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Abstract

We analyze the inverse of the Gomory corner relaxation (GCR) of a pure integer program (IP).
We prove the inverse GCR is equivalent to the inverse of a shortest path problem, yielding a
polyhedral representation of the GCR inverse-feasible region. We present a linear programming
(LP) formulation for solving the inverse GCR under the L1 and L∞ norms, with significantly
fewer variables and constraints than existing LP formulations for solving the inverse IP in
literature. We show that the inverse GCR bounds the inverse IP optimal value as tightly as the
inverse LP relaxation under mild conditions. We provide sufficient conditions for the inverse
GCR to exactly solve the inverse IP.

Keywords: Inverse optimization; Integer programming; Gomory corner relaxation; Shortest path problem.

1 Introduction

Given a (forward) optimization problem and a feasible solution, the inverse-feasible region is the set of
objective vectors under which the given feasible solution is optimal to the forward problem. The inverse
optimization problem finds an inverse-feasible vector that is closest (by some given metric) to a given target
vector. Inverse optimization has many applications. Tarantola [1] applied inverse optimization in geophysical
sciences, such as estimating the epicenter of a seismic event and statistics, e.g., linear regression. Inverse
optimization is also useful in estimating liver-transplant patients’ preferences over healthcare outcomes [2],
medical imaging [3], cancer treatment [4, 5], estimating the physical properties of solid materials [6], and
traffic equilibrium models [7].

The inverse of integer programs (IPs) and the inverse of mixed integer programs (MIPs) have been
studied widely. Schaefer [8] and Lamperski and Schaefer [9] established polyhedral representations of the
inverse-feasible regions of IPs and MIPs using the superadditive duality of the forward problems. This
characterization enabled linear programming (LP) formulations for inverse IPs and inverse MIPs. However,
the number of variables and constraints in these LP formulations grow super-exponentially (in the size of
the forward problem) and are thus intractable for most instances. Huang [10] reformulated the inverse IP
as the inverse of a shortest path problem; the number of vertices and arcs in the graph of this shortest path
problem grow super-exponentially (on the number of constraints in the forward IP).

Cutting plane algorithms have been proposed as an alternative to LP formulations for solving inverse IPs
and MIPs. Wang [11] provided a cutting plane algorithm for solving inverse MIPs by repeatedly generating
optimality cuts from the extreme points of the convex hull of the feasible region of the forward problem.
His empirical analysis demonstrated the algorithm’s tractability for small inverse MIPs. The algorithm was
improved upon by Duan and Wang [12], who introduced a heuristic algorithm for computing the extreme
points and bounds for Wang’s algorithm [11]. Bodur et al. [13] introduced another cutting plane algorithm
for solving inverse MIPs, which generates optimality cuts from interior points of the convex hull of the
feasible region of the forward problem. Their empirical analysis showed runtime improvements over Wang’s
algorithm [11] because the interior points are often easier to compute than the extreme points. These cutting
plane algorithms are far more tractable than the LP formulations proposed by Schaefer [8] and Lamperski
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and Schaefer [9], but the cutting plane algorithms do not characterize the polyhedral structure of the inverse-
feasible regions of IPs and MIPs. Inverse IP and inverse MIPs remain theoretically and computationally
challenging.

IPs and MIPs are often studied by relaxing the integrality constraints, obtaining the LP relaxation.
Therefore, a common approach to studying inverse IP and inverse MIPs is to solve inverse LPs, which
typically exhibit more structure. Zhang and Liu [14] proposed a solution for general inverse LPs under
the L1 norm, from which they obtained strongly polynomial algorithms for solving the inverse minimum
cost flow problem and the inverse assignment problem. Zhang and Liu [15] proposed a solution for inverse
LPs when both the given feasible solution and an optimal solution under the original objective vector are
composed of only zeros and ones, which is common in network flow problems. Ahuja and Orlin [16] showed
that if a problem with a linear objective function is polynomially solvable, as is the case for LPs, then the
inverse of that problem under the L1 or L∞ norm is also polynomially solvable. Tavaslıoğlu et al. [17]
studied the polyhedral structure of the inverse-feasible region of LPs, while Chan et al. [18] introduced a
goodness-of-fit framework for evaluating inverse LPs where the provided feasible solution for the forward LP
problem cannot be made optimal (outside of the trivial zero-objective case).

