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Abstract

We study the problem of learning a partially observed matrix under the low
rank assumption in the presence of fully observed side information that depends
linearly on the true underlying matrix. This problem consists of an important
generalization of the Matrix Completion problem, a central problem in Statis-
tics, Operations Research and Machine Learning, that arises in applications such
as recommendation systems, signal processing, system identification and image
denoising. We formalize this problem as an optimization problem with an objec-
tive that balances the strength of the fit of the reconstruction to the observed
entries with the ability of the reconstruction to be predictive of the side informa-
tion. We derive a mixed-projection reformulation of the resulting optimization
problem and present a strong semidefinite cone relaxation. We design an efficient,
scalable alternating direction method of multipliers algorithm that produces high
quality feasible solutions to the problem of interest. Our numerical results demon-
strate that in the small rank regime (k < 10), our algorithm outputs solutions
that achieve on average 2.3% lower objective value and 41% lower £2 reconstruc-
tion error than the solutions returned by the best performing benchmark method
on synthetic data. The runtime of our algorithm is competitive with and often
superior to that of the benchmark methods. Our algorithm is able to solve prob-
lems with n = 10000 rows and m = 10000 columns in less than a minute. On
large scale real world data, our algorithm produces solutions that achieve 67%
lower out of sample error than benchmark methods in 97% less execution time.
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1 Introduction

In many real world applications, we are faced with the problem of recovering a (often
large) matrix from a (often small) subset of its entries. This problem, known as Matrix
Completion (MC), has gained significant attention due to its broad range of applica-
tions in areas such as signal processing [1], system identification [2] and image denoising
[3]. The fundamental task in MC is to accurately reconstruct the missing entries of a
matrix given a limited number of observed entries. The challenge is particularly pro-
nounced when the number of observed entries is small relatively to the dimension of
the matrix, yet this is the common scenario in practice.

One of the most prominent uses of MC is in recommendation systems, where the
goal is to predict user preferences for items (e.g., movies, products) based on a partially
observed user-item rating matrix [4]. The Netflix Prize competition highlighted the
potential of MC techniques, where the objective was to predict missing ratings in
a user-movie matrix to improve recommendation accuracy [5]. The success of such
systems hinges on the assumption that the underlying rating matrix is low rank,
meaning that the preferences of users can be well-approximated by a small number of
factors. Indeed, it has been well studied that many real world datasets are low rank [6].

In many practical applications, in addition to a collection of observed matrix entries
we additionally have access to auxiliary side information that can be leveraged when
performing the reconstruction. For example, in a recommendation system, side infor-
mation might consist of social network data or item attributes. The vast majority of
existing approaches to MC in the presence of side information incorporate the side
information by making additional structural restrictions on the reconstructed matrix
beyond the usual low rank assumption (see, for example, [7-9]). In this work, we take
an alternate approach by assuming that the side information can be well modeled as a
linear function of the underlying full matrix. In this setting, the side information can
be thought of as labels for a regression problem where the unobserved matrix consists
of the regression features. This assumption is in keeping with ideas from the predictive
low rank kernel learning literature [10] (note however that low rank kernel learning
assumes a fully observed input matrix). One motivation for this approach is that it
incorporates the side information in a more flexible manner in contrast to existing
approaches that make fixed structural assumptions through an explicit parametriza-
tion of the partially observed matrix as a function of the side information. Indeed, the
model we present is most natural for the setting of MC with noisy side information in
contrast to the setting of perfectly noiseless side information [11, 12] or graph based
side information [13, 14].

Formally, let Q C [n] x [m] denote a collection of revealed entries of a partially
observed matrix A € R™*™ let Y € R"*¢ denote a matrix of side information and
let k denote a specified target rank. We consider the problem given by

H AL )2 _ 2 t. <
oY (X = A XY — XalE 45X st rank(X) <k,
(1,5)€Q
(1)



where A,y > 0 are hyperparameters that in practice can either take a default value or
can be cross-validated by minimizing a validation metric [15] to obtain strong out-of-
sample performance [16]. We assume that the ground truth matrix A has low rank and
that the side information can be well approximated as Y = Aa+ NN for some weighting
matrix o and noise matrix IN. The first term in the objective function of (1) measures
how well the observed entries of the unknown matrix are fit by the estimated matrix
X, the second term of the objective function measures how well the side information
Y can be represented as a linear function of the estimated matrix X and the final
term of the objective is a regularization term. To the best of our knowledge, Problem
(1) has not previously been directly studied despite its very natural motivation.

1.1 Contribution and Structure

In this paper, we tackle (1) by developing novel mixed-projection optimization tech-
niques [17]. We show that solving (1) is equivalent to solving an appropriately defined
robust optimization problem. We develop an exact reformulation of (1) by combining
a parametrization of the X decision variable as the product of two low rank fac-
tors with the introduction of a projection matrix to model the column space of X.
We derive a semidefinite cone convex relaxation for our mixed-projection reformula-
tion and we present an efficient, scalable alternating direction method of multipliers
(ADMM) algorithm that produces high quality feasible solutions to (1). Our numer-
ical results show that across all synthetic data experiments in the small rank regime
(k < 10), our algorithm outputs solutions that achieve on average 2.3% lower objec-
tive value in (1) and 41% lower ¢5 reconstruction error than the solutions returned by
the best performing benchmark method on a per experiment basis. For the 5 synthetic
data experiments with k£ > 15, the only benchmark that returns a solution with supe-
rior quality than that returned by our algorithm takes on average 3 times as long to
execute. The runtime of our algorithm is competitive with and often superior to that
of the benchmark methods. Our algorithm is able to solve problems with n = 10000
rows and m = 10000 columns in less than a minute. On large scale real world data,
our algorithm produces solutions that achieve 67% lower out of sample error than
benchmark methods in 97% less execution time.

The rest of the paper is laid out as follows. In Section 2, we review previous work
that is closely related to (1). In Section 3, we study (1) under a robust optimization
lens and investigate formulating (1) as a two stage optimization problem where the
inner stage is a regression problem that can be solved in closed form. We formulate
(1) as a mixed-projection optimization problem in Section 4 and present a natural
convex relaxation. In Section 5, we present and rigorously study our ADMM algo-
rithm. Finally, in Section 6 we investigate the performance of our algorithm against
benchmark methods on synthetic and real world data.

Notation:

We let nonbold face characters such as b denote scalars, lowercase bold faced characters
such as x denote vectors, uppercase bold faced characters such as X denote matrices,
and calligraphic uppercase characters such as Z denote sets. We let [n] denote the
set of running indices {1,...,n}. We let 0,, denote an n-dimensional vector of all 0’s,



0,,xm denote an n x m-dimensional matrix of all 0’s, and I,, denote the n x n identity
matrix. We let 8" denote the cone of n X n symmetric matrices and S} denote the
cone of n X n positive semidefinite matrices.

2 Literature Review

In this section, we review a handful of notable approaches from the literature that have
been employed to solve MC and to solve general low rank optimization problems. As
an exhaustive literature review of MC methods is outside of the scope of this paper,
we focus our review on a handful of well studied approaches which we will employ
as benchmark methods in this work. We additionally give an overview of the ADMM
algorithmic framework which is of central relevance to this work. For a more detailed
review of the MC literature, we refer the reader to [4] and [18].

2.1 Matrix Completion Methods
2.1.1 Iterative-SVD

Tterative-SVD is an expectation maximization style algorithm [19] that generates a
solution to the MC problem by iteratively computing a singular value decomposi-
tion (SVD) of the current iterate and estimating the missing values by performing a
regression against the low rank factors returned by SVD [20]. This is one of a hand-
ful of methods in the literature that leverage the SVD as their primary algorithmic
workhorse [21, 22]. Concretely, given a partially observed matrix {Xy;}(; jjeq where
Q C [n] x [m] and a target rank k € N, Iterative-SVD proceeds as follows:

1. Initialize the iteration count ¢ <— 0 and initialize missing entries of Xj;, (i,j) ¢ Q

o X
with the row average X;; = %

2. Compute a rank k¥ SVD X; = U;%;V,T of the current iterate where U; €
RnXk,Et c kak7 ‘/;5 c Rka.

3. For each (i,7) ¢ Q, estimate the missing value (X;41);; by regressing all other
entries in row i against all except the j** row of V;. Concretely, letting & =
(Xt)i’*\j € R™~! denote the column vector consisting of the it" row of X; exclud-
ing the j' entry, letting V = (Vi)syj € RM=DXF denote the matrix formed by
eliminating the j** row from V; and letting & = Vi)« € RF denote the column
vector consisting of the j*" row of V;, we set (X;11)i; = 87 (VIV)1VTZ.

4. Terminate if the total change between X; and Xy, is less than 0.01. Otherwise,
increment ¢ and return to Step 2.

2.1.2 Soft-Impute

Soft-Impute is a convex relaxation inspired algorithm that leverages the nuclear norm
as a low rank inducing regularizer [23]. This approach is one of a broad class of
methods that tackle MC from a nuclear norm minimization lens [24-26]. Seeking a
reconstruction with minimum nuclear norm is typically motivated by the observation
that the nuclear norm ball given by B = {X € R"*" : || X||. < k} is the convex hull of



the nonconvex set X = {X € R™" : rank(X) < k, || X ||, < 1}, where || - ||, denotes
the spectral norm. Moreover, several conditions have been established under which
nuclear norm minimization methods are guaranteed to return the ground truth matrix
[25, 26] though such conditions tend to be strong and hard to verify in practice. Soft-
Impute proceeds by iteratively replacing the missing elements of the matrix with those
obtained from a soft thresholded low rank singular value decomposition. Accordingly,
similarly to Iterative-SVD, Soft-Impute relies on the computation of a low rank SVD
as the primary algorithmic workhorse. The approach relies on the result that for an
arbitrary matrix X, the solution of the problem minz % || X — Z||% + A|| Z||.. is given by
Z = S\(X) where Sy(-) denotes the soft-thresholding operation [27]. Explicitly, Soft-
Impute proceeds as follows for a given regularization parameter A > 0 and termination
threshold € > 0:

1. Initialize the iteration count t < 0 and initialize Z; = 0,,xm.

2. Compute Z;1 = S\(Po(X) + Ps(Z;)) where Pq(-) denotes the operation that
projects onto the revealed entries of X while Pa(-) denotes the operation that
projects onto the missing entries of X.

2
3. Terminate if % Otherwise, increment ¢ and return to Step 2.
F

2.1.3 Fast-Impute

Fast-Impute is a projected gradient descent approach to MC that has desirable global
convergence properties [9]. Fast-Impute belongs to the broad class of methods that
solve MC by factorizing the target matrix as X = UVT where U € R"** V ¢ Rm*k
and performing some variant of gradient descent (or alternating minimization) on
the matrices U and V' [28-31]. We note that we leverage this common factoriza-
tion in the approach to (1) presented in this work. Gradient descent based methods
have shown great success. Despite the non-convexity of the factorization, it has been
shown that in many cases gradient descent and its variants will nevertheless converge
to a globally optimal solution [9, 32-35]. Fast-Impute takes the approach of express-
ing U as a closed form function of V' after performing the facorization and directly
performs projected gradient descent updates on V' with classic Nesterov acceleration
[36]. Moreover, to enhance scalability of their method, [9] design a stochastic gra-
dient extension of Fast-Impute that estimates the gradient at each update step by
only considering a sub sample of the rows and columns of the target matrix. Finally,
given side information Y € R™*P [9] present a version of their algorithm that incor-
porates the side information by factorizing the target matrix as X = USTYT for
U c Rk § ¢ RP¥F,



2.2 Low Rank Optimization Methods
2.2.1 ScaledGD

ScaledGD is a highly performant method to obtain strong solutions to low rank matrix
estimation problems that take the following form:

. 1 2
= - — t. <
choin f(X) = SlAX) —ylz st rank(X) < £,

where A(-) : R"*™ — R! models some measurement process and we have y € R! [37].
ScaledGD proceeds by factorizing the target matrix as X = UV7T and iteratively
performing gradient updates on the low rank factors U,V after preconditioning the
gradients with an adaptive matrix that is efficient to compute. Doing so yields a linear
convergence rate that is notably independent of the condition number of the low rank
matrix. In so doing, ScaledGD combines the desirable convergence rate of alternating

minimization with the desirable low per-iteration cost of gradient descent. Explicitly,
letting £L(U,V) = f(UVT), ScaledGD updates the low rank factors as:

U1 < U —Vu LU, Vi) (VIV)

Vit1 + Ve = Vv LU, V) UTU) ™,
where 77 > 0 denotes the step size.

2.2.2 Mixed-Projection Conic Optimization

Mixed-projection conic optimization is a recently proposed modelling and algorithmic
framework designed to tackle a broad class of matrix optimization problems [17, 38].
Specifically, this approach considers problems that have the following form:

Xr%in (C,X) + A-rank(X) + Q(X) st. AX =B, rank(X) <k, X €K, (2)
e nxXm

where C € R™*™ is a cost matrix, A > 0, k € N;, A € R>*", B € RI*™ K denotes a
proper cone in the sense of [39] and (-) is a Frobenius norm regularization function
or a spectral norm regularization function of the input matrix. The main workhorse
of mixed-projection conic optimization is the use of a projection matrix to cleverly
model the rank terms in (2). This can be viewed as the matrix generalization of using
binary variables to model the sparsity of a vector in mixed-integer optimization. [17]
show that for an arbitrary matrix X € R"*™  we have

rank(X) <k <= IPcS": P?=P,Tr(P) <k, X = PX.

