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Abstract

This article introduces Cluster Branching, a novel branching strategy for exact algorithms solving
Vehicle Routing Problems (VRPs). While branching is crucial for the efficiency of branch-and-
bound-based algorithms, existing branching types such as Edge Branching, CutSet Branching,
and Ryan&Foster Branching have their limitations. The proposed branching strategy aggregates
multiple edge variables into higher-level decision structures corresponding to clusters of customers.
Through extensive computational experiments on Distance-Constrained VRP, Capacitated VRP,
and VRP with Time Windows instances, we demonstrate that Cluster Branching significantly
enhances the performance of a state-of-the-art Branch-Cut-and-Price algorithm, often improving
branching quality and reducing the size of the search trees, which allows more instances to be
solved. Beyond that, Cluster Branching is also shown to have a robust performance over different
instance types, and may work well even for those with randomly positioned customers.

Keywords: Vehicle routing, Branch-Cut-and-Price, Branching strategy, Cluster branching

1. Introduction

Vehicle Routing Problems (VRPs) are among the most widely studied combinatorial opti-
mization problems. Google Scholar found 12,700 articles containing the string “vehicle routing”
published only in 2023. Such a level of interest arises from the needs of numerous real systems
that distribute goods, essential to modern economies. Since almost all VRP variants are NP-
hard, heuristic algorithms are prevailing in today’s practice. However, recent progress in exact
algorithms has made it possible to solve in reasonable times many instances with up to 100 cus-
tomers, sometimes even with up to 200 customers. As surveyed in [PU14, CCD19], the current
best exact algorithms for VRPs are based either on Branch-and-Cut (BC) or, more frequently, on
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Branch-Cut-and-Price (BCP), which are extensions of the basic Branch-and-Bound (B&B) algo-
rithm [LD60]. This means that even the most sophisticated BCP is still a B&B algorithm that
explores the solution space by performing branching: it builds a search tree and uses bounds to
prune nodes that cannot yield improving solutions.

The size of a B&B search tree depends significantly on the root node gap, i.e., the difference
between the Lower Bound (LB) obtained at the root node and the value of the optimal solution.
Indeed, there is a prolific literature on how to reduce root gaps by separating cutting planes (in
the case of a BC) or by performing both cut separation and column generation (in the case of
a BCP). However, the size of a search tree also depends crucially on the branching quality, i.e.,
how much each branching increases the LBs in its children nodes. The literature on branching
is more modest. Many of its works consider the Branching Selection problem: given a set of
branching candidates (classically the integer variables that have fractional values in the current
Linear Programming (LP) solution of a node), select a candidate that leads to a good quality
branching. We provide a brief discussion in the following.

• Performing branching selection only by simple rules based on candidate attributes like frac-
tional value, cost, etc., may not work very well. Recently, some complex rules encoded in
neural networks obtained by machine learning approaches have found successes, but only on
restricted classes of instances that are similar to those in the training set (see [ZLL+23] for
a survey).

• Pseudo-cost branching [BGG+71] improves branching selection by considering the actual
increases in LBs observed in the current partial search tree. In fact, the past branching
quality of a candidate provides good predictors of its quality in the future. Pseudo-cost
branching has limitations. In particular, it performs poorly at the top of the search tree
because there is little or no past branching information. Note that those are exactly the
most critical branching decisions. While an inadequate choice near the bottom of the tree
only has a local impact, unpromising choices at the top of the tree may have a global impact
on overall performance.

• Strong branching is a computationally expensive procedure that tests many candidates before
choosing one of them. Extensive experiments have shown that many times it pays off,
especially on the nodes at the top of a large search tree. This strategy was originally proposed
by Applegate, Bixby, Chvátal, and Cook around 1995 in their Concorde TSP solver and it was
soon included in general Mixed-Integer Programming (MIP) solvers. It turns out the best
overall scheme is often to start with strong branching and switch to pseudo-cost branching
after reliable branching quality information on most candidates is available [AKM05, AB09].

This work addresses the Branching Type problem for VRPs, consisting of determining which type
of branching candidates should be provided for the Branching Selection. The idea is that instead
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of only having the natural candidates corresponding to single variables, one may also branch
over structures that can be viewed as the aggregation of several variables. Such structures may
hopefully capture some higher-level decisions and lead to better branching quality. We focus on
the VRP variants that fit within the following framework. There is a depot identified by 0 and a
set of customers V = {1, . . . , n}. A route corresponds to a cycle in the complete undirected graph
G = ({0} ∪ V,E) that starts and ends at 0. There are additional intra-route constraints defining
what are the feasible routes. These constraints may include capacities (e.g., Capacitated VRP
(CVRP)), distance limits (e.g., Distance-Constrained VRP (DCVRP)), time windows (e.g., VRP
with Time Windows (VRPTW)), etc. A solution is a set of feasible routes that, together, visit
each customer exactly once. There may be additional constraints limiting the number of routes
in a solution. The currently used branching types for those VRPs are the following:

• Edge Branching (EB). Branching on variables xe, e ∈ E, which must be binary if e /∈
δ({0}) but can assume values in {0, 1, 2} otherwise (x0j = 2 indicates a route of format
0 − j − 0). Such edge variables are available in nearly all BC or BCP algorithms for the
considered VRP variants. Note that even in problems that are naturally defined over directed
graphs, such as the Asymmetric CVRP or the VRPTW, it is still valid to use EB, which can
viewed as branching over the aggregation of two directed arc variables. Indeed, in many of
those cases EB can be proved to be complete, i.e., if all edge variables are integer then there
must be a feasible integer solution over the arc variables with the same cost. However, even
if EB is not complete, one can still branch on arc variables too. It should be noted that EB
is somehow unbalanced: fixing an edge to one usually moves LBs more than fixing it to zero.
EB is employed in some of the best BCP algorithms available, e.g., [PSUV20, EQSU23].

• CutSet Branching (CSB). Branching on variables ωS =
∑

e∈δ(S) xe/2, S ⊆ V . It was first
observed in [CN93] that TSP solutions cross a cutset δ(S) an even number of times, therefore
ωS should be integer. CSB was first used for the CVRP in the BCP presented in [LLE04].
The CVRPSep Library [Lys03] even has a routine that given a fractional solution in terms
of the edge variables finds a collection of sets S such that ωS is close to a given fractional
target. It can be observed that CSB is a generalization of EB: if S = {i, j}, branching over
ωS is equivalent to branching over xij . This means that if EB is complete, so is CSB (if xe
is integer for all e /∈ δ(0), simple degree constraints

∑
e∈δ({i}) xe = 2, i ∈ V , enforce xe to

be also integer for all e ∈ δ({0})). CSB, using the CVRPSep routine for identifying the
candidates, was adopted in several BCP algorithms [FLL+06, PPPU17, PCDU17].