The Gomory corner relaxation (GCR) is an alternative method for relaxing IPs, obtained by relaxing the
nonnegativity constraint of each variable in a basis of the LP relaxation while preserving variable integrality
[19]. Gomory [20] noted that the forward GCR reveals the underlying structure of the original IP; for
example, the facets of the convex hull of the feasible region of the GCR provide cutting planes for the
original IP. Gomory [19], Hoşten and Thomas [21], and Richard and Dey [22] enumerated several classes
of IP instances where the optimal solutions for the GCR are also optimal solutions for the original IP.
Fischetti and Monaci [23] demonstrated that for many instances, the gap between the IP and GCR optimal
values is much tighter than the gap between the IP and LP relaxation optimal values. Köppe et al. [24]
characterized the geometry of several reformulations of the GCR. The GCR can be further relaxed to obtain
the master group relaxation, which can be applied to broader classes of problems because of its more general
structure [22]. The GCR is NP-hard [25], and the most efficient known algorithms for solving the GCR
exhibit polynomial runtime complexity with respect to the size of the determinant of the basis matrix of the
LP relaxation, which can be very large [25, 22]. Several algorithms for solving the forward GCR reduce the
GCR to an instance of the shortest path problem [26, 24, 22], a technique first developed by Shapiro [27].

We show that the inverse GCR can be solved as the inverse of a shortest path problem, which manipulates
a graph’s arc weights such that a given path becomes shortest from among all paths that connect the
associated origin and destination vertices. The inverse shortest path problem has been extensively studied.
The forward shortest path problem can be reduced to a minimum cost flow problem, so the inverse of the
shortest path problem under the L1 norm can be solved using a strongly polynomial algorithm provided
by Zhang and Liu [14]. Ahuja and Orlin [16] showed that the inverse shortest path problem under the L1

norm can be reduced to a forward shortest path problem. Zhang et al. [28] proposed a column generation
framework for solving a variant of the inverse shortest path problem where several given paths each need
to become shortest from among paths that connect their respective origin and destination vertices. Burton
and Toint [29] proposed a quadratic programming formulation for solving the inverse shortest path problem
under the L2 norm. Xu and Zhang [30] characterized the feasible region of the inverse shortest path problem
as a polyhedral cone.

We represent the inverse-feasible region of the GCR as a nonempty polyhedral cone and propose an LP
formulation for the inverse GCR under the L1 and L∞ norms. We show that the inverse GCR bounds the
inverse IP optimal value as tightly as the bounds provided by the inverse LP, assuming nondegeneracy. Our
formulation of the inverse GCR is much smaller than the exact inverse IP formulation proposed by Schaefer
[8].

We study the structure of inverse-feasible regions of IP and GCRs. We demonstrate that solving the
inverse of a set of GCR problems, each defined by a different basis of the LP relaxation, provides more
information about the inverse of IP than solving only one inverse GCR problem. We also show that the
conic hull of the inverse-feasible regions of this set of GCR problems is a subset of the inverse-feasible region
of IP. We provide the conditions under which the union of inverse-feasible regions of GCRs is the same as the
inverse-feasible region of IP. Additionally, we identify the conditions under which the union of the inverse-
feasible regions of GCR is a superset of the inverse-feasible region of the LP relaxation. In the absence of
degeneracy, we show that the inverse-feasible region of GCR for some basis always performs as well as the
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inverse-feasible region of LP relaxation in terms of covering the inverse-feasible region of IP.

2 Preliminaries

2.1 Gomory Corner Relaxation

Given A ∈ Zm×n, b ∈ Zm, and c ∈ Rn, let IP denote the following IP problem, which we assume has
nonempty feasible region. Let LP denote the LP relaxation of IP:

min{c⊺x | Ax = b, x ≥ 0, x ∈ Zn}, (IP)

min{c⊺x | Ax = b, x ≥ 0, x ∈ Rn}. (LP)

Let B,N ⊆ {1, ..., n} respectively denote the indices of the basic and nonbasic variables of a basic solution
for LP. Assume A is full row rank and let m ≤ n, so |B| = m, |N | = n −m and B ∩ N = ∅. Let cB , xB

(cN , xN ) denote the vectors comprised of the B-indexed (N -indexed) components of c, x, respectively. Let AB

(AN ) be the matrix comprised of the B-indexed (N -indexed) columns of A. Observe that AB is nonsingular.
Then, the GCR of IP with respect to B, denoted by GB , is obtained by relaxing the nonnegativity constraints
of the decision variables in the selected basis B [22]:

min{c⊺BxB + c⊺NxN | ABxB +ANxN = b, xN ≥ 0, x ∈ Zn}. (GB)

For a given d ∈ Rn, let IPd, LPd, GB,d denote the problems IP,LP,GB , where the original objective
vector c has been replaced by d. The feasible regions of IPd, LPd, GB,d remain the same as the feasible
regions of the original problems IP, LP, GB , respectively. For a given optimization problem P, let z(P)
denote the optimal objective value, and let Opt(P) denote the set of optimal solutions.