Introducing projection matrices allows the rank functions to be eliminated from (2) at
the expense of introducing non convex quadratic equality constraints. From here, most
existing works that leverage mixed-projection conic optimization have either focused
on obtaining strong semidefinite based convex relaxations [17, 38] or have focused



on obtaining certifiably optimal solutions for small and moderately sized problem
instances [40, 41]. In this work, we leverage the mixed-projection framework to scalably
obtain high quality solutions to large problem instances.

2.3 Alternating Direction Method of Multipliers

Alternating direction method of multipliers (ADMM) is an algorithm that was orig-
inally designed to solve linearly constrained convex optimization problems of the

form
min f(x)+9(2) st Az + Bz =c, (3)

xeR™ zeR™

where we have A € R™*", B € R™*™ ¢ € R! and the functions f and g are assumed to
be convex [42]. The main benefit of ADMM is that it can combine the decomposition
benefits of dual ascent with the desirable convergence properties of the method of
multipliers. Letting y € R! denote the dual variable, the augmented Lagrangian of (3)
is given by

LM @ 2y) = f@)+9(z) +y" (Ax+ Bz — ) + L] Az + Bz — |},

where p > 0 is the augmented Lagrangian parameter. ADMM then proceeds by iter-
atively updating the primal variable x, updating the primal variable z and taking a
gradient ascent step on the dual variable y. Explicitly, ADMM consists of the following
updates:

1. 441 < argmin,, LA(:B, 2, Yt)s
2. Zi41 < arg minz EA(wt+17z7yt)a
3. Y1 < Y + p(ATy1 + Bz — ©).

Under very mild regularity conditions on f,g and £4, it is well known that ADMM
is guaranteed to produce a sequence of primal iterates that converges to the optimal
value of (3) and a sequence of dual iterates that converge to the optimal dual variable
(note that there is no guarantee of primal variable convergence) [42]. Importantly,
although ADMM was originally designed for linearly constrained convex optimization,
it has often been applied to non convex optimization problems and yielded empirically
strong results [43]. This observation has motivated work to explore the theoretical
convergence behavior of ADMM and its variants on specific classes of non convex
optimization problems [44-46].

3 Formulation Properties

In this section, we rigorously investigate certain key features of (1). Specifically, we
establish an equivalence between (1) and an appropriately defined robust optimization
problem. Moreover, we illustrate that (1) can be reduced to an optimization problem
over only X and establish that the resulting objective function is not convex, not
concave and non-smooth. Finally, we study how efficient evaluations of the reduced
problem objective function can be performed.



3.1 Equivalence Between Regularization and Robustness

Real-world datasets frequently contain inaccuracies and missing values, which hinder
the ability of machine learning models to generalize effectively to new data when
these inconsistencies are not appropriately modeled. Consequently, robustness is a
crucial quality for machine learning models, both in theory and application [47, 48].
In this section, we show that our regularized problem (1) can be viewed as a robust
optimization (RO) problem. This finding justifies the inclusion of the nuclear norm
regularization term in (1) and is in a similar flavor as known results from the robust
optimization literature in the case of vector [49] and matrix [40] problems. Note that
the equivalence presented in Proposition 1 follows from the well studied duality of the
nuclear norm and the spectral norm.

Proposition 1. Problem (1) is equivalent to the following robust optimization
problem:

min max (Xij — A)> + MY — Xa|3 + (X, A)  s.t. rank(X) < ko,
XeRM*m AEU <
aeRWLXd (ij)EQ

(4)

where U = {A € R"™™ : ||All, <~}

Proof. To establish this result, it suffices to argue that maxacy (X, A) = || X||x-
This equivalence follows immediately from the fact that the nuclear norm is dual to
the spectral norm. So as to keep this manuscript self contained, we present a proof of
this equivalence below.

Consider any matrix A € R"™ ™ such that |Al, < 7. Let X = UEZV7T be a
singular value decomposition of X where we let r = rank(X) and we have U €
R™*7" 3 e R™", V € R™*". We have

(X,A) =Tr(ATUSV") = Te(VTATUR) = (UTAV, %) =) %,(UTAV);

i=1

= Er:ziiUiTAVi < Zr:ziﬂl(&) < 'Yi:zii =71X1l,
=1 =1 =1

where we have used the fact that X is a diagonal matrix and the columns of U
and V have unit length. Thus, we have shown that || X||, is an upper bound for
maxacy (X, A). To show that the upper bound is always achieved, consider the matrix
A= yUVT € R"™™ where U and V are taken from a singular value decomposition
of X. Observe that _ _

|All, =4|UVT|, <7 = Acu.

We conclude by noting that

(X,A) =Tr(VESUTAUVT) = yTr(VIVIZUTU) = yTr(IZ1) = 7| X .



Proposition 1 implies that solving the nuclear norm regularized (1) is equivalent to
solving an unregularized robust optimization problem that protects against adversarial
perturbations that are bounded in spectral norm. This result is not surprising given
the duality of norms, yet is nevertheless insightful.

3.2 A Partial Minimization

Let g(X, ) denote the objective function of (1). Note that g(X, ) is bi-convex in
(X, @) but is not jointly convex due to the product X a. Observe that we can simplify
(1) by performing a partial minimization in . For any X, the problem in « requires
finding the unconstrained minimum of a convex quadratic function. The gradient of
g with respect to a is given by Vag(X,a) = 2AXT(Xa —Y). Setting Vo9(X, @)
to 0 yields a* = (XTX)'XTY as a minimizer of g over a. Note that M denotes
the pseudo-inverse of a (possibly rank deficient) square matrix M € R'*!. Specifically,
letting 7 = rank(M ) and M = UXVT be a singular value decomposition of M with
U,V € R*" and € R we have MT = US™'VT. Letting f(X) correspond to
the partially minimized objective function of (1), we have

F(X)=ming(X,0) = Y (X — Ay)* + AL = X(XTX)XT)Y |7 + 7] X
(i,5)€Q
= > (X — Ay AT (YT (I, - X(XTX)TXT)Y) + 9] X
(i,5)€Q

We note that a* corresponds to the well studied ordinary least squares solution. When
XTX has full rank, « is the unique minimizer of ¢g. If X7 X is rank deficient, a*
corresponds to the minimizer with minimum norm.

Though we have simplified the objective function of (1), f(X) is not a particularly
well behaved function. We formalize this statement in Proposition (2).
Proposition 2. The function f(X) is in general neither convex nor concave and is
non-smooth.

Proof. To illustrate that f(X) is in general neither convex nor concave, suppose that
Q=0,n=2and m=d= )=+ =1. In this setting, we have x,y € R>*!. Assuming
that  # 05, we can write the objective function as

f(@) = Tr(y" (I — z(z" =) 'z )y) + [|z].
yT

T

7 zxly

=y Y- g +lzl
T,.\2

= yTy— 7(y ZL') =+ Valzx.

T

For = 0, the objective value f(03) is equal to y”y. Let y = 1, and consider the
line in R? defined by X = {x € R? : 23 = x1 + 1}. The restriction of f(z) to the line



defined by X is a univariate function given by

2t + 1)2
fx(t) =2 u—k\/%?—i—%—i—l,

2242t + 1

where t € R is a dummy variable. Observe that we have fx(—1) = fy(0) =
2, fx(—0.5) =2+ g and fy(—4) = fx(3) = 5.04. Thus, the point (—0.5, f+(0.5)) lies
above the chord connecting (—1, fx(—1)) and (0, fx(0)), so fx(t) is not a convex func-
tion. Moreover, the point (=1, fx(—1)) lies below the chord connecting (—4, fx(—4))
and (—0.5, fx(—0.5)), so fx(t) is not a concave function. Since a function is convex
(respectively concave) if and only if its restriction to every line is convex (respectively
concave), we have established that f(X) is neither convex nor concave since fx(t)
is neither convex nor concave. To conclude the proof of Proposition 2, note that the
non-smooth property of f(X) follows immediately from the non-smooth property of
the nuclear norm function. O

Although the above closed form partial minimization in « eliminates m x d vari-
ables form (1), this comes at the expense of introducing a m x m matrix pseudo-inverse
term into the objective function which can be computationally expensive to evaluate.
Efficient evaluation of an objective function is crucial in many optimization problems
to quickly measure solution quality. A plethora of modern optimization techniques
require iterative objective function evaluations. As a result, the computational cost
of evaluating an objective function can quickly become the bottleneck of an algo-
rithm’s complexity. Directly evaluating f(X) naively requires O(|€?|) operations for
the first term, O(m?n + m? + n%d) for the second term (forming the matrix X7 X
is O(m?n), taking the pseudo-inverse is O(m?), computing the products involving
Y is O(n?d)) and requires O(mnmin(m,n)) for the third term (the nuclear norm
can be evaluated by computing a singular value decomposition of X). We observe
that computing the second term of f(X) involving the pseudo-inverse dominates the
complexity calculation. Indeed, the overall complexity of evaluating f(X) naively is
O(m?n +m?3 + n2d).

Fortunately, it is possible to make evaluations of f(X) without explicitly forming
the product X7 X or taking a pseudo-inverse. Proposition 3 illustrates that it suffices
(in terms of computational complexity) to take a singular value decomposition of X.
Moreover, a large class of optimization algorithms require only function evaluations
for feasible solutions. If we consider only those values of X that are feasible to (1), it is
sufficient (in terms of computational complexity) to take a rank k truncated singular
value decomposition of X to make functions evaluations of f(X).

Proposition 3. The function f(X) can equivalently be written as

FX)= Y (Xi— Ay)* + ATH(Y (L, —UUT)Y) + 71X |,
(,7)€EQ

where X = UXVT is a singular value decomposition of X where we let r = rank(X)
and we have U € R"*" X € R"™*" V € R™*",

10



Proof. To establish the result, it suffices to show that
Tr(Y'X(X"X)'X"Y) =Tr(Y'UU"Y).

Let X = UXVT be a singular value decomposition of X where r = rank(X) and
UecR"™ X eR™,V e R™*", Observe that

Tr(Y'X(X"X)' XTY) =Tr(Y'UzvT(vEUTUZVT)'VEUTY)
Tt (Y'UusvT(vevT)vsuTy)
T

(

(
r(YTUSVIVE2VIVEUTY)

(

(

Tt (Y'UZZ ?2U"Y)
e (Y'UU"Y),

where we have repeatedly invoked the property that UTU = VTV = I,. O

In light of Proposition 3, evaluating f(X) for feasible solutions still requires O(|Q2|)
operations for the first term, but the second term can be evaluated using O(kn(m +
d)) operations (performing a truncated singular value decomposition is O(knm) and
computing the products involving Y is O(knd)) and the third term can be evaluated
using O(knm) operations (by performing a truncated singular value decomposition)
for an overall complexity of O(kn(m + d)). This is significantly less expensive than
the O(m?n + m?3 + n?d) complexity of naive direct evaluation of f(X) introduced
previously.

4 An Exact Mixed-Projection Formulation

In this section, we reformulate (1) as a mixed-projection optimization problem and
further reduce the dimension of the resulting problem in a commonly studied man-
ner by parameterizing X as the matrix product of two low dimensional matrices.
Thereafter, we illustrate how to employ the matrix generalization of the perspective
relaxation [17, 38, 40, 50] to construct a convex relaxation of (1).

We first note that given the result of Section 3.2, we can rewrite (1) as an
optimization problem only over X as follows:

o oin > (X - A AT (YT (I, - X(XTX)XT)Y) + 9] X,
T Ggee ()

s.t. rank(X) < k.

Observe that the matrix X (XTX)TX7T is the linear transformation that projects
vectors onto the subspace spanned by the columns of the matrix X . Drawing on ideas
presented in [17, 38, 40], we introduce an orthogonal projection matrix P € Py to
model the column space of X where P, = {P € 8" : P? = P,tr(P) < n} for
n > 0. We can express the desired relationship between P and X as X = PX since

11



projecting a matrix onto its own column space leaves the matrix unchanged. This
gives the following reformulation of (1):

i A2 T _
e D (X = A N (YT (L = P)Y) 49X
(3,7)€Q (6)

s.t. (In - P)X = 0pxm, Pc Pmin(k,rank(X))'

Observe that the matrix pseudo-inverse term has been eliminated from the objective
function, however we have introduced the bilinear constraint X = PX which is
non convex in the optimization variables as well as the non convex constraint P €
Prin(k,rank(X))- We now have the following result:

Proposition 4. Problem (6) is a valid reformulation of (5).

Proof. We show that given a feasible solution to (6), we can construct a feasible
solution to (5) that achieves the same objective value and vice versa.

Consider an arbitrary feasible solution (X, P) to (6). Since PX = X and P €
Prmin(k,rank(X)): We have rank(X) < k. We claim that X achieves the same objective
value in (5) as (X, P) achieves in (6). To show this, it suffices to illustrate that for
all (X, P) feasible to (6) we have H(X) :== X(XTX)'XT = P. The matrix P is an
orthogonal projection matrix since it is symmetric and satisfies P? = P. Moreover,
since rank(P) = rank(X) and PX = X we know that P is an orthogonal projection
onto the subspace spanned by the columns of X. Similarly, it can easily be verified
that H(X) is symmetric and satisfies H(X)? = H(X), rank(H (X)) = rank(X) and
H(X)X = X. Thus, H(X) is also an orthogonal projection matrix onto the subspace
spanned by the columns of X. To conclude, we invoke the property that given a
subspace V C R™ the orthogonal projection onto V is uniquely defined. To see this,
suppose P; and P; are two orthogonal projections onto V. Let [ = dim(V). Let {e;}_,
be an orthogonal basis for V and let {e;}" ; be an orthogonal basis for V*. Since Py
is an orthogonal projection onto V, we have Pie; = e; for all 1 <i <[ and Pie; =0,
for all [+ 1 < i < n. However, the same must hold for P, which implies that P, = Ps.