• R&F Branching (RFB). BCP algorithms also have route variables λr, r ∈ R, where R
is the set of all feasible routes. Because there is an exponential number of such variables,
column generation should be performed. Branching over an individual route variable is not
recommended. First, it is highly unbalanced: there are so many such variables that fixing a
single one to zero barely changes the problem. Second, it is non-robust, making the pricing
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subproblem harder [PdAU03]. Indeed, if λr is fixed to zero the pricing algorithm should be
modified to avoid generating route r again. However, a much more balanced and effective
branching type can be obtained by adapting the scheme proposed by Ryan&Foster (R&F)
[RF81]. Given a set {i, j} ⊆ V , let P (i, j) ⊆ P be the set of routes that visit both i

and j (not necessarily in sequence). RFB amounts to branching over aggregated variable
ρij =

∑
r∈P (i,j) λr. RFB is non-robust, each such branching makes the pricing subproblem

harder. Nevertheless, when the original pricing subproblem is not that hard, which often
happens on instances where the routes are shorter, RFB can still be efficiently applied. RFB
is complete and it is available as a non-default option in [PSUV20].

The main contribution of this article is proposing the so-called Cluster Branching (CB), a
non-complete branching type that can significantly enhance the existing VRP branching strate-
gies. While CB was initially devised for handling some instances where the customers are tightly
clustered, to our surprise, on average, it helps even in instances where customers are randomly
positioned! This assertion is supported by extensive computational experiments involving many
thousands of runs over a highly diversified set of CVRP and VRPTW instances. Additional long
runs could solve several open instances in CVRPLIB for the first time.

The remainder of this work is organized as follows. Section 2 presents two metrics for evaluating
branching quality, which will be employed to assess both the proposed branching scheme and
those found in the literature. Section 3 introduces the proposed CB scheme and its underlying
motivation. Section 4 discusses the clustering algorithms that can be employed with CB. Section 5
reports and discusses the findings from extensive computational experiments. Finally, Section 6
provides the concluding remarks of this work.

2. Measuring Branching Quality

In what follows, we define some metrics that will be used for assessing branching quality.

2.1. Estimating Tree Size

Given a partial run of a B&B algorithm, possibly stopped due to a time limit, we seek to
estimate the fraction of the total search tree already explored. We first estimate the Remaining
Tree Size (RTS) by summing the expected size of the subtrees in all open nodes (i.e. the nodes
that were created but not yet explored). Let O represent the set of open nodes in the search tree.
Assuming a minimization problem, we define:

RTS =
∑
i∈O

(2
gap(i)
∆avg

+1 − 2), (1)

where gap(i) is the difference between the LB of node i and the Best Known Solution (BKS), and
∆avg is the average LB improvement achieved by a branching in the explored portion of the tree.
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In the calculation of ∆avg, pruned nodes (i.e. with a LB greater than or equal to the BKS) are
considered to have an improvement equal to the gap of their parent nodes. The ratio gap(i)/∆avg

is the expected depth of the subtree rooted at node i, considering that all branchings in that tree
will keep improving bounds in both children nodes by ∆avg units. The Expected Tree Size (ETS)
is then obtained by adding the Current Tree Size (CTS) to the RTS. Finally, ETS% = CTS/ETS.

To illustrate the computation of RTS, consider the partial tree with 7 nodes depicted in Fig-
ure 1. The BKS is 100 in this example, and each LB value is given next to its corresponding node.
The open nodes are O = {4, 5, 7}. For each non-root node i, we provide the values of gap(i), ∆(i),
and the remaining tree size below it. Note that ∆(6) = 7, even if the LB of node 6 is possibly
larger than 100. Hence, ∆avg = 3, resulting in RTS = 16.35 and ETS = 7 + RTS = 23.35. If the
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95

5
94

3
93

6

Pruned
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94

i gap(i) ∆(i) 2
gap(i)
∆avg

+1 − 2

2 8 2 –
3 7 3 –
4 5 3 4.35
5 6 2 6
6 0 7 –
7 6 1 6

∆avg = 3 RTS = 16.35

Figure 1: An example of computing the RTS.

run was stopped at that point by time limit, then ETS% = 7/23.25 = 30%.
Some previous work proposes more advanced statistical models for estimating the B&B tree

size [CKL06, HALBP21]. Nevertheless, it was thought advisable to adopt the simpler and more
intuitive calculation mentioned above, thus justifying our choice of using the ETS% at some
fixed time limit for assessing how different branching strategies are close to solving certain hard
instances.

2.2. Branching Score

Branching Selection methods that employ strong branching use score functions to transform
pairs of LB improvements into a single number, and the larger the score the better the branching.
We employ the following adaptation of the product score function [Ach09] not only for choosing
candidates in strong branching but also for evaluating branching strategies. For a certain node j
of the search tree where branching had been performed, let l(j) and r(j) denote its left and right
child, respectively. Moreover, let gap(1) denote the gap of the root node with respect to the BKS.
Then,

∇l(j) =
∆(l(j))

gap(1)
× 100%, ∇r(j) =

∆(r(j))

gap(1)
× 100%,
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denote the percentage of the root gap closed in the left and right children. The overall score of
the branching at j is given by:

∇(j) =
√

max{∇l(j), ϵ} ·max{∇r(j), ϵ}, (2)

where ϵ is a small constant. In addition to scaling the improvements with respect to the root gap,
Equation (2) differs from that in [Ach09] because we take the square root of the product of the
improvements. This does not change the ranking of candidates in the strong branching but allows
∇(j) to be interpreted as a geometric mean. For example, a branching that leads to improvements
of 20% and 5% is considered as good as a branching producing an improvement of 10% in both
children. Given a partial or complete search tree, it is possible to compute ∇avg, the average ∇(j)

over all nodes j where branching was performed. In the tree depicted in Figure 1, gap(1) = 10,
∇(1) = 24.49%, ∇(2) = 24.49%, and ∇(3) = 26.46%, thus resulting in ∇avg = 25.15%.