Remark 1. We allow B to be an infeasible basis of LP. Though Gomory [19] also allowed B to be an
infeasible basis, he assumed B is an optimal basis to find conditions where solving GB also solves IP. Richard
and Dey [22] and Fischetti and Monaci [23] assumed B is an optimal basis. Allowing B to be an infeasible
basis, as done by Köppe et al. [24], permits a more general representation of the inverse GCR. Our results
hold for both feasible and infeasible bases of LP. In Section 4.2, we will show if d is in the inverse-feasible
region of GB , where B is a feasible basis for LP, then B must be an optimal basis for LPd.

2.2 Gomory Corner Relaxation as a Shortest Path Problem

We summarize how the GCR is reformulated as an instance of the shortest path problem as described by
Richard and Dey [22], based on a reformulation first proposed by Shapiro [27].

Lemma 1. [22] There exist unimodular matrices S, T ∈ Zm×m and a vector w ∈ Zm
+ such that SABT =

diag(w), where diag(w) is the m × m matrix whose diagonal is given by w and whose off-diagonal entries
are all zero.

The formulation in Lemma 1 is the Smith Normal Form of AB [31]. There are several efficient algorithms
for computing S, T , and w [32, 33, 34, 35]. S, T , and w (as well as several objects we will define later) all
depend on the selected basis B, but we suppress this dependence on B for clarity.

For a given vector u ∈ Zm, we define the modulo operator u(mod w) to denote an m-dimensional vector
whose ith component is given by (u(mod w))i = ui mod wi for each i ∈ [m] = {1, ...,m}. For example, if
u = (3, 5,−2) and w = (2, 3, 3), then u(mod w) = (1, 2, 1).

We define linear function r : Rn → Rn−m by r(d) = dN − (A−1
B AN )⊺dB to denote the reduced costs of

the N -indexed variables in the basic solution xB = A−1
B b, xN = 0 for LPd. Observe that r depends on the

selected basis B. We use this notation to define a directed graph G with the vertex set V and the arc set E
as follows:

V :=
∏

i∈[m]

{0, 1, ..., wi − 1}, E :=
⋃

j∈[n−m]

Ej ,
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where, for each j ∈ [n−m], (SAN )j is the jth column vector of SAN , and

Ej :=
{(

u,
(
u+ (SAN )j

)
(mod w)

)
| u ∈ V

}
.

Since S and T are unimodular, |detAB | =
∏

i∈[m]

wi, and therefore, |V | = |detAB | and |E| = (n−m) |detAB |.

Let SB denote the problem of finding a shortest path from source vertex 0 to destination vertex Sb(mod w)
in graph G, where each arc in Ej is weighted by r(c)j . For a given d ∈ Rn, let SB,d denote the same problem
of finding a shortest 0-to-Sb(mod w) path in G, except each arc in Ej is weighted by r(d)j instead of r(c)j .
Consider any vector y ∈ Zn−m

+ . For problem SB , consider all paths that start from source vertex 0 and
are composed of some permutation of exactly yj arcs from Ej for each j ∈ [n − m]. (E.g., if y = (1, 2),
consider the path that traverses one E1 arc then two E2 arcs, the path that traverses one E2 arc then one
E1 arc then one E2 arc, and the path that traverses two E2 arcs then one E1 arc.) Such a path always exists
because each vertex is the tail of an Ej arc for each j ∈ [n − m]. Each Ej arc has the same weight r(c)j ,
so all of these paths have the same weight r(c)⊺y. All of these paths also have the same destination vertex
(SAN )y (mod w). Thus, if we consider all of these paths to be (possibly infeasible) solutions for SB , then y
provides their objective value (path weight r(c)⊺y) and feasibility (if the destination vertex (SAN )y (mod w)
is equal to Sb(mod w)). We therefore represent potential solutions for SB as vectors from Zn−m

+ , where the
vector y ∈ Zn−m

+ corresponds to a path starting at vertex 0 that is composed of some permutation of exactly
yj arcs from Ej .