Consider an arbitrary feasible solution X to (5). Let r = rank(X) and X =
UXVT be a singular value decomposition of X where we have U € R"*" ¥ ¢
R™7 V € R™*". Define P = UUT. By construction, we have P € Prnin(k,rank(X))
since 7 < k. Moreover, it is easy to verify that

PX =0U0TUzvT =UZVT = X,

where we have used the property UTU = I,. Finally, Proposition 3 immediately
implies that (X, P) achieves the same objective in (6) as X achieves in (5). This
completes the proof. O

Optimizing explicitly over the space of n X m matrices can rapidly become pro-
hibitively costly in terms of runtime and memory requirements. Accordingly, we adopt
the common approach of factorizing X € R**™ as UV for U € R**k, V ¢ R™*F,
This leads to the following formulation:
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min Y0 (OVT)y = AP+ XT(Y (L~ P)Y) + (U5 + VI3

VeR™Xk, (i,7)€Q (7)
PGR’”XTL
s.t. (In - P)U = 0pxk, P € pmin(k,rank(UVT))'

Notice that we have replaced n xm optimization variables with kx (n+m) optimization
variables, an often significant dimension reduction in practice. Attentive readers may
object that though this is true, we have introduced n? decision variables through the
introduction of the projection matrix variable P which nullifies any savings introduced
through the factorization of X. Note, however, that it is possible to factor any feasible
projection matrix as P = M M7 for some M € R™*¥, In Section 5, we leverage this
fact so that the presence of the projection matrix incurs a cost of n x k additional
variables rather than n? variables. We have the following result:

Proposition 5. Problem (7) is a valid reformulation of (6).

Proof. We show that given a feasible solution to (7), we can construct a feasible
solution to (6) that achieves the same or lesser objective value and vice versa.
Consider an arbitrary feasible solution (U,V,P) to (7). Let X = UVT. We
will show that (X, P) is feasible to (6) and achieves the same or lesser objective
as (U, V', P) does in (7). Feasibility of (7) implies that P € Prnin(k,rank(TVT)) =
Prmin(k,rank(X)) and also that

(In - P)X = (In - P)UVT = OnkaT = 0n><m7

thus the solution (X, P) is certainly feasible for (6). To see that (X, P) achieves the
same or lesser objective value, it suffices to argue that | X ||, < 2(|U||%+|/V'[|%). This
follows immediately from the following well-known proposition established by [23] (see
Appendix A.5 in their paper for a proof):

Proposition 6. For any matriz Z, the following holds:

1
AR i (U +1IVI3).
120 =, min ST +IVIE)
If rank(Z) = k < min(m,n), then the minimum above is attained at a factor

T
mxk

decomposition Unxkvwka. Letting Zypxm = Lpxp Zrexp B denote a singular value
1
decomposition of Z, the minimum above is attained at Upxr, = Lyxk X s Vinxk =
1

Ry Sy

Consider now an arbitrary feasible solution (X, P) to (6). Let X = LEYR” be a
singular value decomposition of X where L € R™** 3 € RFXF, R e R™** and define
U = L%,V = RX%. Feasibility of (X, P) in (6) implies that P € Py (x rank(X)) =
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Prnin(k,rank(@vT))- Moreover, since the columns of L form an orthogonal basis for the
columns space of X, the condition (I,, — P)X = 0,,x,, implies that

(I, — P)U = (I, — P)LY? = 0,,,,%2 = 0,1

Thus, the solution (U, V, P) is feasible to (7). Moreover, by Proposition 6 we have
L(U1%+ V%) = | X ||« so (U, V, P) achieves the same objective in (7) as (X, P)
does in (6). This completes the proof.

O

In the remainder of the paper, we will relax the constraint P € Pyin(k rank(@vT))
to P € Py and develop a scalable algorithm to obtain high quality feasible solutions.
Explicitly, we consider the problem given by:

min ST UV - Ay + AT (YT (L, - P)Y) + L(U % + | VI3)
UeR"¥k 2

VGR”LXk, (7‘7])69 (8)
PeR™ X"
s.t. (In—P)UZOnXk, P c Py.

It is straightforward to see that the optimal value of (8) is no greater than the optimal
value of (7). Unfortunately, the converse does not necessarily hold. To see why the
optimal value of (8) can be strictly less than that of (7) in certain pathological cases,
suppose we had k = n = m, Q = (. In this setting, letting P = I,,, U = 0,4} and
V = 0,,x%, the solution (U, V', P) would be feasible to (8) and achieve an objective
value of 0. However the optimal value of (7) would be strictly greater than 0 in this
setting as long as Y # 0. Although (8) is a relaxation of (1), we will see in Section 6
that the solutions we will obtain to (8) will be high quality solutions for (1), the main
problem of interest.

4.1 A Positive Semidefinite Cone Relaxation

Convex relaxations are useful in non convex optimization primarily for two reasons.
Firstly, given the objective value achieved by an arbitrary feasible solution, strong
convex relaxations can be used to upperbound the worst case suboptimality of said
solution. Secondly, convex relaxations can often be used as building blocks for global
optimization procedures. In this section, we present a natural convex relaxation of (8)
that leverages the matrix generalization of the perspective relaxation [17, 38, 40, 50].

Rather than working directly with (8), consider the equivalent formulation (6)
with Prin(k,rank(x)) replaced by Py. Before proceeding, we will assume knowledge
of an upper bound M € R, on the spectral norm of an optimal X to (6). Tighter
bounds M are desirable as they will lead to stronger convex relaxations of (6). We
note that it is always possible to specify such an upper bound M without prior
knowledge of an optimal solution to (6). To see this, note that setting X = 0p,xm
in (6) produces an objective value of }_; ;cq A3 + MY ||%. Thus, any X such that
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X > 26 jyea A3 + MY ||% cannot possibly be optimal to (6). Finally, since the
nuclear norm is an upper bound on the spectral norm of a matrix, we must have

Ypea A HAYE
"Y )

Xl <

Ceq AZHAY|12
for any matrix X that is optimal to (6). We can therefore take M = Ligen AstANVIE

Notice that the non convexity in (6) is captured entirely by the bilinear 10nstraint
(I, — P)X = 0,x,, and the quadratic constraint P? = P. In keeping with the
approach presented in [38, 40], we leverage the matrix perspective to convexify the
bilinear term and solve over the convex hull of the set Pj. Recalling that the nuclear
norm is semidefinite representable, we have the following formulation:

min Y (X~ A2 F AT (YT (I, — P)Y) + 2 (Te(Wh) + Te(Wa))
P,W,cR"*", & 2
X eRPX™ (4,5)€Q
s.t. I, = P x>0, Tr(P) <k,

MP X W, X
<XT MIm) =0, (XT Wg) = 0.

We now have the following result:
Proposition 7. Problem (9) is a valid convex relazation of (8).

9)

Proof. Problem (9) is clearly a convex optimization problem. We will show that the
optimal value of (9) is a lower bound on the optimal value of (8) by showing that given
any optimal solution to (8), we can construct a feasible solution to (9) that achieves
the same objective value.

Consider any optimal solution (U, V', P) to (8). From the proof of Proposition
5, we know that the solution (X, P) where X = UV is feasible to (6) (where we
replace the constraint P € Ppin(k rankwvr)) With P € Py) and must also be optimal.
Let X = LY RT be a singular value decomposition of X with L € R"** % ¢ RFxk
and R € R™** Let Wi = LYXLY and W, = RERT. We claim that (X, P, W;, W)
is feasible to (9) and achieves the same objective value as (X, P) does in (6).

From the feasibility of Pin (8), we know that P € P, which implies I,, > P-0
and Tr(P) < k. By the generalized Schur complement lemma (see [51], Equation 2.41),
we know that

(A)%ITD Mﬁﬂ) =0 < MI,, =0, and MI,, — XT(MP)'X > 0.
We trivially have M1, = 0. To see that the second condition holds, note that since P
is a projection matrix and PX = X, we have XT(MP)'X = L XTPX = LX"X.
Furthermore, since X is optimal to (6), we have || X ||, < M by assumption. Thus, we
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have
_ = — = 1 - =
1X]lo <M = | XTX|, < M? = M?I, - X"X = MI,, - MXTX.

Finally, observe that
W, X\ _ (LTL” LERT\ _ (L) (L\"
X" wW,)  \REL" RER")  \R R) -
. . . L . . (W X .
Since X is a diagonal matrix with non negative entries, the matrix T W, ) B
2
certainly positive semidefinite. Thus we have shown that (X, P, W, W) is indeed
feasible to (9). To conclude the proof, we note that

2

S (T(WA) + Te(Wa) = J (Te(DELT) + TH(RER")
— %(TY(LTLE) + Tr(R"RX))
- %(ﬂ(z) +Te(2)) =11 X,

thus (X, P, W1, W) achieves the same objective value in (9) as (X, P) achieves in
(6). O

In general, an optimal solution to (9) will have P ¢ Pj. We briefly note that
to obtain a stronger convex relaxation, one could leverage eigenvector disjunctions
[41, 52] to iteratively cut off solutions to (9) with P ¢ Py, and form increasingly tighter
disjunctive approximations to the set Py.

5 Mixed-Projection ADMM

In this section, we present an alternating direction method of multipliers (ADMM)
algorithm that is scalable and obtains high quality solutions for (8) and we investigate
its convergence properties. Rather than forming the augmented Lagrangian directly
for (8), we first modify our problem formulation by introducing a dummy variable
Z € R™*F that is an identical copy of U. Additionally, rather than directly enforcing
the constraint P € Py, we introduce an indicator function penalty Ip, (P) into the
objective function where Iy(x) = 0 if * € X, otherwise Ix(x) = oo. Explicitly, we
consider the following problem:

. Ty, . )2 T _
U,ZeRnxk,VHeli%r%nxk,PGRan Z (v )” AU) —|—/\Tr(Y (In P)Y)
(i,7)€Q
v 10
+ LU +1VI3) + Ie, (P) 1o
s.t. (In*P)Zzoanm U7Z:On><k

16



It is trivial to see that (10) is equivalent to (8). We will see in this section that working
with formulation (10) leads to an ADMM algorithm with favorable decomposition
properties. Introducing dual variables ®, ¥ € R"** for the constraints (I,, — P)U =
0,,x% and U — Z = 0,5, respectively, the augmented Lagrangian £4 for (10) is given
by:

LAU,V,P,Z,®,%)= Y (UV");; - Ay)* + \Tr(Y'(I,, - P)Y)
(i,5)€Q

+ 2T E+ VI +Ip, (P) + Tx(@T (L, - P)z) (11

p P
+T(2(Z - U)) + 5| (L~ P)Z|5 + F11Z - Ul

where p1,p2 > 0 are non-negative penalty parameters. In what follows, we show
that performing a partial minimization of the augmented Lagrangian (11) over each
of the primal variables U,V , P, Z yields a subproblem that can be solved effi-
ciently. We present each subproblem and investigate the complexity of computing the
corresponding subproblem solutions.

5.1 Subproblem in U

First, suppose we fix variables V,P,Z, ® ¥ and seek to minimize
LAU,V,P,Z,®,¥) over U. Eliminating terms that do not depend on U, the
resulting subproblem is given by

: i P2
min Y (UVT); - Ay)* + S |U|% - Te(®70) + 52| Z - U3 (12)
UcRnxk & 2 2
(1,7)€Q
We now have the following result: ~
Proposition 8. The optimal solution U for (12) is given by

Ui7* = [2VTW/1V + (’)/ + pg)Ik]fl[ZVTWiA@* + \111'7* + ng,;v*], (13)
for each i € {1,...,n} where each W; € R™*™ s a diagonal matriz satisfying
(Wi);; = 1 if (4,7) € Q, otherwise (W;);; = 0. Here, the column vectors U, , €

RF A;, € R™ U, , € RF Z; ., € RF denote the ith row of the matrices U, A, ¥, Z
respectively, where the unknown entries of A are taken to be 0.
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Proof. Let f(U) denote the objective function of (12). With {W;}* , defined as in
Proposition 8, observe that we can write f(U) as

3

i P2
FO) = 3 [IWV T, = A0+ JI0 18 — VTV + 2120 = U
i=1
1=1

where we define g;(U) = |[Wi(VU; . — A )3+ 3 Ui ull3 = VT Ui w4+ 821 Zi o — Ui kI3
Thus, we have shown that f(U) is separable over the rows of the matrix U. Each
function ¢;(U) is a (strongly) convex quadratic. Thus, we can minimize g;(U) by
setting its gradient to 0. For any fixed row ¢ € {1,...,n}, we can differentiate and
obtain

Vu,.9:(U) = VIW, (VU — Ai) + Ui s — Vs — p2(Zi s — Ui ).