3. Cluster Branching and its Motivation: the CMT13 instance

Instance CMT13 is the last open in the very classic 14-instance benchmark set proposed in
[CMT79]. Such an instance is associated with the Distance-constrained CVRP (DCVRP), a CVRP
variant that includes a limit for the maximum travel distance in a route. Despite its modest size,
even the most advanced BCP algorithms failed to solve CMT13 in a reasonable time. The topology
of that Euclidean instance, where the depot is represented by a yellow square, and its BKS are
shown in Figure 2. It can be seen that the customers are split into six well-defined and very
separated clusters. We define the depot alone as the cluster C0. Cluster 1 (C1) comprises the
customers in the cluster surrounding the depot. The remaining clusters are numbered from C2

to C6 in clockwise order. As can be seen in Table 1, which presents an analysis of the BKS with
respect to that cluster structure, the number of intra-cluster edges in it is significantly higher than
the edges between clusters. However, the average cost of those inter-cluster edges is approximately
11.6 times larger.

Table 1: Analysis of the CMT13 BKS with respect to the cluster structure depicted in Figure 2.

Feature Value Feature Value

Number of customers 120 Total cost of inter-cluster edges 1196.16
Total cost of intra-cluster edges 344.98 Number of inter-cluster edges 30
Number of intra-cluster edges 101 Avg. cost of inter-cluster edges 39.87
Avg. cost of intra-cluster edges 3.42 Total cost 1541.14

Why is EB ineffective in a BCP algorithm for CMT13? Let us examine:

• Branching on intra-cluster edges results in small LB increases in both child nodes. This
happens simply because such edges have small costs and can be easily replaced in a fractional
solution by other intra-cluster edges with almost the same cost.



Cadernos do LOGIS-UFF L-2024-2 7

Figure 2: CMT13 DCVRP instance and its BKS.

• Inter-cluster edges have large costs. Consider an edge e = {i, j}, i ∈ C1, j ∈ C2. Fixing
xe to 1 is likely to be effective, resulting in significantly increased LBs. However, fixing the
same xe to 0 is not likely to be effective. This happens because there are many other edges
e′ = {i′, j′}, i′ ∈ C1, j′ ∈ C2, that are almost “parallel” to e with nearly the same cost.
Therefore, a new fractional solution that uses e′ instead of e will yield almost the same LB.
As branching is only effective if it works on both child nodes, the overall result is still poor.

CSB over sets S ⊂ V provided by the procedure in CVRPSep, which looks for sets where the
fractional part of ωS is close to a given target (and completely disregards the cluster structure),
while better than EB, is still poor. RFB is in principle more effective. However, it complicates the
pricing subproblem, making it prohibitively expensive after some such branchings are performed.
Hence, RFB is not a practical alternative.

CB was first devised as an attempt to improve the branching quality on CMT13. It can be
described as follows. Let C = (C0, . . . , Cm) be a clustering of an instance such that C0 = {0} and
(C1, . . . , Cm) is a partition of V . Define the following variables for branching:

• ωCk
, k ∈ {0, . . . ,m}. They are similar to those used in CSB, and the difference is that in

CB only the sets S corresponding to the clusters are used.

• ψCkCl
=

∑
e∈δ(Ck,Cl)

xe, k, l ∈ {0, . . . ,m}, k < l. They correspond to the sum of the edge
variables between a pair of clusters.

The experiment on CMT13 was performed over the CVRP/DCVRP VRPSolver application pre-
sented in [PSUV20] (see Appendix A.2). The BCP algorithm uses a two-phase hierarchical strong
branching approach. In the first phase, up to 100 candidates are roughly evaluated. The best
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three candidates from this phase are then more precisely evaluated in the second phase. Both
phases rank candidates using the score specified in Equation (2). The number of candidates in
each phase may be reduced at non-root nodes, depending on the expected size of the subtree at
that node. In addition, at non-root nodes, half of the candidates in the first phase are selected
based on pseudo-costs, increasing the likelihood that candidates with good previous scores will be
evaluated again.

The experiment consisted of including the 7 variables ωCk
and the 21 variables ψCkCl

corre-
sponding to the clustering exhibited in Figure 2 (note that only the CB variables with fractional
value in the current solution are included) among the phase one candidates. The candidate list
for the first phase is filled using the existing branching types, so the total number of evaluated
candidates does not change. An Upper Bound (UB) of 1541.15 (BKS value + 0.01) was given in all
tests, which were performed using a single core of machines with Intel Xeon Gold 6240 processors
running at 2.60 GHz.

As can be seen in Table 2, CB always substantially improved the BCP performance and allowed
for proving (starting from the root LB of 1471.88) that the BKS is indeed optimal in less than 2.5
hours. Column #nds represents the number of explored nodes at the end of the execution, with
the corresponding time recorded in column Time. For EB and CSB, the execution was stopped
due to the time limit of 24 hours. As for RFB, the execution was stopped prematurely because
VRPSolver automatically detected that the dynamic programming labeling algorithm was about
to crash due to memory overflow. The columns below #Branchings show how many times each
type of branching was selected by the strong branching mechanism. Column ∇avg reports the
average branching scores observed. Finally, columns ETS, ETS%, and ETime are estimations
of the total tree size, the fraction of that tree that was already explored, and the total BCP time,
respectively. The last estimate assumes that nodes that were not explored will take about the
same time as the nodes already explored, which is only reasonable for robust branching. Hence,
we do not report the ETime for RFB. Additional information about the experiment is given in
the branching score charts in Figure 3. The charts show, for each node j where branching had
been performed, a point corresponding to the pair (LB(j),∇(j)). The color and style of the point
identify the branch type. The charts also contain lines corresponding to ∇avg. We discuss the
results shown in the charts as follows:

• The CVRP/DCVRP VRPSolver application, as presented in [PSUV20], adopts EB with
an enhancement: it includes in the candidate list the (robust) branching over the variable
ρ =

∑
r∈P λr, which corresponds to the number of routes. Notably, ρ = ωC0 , making this

approach a form of CB. To avoid worsening existing algorithms, we retained the Number of
Routes Branching (NRB) in our tests. As shown in the score charts, NRB was selected at
the root node for both EB and RFB, achieving ∇(1) = 27.31%, a score significantly higher
than any obtained by an actual edge or RFB.
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• The chart corresponding to CSB shows that it achieved ∇(1) = 50.94%. This excellent score
at the root node was obtained by branching over a variable ωS where S = C3. This means
that the CVRPSep procedure, which identifies sets S based on fractionality, included by
chance a very good CB candidate in the list of 100 candidates evaluated at the root node.
This did not happen again in subsequent branchings.