Lemma 2 formalizes the relationship between GB,d and SB,d for a given d ∈ Rn. The lemma is given by
Richard and Dey [22] for GB and SB , and their results hold more generally for GB,d and SB,d because their
proof does not depend on if B is an optimal/feasible basis of the linear relaxation. Their proof offers the
following intuition: x is a feasible solution for GB,d if and only if xN is a 0-to-Sb(mod w) path for SB,d and
xB = A−1

B b−A−1
B ANxN . The objective value of a solution x for GB,d differs from the weight of the path xN

for SB,d by exactly a fixed value: d⊺x = r(d)⊺xN + c⊺BA
−1
B d.

Lemma 2. [22] For a given d ∈ Rn, we have x ∈ Opt(GB,d) if and only if xN ∈ Opt(SB,d) and xB =
A−1

B b−A−1
B ANxN .

We will use this shortest path reformulation SB of GB to formulate the inverse GCR as the inverse of a
shortest path problem.

2.3 Inverse Optimization

Let P be an optimization problem from among IP,LP,GB ,SB . Let x◦ be a feasible solution for P. The
inverse-feasible region of P with respect to x◦, denoted by IFR(P, x◦), is the set of vectors d ∈ Rn for which
x◦ is an optimal solution for Pd:

IFR(P, x◦) = {d ∈ Rn | x◦ ∈ Opt(Pd)}.

The inverse problem of P with respect to x◦, denoted by Inv(P, x◦), is the problem of finding a vector
d ∈ IFR(P, x◦) that minimizes the (possibly weighted) Lp norm of d− c:

Inv(P, x◦) :min{∥d− c∥p | d ∈ IFR(P, x◦)}.

We now give a motivating example where the inverse IP is exactly solved by the inverse GCR but is not
exactly solved by the inverse LP relaxation. We later show that generally, the inverse GCR may be easier
to compute than the inverse IP while providing a better approximation of the inverse IP than that of the
inverse LP relaxation.

Example 1. Suppose the feasible region of IP is given by {(x1, x2) ∈ Z2 | x1 + 2x2 = 3, x1, x2 ≥ 0} =
{(1, 1), (3, 0)} and x◦ = (1, 1). Then, IFR(IP, x◦) = {d ∈ R2 | − 2d1 + d2 ≤ 0}. The convex hull of
the feasible region of GB , B = {2} is the ray with origin x◦ and direction (2,−1), so IFR(GB , x◦) =
IFR(IP, x◦). IFR(LP, x◦) = span{(1, 2)}. Thus, IFR(LP, x◦) ⊊ IFR(IP, x◦) and Inv(LP, x◦) ≥
Inv(GB , x◦) = Inv(IP, x◦). Inv(LP, x◦) > Inv(IP, x◦) for many given target objective vectors c, including
c ∈ IFR(IP, x◦) \ IFR(LP, x◦); see Figure 1.
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Fig. 1: (Left) The feasible regions of IP, GB for B = {2}, LP, and x◦ = (1, 1) in Example 1; the
feasible region of IP is shown by the filled diamond at x◦ = (1, 1) and the filled circle at (3, 0). The
feasible region of GB, B = {2} is unbounded; The feasible region of LP is shown by the line segment
between (0, 1.5) and (3, 0). (Right) IFR(GB, x◦), IFR(IP, x◦), and IFR(LP, x◦) in Example 1,
where IFR(GB, x◦) = IFR(IP, x◦) are shown as the shaded region, and IFR(LP, x◦) is shown as
the solid line.

3 Characterizing the Inverse of Integer Programs

Let B be the set of all bases of LP (both feasible and infeasible), and consider a feasible solution x◦ for IP. For
any B ∈ B, the intersection of the feasible regions of LP and GB is exactly the feasible region of IP because
the constraints of LP enforce nonnegativity and the constraints of GB enforce integrality. Furthermore, if⋂
B∈B

B = ∅, then the intersection of the feasible regions of GB , B ∈ B is exactly the feasible region of IP

because the constraints of GB , B ∈ B collectively enforce nonnegativity for all decision variables. Thus, it
may be possible to obtain large portions of IFR(IP, x◦) using IFR(LP, x◦) and all IFR(GB , x◦), B ∈ B.