By equating the gradient Vy, |, 9:(U) to 0 and rearranging, we obtain that the optimal
vector U, , is given by (13). This completes the proof. O

Observe that since the matrix VT W;V is positive semidefinite and v + ps > 0,
the matrix inverse 2VI W,V + (v + p2)I;] 7! is well defined for all i € {1,...,n}.
Computing the optimal solution to (12) requires computing n different k x k matrix
inverses (where in general k¥ < min{m,n}). Computing a single k¥ x k matrix inverse
requires O(k?) time and forming the matrix product VI W,V requires O(k?m) time
for a given i. Thus, the complexity of computing the optimal solution for a single col-
umn is O(k® + k?m). Notice that each column of U can be computed independently
of the other columns. We leverage this observation by developing a multi-threaded
implementation of the algorithm presented in this section. Letting w denote the num-
ber of compute threads available, computing the optimal solution U of (12) requires

O(m) time (the term min{w,n} in the denominator reflects that fact that

min{w,n}
increasing the number of available compute threads beyond the number of columns of
U does not yield additional reduction in compute complexity).

5.2 Subproblem in V'

Now, suppose we fix wvariables U,P,Z,®,¥ and seek to minimize
LA(U,V,P,Z,®,%) over V. Eliminating terms that do not depend on V, the
resulting subproblem is given by

. TV a2, ) 2

Jmin > (OVT)y - A + IV 14
(1,5)€Q

We now have the following result:

Proposition 9. The optimal solution V' for (14) is given by

Vie = RUTW,U +~I;] ' [2UTW; A, ;] (15)

18



for each j € {1,...,m} where each W; € R™ ™ is a diagonal matriz satisfying
(Wj)ii = 1 if (i,5) € Q, otherwise (W])” = 0. Here, the column vector Vj* € RF

denotes the j*" row of V while the column vector A, j € R™ denotes the j* b column
of A where the unknown entries of A are taken to be 0.

Proof. This proof follows the proof of Proposition 8. Let f(V') denote the objective
function of (14). With {W;}7", defined as in Proposition 9, observe that we can write
f(V) as

m ’y m
=3[ IW @V - A1+ 108 = L o)
j=1

Jj=1

where we define g; (V) = |W;(UV;. — A, ;)|I3 + 2|V« [|3- Thus, we have shown that
f(V) is separable over the rows of the matrix V. Each function g;(V') is a (strongly)
convex quadratic. Thus, we can minimize g;(V') by setting its gradient to 0. For any
fixed row j € {1,...,m}, we can differentiate and obtain

Vv,.9;(V) =2U"W;(UV, . — A, ;) + V..

By equating the gradient V, , g;(V) to 0 and rearranging, we obtain that the optimal
vector U, , is given by (15). This completes the proof. O

Observe that since the matrix UTWJ-U is positive semidefinite and v > 0, the
matrix inverse 2UTW;U + vI] 7! is well defined for all j € {1,...,m}. Computing
the optimal solution to (14) requires computing m different k& x k matrix inverses.
Forming the matrix product U TWjU requires O(k?n) time for a given j. Thus, the
complexity of computing the optimal solution for a single column is O(k® + k?n).
Notice that, similarly to the solution of (12), each column of V' can be computed
independently of the other columns. As before, we leverage this observation in our
multi-threaded implementation of the algorithm presented in this section. Letting w
denote the number of compute threads available, computing the optimal solution V'

of (14) requires O(m) time.

min{w,m}

The optimal solution V' to (14) reveals that the Frobenius norm regularization
term on V in (8) (which emerges from the nuclear norm regularization term on X in
(1)) has computational benefits. Indeed, if we had v = 0, it is possible that the matrix
UTW,U be singular at certain iterates of our ADMM algorithm, in which case the
corresponding matrix inverse would be undefined. This observation is in keeping with
several recent works in the statistics, machine learning and operations research liter-
atures where the presence of a regularization penalty in the objective function yields
improved out of sample performance as well as benefits in computational tractability
(see for example [38, 40, 53-55]).
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5.3 Subproblem in P

Now, suppose we fix variables U,V,Z , ® ¥ and seek to minimize
LA(U,V,P,Z,®,%) over P. Eliminating terms that do not depend on P, the
resulting subproblem is given by

min —\Tr(Y7PY) - Tr(®TPZ) + %H(In ~P)Z|3 st. P?*=P, Tr(P)<k.

pesn
(16)

We now have the following result:

Proposition 10. Let MEXMT7T be o rank k truncated singular value decomposition

for the matriz given by:

1
()\YYT + %ZZT +5(@27 + Z<I>T)>,
where 3 € RFXF M € Rk MTM = I,. The optimal solution P for (16) is given
by P= MMT.

Proof. Let f(P) denote the objective function of (16). Observe that for any P that
is feasible to (16), we can write f(P) as:

F(P) = ATe(YTPY) - Tr(@TPZ) + %H(In —P)Z|%
— ATH(YYTP) - Te(Z8TP) + %Tr(ZZT(In —P))

- %Tr(ZZT) —YYT 4 Zza" + %ZZT, P).

Thus, it is immediately clear that a solution will be optimal to (16) if and only if it is
optimal to the problem given by:

.5, P? = <
Fq&agg;(C,P} st. P°=P,Te(P) <k, (17)

where we define the matrix C € R"*" as C = \YY 7T + Z&T + %ZZT. Let C =

%(C + C7T) denote the symmetric part of C. Observe that for any symmetric matrix
P, we can consider (C, P) in place of (C, P) since we have

n o n n n—1 n
(C,P) = Z Z Pi;Cij = Z-Piicii + Z Z P (Cij + Cji)
i=1

i=1 j=1 i=1 j=i41
n n—1 n n n
i=1 i=1 j=i+1 i=1 j=1
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Let C = MXM?" be a full singular value decomposition of C with M,% ¢
R " MTM = MM?7 = I,,. The matrix ¥ is the diagonal matrix of (ordered) sin-
gular values of C and we let o; denote the i*" singular value. Any feasible matrix P
to (17) can be written as P = LLT where L € R"** LTL = I. Thus, for any P
feasible to (17) we express the objective value as:

(C,P)=Tr(MSM"LL") = Te(S(M"LL"M)) = " o:[|(M"L); 3.
i=1

Let N = MTL € R"*. Note that we have NN = L"TMM"L = LL = I,
which implies that the columns of IN are orthonormal. This immediately implies that
we have N/, N; ., = [(M™L);.||5 < 1. Moreover, we have

n n n k k n k
SUMTL) B =S NI N =S SN2 =S N2 =S 1=k
i=1 j=1 =1

i=1 i=1 j=1 J =1 J

We can therefore upper bound the optimal objective value of (17) as
n k
(C,P)y=> o (M"L);,[5<> o
i=1 i=1

To conclude the proof, notice that by taking P = M M7 where M € R™*F is the
matrix that consists of the first k£ columns of M we can achieve the upper bound on
(17):

k
(C,P)=Tr(MSM"MM") = Te(M"MEM"M) = o;.
i=1
O

To compute the optimal solution of (16), we need to compute a rank k singular
value decomposition of the matrix C = (A\YY 7T + 8 ZZ7 4+ J(®Z" + Z®")) which
requires O(kn?) time since C € R™ ™. Moreover, explicitly forming the matrix C in
memory from its constituent matrices Y, Z, ® requires O(n?(d+k)) operations. Thus,
naively computing the optimal solution to (16) has complexity O(n?(d+k)) where the
bottleneck operation from a complexity standpoint is explicitly forming the matrix C.

Fortunately, it is possible to compute the optimal solution to (16) more efficiently.
Observe that we can equivalently express the matrix C as C = F| Fl where Fy, F; €
R™*(443k) are defined as

(| vEs s 12)
(v |2 1] 1)

Computing a truncated singular value decomposition requires only computing
repeated matrix vector products. Therefore, rather than explicitly forming the matrix
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C in memory at a cost of O(n?(d + k)) operations, in our implementation we design
a custom matrix class where matrix vector products between C and arbitrary vec-
tors @ € R™ are computed by first evaluating the matrix vector product v = Fj x
and subsequently evaluating the matrix vector product Cx = Fiv. In so doing, we
can evaluate matrix vector products Cx in O(n(d + k)) time rather than O(n?) time
(in general, we will have d + k < n). Computing a truncated singular value decom-
position of C' with this methodology of evaluating matrix vector products requires
only O(k?n + knd) operations. Thus, our custom matrix class implementation avoids
needing to explicitly for C' in memory and allows the optimal solution to (16) to be
computed in O(k?*n + knd) time.

5.4 Subproblem in Z

Now, suppose we fix variables U,V,P,® ¥ and seek to minimize
LA(U,V,P,Z,®,%) over Z. Eliminating terms that do not depend on Z, the
resulting subproblem is given by

i Te(@7 (L, = P)Z) + Te(¥72) + 2L - P)Z|3+ 212 - UlE. ()

We now have the following result: B
Proposition 11. The optimal solution Z for (18) is given by

_ 1
P e
_ (sz—q>+P<I>—\I:+p1PU—ﬁP\I:).
p1+ p2 P2

Proof. Let f(Z) denote the objective function of (18). The function f(Z) is a convex
quadratic, thus it can be minimized by setting its gradient to 0. Differentiating f(Z),
we obtain:

Vzf(Z)= (I, - P)"®+ % + p(I, — P)' (I, — P)Z + p2(Z - U).
Moreover, for any matrix P for which the augmented Lagrangian (11) takes finite
value, we will have P € P}, which implies that P7 = P and P? = P. We can therefore
simplify Vz f(Z) as:

Vzf(Z)=I,-P)®+¥ +p (I, — P)Z+ps(Z-U).

By equating the gradient Vz f (Z) to 0 and rearranging, we obtain that the optimal
matrix Z is given by:

Z = (Pl(In - P) JFPQIn)_l(P?U* (In— P)® — ‘Il>
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To conclude the proof, it remains to show that (p1 (I,—-P)+ ngn)71 = mTlpa (L,, +

%P). Let P = MM7T where M € R"™* MTM = I,. Such a matrix M is
guaranteed to exist for any P € Pi. We have
p1(In = P) + poI, = p1(I, — MM™) + py 1,
= (p1+ p2)In + M(_plLL)MT

1 1 1 1 -1
= I, - 2M< M"M — Ik> M*
p1+p2 (p1+ p2) p1+ p2 p1
1 1 —
_ I, 2M( p1(p1 + p2)1k>MT
p1 + p2 (p1+ p2) P2

1
= (In + &P)7
p1+ p2 P2

where the third equality follows from the Woodbury matrix inversion lemma (see [56],
Section 3.2.2). As a sanity check, one can verify that the product of (p1 (I, —P)—i—ngn)

and plim (In + Z—;P) is indeed the n dimensional identity matrix. O

Evaluating the optimal solution to (18) requires only matrix-matrix multiplica-
tions. Computing the products of P®, PU, PW¥ in the definition of Z from (19)
requires O(kn?) operations. Thus, the naive cost of forming Z is O(kn?). However,
notice that if we had a factored representation of the matrix P as P = M M7 with
M € R™F_ for any matrix R € R"** we could compute matrix-matrix products PR
by first computing § = M” R and thereafter computing PR = M S for a total com-
plexity of O(k?n). One might object that this ignores the time required to compute
such a matrix M. However, observe that in computing a matrix P that is optimal to
(16), we in fact must already generate such a matrix M (see proposition 10). In fact,
in our implementation we never explicitly form a n x n matrix P as it suffices to only
store a copy of its low rank factorization matrix M. Thus, the optimal solution to
(18) can be evaluated in O(k?n) time.

5.5 An ADMM Algorithm

Having illustrated that the partial minimization of the Lagrangian (11) across each of
the primal variables (Problems (12), (14), (16), (18)) can be solved efficiently, we can
now present the overall approach Algorithm 1.

We initialize primal iterates Uy = Zo = LX2, Py = LLT,V, = RX? where LY R
denotes a rank k truncated singular value decomposition of A (the missing entries of A
are filled in with Os) and we initialize dual iterates @9 = ¥ = 1,,xx. Observe that the
subproblems (12) and (16) can be solved simultaneously. Similarly, the subprobems
(14) and (18) can be solved simultaneously. At each iteration of Algorithm 1, we first
update the iterates Uyy1, Piy1 by solving problems (12) and (16) with (V4, Z;, ®;, ¥,)
fixed. Next, we update the iterates Vi1, Ziy1 by solving problems (14) and (18)
with (Ugg1, Piy1, ®r, ¥4) fixed. Finally, we update the dual iterates @, ¥ by taking
a gradient ascent step. The gradients of the augmented Lagrangian (11) with respect
to ® and ¥ are given by the primal residuals (I, — Pi41)Zi41 and Zpy; — Upq
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Algorithm 1 Mixed-Projection ADMM
Require: n,m,k € Z,,Q C [n] x [m],{Ai}uj)eq A,y € Ry. Tolerance parameter
€ > 0. Maximum iteration parameter 7' € Z.
Ensure: (U, V, P) that is feasible to (8).
1. (Uy, Py, Vi, Zo) + (LX2,LLT, R¥2,LX?) where LYR is a rank k truncated
SVD of A and missing entries are filled in with 0;

2: (‘I)Oa\IIO) < (]-nxka]-nxk);

3: t+ 0

4: while ¢t < T and max{||(I, — P,)Z:||%,1Z: — U||%} > € do
5: (Ut+1,_Pt+1) «— argminmPﬁA(U,Vg,P, Ztai)ta‘llt);

6: (‘/t-‘rl’ Zt+1) < arg HliIlV’Z LA(Ut+17 V, Pt+1, Z, §t7 ‘I’t),
7 D1 — L+ 1L — Poy1)Zyya;

8: Wi U+ po(Zig1 — Upgr);

9: t+—1t+ 1,

10: end while

11: Return (U, Vi, P,).

respectively. We use p; and ps respectively as the step size. We proceed until the
squared norm of each primal residual is below a numerical tolerance parameter € or
until we reach an input maximum number of iterations 7. We know have the following
result:

Proposition 12. Assume that the number of compute threads w is less than
min{n,m}. The per iteration complexity of Algorithm 1 is O(kzn + knd +
kS(n+m)+k2nm) ]

w

Proof. The result follows from the complexity analysis of problems (12), (14), (16)
and (18). O

Having presented Algorithm 1 in extensive detail, it is natural to consider what
types of guarantees can be made on the final output solution (Ur, Vi, Pr). We explore
this in the following theorem:

Theorem 13. Let {(U;, Vi, Py, Zy, D4, ¥4)} denote a sequence generated by Algorithm
1 (assuming we allow Algorithm 1 to iterate indefinitely). Suppose the dual variable
sequence {(®;, W)} is bounded and satisfies

D (I®es — @47 + [ ®e1 — Byff7) < o0 (20)
t=0
Let (U,V,P,Z,® W) denote any accumulation point of {(Ut_,‘_/ Py, Z;, &, 9,)}.
If the set of k leading eigenvectors of the matriz [N\YY T + 1(<I’Z —|— Z Tl] is the
same as the set of k leading eigenvectors of the matriz ZZT , then ( P, Z ® %)

satisfies the first order optimality conditions for (10).