• As indicated in Table 2, combining CB with other strategies significantly enhanced the
overall branching quality, resulting in a notable increase in the ∇avg metric to over 10%.

Table 2: BCP solution of CMT13 with different branch types.

Type #nds Time #Branchings ∇avg ETS ETS% ETime

EB CSB RFB CB (%)

Edge 655 24h 326 – – – 4.37 977K 0.07 4 years
CSB 511 24h – 254 – – 3.46 13626 3.75 26.7 days
RFB 37 8h35 – – 17 – 6.01 2530 1.46 –
Edge + CB 79 2h30 5 – – 34 10.79 79 100 2h30
CSB + CB 55 1h56 – 1 – 26 13.38 55 100 1h56
RFB + CB 73 2h31 – – 2 34 11.45 73 100 2h31

4. Clustering Methods for CB

The promising results achieved on CMT13 by means of manual clustering motivated us to ex-
plore CB on other instances. To this end, we needed to select suitable clustering methods to
automatically obtain the partition C.

4.1. Minimum Spanning Tree Clustering

The first clustering method tested is based on the Minimum Spanning Tree (MST) approach
proposed in [GR69], which is closely related to the classic single-linkage hierarchical clustering.
To begin, one computes an MST T of the complete graph H = (V,EH), where edge costs are
equivalent to distances between customers. Next, by removing from T the edge-set T (m − 1)

formed by the m − 1 most costly edges, the connected components of (V, T \ T (m − 1)) define
m clusters of customers. MST-based clustering is not considered to be a good choice for most
applications because it can result in long thin clusters where elements at the opposite ends of those
clusters may be very distant. However, as will be demonstrated, it turned out to be an excellent
choice for CB. In this context, where the desired number of clusters is unspecified, we decided to
remove from T edges T (Θ) with costs exceeding the threshold value

Θ = avg(T ) + ϑ std(T ), (3)
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Figure 3: Branching quality charts of the experiments on the CMT13
.
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where avg(T ) is the average cost of an edge in T , std(T ) is the standard deviation of such costs,
and ϑ is a parameter. We experimented with ϑ ∈ {0.5, 1.0, 1.5}. The CB with clusters obtained
by the MST method with ϑ is referred to as MSTϑ.

4.2. K-means, K-medoids, DBSCAN Clustering

Cluster analysis comprises a wide range of methods and algorithms. Among these, the K-
means algorithm [Llo57] is the most widely recognized. Another classic method is the K-medoids
algorithm [KR87], which is noted for its robustness to noise and outliers compared to K-means.
Another frequently cited method is the Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) algorithm [EKSX96]. The K-means and K-medoids algorithms fall into the
category of centroid-based clustering, where each cluster is represented by a central vector. In
contrast, DBSCAN belongs to the family of density-based clustering techniques, defining clusters
as regions of higher density and identifying items situated within sparser regions as noise.

In the MST-based clustering discussed in Section 4.1, the number of clusters is automatically
determined by removing the edges with weights greater than or equal to the threshold value.
Nevertheless, for the aforementioned clustering methods, additional parametrization is required,
which directly influences the number of clusters. For both K-means and K-medoids, the number
of clusters must be explicitly specified. On the other hand, DBSCAN requires the definition of
two hyperparameters: the maximum distance (ε) between two points for them to be considered
neighbors, and the minimum number of points (MinPts) required to form a dense region. In our
experiments, the MinPts parameter was set to 3. Moreover, for the number of clusters and the ε
hyperparameter, various values were tested, and the clustering with the highest Silhouette Score
(SS) [Rou87] was selected as the preferred clustering for each method on each test instance.

Figure 4 illustrates examples of the clustering obtained by these algorithms over three in-
stances with different customer positions from the XML100 benchmark [QSUV21], namely:
XML100_1135_19 (Random), XML100_1226_01 (Clustered), and XML100_3362_03 (Random-
Clustered). The SS is displayed at the bottom right of each plot, along with the number of
clusters obtained. For K-means, the centroid of each cluster is also depicted; while for K-medoids
the center of each cluster (which is a customer) is depicted.

5. Computational experiments

The experiments were conducted on a server equipped with dual 18-core Cascade Lake Intel
Xeon Skylake Gold 6240 processors operating at 2.60 GHz. Each such processor has 192 GB of
RAM, which in our experiments were shared among nine single-thread parallel copies of the BCP
algorithm, each one running a different instance. The cores of such a cluster are not particularly
fast by today’s standards, having a Passmark single-thread score of 1990; while a typical modern
laptop processor has Passmark single-thread scores above 4,000. However, using up to five such
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processors in the referred server was very convenient for our extensive experiments, due to its
capacity to run dozens of instances in parallel.

The experiments were carried out on three benchmark sets, namely: XML [QSUV21], X
[UPP+17], and Homberger and Gehring [GH99]. The former two are for the CVRP, while the
latter is for the VRPTW. The experiments on these sets were performed using the CVRP and
VRPTW VRPSolver applications presented in [PSUV20] (see Appendix A.2). This section
presents a summary of the computational experiments, with the detailed results provided in the
supplementary material.

The BCP algorithms were coded in C++ using the BaPCod C++ library [SV21]. This
BCP framework is combined with the C++ implementations described in [SUP21], which contain:
(i) a labeling algorithm for solving the pricing subproblems based on bucket graphs; (ii) path
enumeration; (iii) a bucket arc elimination routine; (iv) a routine for separating limited-memory
rank-1 cuts. CPLEX 20.1 is used to solve the LP relaxations and the MIP over the enumerated
paths.

BaPCod employs a strong branching technique similar to that of [PSU18]. It also offers the
possibility of using one of, or combining, two node search strategies: “breadth-first” and “depth-
first”. The combination of both consists of a primary and a secondary B&B tree. The search
begins by exploring the primary tree using a breadth-first search strategy. When the primary tree
reaches a given number of open nodes, newly created nodes are pushed to the secondary tree. The
secondary tree is always explored in a depth-first fashion, and when it becomes empty, the search
returns to the primary tree.