Though we focus on the inverse of the GCR and its relationship with the inverse LP relaxation, our
findings in this section apply to any IP relaxation, such as the master group relaxation [19, 22] or the
Lagrangean relaxation [36].

Lemma 3. Let x◦ be a feasible solution for IP, and let R be a relaxation of IP. Then, IFR(R, x◦) ⊆
IFR(IP, x◦), and z(Inv(R, x◦)) ≥ z(Inv(IP, x◦)).

Proof. Consider any d ∈ IFR(R, x◦), so x◦ ∈ Opt(Rd). Since Rd is a relaxation of IPd and x◦ is a feasible
solution for IP, x◦ ∈ Opt(IPd). Thus, d ∈ IFR(IP, x◦) and IFR(R, x◦) ⊆ IFR(IP, x◦). Inv(R, x◦) and
Inv(IP, x◦) have the same objective function, so z(Inv(R, x◦)) ≥ z(Inv(IP, x◦)).

Proposition 1. Let x◦ be a feasible solution for IP, and let R1, ...,Rr be relaxations of IP. Then,⋃
i∈[r]

IFR(Ri, x
◦) ⊆ cone({IFR(Ri, x

◦), i ∈ [r]}) ⊆ IFR(IP, x◦).

Proof. Schaefer [8] proved that IFR(IP, x◦) is a polyhedron. Also, IFR(IP, x◦) is a cone because if
d ∈ IFR(IP, x◦), then td ∈ IFR(IP, x◦) for any t ∈ R+ [36]. Thus, IFR(IP, x◦) is a polyhedral cone.
Clearly,

⋃
i∈[r]

IFR(Ri, x
◦) ⊆ cone({IFR(Ri, x

◦), i ∈ [r]}). Since, IFR(IP, x◦) is a polyhedral cone and

IFR(Ri, x
◦) ⊆ IFR(IP, x◦) for each i ∈ [r], we have cone({IFR(Ri, x

◦), i ∈ [r]}) ⊆ IFR(IP, x◦).
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From Proposition 1, in cases where
⋃

B∈B
IFR(GB , x◦) ̸= IFR(IP, x◦), we may be able to contain more

of IFR(IP, x◦) using the conic hull cone({IFR(GB , x◦), B ∈ B}).
In the following theorem, we show that IFR(IP, x◦) can be fully contained by the inverse-feasible regions

of relaxations of IP.

Theorem 1. Let x◦ be a feasible solution for IP, and let R1, ...,Rr be relaxations of IP. Suppose for any
selection of one feasible solution for each of Ri, i ∈ [r], there exists a convex combination of those feasible
solutions that lies within conv({Ax = b, x ≥ 0, x ∈ Zn}). Then,

⋃
i∈[r]

IFR(Ri, x
◦) = IFR(IP, x◦).

Proof. Lemma 3 implies
⋃

i∈[r]

IFR(Ri, x
◦) ⊆ IFR(IP, x◦). We show IFR(IP, x◦) ⊆

⋃
i∈[r]

IFR(Ri, x
◦).

By contradiction, suppose there exists d ∈ IFR(IP, x◦) \
⋃

i∈[r]

IFR(Ri, x
◦). Then, for each i ∈ [r], d ∈

IFR(IP, x◦)\ IFR(Ri, x
◦), so there exists a feasible solution yi for Ri such that d⊺yi < d⊺x◦. Let w be the

convex combination of yi, i ∈ [r], where w ∈ conv({Ax = b, x ≥ 0, x ∈ Zn}). Since w is a convex combination
of yi, i ∈ [r], we have d⊺w < d⊺x◦. Also, since w ∈ conv({Ax = b, x ≥ 0, x ∈ Zn}) and d ∈ IFR(IP, x◦),
d⊺w ≥ d⊺x◦. This contradiction indicates that IFR(IP, x◦) ⊆

⋃
i∈[r]

IFR(Ri, x
◦).

4 Inverse Gomory Corner Relaxation

4.1 Inverse-Feasible Region of the Shortest Path Reformulation

This subsection provides a polyhedral representation of IFR(SB , x◦
N ), where x◦

N encodes some given 0-to-
Sb(mod w) path. Lemma 4 follows from applying known conditions for a path to be a shortest path to x◦

N

for problem SB,d (e.g., see Chapter 5.2 in Ahuja et al. [37]).