Proof. We leverage a proof technique similar to the technique used to establish
Theorem 2.1 from [57]. Note that from (20), we immediately have ®;11 — ®;, — 0 and

24



¥, — ¥, — 0. We will first show that we also have Uy — Uy — 0,V — V; =0
and Zt+1 - Zt — 0.

Let LA(U;V,P,Z,®,¥) denote the augmented Lagrangian (11) viewed as a func-
tion of U. Notice that LA(U; V, P, Z,®,¥)— 2222 |U||% is a convex function, which
implies that LA(U;V, P, Z,®,¥) is a strongly convex function of U with parameter
Y+ pz. Similarly, L4(V; U, P, Z, ®, W) is a strongly convex function of V' with param-
eter v and LA(Z;U,V,P,®,¥) is a strongly convex function of Z with parameter
p2. By strong convexity, we know that for any matrices U, AU,V , P, Z, ®, ¥ we have

LAU + AU) - £LYU) > (VuLA(U), AU) + (v + p2) | AU £, (21)

where the shorthand notation £4(U) is understood to denote the augmented
Lagrangian (11) viewed as a function only of U with the other variables held fixed.
Letting U = U; 11, AU = U; — Uiy, and noting that (VyLA(Ugq), AU) > 0
since U1 minimizes £4(U) at iteration ¢, from (21) we have £LA(U;) — LA(Up11) >
(v + p2) | Ut — Upy1||%. Similarly, we have £A(V;) — LA(Vi1) > 7||Vi — Vig1||% and
LAZ) LN Zir) > 02| Z+ — Zt41||%. Moreover, since P;;1 minimizes LA(P) at iter-
ation ¢, we have LA (P;) — LA(P;;1) > 0. Observe that we can express the difference
in the value of the augmented Lagrangian between iteration ¢ and iteration ¢t 4+ 1 as

LAU, Vi, Pry Zy) — LYNU 1, Vig 1, Prya, Ziy1) =
LAU) — LAUp1) + LAVG) — LA Viga)

(22)
+ LYP) — LY Ppi1) + LY Zy) — LN Z41)
+ LA®) — LY Pyr) + LA(Y) — LA(P440).
Recognizing that we have L£A(®;) — LA( P11 1) = —pi||®r — P, LA(T,) —

LA(q:ltJ’_l) = *,DQH‘IJIL — ‘Ilt—i-l”%‘a (22) 1mphes that

LAUVL, Py, Zy) — LA(Ugi, Vi1, Prg1, Zig) >
(v + p)IU: = Upir |3 +AIVi = Vil 7 + p2l|Z0 — Zoa|| (23)
= p1]| @ — 1T — o2l [ ¥y — Cep ||

We claim that the augmented Lagrangian is bounded from below. To see this, note
that £4 can equivalently be written as

LAUV,P,Z,® %)= Y (UV"); - Ay)* + AL, — P)Y|%
(i,5)€Q

Y P1 P
+ §(HU||2F + | VI[E) +1p,(P) + S ITn = P)Z + EH%

P2 oo 1 2 1 2

+=1Z-U+ —|z — —|®lz + —¥]%,

= Lt S e L
(24)
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and recall that by assumption the dual variables ® and ¥ are bounded. Thus, the
bounded-ness of £ coupled with summing (23) over ¢ implies that

> allUi = Upalp + Vi = Villy + 126 — Zigall7)
t=0

= oa(|®r — BrpaF + ¥ — Ty ||7) < o0,
t=0

(25)

where ¢; = min{~y, p2} and ¢2 = max{p1, p2}. By assumption, the second term of (25)
is finite which implies that the first term must also be finite. This immediately implies
that U1 — Uy = 0, Vi1 — Vi, = 0 and Zy1 — Z; — 0 as desired.

We are now ready to prove the main result of the theorem. The (unaugmented)
Lagrangian £ for (10) is given by

LU, V,P.Z,® %)= > ((UV");; - A;)’ + \Tr(Y"(I, - P)Y)

(i,5)€
i
+ 5 (IU1IF + [VI[E) + Ip, (P) + Te(®7 (L, — P)Z) + Te(¥"(Z - U)).
(26)
The corresponding first order optimality conditions can be expressed as
RVIW,V +yI|U; . = 2VIWA; , + 0, i€ [n], (27a
RQUTW,U +1I,|V; . = 2UTW;A, ; j € [m], (27b

)
)
P:Aﬁw%mmﬂszTmammwSVDdAYYT+;@ZT+Z¢ﬁ,(ﬂ@

(27d)
)
)

®+ T = Pd, 27d
Z=PZ, (27e
Z=U, (27f

where the diagonal matrices W;, W; are defined as in Propositions 8 and 9 respectively.
Let (U,V,P,Z,®,¥) denote any limit point of {(Uy, V;, Py, Z;, ®;, ¥;)}. Recalling
the Algorithm 1 updates for ® and ¥, the conditions ®;,; —P®; — 0 and ¥, — ¥, —
0 imply that (27¢) and (27f) hold at (U,V, P, Z,®, ¥). Moreover, when (27f) holds
the Algorithm 1 update for U given by Proposition 8 reduces to (27a) while the update
for V' given by Proposition 9 enforces (27b). From the proof of Propsition (11), we
know that Algorithm 1 updates Z to satisfy the following

(p1(Ln = P)+ p21) Z = (p2U = (I, ~ P)® — ). (28)
Since (27e¢) and (27f) hold, (28) immediately implies (27d) is satisfied by
(U,V,P,Z,®,¥). It remains to verify that (U,V,P,Z,®,¥) satisfies (27c). By

Proposition 10, we know that we have P = LL” where LXL" is a rank k trun-
cated SVD of the matrix A\YY T 4+ 2 ZZ7 + L(®Z7 + Z®T)). If the set of k leading
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eigenvectors of the matrix ZZ7T is the same as the set of k leading eigenvectors of
AYYT + L(@ZT + Z&®T)], it follows immediately that LY LT will be a rank k SVD
of \YYT + _%(@ZT + Z®T)] for some diagonal matrix /. Thus, in this setting,
(U,V,P,Z,®,P) satisfies (27c). this completes the proof.

O

In words, Theorem 13 states that if the sequence of dual variable iterates pro-
duced by Algorithm 1 is bounded and the primal residuals converge to zero quickly
enough (specifically, it is required that the norm of successive dual variable differ-
ences is summable), then any accumulation point (U, V,P,Z. &, i’) of the sequence
of iterates produced by Algorithm 1 satisfies the first order optimality conditions of
(10) if the rank k approximation of the matrix [A\Y'Y” + 1(®Z7 + Z®")] shares the
same column space as the matrix Z. We note that the assumption made in Theorem
13 is consistent with common assumptions made in the analysis of nonconvex ADMM
[57-59]. We also note that this condition can only be verified upon termination of
Algorithm 1 since it depends on the algorithm output in addition to the problem data.
Accordingly, Theorem 13 provides an a posteriori convergence result.

We note that this condition was always satisfied by the output of Algorithm 1 in our
synthetic numerical experiments. Specifically, letting P; € R™"*" denote the orthogonal
projection onto the k-dimensional column space of Z and P, € R™ ™ denote the
orthogonal projection onto the k leading eigenvectors of [A\YY T + %(@ZT + Z®T)],
the eigenvector condition stated in Theorem 13 is satisfied if and only if we have
(I, — P1) Py = 0,,%,,. This suggests that the quantity P> — Py P> can be viewed as a
dual residual for Algorithm 1 (recall that the primal residuals are given by Z—PZ and
Z —U, which we term the ®-residual and the ¥-residual respectively). In Figure 1, we
plot the evolution of the primal and dual residuals over 500 iterations of Algorithm 1
for a single synthetic data run (see Section 6.1 for a specification of the data generation
procedure) where we have fixed p; = p2 = 10. Observe that after only a small number
of iterations, the norm of the ®-residual and the norm of the W-residual quickly
approach 0, indicating that Algorithm 1 has arrived at a feasible solution. Moreover,
the norm of the dual residual similarly quickly approaches 0 after a small number of
iterations, indicating that the eigenvector condition from Theorem 13 is satisfied and
that Algorithm 1 has therefore arrived at a solution satisfying first order optimality
conditions.

6 Computational Results

We evaluate the performance of Algorithm 1 implemented in Julia 1.7.3. Throughout,
we fix p1 = pa = 10, set the maximum number of iterations 7" = 20 and set the number
of compute threads w = 24. Note that given the novelty of Problem (1), there are
no pre-existing specialized methods to benchmark against. Accordingly, we compare
the performance of Algorithm 1 against well studied methods for the very closely
related MC problem, a method designed for MC in the presence of side information
and a highly performant generic method for low rank matrix optimization problems.
The MC methods we consider are Fast-Impute [9], Soft-Impute [23] and Iterative-
SVD [20] which we introduced formally in Section 2.1. We utilize the implementation
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Algorithm 1 Residuals
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Fig. 1 Algorithm 1 primal and dual residual evolution versus iteration number for a single synthetic
data run with n = 1000, m = 100,k = 5 and d = 150. Note that due to the logarithmic scale, the phi
residual and psi residual lines are overlapping.

of Fast-Impute made publicly available by [9] while we use the implementation of
Soft-Impute and Iterative-SVD from the python package fancyimpute 0.7.0 [60]. We
additionally consider the variant of Fast-Impute that incorporates side information
(denoted as Fast-Impute-Side) which is also made publicly available by [9]. The matrix
optimization method we consider is ScaledGD (scaled gradient descent) [37] which we
introduced formally in Section 2.2.1 and implement ourselves. We perform experiments
using both synthetic data and real world data on MIT’s Supercloud Cluster [61], which
hosts Intel Xeon Platinum 8260 processors. To bridge the gap between theory and
practice, we have made our code freely available on GitHub at https://github.com/
NicholasJohnson2020/LearningLowRankMatrices.

To evaluate the performance of Algorithm 1, Fast-Impute, Fast-Impute-Side, Soft-
Impute, Iterative-SVD and ScaledGD on synthetic data, we consider the objective
value achieved by a returned solution in (1), the ¢3 reconstruction error between a
returned solution and the ground truth, the coefficient of determination (R?) when the
returned solution is used as a predictor for the side information, the numerical rank of a
returned solution and the execution time of each algorithm. Explicitly, let X e R"*™
denote the solution returned by a given method (where we define X = UVT if the
method outputs low rank factors U',V) and let A'™“¢ ¢ R™*™ denote the ground
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truth matrix. We define the the /5 reconstruction error of X as

o) 1% - A
BRR ) = g

We compute the numerical rank of X by calling the default rank function from the
Julia LinearAlgebra package. We aim to answer the following questions:

1. How does the performance of Algorithm 1 compare to existing methods such
as Fast-Impute, Fast-Impute-Side, Soft-Impute, Iterative-SVD and ScaledGD on
synthetic and real world data?

2. How is the performance of Algorithm 1 affected by the number of rows n, the
number of columns m, the dimension of the side information d and the underlying
rank k of the ground truth?

3. Empirically, which subproblem solution update is the computational bottleneck of
Algorithm 17

6.1 Synthetic Data Generation

To generate synthetic data, we specify a number of rows n € Z,., a number of columns
m € Zy, a desired rank k € Z; with & < min{n,m}, the dimension of the side
information d € Z,, a fraction of missing values o € (0,1) and a noise parameter
o € R, that controls the signal to noise ratio. We sample matrices U € R"** V ¢
R™*F 3 € R™*4 by drawing each entry U;, Vij, 8i; independently from the uniform
distribution on the interval [0, 1]. Furthermore, we sample a noise matrix N € R"*4
by drawing each entry IV;; independently from the univariate normal distribution with
mean 0 and variance 02. We let A = UV and we let Y = AB + N. Lastly, we
sample |« - n - m| indices uniformly at random from the collection Z = {(i,5) : 1 <
i <n,1 <j<m} to be the set of missing indices, which we denote by I'. The set of
revealed entries can then be defined as @ = Z\ T'. We fix o = 0.9,0 = 2 throughout
our experiments and report numerical results for various different combinations of

(n,m,d, k).