Since the breadth-first strategy for the primary tree prioritizes exploring the open node with
the smallest LB, it results in a tree with more nodes at the top levels. This characteristic is
beneficial for analyzing branching decisions, as exploration occurs in different parts of the tree,
rather than proceeding deeper along the same branch direction, which is typical in depth-first
strategy.

5.1. XML instances

The XML benchmark [QSUV21] is a set of 10,000 CVRP instances with 100 customers. This
set was carefully designed, extending the generation scheme in [UPP+17], to cover a wide variety
of instance characteristics, more specifically:

• Customer positioning : 1. Random (Rd); 2. Random-Clustered (RC); 3. Clustered (Cl);

• Depot positioning : 1. Centered (Ct); 2. Random (Rd); 3. Cornered (Cr);

• Demand distribution: 1. Unitary (Un); 2. Small values with large Coefficient of Variation
(CV) (SL); 3. Small values with small CV (SS); 4. Large values with large CV (LL); 5.
Large values with small CV (LS); 6. Depending on quadrant (DQ); 7. Many small values
and few large values (MF);
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• Average route size r: 1. very short (VS), r from U [3, 5]; 2. short (Sh), r from U [5, 8]; 3.
medium (Md), r from U [8, 12]; 4. long (Lg), r from U [12, 16]; 5. very long (VL), r from
U [16, 25]; 6. ultra long (UL), r from U [25, 50].

The tested BCP algorithm could solve 7585 of the XML instances in the root node. Therefore,
the experiments with branching were conducted on the remaining 2415 instances. All tests on the
same instance used the same external UB value obtained by the heuristics described in [Vid22].
The time limit was set to 1 hour.

Table 3 presents the results comparing EB, CSB, and RFB, along with their combinations us-
ing CB, across several clustering methods. The latter include MST0.5, MST1.0, MST1.5, Kmeans,
Kmedoids, and DBSCAN. Given that RFB is the only non-robust branching strategy, thus requir-
ing more computational effort, we decided to test it exclusively with MST1.0. Hence, the tests
were conducted for 16 different branch types, resulting in a total of 38,640 instance tests.

Table 3 includes the column #Solved, displaying the number of instances solved, alongside
columns for the average score ∇avg and estimated explored tree size ETS%. The results are
provided for the set of 2415 instances and the subset formed by the 536 instances not solved by
any robust strategy, which can be considered the hardest ones. Note that the filter does not include
RFB because the analysis would be dominated by instances not solved by this strategy. If RFB
were included, 761 instances would be analyzed, representing at least 30% of instances unsolved
solely by RFB, potentially inflating the statistics for the robust branching strategies.

MST1.0 was selected as a baseline clustering method for a detailed comparison between the
robust strategies EB and CSB, as well as their respective combinations with MST CB. The value
ϑ = 1.0 was chosen arbitrarily to avoid overfitting to a parameterization that might produce
better results. The detailed results are exhibited in Table 4, which presents the same data as
shown in Table 3 for the robust strategies and their combinations with CB MST1.0, but now
including disaggregated statistics based on the instance characteristics. Furthermore, the results
of a statistical test are also provided.

Regarding the statistical test, the non-parametric paired left-tailed Wilcoxon signed-rank test
[Wil45] was conducted to assess the differences in average scores between the robust branching
strategies and their combinations with CB MST1.0. This choice was made to analyze scores before
and after implementing the proposed CB scheme, requiring a statistical paired test. In addition,
a Shapiro-Wilk test [SW65] with a significance level of 5% (α = 0.05) confirmed that the scores
do not follow a normal distribution, thus justifying the use of a non-parametric test.

The Wilcoxon signed-rank test compares the medians of two dependent distributions by calcu-
lating the difference between paired data values and ranking the absolute value of the differences.
Under α = 0.05, the hypotheses are as follows:

Null Hypothesis (H0) : The use of CB does not result in an increase in average
branching scores.
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Table 3: Overall results on XML100. Runs with 1 hour TL.

Overall
(2415 instances)

Not solved by some robust
branch type (536 instances)

Branch type #Solved ∇avg ETS% #Solved ∇avg ETS%

EB 1961 57.89 87.51 82 22.86 43.71
EB + MST0.5 2032 60.18 89.86 153 26.08 53.90
EB + MST1.0 2041 60.71 90.06 162 27.08 55.21
EB + MST1.5 2028 60.12 89.72 149 26.35 53.48
EB + Kmeans 2026 60.95 90.00 147 27.88 54.69
EB + Kmedoids 2026 60.14 89.93 147 27.57 54.28
EB + DBSCAN 2034 60.61 90.30 155 27.87 56.02

CSB 1998 59.84 90.45 119 27.87 56.34
CSB + MST0.5 2067 61.49 91.81 188 30.17 62.63
CSB + MST1.0 2069 62.03 91.97 190 30.37 63.23
CSB + MST1.5 2073 62.07 92.03 194 31.06 63.70
CSB + Kmeans 2044 61.85 91.68 165 30.83 61.92
CSB + Kmedoids 2045 61.47 91.30 166 30.19 60.39
CSB + DBSCAN 2064 61.43 91.85 185 31.66 62.85

RFB 1692 54.62 76.96 31 17.29 20.11
RFB + MST1.0 1923 59.98 86.25 116 25.59 44.65

Alternative Hypothesis (H1) : The use of CB leads to an increase in average branching
scores.

Table 4 provides the results of the test statistic W and the corresponding p-value. A larger value
of W indicates a greater difference between the paired data points in the direction specified by
the alternative hypothesis, while a smaller p-value suggests stronger evidence against the null
hypothesis.

Following the presentation of Tables 3 and 4, we discuss the analysis and conclusions drawn
from these tests:

• To the best of our knowledge, we have conducted the first extensive comparison between
standard EB and CSB, showing that CSB is indeed better on average. Nevertheless, the
detailed results in Table 4 suggest that CSB is only better than EB for instances with larger
routes, i.e., those from classes VL and UL. In classes VS, Sh, Md, and Lg, both branching
types are almost equivalent. This fact remains true even after adding CB, with CSB+MST1.0
being significantly better than EB+MST1.0 only for larger routes.

