. By Corollary 1,
⋃

B∈B̄
IFR(GB, x◦) ⊆ IFR(LP, x◦). To prove IFR(LP, x◦) ⊆

⋃
B∈B̄

IFR(GB, x◦),

consider any d ∈ IFR(LP, x◦). Then, x◦ is an optimal solution for LPd, so there exists B ∈ B̄ such

that the reduced costs of the N -indexed variables are nonnegative for LPd [29]. Since x◦ is feasible

for IPd, x◦ is also feasible for GB,d, and based on Theorem 2, x◦N = 0 is feasible for SB,d. Thus,

the source and destination vertices are the same in SB,d, and since the arc weights are defined

by the reduced costs of the N -indexed variables for LPd, the arc weights are then nonnegative.

Therefore, x◦N = 0 is an optimal solution for SB,d. Hence, x◦ is an optimal solution for GB,d, and

thus d ∈ IFR(GB, x◦).
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Theorem 4. Let x◦ be a feasible solution for IP that is not a basic feasible solution for LP. Let

K := {k ∈ [n] | x◦k > 0}.

(a) For any basis B of LP where B ⊆ K, we have IFR(LP, x◦) ⊆ IFR(GB, x◦).

(b) In the absence of degeneracy, there always exists a feasible basis B such that B ⊆ K.

Proof. Let B be a basis of LP where B ⊆ K. Consider any d ∈ Rn such that d ̸∈ IFR(GB, x◦).

To prove (a), we will show IFR(LP, x◦) ⊆ IFR(GB, x◦) by proving that d ̸∈ IFR(LP, x◦), or

equivalently, that x◦ is not an optimal solution for LPd.

x◦ is not an optimal solution for GB,d, so there exists a feasible solution y for GB,d such that

d⊺y < d⊺x◦. We consider two cases.

Case 1. Suppose y ≥ 0. y is a feasible solution for GB, so Ay = b, and therefore y is a feasible

solution for LPd. x◦ is not optimal for LPd.

Case 2. Suppose there exist some k ∈ B such that yk < 0. Let C := {k ∈ B | yk < 0} denote the

indices of the negative components of y. We construct w that is a convex combination of x◦ and

y. Let λ := max

{
−yk

x◦
k−yk

∣∣ k ∈ C

}
. For each k ∈ C, x◦k > 0 > yk, so 0 < −yk

x◦
k−yk

< 1, which implies

λ ∈ (0, 1). Let w := λx◦ + (1− λ)y. Then, for each k ∈ C,

wk = yk + λ(x◦k − yk) ≥ yk +
−yk

x◦k − yk
(x◦k − yk) = 0.

Also, for each k ∈ [n] \ C, we have x◦k, yk ≥ 0, so wk ≥ 0. Therefore, w ≥ 0. Furthermore,

d⊺w = λd⊺x◦ + (1− λ)d⊺y < λd⊺x◦ + (1− λ)d⊺x◦ = d⊺x◦, (3)

and Aw = A(λx◦ + (1− λ)y) = λAx◦ + (1− λ)Ay = b, where the last equality holds because both

x◦ and y are feasible solutions for GB,d. Thus, w is a feasible solution for LP, and, by (3), x◦ is

not an optimal solution for LPd.

To prove (b), define δ ∈ Rn by δk = 0 for k ∈ K, and δk = 1 for k ∈ [n] \ K. Then,

0 ≤ z(LPδ) ≤ δ⊺x◦ = 0. Thus, LPδ has an optimal basis B∗ associated with the optimal basic

solution x∗ given by x∗B∗ = A−1
B∗b, x∗N∗ = 0, where N∗ = [n] \ B∗. Clearly, δ⊺x∗ = 0. By

contradiction, suppose B∗ ̸⊆ K. Then, there exists k ∈ B∗ \K. δk = 1 because k ̸∈ K, and x∗k > 0

because k ∈ B∗, assuming nondegeneracy. We reach the contradiction 0 < δkx
∗
k ≤ δ⊺x∗ = 0.

14



Corollary 2. Let x◦ be a feasible solution for IP that is an interior point of LP. Then, IFR(LP, x◦) ⊆

IFR(GB, x◦) for all bases B of LP.

Theorem 5. Let x◦ be a feasible solution for IP. In the absence of degeneracy, there exists a

feasible basis B of LP such that

(a) IFR(LP, x◦) ⊆ IFR(GB, x◦) ⊆ IFR(IP, x◦).

(b) z(Inv(LP, x◦)) ≥ z(Inv(GB, x◦)) ≥ z(Inv(IP, x◦)).

Proof. If x◦ is a basic feasible solution for LP, then there is exactly one feasible basis B such that

x◦B = A−1
B b, x◦N = 0. Theorem 3 implies IFR(LP, x◦) ⊆ IFR(GB, x◦).

If x◦ is not a basic feasible solution for LP, then Theorem 4 implies that there exists a feasible

basis B such that IFR(LP, x◦) ⊆ IFR(GB, x◦).

Lemma 3 implies IFR(GB, x◦) ⊆ IFR(IP, x◦), proving (a).

Since all of three inverse problems have the same objective function, part (a) implies the bounds

on the objective values of the inverse problems in part (b).

5.2 Comparison with Exact Inverse Integer Programming Formulation

Schaefer [30] obtained an exact LP formulation for inverse IPs using superadditive duality, albeit

of enormous size. This introduces the question of whether our LP formulation for the inverse GCR

in (2) is smaller than solving the inverse GCR as an inverse IP.