6.2 Sensitivity to Row Dimension

We present a comparison of Algorithm 1 with ScaledGD, Fast-Impute, Fast-Impute-
Side, Soft-Impute and Iterative-SVD as we vary the number of rows n. In these
experiments, we fixed m = 100,k = 5, and d = 150 across all trials. We varied
n € {100, 200, 400, 800, 1000, 2000, 5000, 10000} and we performed 20 trials for each
value of n. For ScaledGD, we set the step size to be n = ﬁm) where o1(A)
denotes the largest singular value of the input matrix A where we fill the unob-
served entries with the value 0. Letting f(U;, Vi) denote the objective value achieved
after iteration ¢ of ScaledGD, we terminate ScaledGD when either ¢ > 1000 or
! (Ut}l(’UV;:’)‘;t{ (gt’vt) < 1073, In words, we terminate ScaledGD after 1000 iterations
or after the relative objective value improvement between two iterations is less than

0.1%.
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Fig. 2 Objective value (top left), ¢2 reconstruction error (top right), side information R? (bottom
left) and execution time (bottom right) versus n with m = 100,k = 5 and d = 150. Averaged over 20
trials for each parameter configuration.

We report the objective value, £» reconstruction error, side information R? and
execution time for Algorithm 1, Fast-Impute, Fast-Impute-Side, Soft-Impute and
Iterative-SVD in Figure 2. For ease of comparison between Algorithm 1 and Fast-
Impute-Side, we plot only the performance of these two methods in Figure 3. We
additionally report the objective value, reconstruction error, side information RZ
and execution time for ScaledGD, Algorithm 1, Fast-Impute, Fast-Impute-Side, Soft-
Impute and Iterative-SVD in Tables A1, A2, A3 and A4 of Appendix A. In Figure
4, we plot the average cumulative time spent solving subproblems (12), (14), (16),
(18) during the execution of Algorithm 1 versus n. Our main findings from this set of
experiments are:

1. Algorithm 1 and Fast-Impute-Side systematically produce higher quality solutions
than ScaledGD, Fast-Impute, Soft-Impute and Iterative-SVD (see Table A1), some-
times achieving an objective value that is an order of magnitude superior than
the next best method. We remind the reader that Fast-Impute, Soft-Impute and
Iterative-SVD are methods designed for the generic MC problem and are not cus-
tom built to solve (1) so it should not come as a surprise that Algorithm 1 and
Fast-Impute-Side (which leverages the side information Y') significantly outper-
form these 3 methods in terms of objective value. ScaledGD however has explicit
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Fig. 3 Objective value (top left), 2 reconstruction error (top right), side information R? (bottom
left) and execution time (bottom right) versus n with m = 100,k = 5 and d = 150. Averaged over 20
trials for each parameter configuration.

knowledge of the objective function of (1) along with its gradient, yet surpris-
ingly produces the weakest average objective value across these experiments. We
note that we use the default hyperparameters for ScaledGD recommended by the
authors of this method [37]. We observe that the objective value achieved by all
methods increases linearly as the number of rows n increases. There is no signifi-
cant difference between the objective value achieved by the output of Algorithm 1
compared to that of Fast-Impute-Side (Algorithm 1 is on average 1% higher).

2. In terms of ¢y reconstruction error, Algorithm 1 systematically produces solutions
that are of higher quality than ScaledGD, Fast-Impute, Fast-Impute-Side, Soft-
Impute and Iterative-SVD (see Table A2). On average, Algorithm 1 outputs a
solution whose ¢y reconstruction error is 30% lesser than the reconstruction error
achieved by the best performing alternative method (Fast-Impute-Side). This is
especially noteworthy since Algorithm 1 is not designed explicitly with reconstruc-
tion error minimization as the objective, unlike Fast-Impute, Fast-Impute-Side and
Soft-Impute, and suggests that modeling the side information Y as a linear function
of X is instrumental in recovering high quality low rank estimates of the partially
observed data matrix.
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3. With the exception of the experiments for which n = 100, Algorithm 1 and Fast-
Impute-Side always produced solutions that achieved a superior R? value when
used as a predictor for the side information compared to Fast-Impute, Soft-Impute,
Iterative-SVD and ScaledGD. There is no significant difference between R? value
achieved by the output of Algorithm 1 compared to that of Fast-Impute-Side.

4. The runtime of Algorithm 1 is competitive with that of the other methods. The
runtime of Algorithm 1 is less than of Soft-Impute and Iterative-SVD but greater
than that of Fast-Impute. The runtime for Algorithm 1 was less than that of Fast-
Impute-Side for n < 2000 but greater than for n > 2000. For experiments with
n < 2000, Table A4 illustrates that ScaledGD was the method with the fastest
execution time (however as previously mentioned the returned solutions were of low
quality). The runtime of Algorithm 1, Fast-Impute, Fast-Impute-Side, Soft-Impute
and Iterative-SVD appear to grow linearly with n.

5. Figure 4 illustrates that the computation of the solution for (12) is the computa-
tional bottleneck in the execution of Algorithm 1 in this set of experiments, followed
next by the computation of the solution for (16). Empirically, we observe that the
solution time of (12), (14), (16) and (18) appear to scale linearly with the num-
ber of rows n. This observation is consistent with the computational complexities
derived for each subproblem of Algorithm 1 in Section 5.

6.3 Sensitivity to Column Dimension

Here, we present a comparison of Algorithm 1 with ScaledGD, Fast-Impute, Fast-
Impute-Side, Soft-Impute and Iterative-SVD as we vary the number of columns
m. We fixed n = 1000,k = 5, and d = 150 across all trials. We varied m €
{100, 200, 400, 800, 1000, 2000, 5000, 10000} and we performed 20 trials for each value
of m.

We report the objective value, £5 reconstruction error, fitted rank and execution
time for Algorithm 1, Fast-Impute, Fast-Impute-Side and Soft-Impute in Figure 5. For
ease of comparison between Algorithm 1 and Fast-Impute-Side, we plot only the per-
formance of these two methods in Figure 6. We additionally report the objective value,
reconstruction error and execution time for ScaledGD, Algorithm 1, Fast-Impute, Fast-
Impute-Side, Soft-Impute and Iterative-SVD in Tables A5, A6 and A7 of Appendix
A. In Figure 7, we plot the average cumulative time spent solving subproblems (12),
(14), (16), (18) during the execution of Algorithm 1 versus m. Our main findings from
this set of experiments are a follows:

1. Here again, Algorithm 1 and Fast-Impute-Side systematically produce higher qual-
ity solutions than ScaledGD, Fast-Impute, Soft-Impute and Iterative-SVD (see
Table A5). For trials with m < 5000, Algorithm 1 outputs a solution whose
objective value is on average 12% lesser than the objective value achieved by
the best performing alternative method (Fast-Impute-Side). Fast-Impute-Side pro-
duced solutions with lower objective values for m = 10000. Here again, ScaledGD
produces the weakest average objective value across these experiments.

2. In terms of /5 reconstruction error, Algorithm 1 again systematically produces solu-
tions that are of higher quality than ScaledGD, Fast-Impute, Fast-Impute-Side,
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Fig. 4 Cumulative time spent solving each subproblem of Algorithm 1 versus n with m = 100,k =5
and d = 150. Averaged over 20 trials for each parameter configuration.

Soft-Impute and Iterative-SVD (see Table AG), often achieving an error that is
an order of magnitude superior than the next best method. On average, Algo-
rithm 1 outputs a solution whose £y reconstruction error is 77% lesser than the
reconstruction error achieved by the best performing alternative method (either
Fast-Impute-Side or Soft-Impute).

3. We observe that the fitted rank of the solutions returned by Algorithm 1, ScaledGD
and Fast-Impute always matched the specified target rank as would be expected,
but surprisingly the solutions returned by Soft-Impute and Iterative-SVD were
always of full rank despite the fact that these methods were provided with the target
rank explicitly. This is potentially due to a numerical issues in the computation of
the rank due to presence of extremely small singular values.

4. The runtime of Algorithm 1 exhibits the most favorable scaling behavior among
the methods tested in these experiments. For instances with m > 2000, Table A7
shows that Algorithm 1 had the fastest runtime. For instances with m < 2000,
ScaledGD had the fastest execution time but produced low quality solutions. The
runtime of all methods tested grow super-linearly with m.

5. Figure 7 illustrates that the computation of the solution for (12) and (14) are the
computational bottlenecks in the execution of Algorithm 1 in this set of experiments
while the computation of the solution for (18) and (16) appear to be a constant
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Fig. 5 Objective value (top left), 2 reconstruction error (top right), fitted rank (bottom left) and
execution time (bottom right) versus m with n = 1000,k = 5 and d = 150. Averaged over 20 trials
for each parameter configuration.

function of m. This observation is consistent with the complexity analysis performed
for each subproblem of Algorithm 1 in Section 5. Indeed, this analysis indicated
that solve times for (18) and (16) are independent of m while the solve times for
(12) and (14) scale linearly with m when the number of threads w satisfies w < m.

6.4 Sensitivity to Side Information Dimension

We present a comparison of Algorithm 1 with ScaledGD, Fast-Impute, Fast-Impute-
Side, Soft-Impute and Iterative-SVD as we vary the dimension of the side information
d. In these experiments, we fixed n = 1000, m = 100 and k& = 5 across all trials. We
considered values of d in the collection {10, 50,100, 150, 200, 250,500, 1000} and we
performed 20 trials for each value of d.

We report the objective value, £» reconstruction error, side information R? and
execution time for Algorithm 1, Fast-Impute, Fast-Impute-Side, Soft-Impute and
Iterative-SVD in Figure 8. For ease of comparison between Algorithm 1 and Fast-
Impute-Side, we plot only the performance of these two methods in Figure 9. We
additionally report the objective value, reconstruction error, side information RZ
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and execution time for ScaledGD, Algorithm 1, Fast-Impute, Fast-Impute-Side, Soft-
Impute and Iterative-SVD in Tables A8, A9, A10 and A1l of Appendix A. In Figure
10, we plot the average cumulative time spent solving subproblems (12), (14), (16),
(18) during the execution of Algorithm 1 versus d. Our main findings from this set of
experiments are:

1. Just as in Sections 6.2 and 6.3, Algorithm 1 and Fast-Impute-Side systemati-
cally produce higher quality solutions than ScaledGD, Fast-Impute, Soft-Impute
and ITterative-SVD (see Table A8). ScaledGD produces the weakest average objec-
tive value across these experiments. The objective value achieved by each method
appears to increase linearly as the dimension d of the side information increases.
There is no significant difference between the objective value achieved by the output
of Algorithm 1 compared to that of Fast-Impute-Side (Algorithm 1 is on average
2% lower).

2. In terms of ¢ reconstruction error, Algorithm 1 and Fast-Impute-Side produce
solutions that are of higher quality than ScaledGD, Fast-Impute, Soft-Impute and
Iterative-SVD (see Table A9), often achieving an error that is an order of magni-
tude superior than the other methods. Relative to Fast-Impute-Side, Algorithm 1
outputs a solution whose fs reconstruction error is on average 23% lesser across
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Fig. 7 Cumulative time spent solving each subproblem of Algorithm 1 versus m with n = 1000,k = 5
and d = 150. Averaged over 20 trials for each parameter configuration.

these trials. The performance of Algorithm 1 and Fast-Impute-Side improves as d
increases, consistent with the intuition that recovering the partially observed matrix
A becomes easier as more side information becomes available.

3. Algorithm 1 and Fast-Impute-Side always produced solutions that achieved a
strictly greater R? value when used as a predictor for the side information compared
to the other methods. The R? achieved by each method is roughly constant as the
value of d increases. There is no significant difference between the R? achieved by
the output of Algorithm 1 compared to that of Fast-Impute-Side.

4. The runtime of Algorithm 1 is competitive with that of the other methods. The
runtime of Algorithm 1 is less than of Soft-Impute and Iterative-SVD but greater
than that of Fast-Impute. Table A1l illustrates that ScaledGD was the fastest
performing method, however its solutions were of the lowest quality. The runtimes
of Algorithm 1, Fast-Impute-Side and ScaledGD grow with d while Fast-Impute,
Soft-Impute and iterate SVD are constant with d which should be expected as these
methods do not act on the side information matrix Y. The runtime of Fast-Impute-
Side exhibits particularly poor scaling behavior relative to the other methods as d
increases.

5. Figure 10 illustrates that the computation of the solution for (16) is the computa-
tional bottleneck in the execution of Algorithm 1 in this set of experiments, followed
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Fig. 8 Objective value (top left), 2 reconstruction error (top right), side information R? (bottom
left) and execution time (bottom right) versus d with n = 1000, m = 100 and k = 5. Averaged over
20 trials for each parameter configuration.

next by the computation of the solution to (12). The solution times for (12), (14)
and (18) appear constant as a function of d. This is consistent with the complexity
analysis from Section 5 which found that the solve time for (16) is linear in d while
the solve time for the 3 other subproblems are independent of d.

6.5 Sensitivity to Target Rank

We present a comparison of Algorithm 1 with ScaledGD, Fast-Impute, Fast-Impute-
Side, Soft-Impute and Iterative-SVD as we vary the rank of the underlying matrix k.
In these experiments, we fixed n = 1000, m = 100 and d = 150 across all trials. We
varied k € {5, 10, 15, 20, 25, 30, 35,40} and we performed 20 trials for each value of d.