Lemma 4. For a given d ∈ Rn, x◦
N is a shortest 0-to-Sb(mod w) path for problem SB,d if and only if for

each vertex u ∈ V , there exists an associated yu ∈ R such that

y0 = 0, (1a)

ySb(mod w) = r(d)
⊺
x◦
N , (1b)

yv − yu ≤ r(d)j , ∀(u, v) ∈ Ej , ∀j ∈ [n−m]. (1c)

IFR(SB , x◦
N ) is the set of all d ∈ Rn such that x◦

N is a shortest 0-to-Sb(mod w) path for problem SB,d,
so we formulate IFR(SB , x◦

N ) by defining the set of all d ∈ Rn that satisfy the conditions in Lemma 4 given
by (1a), (1b), (1c).

Proposition 2.

IFR(SB , x◦
N ) = {d ∈ Rn | ∃y ∈ R|V | such that (1a), (1b), (1c)}

= projRn{d ∈ Rn, y ∈ R|V | | (1a), (1b), (1c)},

which is a polyhedral cone that contains 0.

Note that Inv(SB , x◦
N ) is a special case of the general inverse shortest path problem (e.g., studied by

Zhang and Liu [14] and Ahuja and Orlin [16]) because each arc in Ej has the same weight.

4.2 Feasible Region and Linear Programming Formulation of the Inverse Go-
mory Corner Relaxation

Theorem 2. For a given feasible solution x◦ for GB, IFR(SB , x◦
N ) = IFR(GB , x◦).
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Proof. Since x◦ is a feasible solution for GB , we have x◦
B = A−1

B b−A−1
B ANx◦

N . Then, by Lemma 2,

d ∈ IFR(GB , x◦) ⇐⇒ x◦ ∈ Opt(GB,d)

⇐⇒ x◦
N ∈ Opt(SB,d)

⇐⇒ d ∈ IFR(SB , x◦
N ).

Theorem 2 implies that the inverse GCR is equivalent to the inverse of a shortest path problem, which
also implies the GCR inverse-feasible region is a nonempty polyhedral cone by Proposition 2. Most research
on the GCR assumes B is an optimal basis of LP (e.g., [23, 19, 22]). Proposition 3 addresses this condition.

Proposition 3. Consider a feasible basis B for LP and a feasible solution x◦ for GB. Then, B is an optimal
basis of LPd for all d ∈ IFR(GB , x◦).

Proof. By contradiction, suppose there exists d ∈ IFR(GB , x◦) such that B is a non-optimal feasible basis
of LPd, and let N = [n]\B. Non-optimality implies that at least one of the N -indexed reduced costs of LPd

must be negative [36]. The arc weights of SB are defined by the N -indexed reduced costs, so there exists
j ∈ [n−m] such that the arcs in Ej have negative weight. Since there are finitely many vertices, and each
vertex is the tail of an arc from Ej , we can then construct a negative-weight cycle by repeatedly augmenting
a path with arcs from Ej until a cycle is formed [22]. The existence of a negative-weight cycle implies x◦

N is
not a shortest path, so d ̸∈ IFR(SB , x◦

N ) = IFR(GB , x◦).

Corollary 1. Let x◦ be a feasible solution for IP. Consider a feasible basis B for LP and the associated
basic feasible solution x∗

B = A−1
B b, x∗

N = 0. Then, IFR(GB , x◦) ⊆ IFR(LP, x∗).

We obtain the following LP formulation for Inv(GB , x◦) under the L1 norm. The constraints are derived
from Proposition 2, and we linearize the objective function min∥d − c∥1 by substituting d := c − e + f for
e, f ∈ Rn

+.

Proposition 4. For a given feasible solution x◦ for GB, an optimal solution for Inv(GB , x◦) under the L1

norm weighted by a given w ∈ Rn
+ is equal to c − e∗ + f∗, where e∗, f∗, y∗ is an optimal solution for the

following LP problem:

min

n∑
k=1

wk(ek + fk) (2a)

s.t. y0 = 0, (2b)

ySb(mod w) = (r(c)− r(e) + r(f))⊺x◦
N , (2c)

yv − yu ≤ r(c)j − r(e)j + r(f)j ,∀(u, v) ∈ Ej , ∀j ∈ [n−m], (2d)

e, f ∈ Rn
+, y ∈ R|V |. (2e)

The LP in (2) can be modified to solve Inv(GB , x◦) under the L∞ norm [16]. The LP formulation for
Inv(GB , x◦) can be quite large depending on detAB .