• From Table 3, it can be observed that CB can significantly improve the performance of
all existing branching types, regardless of the clustering method used among the six tested
alternatives. The best overall results were obtained by CSB + MST1.5, but the baseline
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CSB + MST1.0 was almost as good.

• Table 4 shows that the improvement achieved by combining CB MST1.0 with EB and CSB
is consistent across all instance groups. The statistical test obtained strong p-values on all
scenarios, indicating that the null hypothesis is rejected. This rejection implies that there
are significant differences between the compared methods, confirming the effectiveness of
the proposed enhancements. The consistent rejection of the null hypothesis across varied
instance groups ratifies the robustness of the improvements introduced by combining CB
with EB and CSB.

We now discuss the performance of CB according to the instance characteristics:

• Customer positioning. As expected, CB brings large improvements in instances where the
customers are clustered. The null hypothesis that CB does not improve EB or CSB is rejected
with highly significant p-values of 2.64e–16 and 4.36e–18, respectively. For random-clustered
instances, where half of the customers are clustered and half are random, p-values are still
very significant. However, CB surprisingly yields modest yet still statistically significant
improvements even in instances where the customers are random. As can be seen in Figure
4, when 100 customers are randomly positioned, there may still exist some “natural clusters”
(blocks of customers that are well-separated), a structure that may be captured by CB.

• Depot positioning. CB achieves considerable improvements for all three classes of instances,
however, p-values are more significant when the depot is placed in the corner, when compared
to the cases in which the depot is randomly located or placed in the center.

• Demand distribution. CB attains systematic improvements over all seven classes of instances.
The smallest CSB p-value of 4.57e–02 (barely below the 5% bar) are associated with the
instances with unitary demand. The explanation here is that unitary demand instances are
much easier to current BCP algorithms than other instances (see [UPP+17]), hence providing
less room for improvements due to CB, at least for instances with 100 customers.

• Route Size. CB leads to consistent improvements over all six classes of instances. Interest-
ingly, for ultra-long routes, CB achieves the highly significant p-value of 2.38-e17 for EB,
but only a p-value of 1.36-e03 for CSB. As mentioned before, CSB is much better than EB
for this class of instances, leaving less opportunities for further improvements by CB.

5.2. X instances

The X benchmark instances [UPP+17] comprise 100 CVRP instances, ranging from 100 to 1000
customers and encompassing three distinct customer positioning scenarios: random, clustered, and
random-clustered. Instances solved at the root node (considered easy) and those requiring over
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two hours to solve the root node (designated as hard) were excluded from the analysis of the
proposed strategy. After applying these filters, 70 instances remained for further examination.

The same UBs were applied to each instance across all tests. These UBs are the BKS from the
CVRPLib1 plus one, with a time limit of 24 hours per instance. The primary tree was limited to
100 open nodes. The 24-hour limit per instance was set due to the increased complexity of the X
benchmark instance set.

Table 5 reports the results of the tests on the X set in terms of number of instances solved,
along with the average score (∇avg) and the explored tree size estimation (ETS%). The results
are disaggregated by customer positioning and for all instances (column Overall). Results for
CB with clustering algorithms K-means, K-medoids, and DBSCAN, as well as RFB, are excluded
because they yielded inferior performance in previous experiments on the XML benchmark.

Table 5: Results over X benchmark (70 instances). Runs with 24-hour TL.

∇avg ETS%

Branch type #Solved Overall Cl RC Rd Overall Cl RC Rd

EB 25 18.86 18.03 24.44 13.31 39.07 36.00 40.78 39.95
EB + MST0.5 25 19.81 18.48 26.19 13.80 39.82 38.42 43.38 37.08
EB + MST1.0 25 19.85 16.42 27.83 13.95 40.58 39.11 44.06 37.98
EB + MST1.5 25 19.91 18.69 26.17 13.94 41.08 38.37 44.05 40.20

CSB 26 19.79 19.53 24.32 14.89 40.99 38.99 41.56 42.16
CSB + MST0.5 25 19.50 19.10 25.33 13.28 41.61 41.73 44.39 38.36
CSB + MST1.0 25 20.16 19.27 26.72 13.56 42.37 40.38 46.07 40.02
CSB + MST1.5 25 19.61 19.62 24.69 13.87 41.46 40.04 44.65 39.14

The comparison between standard EB and CSB reveals some advantages to the latter. CSB
could solve one instance (X-n331-k15) not solved by EB and has better ∇avg and ETS% statistics
for all three classes of customer positioning. Moreover, one can observe that MST CB, for any
value of ϑ, gives overall improvements for both EB and CSB. However, by looking at the statistics
disaggregated by customer positioning it is possible to verify that on pure CSB is better than CSB
+ MST on the Rd instances. It is worth mentioning that instance X-n331-k15 belongs to that
class.

The discussion above brings us to the following question: why CB works on random XML
instances but not on random X instances? We believe that this is related to the instance sizes.
On the one hand, the XML instances have only 100 customers, meaning that “natural clusters”
appear even when customers are randomly positioned, a structure that favors CB. On the other
hand, as many times more points are randomly positioned on the X instances, there are no natural
clusters and CB becomes unfavorable.

1http://vrp.galgos.inf.puc-rio.br/index.php/en/

http://vrp.galgos.inf.puc-rio.br/index.php/en/
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5.3. Homberger and Gehring instances

In the context of the VRPTW, experiments were conducted on the Homberger and Gehring
benchmark set [GH99]. This set includes instances with short and long routes, ranging from 200
to 1000 customers, categorized into clustered, random, and random-clustered scenarios, resulting
in a total of 300 instances. However, after applying the same filter as for the X benchmark, 93
instances remained for further examination.

The same UB was applied as a cutoff to each instance in all tests. These UBs were derived by
adding 0.1 to the BKS reported on the CVRPLib, with a time limit of 24 hours per instance. The
results are presented in Table 6 and include the same statistics as Table 5 for the X benchmark.

Table 6: Overall results on Homberger and Gehring benchmark. Runs with 24-hour TL.