We report the objective value, {5 reconstruction error, fitted rank and execution
time for Algorithm 1, Fast-Impute, Fast-Impute-Side, Soft-Impute and Iterative-SVD
in Figure 11. For ease of comparison between Algorithm 1 and Fast-Impute-Side, we
plot only the performance of these two methods in Figure 12. We additionally report
the objective value, reconstruction error and execution time for ScaledGD, Algorithm
1, Fast-Impute, Fast-Impute-Side Soft-Impute and Iterative-SVD in Tables A12, A13
and A14 of Appendix A. In Figure 13, we plot the average cumulative time spent
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Fig. 9 Objective value (top left), ¢2 reconstruction error (top right), side information R? (bottom
left) and execution time (bottom right) versus d with n = 1000, m = 100 and k = 5. Averaged over
20 trials for each parameter configuration.

solving subproblems (12), (14), (16), (18) during the execution of Algorithm 1 versus

k.
1.

Our main findings from this set of experiments are as follows:

Unlike in Sections 6.2, 6.3 and 6.4, Algorithm 1 underperformed Fast-Impute-Side
in terms of objective value (see Table A12). Fast-Impute-Side was the best per-
forming method in 7 configurations and Soft-Impute was best in the remaining
configuration. ScaledGD produces the weakest average objective value across these
experiments.

. In terms of ¢ reconstruction error, Algorithm 1 produced higher quality solutions

than all benchmark methods in 2 out of 8 of the tested parameter configurations
where k < 10 (see Table A13). Fast-Impute-Side produced solutions achieving the
lowest error in the other 6 parameter configurations.

. The fitted rank of the solutions returned by Algorithm 1, ScaledGD, Fast-Impute

and Fast-Impute-Side always matched the specified target rank, but the solutions
returned by Soft-Impute and Iterative-SVD were always of full rank despite the
fact that these methods were provided with the target rank explicitly.

. The runtime of Algorithm 1 is competitive with that of the other methods. Table

A14 illustrates that ScaledGD was the fastest performing method, however its
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Fig. 10 Cumulative time spent solving each subproblem of Algorithm 1 versus d with n = 1000, m =
100 and k = 5. Averaged over 20 trials for each parameter configuration.

solutions were of the lowest quality. The runtime of Algorithm 1 is most competitive
with Fast-Impute-Side, Soft-Impute and Iterative-SVD for small values of k.

5. Figure 13 illustrates that the computation of the solution for (12) is the computa-
tional bottleneck in the execution of Algorithm 1 in this set of experiments, followed
next by the computation of the solution to (14) and (18).

6.6 Real World Data Experiments

We seek to answer the following question: how does the performance of Algorithm
1 compare to Fast-Impute and Fast-Impute-Side on real world data? We consider
the Netflix Prize Dataset augmented with features from the TMDB Database as side
information.

The Netflix Prize Dataset consists of greater than 10 million user ratings of movies
spread across more than 450000 users and 17000 movies. To prepare data for our
experiment, we first pull the following numerical features from the TMDB database:

. Total Budget;
. Revenue;

. Popularity;

. Average Vote;

ENEGURN NI
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Fig. 11 Objective value (top left), ¢2 reconstruction error (top right), fitted rank (bottom left) and
execution time (bottom right) versus k with n = 1000, m = 100 and d = 150. Averaged over 20 trials
for each parameter configuration.

5. Vote Count;
6. Total Runtime.

Here, the matrix X € R™"*™ from (1) corresponds to the matrix of movie-user ratings,
0 C [n] x [m] corresponds to indices of X for which the user ratings of movies are
observed and Y € R™*¢ corresponds to the TMDB Database features. Note that
many movies did not have all 6 features available from TMDB. We constructed two
datasets for our experimentation. In Dataset 1, we restricted the dataset to movies
that had all 6 features present (d = 6) and to users who had given at least 5 ratings
across those movies. After performing this filtering, we were left with n = 3430 movies
and m = 467364 users. In Dataset 2, we considered the 4 most frequent features
(popularity, average vote, vote count, total runtime) and restricted the dataset to
movies that had all 4 of these features present (d = 4) and to users who had given at
least 5 ratings to any of these movies. After performing this filtering, we were left with
n = 10574 movies and m = 470706 users. For each dataset, we conducted experiments
for values of the target rank k in the set k € {3,4,5,6,7,8,9,10}. For each value of
k, we conducted 5 trials where a given trial consisted of randomly withholding 20%
of the data as test data, estimating a low rank matrix on the 80% training data and
evaluating the out of sample ¢ reconstruction error on the withheld data.
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We report the in sample {5 reconstruction error, out of sample ¢ reconstruction
error and execution time for Algorithm 1, Fast-Impute and Fast-Impute-Side in addi-
tion to the average cumulative time spent solving subproblems (12), (14), (16), (18)
during the execution of Algorithm 1 versus k on Dataset 1 and Dataset 2 in Figures 14
and 15 respectively. We additionally report the in sample /5 reconstruction error, out
of sample /5 reconstruction error and execution time for Algorithm 1, Fast-Impute and
Fast-Impute-Side on Dataset 1 and Dataset 2 in Tables A15 and A16 of Appendix A
respectively. We report only results for Fast-Impute and Fast-Impute-Side as bench-
marks because Soft-Impute, Iterative-SVD and ScaledGD failed to terminate after a 20
hour time limit across all experiments involving Dataset 1 and Dataset 2. Fast-Impute
failed to terminate after a 20 hour time limit across all experiments involving Dataset
2 and across experiments involving Dataset 1 for which the target rank was greater
than 6. Note that Fast-Impute and Fast-Impute-Side were the best performing bench-
mark methods across the synthetic data experiments so they consist of a reasonable
method to compare against. In Figure 16, we report the coefficient of determination
(R?) achieved by Algorithm 1 on the side information both overall and on individual
features in Dataset 1 and Dataset 2. Our main findings from this set of experiments
are as follows:
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100 and d = 150. Averaged over 20 trials for each parameter configuration.

1. Fast-Impute in general produced solutions that achieved slightly lower in sample
error but significantly higher out of sample error than the solutions produced by
Algorithm 1. Out of sample error is a much more important metric than in sample
error as out of sample error captures the ability of a candidate solution to generalize
to unseen data. Fast-Impute-Side produced solutions that had both higher in sample
error and out of sample error than the solutions produced by Algorithm 1. Across
the experiments in which Fast-Impute terminated within the specified time limit,
Algorithm 1 produced solutions that on average achieved 67% lower out of sample
error than Fast-Impute. The high out of sample error (relative to in sample error)
of Fast-Impute and Fast-Impute-Side suggests that these methods are likely over-
fitting the training data. As is expected, in sample error decreased as the rank of the
reconstruction increased. In the case of Algorithm 1, out of sample error increased
as the reconstruction rank increased, suggesting that Algorithm 1 was over-fitting
the data as rank increased.

2. Algorithm 1 exhibited significantly superior scalability than both Fast-Impute and
Fast-Impute-Side. Across the experiments in which Fast-Impute terminated within
the specified time limit, Algorithm 1 required on average 97% less time to execute
than Fast-Impute (the faster of the methods between Fast-Impute and Fast-Impute-
Side). The execution time of Algorithm 1 on the largest tested instance (Dataset
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execution time (bottom left) and subproblem execution time (bottom right) versus k on Netflix Prize
Dataset 1. Averaged over 5 trials.

2,k = 10) was less than the execution time of Fast-Impute on the smallest tested
instance (Dataset 1,k = 3).

3. The computational bottleneck of Algorithm 1 is the solution time of subproblems
(12) and (14). Solving these two subproblems requires an order of magnitude more
time than solving subproblems (16) and (18)

4. Figure 16 illustrates that the reconstructed matrix produced by Algorithm 1
becomes a better predictor of the side information as the value of k increases. This
is to be expected as increasing k increases model complexity. We see that popu-
larity and runtime are the most difficult features to predict as a linear function of
the reconstructed matrix while vote average and budget are the easiest features to
predict.

6.7 Summary of Findings

We now summarize our findings from our numerical experiments. In Sections 6.2-
6.5, we see that across all experiments using synthetic data and target rank k£ < 10,
Algorithm 1 produces solutions that achieve on average 2.3% lower objective value
and 41% lower ¢ reconstruction error than the solutions returned by the best per-
forming benchmark method (usually Fast-Impute-Side). In the regime where k > 10,
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we see in Section 6.5 that Fast-Impute-Side outperforms Algorithm 1. We see that
the execution time of Algorithm 1 is competitive with and often notably faster than
the benchmark methods on synthetic data. Our computational results are consistent
with the complexity analysis performed in Section 5 for Problems (12), (14), (16) and
(18). We observe that solution time for (16) becomes the bottleneck as the target
rank k scales, otherwise the solution time for (12) is the bottleneck. On real world
data comprised of the Netflix Prize Dataset augmented with features from the TMDB
Database, Algorithm 1 produces solutions that achieve 67% lower out of sample error
than Fast-Impute, the best performing benchmark, in 97% less execution time.

7 Conclusion

In this paper, we introduced Problem (1) which seeks to reconstruct a partially
observed matrix that is predictive of fully observed side information. We illustrate
that (1) has a natural interpretation as a robust optimization problem and can be
reformulated as a mixed-projection optimization problem. We derive a semidefinite
cone relaxation (9) to (1) and we present Algorithm 1, a mixed-projection alternating
direction method of multipliers algorithm that obtains scalable, high quality solutions
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versus k. Averaged over 5 trials.

to (1). We rigorously benchmark the performance of Algorithm 1 on synthetic and real
world data against benchmark methods Fast-Impute, Fast-Impute-Side, Soft-Impute,
Tterative-SVD and ScaledGD. We find that across all synthetic data experiments with
k < 10, Algorithm 1 outputs solutions that achieve on average 2.3% lower objective
value in (1) and 41% lower ¢ reconstruction error than the solutions returned by the
best performing benchmark method. For the 5 synthetic data experiments with k > 15,
Fast-Impute returns superior quality solutions than Algorithm 1, however the former
takes on average 3 times as long as Algorithm 1 to execute. The runtime of Algorithm
1 is competitive with and often superior to that of the benchmark methods. Algorithm
1 is able to solve problems with n = 10000 rows and m = 10000 columns in less than
a minute. On real world data from the Netflix Prize competition, Algorithm 1 pro-
duces solutions that achieve 67% lower out of sample error than benchmark methods
in 97% less execution time.Future work could expand the mixed-projection ADMM
framework introduced in this work to incorporate positive semidefinite constraints and
general linear constraints. Additionally, future work could empirically investigate the
strength of the semidefinite relaxation (9) and could explore how to leverage this lower
bound to certify globally optimal solutions.
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Appendix A Supplemental Computational Results

Table A1 Comparison of the objective value of ScaledGD, Algorithm 1, Fast-Impute,
Soft-Impute and SVD versus n with m = 100,k = 5 and d = 150. Averaged over 20 trials for each
parameter configuration.

Objective
N || ScaledGD  Algorithm 1 ~ Fast-Impute Fast-Impute-Side  Soft-Impute SVD
100 249263 660 4890 638 19790 28678
200 306739 1283 9448 1217 23719 44055
400 417643 2457 13910 2549 30685 61113
800 421032 4844 28784 4805 40015 93119
1000 522586 6046 42010 6002 46788 107851
2000 563033 11975 59636 11944 76246 167459
5000 1226490 30040 225143 29797 170248 364066
10000 1973666 60083 644293 59411 317106 642760

Table A2 Comparison of the reconstruction error of ScaledGD, Algorithm 1, Fast-Impute,
Soft-Impute and SVD versus n with m = 100,k = 5 and d = 150. Averaged over 20 trials for each
parameter configuration.

f2 Reconstruction Error

N H ScaledGD  Algorithm 1  Fast-Impute Fast-Impute-Side  Soft-Impute  SVD

100 100.225 0.015 0.072 0.021 0.212 0.301
200 58.372 0.007 0.121 0.007 0.119 0.210
400 33.925 0.004 0.062 0.005 0.074 0.160
800 14.979 0.003 0.089 0.005 0.052 0.130
1000 12.665 0.003 0.236 0.005 0.049 0.126
2000 5.544 0.003 0.246 0.005 0.044 0.117
5000 2.473 0.003 0.078 0.005 0.037 0.105
10000 1.321 0.003 0.080 0.005 0.035 0.102
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Table A3 Comparison of the side information R? of ScaledGD, Algorithm 1, Fast-Impute,
Soft-Impute and SVD versus n with m = 100,k = 5 and d = 150. Averaged over 20 trials for each
parameter configuration.

Side Information R?

N || ScaledGD  Algorithm 1 ~ Fast-Impute Fast-Impute-Side ~ Soft-Impute ~ SVD
100 0.157 0.983 0.868 - 1.000 1.000
200 0.193 0.984 0.878 0.985 0.837 0.740
400 0.167 0.985 0.912 0.984 0.866 0.780
800 0.441 0.985 0.911 0.985 0.905 0.826
1000 0.328 0.985 0.896 0.985 0.906 0.829
2000 0.557 0.985 0.924 0.985 0.920 0.862
5000 0.525 0.985 0.889 0.986 0.928 0.879

10000 0.582 0.985 0.840 0.985 0.932 0.888

Table A4 Comparison of the execution time of ScaledGD, Algorithm 1, Fast-Impute, Soft-Impute
and SVD versus n with m = 100,k = 5 and d = 150. Averaged over 20 trials for each parameter
configuration.