5 Comparing Inverse Formulations

5.1 Comparison with Inverse Linear Programming Relaxation

Theorems 3 and 4 show how the GCR inverse-feasible regions may contain as much of the IP inverse-feasible
region as the LP relaxation inverse-feasible region. We compare the optimal values of the inverse IP, inverse
GCR, and inverse LP relaxation.

Theorem 3. Let x◦ x◦ be a feasible solution for IP that is also a basic feasible solution for LP. Let B̄ ⊆ B be
the set of feasible bases B of LP that satisfy x◦

B = A−1
B b, x◦

N = 0. Then, IFR(LP, x◦) =
⋃

B∈B̄
IFR(GB , x◦).
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Proof. By Corollary 1,
⋃

B∈B̄
IFR(GB , x◦) ⊆ IFR(LP, x◦). To prove IFR(LP, x◦) ⊆

⋃
B∈B̄

IFR(GB , x◦), con-

sider any d ∈ IFR(LP, x◦). Then, x◦ is an optimal solution for LPd, so there exists B ∈ B̄ such that the
reduced costs of the N -indexed variables are nonnegative for LPd [22]. Since x◦ is feasible for IPd, x◦ is
also feasible for GB,d, and by Theorem 2, x◦

N = 0 is feasible for SB,d. Thus, the source and destination
vertices are the same in SB,d, and since the arc weights are defined by the reduced costs of the N -indexed
variables for LPd, the arc weights are then nonnegative. Therefore, x◦

N = 0 is an optimal solution for SB,d.
Hence, x◦ is an optimal solution for GB,d, and thus d ∈ IFR(GB , x◦).

Theorem 4. Let x◦ be a feasible solution for IP, and let define K = {k ∈ [n] | x◦
k > 0}.

(a) For any basis B of LP where B ⊆ K, we have IFR(LP, x◦) ⊆ IFR(GB , x◦).

(b) In the absence of degeneracy, there always exists a feasible basis B such that B ⊆ K.

Proof. Let B be a basis of LP where B ⊆ K. Consider any d ∈ Rn such that d ̸∈ IFR(GB , x◦). To prove
(a), we will show IFR(LP, x◦) ⊆ IFR(GB , x◦) by proving that d ̸∈ IFR(LP, x◦), or equivalently, that x◦

is not an optimal solution for LPd. x◦ is not an optimal solution for GB,d, so there exists a feasible solution
y for GB,d such that d⊺y < d⊺x◦. We consider two cases.
Case 1. Suppose y ≥ 0. y is a feasible solution for GB , so Ay = b, and therefore y is a feasible solution for
LPd. x◦ is not optimal for LPd.
Case 2. Suppose there exist some k ∈ B such that yk < 0. Let C := {k ∈ B | yk < 0} denote the
indices of the negative components of y. We construct w that is a convex combination of x◦ and y. Let
λ := max{−yk/(x

◦
k−yk) | k ∈ C}. For each k ∈ C, x◦

k > 0 > yk, so 0 < −yk/(x
◦
k−yk) < 1, which implies λ ∈

(0, 1). Let w := λx◦+(1−λ)y. Then, for each k ∈ C, wk = yk+λ(x◦
k−yk) ≥ yk+(−yk/(x

◦
k−yk))(x

◦
k−yk) = 0.

Also, for each k ∈ [n] \ C, we have x◦
k, yk ≥ 0, so wk ≥ 0. Therefore, w ≥ 0. Furthermore,

d⊺w = λd⊺x◦ + (1− λ)d⊺y < λd⊺x◦ + (1− λ)d⊺x◦ = d⊺x◦, (3)

and Aw = A(λx◦ + (1 − λ)y) = λAx◦ + (1 − λ)Ay = b, where the last equality holds because both x◦ and
y are feasible solutions for GB,d. Thus, w is a feasible solution for LP, and, by (3), x◦ is not an optimal
solution for LPd.