∇avg ETS%

Branch type #Solved Overall Cl RC Rd Overall Cl RC Rd

EB 31 18.49 26.20 15.53 17.24 39.71 61.60 31.07 36.36
EB + MST0.5 31 19.86 30.88 19.10 14.48 40.58 60.64 34.16 35.98
EB + MST1.0 31 19.91 31.52 19.31 14.03 41.55 60.68 36.15 36.25
EB + MST1.5 31 19.70 32.42 17.88 14.52 41.03 61.98 34.88 35.65

CSB 29 20.14 34.17 18.42 14.00 40.87 61.54 34.86 35.32
CSB + MST0.5 30 21.13 36.07 19.77 14.15 40.62 59.65 35.69 34.92
CSB + MST1.0 30 21.62 37.40 19.23 15.11 41.51 62.92 37.14 33.80
CSB + MST1.5 29 20.26 35.50 18.12 13.94 40.87 63.73 34.78 34.36

By comparing standard EB and CSB, it can be seen that the former is better in the Rd
class, while the latter is better in the Cl and RC classes. Once again, MST CB provides overall
improvements for both EB and CSB, regardless of the value of ϑ. Nevertheless, when analyzing
the statistics disaggregated by customer positioning, we can verify that the sole application of EB
is better than EB + MST on the Rd instances.

While there are advantages of applying the current CB to non-random VRPTW instances,
perhaps better results could be obtained by clustering methods that somehow consider the time
windows. For example, two spatially close customers with very disjoint time windows are poten-
tially better viewed as belonging to different clusters.

5.4. Long runs

In this section, we present the results of additional long runs involving some “promising” CVRP
and VRPTW open instances, i.e., those where the 24-hour ETS% forecasts that the instance may
be solved by spending extra days of CPU time. Two of these long runs extended for several months
(an exceptional effort to close the last Homberger and Gehring instances with 200 customers). Such
very long runs were only possible because we could run the subtrees rooted at some open nodes
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of the same instance in parallel, using different processors and cores of the server. For each open
instance solved, a customized BCP parameterization was employed.

Before presenting the results of the long runs, we list the instances and their results from the
24-hour experiments across various CB methods. The CVRP instances selected for the extended
run are displayed in Table 7, while the VRPTW instances are given in Table 8. These tables show
the ∇avg and ETS% results from the 24-hour CB experiments for each MST-based clustering
method, as well as for the standard EB and CSB.

Among the CVRP instances, three (X-n256-k16, X-n351-k40, and X-n367-k17) have clustered
customer positioning, while X-n344-k43 is randomly clustered, and X-n670-k126 has randomly
positioned customers. Only the last instance was not improved by combining EB or CSB with
CB. Also, the performance of the pure version of EB was slightly better than the pure CSB test.
We believe this happens because it is an example of a large random instance with no “hidden”
cluster structures, and consequently, CB and CSB do not have the desired effect.

Table 7: Results for some open X instances. Runs with 24 hour TL.

ETS% ∇avg

Branch type

X-
n2

56
-k

16

X-
n3

44
-k

43

X-
n3

51
-k

40

X-
n3

67
-k

17

X-
n6

70
-k

12
6

X-
n2

56
-k

16

X-
n3

44
-k

43

X-
n3

51
-k

40

X-
n3

67
-k

17

X-
n6

70
-k

12
6

EB 0.89 6.70 9.03 9.04 39.26 6.09 9.07 9.04 11.17 15.04
EB + MST0.5 7.61 12.72 16.19 13.89 14.45 8.16 9.28 9.57 12.05 12.40
EB + MST1.0 8.86 7.96 20.57 22.60 22.91 8.56 8.55 9.35 12.68 14.22
EB + MST1.5 5.60 11.76 14.24 24.49 17.62 7.77 9.20 8.98 11.47 14.08

CSB 5.79 7.04 13.82 14.12 38.76 8.34 8.58 9.99 15.29 17.28
CSB + MST0.5 11.38 12.90 21.97 17.33 21.81 7.71 9.78 8.94 13.36 13.75
CSB + MST1.0 10.86 21.70 19.13 18.22 25.36 8.35 9.79 9.27 12.80 11.05
CSB + MST1.5 11.00 13.76 16.02 19.46 26.32 8.70 9.16 8.66 16.44 9.11

A similar behavior is observed for the random instances R1_4_5 and R1_4_6 in Table 8. In these
cases, the CSB version was not improved by CB, while in the EB, only R1_4_6 was slightly improved
by combining it with CB MST1.0. Note that, in both instances, the pure EB outperformed CSB
and any combination of it with CB MST-based clustering.

Tables 9 and 10 present the results of the long runs for the CVRP and VRPTW instances,
respectively. For these extended runs, only one strategy — either EB+CB, CSB+CB, pure EB,
or pure CSB — was considered. Although Tables 7 and 8 identify the best configurations in terms
of branching strategy, these optimal configurations were not always applied in the long runs. The
choice of branching strategy during the long runs followed the progression of the research, during
which some of the previously shown strategies or evaluation metrics were not yet considered.
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Tables 9 and 10 show the optimal cost (column Opt. cost), the size of the B&B tree (column
#bb), and the time required to solve the instance (column t (days)). These columns provide
statistics related to the BCP algorithm. In addition, the last set of columns indicates the branching
strategy used, and for those utilizing CB, the number of clusters m obtained by the clustering
method is also presented.

By employing the EB+MST1.0, the instance X-n256-k16 was eventually solved after exploring
2897 nodes, requiring a total CPU time of 35.2 days. Despite the extensive duration, it is worth
noting that the ETS% of the standard edge branching, as shown in Table 7, exceeds that of the
CB utilizing the MST1.0 by almost a factor of 10. Even if the edge branching were to operate
within the same time limit, it would still fall significantly short of solving it.

Regarding the other CVRP instances, the time consumed is acceptable given that these are
large and challenging instances for exact methods. In addition, it is surprising to note that
X-n670-k126 was solved in a very reasonable time by applying only the standard edge branching
as a branching strategy, which was expected based on the results in Table 7.

Table 9: Results obtained on the CVRP X instances with extended running time.