Execution Time (ms)

N H ScaledGD  Algorithm 1  Fast-Impute  Fast-Impute-Side  Soft-Impute SVD
100 11.05 76.74 100.68 207.84 120.84 115.21
200 41.95 125.53 116.53 256.05 169.37 169.00
400 56.63 169.16 159.47 327.89 251.79 254.37
800 73.11 311.63 204.53 425.74 402.47 323.79
1000 48.05 413.84 212.63 427.95 465.32 380.89
2000 134.74 611.63 288.95 511.84 775.95 600.05
5000 822.79 1413.00 503.00 706.37 1840.00 1318.32

10000 19707.21 2275.00 881.58 1001.53 4016.89 2810.84

Table A5 Comparison of the objective value of ScaledGD, Algorithm 1, Fast-Impute, Soft-Impute
and SVD versus m with n = 1000,k = 5 and d = 150. Averaged over 20 trials for each parameter
configuration.

Objective

M H ScaledGD Algorithm 1  Fast-Impute  Fast-Impute-Side  Soft-Impute SVD
100 530097 6044 37924 5997 46917 103403
200 2483914 6134 12019 6388 28371 114448
400 14226535 6368 14060 6329 22009 90652
800 99356630 6839 22086 8133 38745 87895
1000 105452002 7060 23888 9470 45968 128500
2000 591164397 14041 43504 17158 96007 815807
5000 4002088274 42069 100878 60243 310417 11294105
10000 || 9826250213 115589 196625 46335 943496 60913874
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Table A6 Comparison of the reconstruction error of ScaledGD, Algorithm 1, Fast-Impute,
Soft-Impute and SVD versus m with n = 1000,k = 5 and d = 150. Averaged over 20 trials for each

parameter configuration.

f2 Reconstruction Error

M H ScaledGD Algorithm 1 Fast-Impute  Fast-Impute-Side  Soft-Impute SVD
100 13.68740 0.00323 0.18290 0.00500 0.05010 0.12560
200 40.58900 0.00154 0.00500 0.00300 0.01150 0.06640
400 127.71450 0.00075 0.00340 0.00190 0.00340 0.02240
800 508.24550 0.00036 0.00340 0.01000 0.00310 0.00460
1000 443.26630 0.00029 0.00300 0.01340 0.00300 0.00350
2000 1292.61610 0.00013 0.00310 0.01410 0.00290 0.00300
5000 3658.18840 0.00004 0.00320 0.01570 0.00270 0.00540

10000 || 4559.27300 0.00002 0.00330 0.01530 0.00270 0.00650

Table A7 Comparison of the execution time of ScaledGD, Algorithm 1, Fast-Impute, Soft-Impute
and SVD versus m with n = 1000,k = 5 and d = 150. Averaged over 20 trials for each parameter

configuration.
Execution Time (ms)

M || ScaledGD  Algorithm 1 ~ Fast-Impute Fast-Impute-Side  Soft-Impute SVD
100 45.26 371.16 219.84 450.11 451.95 375.37
200 56.79 398.68 217.47 563.11 971.16 764.37
400 79.89 531.11 288.74 698.42 1503.68 1594.00
800 131.16 662.68 385.95 1402.89 2386.58 2721.89
1000 159.79 817.53 541.84 1651.00 2781.74 3140.95
2000 4698.95 1459.00 5125.47 16279.21 5282.89 6297.79
5000 29291.74 13195.95 40036.79 143865.75 32777.05 35080.95
10000 108192.58 40368.16 158083.84 399863.00 82190.32 89836.58

Table A8 Comparison of the objective value of ScaledGD, Algorithm 1, Fast-Impute,
Soft-Impute and SVD versus d with n = 1000, m = 100 and k = 5. Averaged over 20 trials for
each parameter configuration.

Objective

D H ScaledGD  Algorithm 1  Fast-Impute  Fast-Impute-Side  Soft-Impute SVD

10 11692 478 2648 553 3368 7710

50 96771 2070 13402 2058 16273 37204
100 229740 4051 22644 4008 30116 68634
150 532018 6010 29433 5996 46596 106504
200 734648 7994 49004 8029 63243 141252
250 1195066 9984 59470 10160 79625 183720
500 4165783 20081 124737 20302 157096 361741
1000 13578263 40188 276053 40781 295635 668550
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Table A9 Comparison of the reconstruction error of ScaledGD, Algorithm 1, Fast-Impute,
Soft-Impute and SVD versus d with n = 1000, m = 100 and k = 5. Averaged over 20 trials for each
parameter configuration.

¢ Reconstruction Error

D H ScaledGD  Algorithm 1  Fast-Impute  Fast-Impute-Side  Soft-Impute SVD
10 0.60780 0.00709 0.09620 0.01520 0.04870 0.12530
50 1.41600 0.00487 0.10460 0.00980 0.05140 0.12730
100 5.03590 0.00386 0.05920 0.00660 0.05050 0.12790
150 14.00330 0.00324 0.05830 0.00500 0.04940 0.12650
200 22.26870 0.00276 0.22120 0.00380 0.04840 0.12510
250 39.41630 0.00245 0.10240 0.00300 0.04890 0.12580
500 177.68800 0.00170 0.32450 0.00142 0.05000 0.12640
1000 || 679.11770 0.00100 0.34150 0.00084 0.04980 0.12660

Table A10 Comparison of the side information R? of ScaledGD, Algorithm 1, Fast-Impute,
Soft-Impute and SVD versus d with n = 1000, m = 100 and k = 5. Averaged over 20 trials for each
parameter configuration.

Side Information R?

D H ScaledGD  Algorithm 1  Fast-Impute  Fast-Impute-Side  Soft-Impute SVD
10 0.91180 0.98800 0.90730 0.99199 0.90330 0.82120
50 0.52800 0.98560 0.89950 0.98640 0.90340 0.82530
100 0.53300 0.98510 0.91420 0.98549 0.91130 0.84020
150 0.30270 0.98490 0.92480 0.98506 0.90500 0.83050
200 0.41070 0.98525 0.90860 0.98520 0.90690 0.83570
250 0.29080 0.98551 0.91300 0.98530 0.90830 0.83440
500 0.15090 0.98491 0.90560 0.98470 0.90530 0.82600
1000 0.29250 0.98441 0.89150 0.98420 0.90940 0.83810

Table A1l Comparison of the execution time of ScaledGD, Algorithm 1, Fast-Impute, Soft-Impute
and SVD versus d with n = 1000, m = 100 and k = 5. Averaged over 20 trials for each parameter

configuration.
Execution Time (ms)

D H ScaledGD Algorithm 1  Fast-Impute  Fast-Impute-Side  Soft-Impute SVD
10 81.73684 324.73680 250.10530 106.31580 462.84210 379.00000
50 91.47368 345.84210 210.21050 168.89470 461.89470 384.42110
100 91.89474 386.47370 217.57890 289.89470 469.42110 393.78950
150 98.73684 413.57890 229.36840 521.73680 480.36840 396.36840
200 99.00000 432.36840 275.94740 738.00000 466.73680 373.57890
250 151.73684 492.31580 275.52630 1002.94740 522.05260 415.78950
500 181.15789 545.78950 266.78950 1673.31580 463.47370 373.00000
1000 || 148.26316 668.57890 317.10530 2719.10530 523.63160 422.42110
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Table A12 Comparison of the objective value of ScaledGD, Algorithm 1, Fast-Impute,
Soft-Impute and SVD versus k with n = 1000, m = 100 and d = 150. Averaged over 20 trials for
each parameter configuration.

Objective

D H ScaledGD  Algorithm 1  Fast-Impute  Fast-Impute-Side  Soft-Impute SVD

5 514330 6040 40047 6002 46511 106391

10 1892279 7502 240910 6315 316063 805397

15 5213393 14022 113808 6870 1121725 2495972
20 10196280 336294 103289 7952 2629190 4910387
25 16816443 885813 115398 8601 4499282 7541301
30 27397868 65551564 128971 8824 6863908 10634437
35 39536651 160010082 144816 8832 9407573 14192828
40 - 320532712 114058512 19625866 12538955 18290215

Table A13 Comparison of the reconstruction error of ScaledGD, Algorithm 1, Fast-Impute,
Soft-Impute and SVD versus k with n = 1000, m = 100 and d = 150. Averaged over 20 trials for
each parameter configuration.

¢ Reconstruction Error

D || ScaledGD  Algorithm 1  Fast-Impute  Fast-Impute-Side  Soft-Impute SVD

5 12.95500 0.00314 0.12670 0.00480 0.05160 0.12900
10 5.41720 0.00284 0.20510 0.00350 0.08990 0.22520
15 3.45210 0.00940 0.01870 0.00561 0.14080 0.30200
20 2.34590 0.04860 0.00920 0.00505 0.18300 0.34220
25 1.73610 0.11940 0.00680 0.00409 0.21440 0.36130
30 1.40170 0.19840 0.00570 0.00350 0.23740 0.37240
35 1.16780 0.17700 0.00480 0.00301 0.25270 0.37740
40 - 0.21870 0.00440 0.00267 0.26520 0.38020

Table A14 Comparison of the execution time of ScaledGD, Algorithm 1, Fast-Impute,
Soft-Impute and SVD versus k with n = 1000, m = 100 and d = 150. Averaged over 20 trials
for each parameter configuration.

Execution Time (ms)

D H ScaledGD  Algorithm 1  Fast-Impute Fast-Impute-Side  Soft-Impute SVD

5 65 358 217 455 450 389
10 85 586 938 737 485 354
15 112 825 2217 775 512 346
20 110 1390 3499 857 576 333
25 118 2071 4966 1310 599 298
30 108 2425 6381 1272 625 275
35 120 2653 8635 1508 641 280
40 4532 3092 11811 1797 689 270
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Table A15 Comparison of the in sample £ reconstruction error, out of sample £
reconstruction error and execution time of Algorithm 1 and Fast-Impute versus k on Netflix
Prize Dataset 1. Averaged over 5 trials.

In Sample Error Out of Sample Error Execution Time (hr)

K || Algl FI FIS Alg 1 FI FIS Alg 1 FI FIS

3 0.0507  0.0516 0.5782 0.0573 0.2264 0.8929 0.2512 6.4907 2.7021
4 0.0490 0.0486 0.5588 0.0604 0.1942 2.2728 0.2760 8.8641 2.8570
5 0.0476 0.0460 0.5095 0.0651 0.1835 1.1568 0.3136 11.8207 3.1463
6 0.0463 0.0438 0.4842 0.0676 0.1867 1.3890 0.3654 17.4471 3.2974
7 0.0451 - 0.4842 0.0718 - 1.5014 0.4637 - 3.4976
8 0.0442 - 0.4842 0.0759 - 1.4145 0.4941 - 3.8013
9 0.0434 - 0.4842 0.0811 - 1.1559 1.0262 - 3.7692
10 0.0427 - 0.4842 0.0839 - 1.3480 0.8503 - 3.9254

Table A16 In sample ¢ reconstruction error, out of sample ¢ reconstruction
error and execution time of Algorithm 1 versus k on Netflix Prize Dataset 2.
Averaged over 5 trials.

In Sample Error Out of Sample Error Execution Time (hr)
| Algorithm 1 FIS Algorithm 1 FIS Algorithm 1 FIS

0.0518 0.5255 0.0591 0.6825 0.5773 3.8481
0.0502 0.4753 0.0607 1.0302 0.6581 4.2354
0.0488 0.4753 0.0652 1.0172 1.3482 4.2825
0.0475 0.4753 0.0680 1.0417 1.9273 4.6575
0.0463 0.4753 0.0715 1.0849 2.7246 4.7145
0.0454 0.4753 0.0718 1.0857 2.8198 5.0538
0.0446 0.4753 0.0782 1.0304 2.8945 5.1645
0.0439 0.4753 0.0812 1.0246 2.3311 5.5966

Sowuo ok w| R

Table A17 Algorithm 1 side information R? on Netflix Prize Dataset 1. Averaged over 5 trials.

K H Overall  Popularity = Vote Average Vote Count Runtime Budget Revenue

3 0.136 0.003 0.413 0.005 0.134 0.192 0.064
4 0.142 0.02 0.41 0.007 0.137 0.221 0.055
5 0.299 0.144 0.561 0.234 0.209 0.406 0.227
6 0.335 0.167 0.598 0.302 0.245 0.398 0.295
7 0.336 0.163 0.599 0.302 0.252 0.403 0.291
8 0.382 0.248 0.63 0.384 0.257 0.421 0.36
9 0.388 0.248 0.636 0.379 0.277 0.441 0.355
10 0.398 0.25 0.64 0.385 0.287 0.462 0.37
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Table A18 Algorithm 1 side information R? on Netflix Prize Dataset 2.
Averaged over 5 trials.

K H Overall Popularity Vote Average Vote Count Runtime

3 0.072 0.018 0.227 0.016 0.03
4 0.069 0.019 0.194 0.026 0.036
5 0.187 0.177 0.312 0.213 0.047
6 0.198 0.19 0.319 0.231 0.059
7 0.206 0.187 0.344 0.223 0.07
8 0.259 0.298 0.361 0.302 0.074
9 0.264 0.3 0.37 0.304 0.086
10 0.271 0.304 0.367 0.317 0.095
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