To prove (b), define δ ∈ Rn by δk = 0 for k ∈ K, and δk = 1 for k ∈ [n]\K. Then, 0 ≤ z(LPδ) ≤ δ⊺x◦ = 0.
Thus, LPδ has an optimal basis B∗ associated with the optimal basic solution x∗ given by x∗

B∗ = A−1
B∗b,

x∗
N∗ = 0, where N∗ = [n] \ B∗. Clearly, δ⊺x∗ = 0. By contradiction, suppose B∗ ̸⊆ K. Then, there exists

k ∈ B∗ \ K such that δk = 1 because k ̸∈ K, and x∗
k > 0 because k ∈ B∗, assuming nondegeneracy. We

reach the contradiction 0 < δkx
∗
k ≤ δ⊺x∗ = 0.

Corollary 2. Let x◦ > 0 be a feasible solution for IP. Then, IFR(LP, x◦) ⊆ IFR(GB , x◦) for all bases
B of LP.

Remark 2. In Theorem 4, outside of the nondegeneracy condition in part (b), it is possible there does
not exist any basis B for LP such that B ⊆ K. For instance, suppose IP has the feasible region {x ∈
Z4
+ | x1 + x2 + x3 − x4 = 2, x1 + x2 = 2} and x◦ = (1, 1, 0, 0). In this case, K = {1, 2} indexes two columns

of A that are linearly dependent, so there is no basis B of LP such that B ⊆ K.

Remark 3. In Theorem 4, if x◦ is a feasible solution for IP that is a nondegenerate basic feasible solution
for LP, then |K| = m and so B = K satisfies IFR(LP, x◦) ⊆ IFR(GB , x◦).

5.2 Comparison with Exact Inverse Integer Programming Formulation

Schaefer [8] obtained an exact LP formulation for inverse IPs using superadditive duality, albeit of enormous
size. This introduces the question of whether our LP formulation for the inverse GCR in (2) is smaller than
solving the inverse GCR as an inverse IP.

We compare the number of variables and constraints in our LP formulation for the inverse GCR in
(2) against the number of variables and constraints in Schaefer’s [8] LP formulation for the inverse IP
interpretation of the inverse GCR under the L1 norm. Table 1 summarizes this comparison for each of
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Table 1: Comparison of the number of variables and constraints in our LP formulation (2) with
Schaefer’s [8] LP formulation for the inverse IP interpretation of the inverse GCR under the L1

norm. IP instances were obtained from MIPLIB 2017 [38]. Size of IP Instance lists the number
of variables and constraints in the IP instance after converting it to Ax = b, x ∈ Zn

+ form. Inv
GCR and Inv IP list the log10 of the number of variables and constraints in our formulation and
Schaefer’s [8], respectively.

Size of IP Instance Inv GCR Inv IP
Name var con log10 var log10 con log10 var log10 con

gen-ip016 52 24 2.9 4.3 105.8 197.6
gen-ip054 57 27 11.6 13.0 77.6 141.0
gen-ip002 65 24 20.1 21.7 103.1 192.2
gen-ip021 63 28 10.1 11.7 104.6 193.0
ns1952667 13264 41 32.8 36.9 244.5 464.7

five pure IP instances obtained from MIPLIB 2017 [38]. For each instance, B is set to an optimal basis
of the LP relaxation, computed using Gurobi 10.0.2 [39]. Our LP formulation has 2n + |detAB | variables
and 2 + (n − m)|detAB | constraints. Schaefer’s [8] LP formulation has 2n +

∏
i∈[m]

(|bi| + 1) variables and

3 + n+
∏

i∈[m]

(|bi|+ 1)(|bi|+ 2)− 2
∏

i∈[m]

(|bi|+ 1) constraints.

Our formulation has many magnitudes fewer variables and constraints when compared to Schaefer’s
[8] formulation. We conclude that our formulation, which exploits specific GCR properties, yields smaller
LP formulations than can be found by solving the inverse GCR as an inverse IP. However, Schaefer’s [8]
formulation exactly solves inverse IPs, where our approach only solves the inverse of a relaxation.

6 Conclusion

We formulated the inverse GCR as the inverse of a shortest path problem. We obtained a polyhedral
representation of the inverse-feasible region of the GCR, and we proposed an LP formulation for the inverse
GCR under the L1 and L∞ norms. A GCR inverse-feasible region contains as much of the IP inverse-feasible
region as is contained by the LP relaxation inverse-feasible region, in the absence of LP degeneracy. Our
formulation of the inverse GCR is much smaller than the exact inverse IP formulation proposed by Schaefer
[8].
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