We compared the number of variables and constraints in our LP formulation for the inverse

GCR in (2) against the number of variables and constraints in Schaefer’s [30] LP formulation for

the inverse IP interpretation of the inverse GCR under the L1 norm. Table 1 summarizes this

comparison for each of five pure IP instances obtained from MIPLIB 2017 [18]. For each instance,

B was set to an optimal basis of the LP relaxation, computed using Gurobi 10.0.2 [21]. Our LP

formulation has 2n + | detAB| variables and 2 + (n − m)|detAB| constraints. Schaefer’s [30] LP

formulation has 2n +
∏

i∈[m]

(|bi| + 1) variables and 3 + n + 2

( ∏
i∈[m]

(|bi|+1)(|bi|+2)
2 −

∏
i∈[m]

(|bi|+ 1)

)
constraints.

Our formulation has many magnitudes fewer variables and constraints when compared to Schae-

fer’s [30] formulation. We conclude that our formulation, which exploits specific GCR properties,
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Table 1: Comparison of the number of variables and constraints in our LP formulation (2) with
Schaefer’s [30] LP formulation for the inverse IP interpretation of the inverse GCR under the L1

norm. IP instances were obtained from MIPLIB 2017 [18]. Size of IP Instance lists the number
of variables and constraints in the IP instance after converting it to Ax = b, x ∈ Zn

+ form. Inv
GCR and Inv IP list the log10 of the number of variables and constraints in our formulation and
Schaefer’s [30], respectively.

Size of IP Instance Inv GCR Inv IP
Name var con log10 var log10 con log10 var log10 con
gen-ip016 52 24 2.9 4.3 105.8 197.6
gen-ip054 57 27 11.6 13.0 77.6 141.0
gen-ip002 65 24 20.1 21.7 103.1 192.2
gen-ip021 63 28 10.1 11.7 104.6 193.0
ns1952667 13264 41 32.8 36.9 244.5 464.7

yields smaller LP formulations than can be found by solving the inverse GCR as an inverse IP.

However, Schaefer’s [30] formulation exactly solves inverse IPs, where our approach only solves the

inverse of a relaxation.

6 Conclusion

The inverse GCR can be formulated as the inverse of a shortest path problem. We obtained

a polyhedral representation of the inverse-feasible region of the GCR, and we proposed an LP

formulation for the inverse GCR under the L1 and L∞ norms. A GCR inverse-feasible region

contains as much of the IP inverse-feasible region as is contained by the LP relaxation inverse-

feasible region, in the absence of LP degeneracy. Our formulation of the inverse GCR is much

smaller than the exact inverse IP formulation proposed by Schaefer [30].

Acknowledgement

This material is based upon work supported by the Office of Naval Research under Grant Number

N000142112262.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and

Applications. Prentice-Hall, 1993.

16



[2] R. K. Ahuja and J. B. Orlin. Inverse optimization. Operations Research, 49(5):771–783, 2001.

[3] T. Ajayi, T. Lee, and A. J. Schaefer. Objective selection for cancer treatment: An inverse

optimization approach. Operations Research, 70(3):1717–1738, 2022.

[4] M. Bertero and M. Piana. Inverse Problems in Biomedical Imaging: Modeling and Methods of

Solution, pages 1–33. 03 2007.

[5] D. Bertsimas, V. Gupta, and I. C. Paschalidis. Data-driven estimation in equilibrium using

inverse optimization. Mathematical Programming, 153(2):595–633, 2015.

[6] D. Bertsimas and J. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific and

Dynamic Ideas, LLC, 1997.

[7] S. Birmpilis, G. Labahn, and A. Storjohann. A fast algorithm for computing the Smith normal

form with multipliers for a nonsingular integer matrix. Journal of Symbolic Computation,

116:146–182, 2023.

[8] M. Bodur, T. C. Y. Chan, and I. Y. Zhu. Inverse mixed integer optimization: Polyhedral

insights and trust region methods. INFORMS Journal on Computing, 34(3):1471–1488, 2022.

[9] J. C. Brigham, W. Aquino, F. G. Mitri, J. F. Greenleaf, and M. Fatemi. Inverse estimation

of viscoelastic material properties for solids immersed in fluids using vibroacoustic techniques.

Journal of Applied Physics, 101(2), 2007.

[10] D. Burton and P. L. Toint. On an instance of the inverse shortest paths problem. Mathematical

Programming, 53(1):45–61, 1992.

[11] T. C. Y. Chan, T. Craig, T. Lee, and M. B. Sharpe. Generalized inverse multiobjective

optimization with application to cancer therapy. Operations Research, 62(3):680–695, 2014.

[12] T. C. Y. Chan, T. Lee, and D. Terekhov. Inverse optimization: Closed-form solutions, geom-

etry, and goodness of fit. Management Science, 65(3):1115–1135, 2019.

[13] D.-S. Chen and S. Zionts. Comparison of some algorithms for solving the group theoretic

integer programming problem. Operations Research, 24(6):1120–1128, 1976.

17



[14] Z. Duan and L. Wang. Heuristic algorithms for the inverse mixed integer linear programming

problem. Journal of Global Optimization, 51(3):463–471, 2011.

[15] J.-G. Dumas, B. D. Saunders, and G. Villard. On efficient sparse integer matrix Smith normal

form computations. Journal of Symbolic Computation, 32(1):71–99, 2001.

[16] Z. Erkin, M. D. Bailey, L. M. Maillart, A. J. Schaefer, and M. S. Roberts. Eliciting pa-

tients’ revealed preferences: An inverse Markov decision process approach. Decision Analysis,

7(4):358–365, 2010.

[17] M. Fischetti and M. Monaci. How tight is the corner relaxation? Discrete Optimization,

5(2):262–269, 2008.

[18] A. Gleixner, G. Hendel, G. Gamrath, T. Achterberg, M. Bastubbe, T. Berthold, P. Christophel,
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