BCP Branching

Instance Opt. cost #bb t (days) strategy m

X-n256-k16 18839 2897 35.2 EB+MST1.0 43
X-n344-k43 42050 897 4.4 EB+MST1.5 30
X-n351-k40 25896 2569 8.4 EB+MST1.0 37
X-n367-k17 22814 265 2.8 EB+MST1.0 42
X-n670-k126 146332 1691 8.3 EB –

From Table 10, the experiments conducted on problem instances RC1_2_9, RC1_2_10, RC1_4_1,
RC1_4_2, R1_4_2, R1_4_5, R1_4_6, and C1_6_10 ratified the positive results anticipated from
the 24-hour experiments. However, for RC2_2_10 and C2_2_4, the same level of success was
not observed, as both instances required a significantly long time to solve. This outcome was
expected, as anticipated in Table 8. Given that both instances involve solutions with very long
routes, they naturally pose significant challenges for BCP algorithms. It is worth noting that
instances RC1_2_9, RC1_2_10, C2_2_4, and RC2_2_10 were the last four open instances with 200
customers in the Homberger and Gehring benchmark.

6. Conclusion

In this paper, we introduced a novel branching strategy, Cluster Branching (CB), to enhance
the performance of solving Vehicle Routing Problems. Our approach clusters customers based
on their spatial positioning and defines additional variables associated with these clusters. These
variables, representing aggregated edge variables incident to or connecting clusters, are then incor-
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Table 10: Experiment results on the VRPTW Homberger instances with extended running time.

BCP Branching

Instance Opt. cost #bb t (days) strategy m

RC1_2_9 3073.3 1434 5.2 EB+MST1.5 23
RC1_2_10 2990.5 562 1.5 EB+MST1.5 23
C2_2_4 1695.0 20738 188.6 EB+MST0.5 45
RC2_2_10 1989.2 8765 93.8 EB+MST1.0 32
RC1_4_1 8522.9 3289 6.8 EB+MST1.0 70
RC1_4_2 7878.2 839 7.8 EB+MST1.0 70
R1_4_2 8873.2 2355 3.2 EB+MST1.0 61
R1_4_5 9184.6 7043 5.8 EB+MST1.0 62
R1_4_6 8340.4 1073 2.4 EB+MST1.0 62
C1_6_10 13617.5 1940 12.3 EB+MST1.5 43

porated into a B&B algorithm, providing new dimensions for branching. One of the key advantages
of this strategy is its simplicity, as the clustering is performed before running the BCP algorithm,
eliminating the need to consider, for example, fractional solutions. Furthermore, it is robust in
the sense of not complicating the pricing subproblem.

Our extensive computational experiments, conducted on BCP algorithms for Distance-
Constrained VRP, Capacitated VRP, and VRP with Time Windows, demonstrate the efficacy
of Cluster Branching. The primary evaluation metrics, branching score and estimated explored
tree size, both proposed in this study, showed that including CB significantly enhances the perfor-
mance of the traditional branching strategies. Indeed, CB combined with either Edge Branching,
Ryan & Foster Branching, or CutSet Branching consistently yielded better results compared to
their standalone versions. This synergy highlights the potential of CB as a powerful enhancement
to conventional branching techniques. The only situation where CB was found to not improve re-
sults was in large instances where customers were totally randomly located. We remark that such
instances are not likely to be found in most practical situations (e.g., in delivery of parcels). Cities
have neighborhoods with different urban densities and levels of affluence, so clusters of customers
exist.

We also explored various clustering methods, including K-means, K-medoids, DBSCAN, and
Minimum Spanning Tree-based clustering. The results indicate that across almost all combinations
of clustering methods and CB, there were significant improvements in the analyzed metrics. This
robustness across different clustering techniques attests the versatility and general applicability of
our proposed strategy.

The implementation of CB led to the proof of optimality of several previously open instances
for the three VRP variants, including large instances. In particular, this includes the last four
open instances with 200 customers of the classic Homberger and Gehring VRPTW set. This
achievement not only validates the effectiveness of CB but also contributes valuable solutions to
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the VRP research community.
Future research could further refine CB, explore its integration with other advanced clustering

algorithms, such as those based on Machine Learning, that could help find attractive clusters even
in instances with randomly positioned customers, and extend its application to other combinatorial
optimization problems. In addition, research could focus on developing new branching strategies
that consider specific characteristics of the given VRP problem, not only spatial distribution but
also factors such as demand, vehicle capacity, and others. By tailoring branching strategies to
these unique problem attributes, we can further enhance the optimization process for various
VRP variants.
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Appendix A. Appendices

Appendix A.1. Additional results on the CMT13 instance

The six well-defined customer clusters in Figure 2 are numbered, with the depot designated as
C0. Cluster 1 (C1) comprises the vertices surrounding the depot, while the remaining clusters are
numbered clockwise. The Branch-and-Bound (B&B) tree in Figure A.5 illustrates the outcome
of applying CSB and CB strategies to solve the CMT13 instance. Cyan nodes denote instances
where strong branching (SB) favored the Cluster Branching over ωC variables, while gray nodes
represent CB branching on ψC1,C2 variables. Notably, SB preferred CB branching in a total of 26
branching, with 15 on ωC and 11 on ψC1,C2 . The yellow node denotes the sole node where SB
opted for a branch on cutsets ωS . Moreover, the green node marks the point where the solution
with a cost of 1541.14 was proven optimal.

Appendix A.2. Branch-Cut-and-Price algorithms

This section presents the VRPSolver models for the Capacitated Vehicle Routing Problem
(CVRP),VRP with Time Windows (VRPTW), and Distance-Constrained CVRP (DCCVRP).

VRPSolver [PSUV19, PSUV20] is a framework designed to facilitate the creation Branch-
Cut-and-Price (BCP) algorithms for different VRPs variants. VRPSolver model is a MIP that
contains variables associated with resource-constrained paths over directed graphs defined by the
user. Given that the number of paths can be exponentially large, these variables are generated
dynamically, solving as pricing problems Resource Constrained Shortest Path (RCSP).

It is the user’s task to properly define the RCSP graphs and the mappings M(xj) of the
variables xj in the user-defined objective function and constraints of the Master Problem (MP).
These mappings connect the variables in the MP to a subset of arcs induced by the RCSPs. In
addition, the set R of resources, and the lower (L) and upper (U) bounds on the number of paths
from the RCSP in a solution must be defined. To define the feasibility of the paths, each RCSP
graph has special vertices vsource and vsink representing the start and the end of the paths. Each arc
a must have a consumption qra of resource r ∈ R, and accumulated resource consumption intervals
[lri , u

r
i ] of r must be defined on each vertex i. The consumption intervals can also be defined over

arcs a, denoted as [lra, ura]. In all cases, it is mandatory for the accumulated resource consumption
to satisfy the UB of the consumption interval. When a resource is defined as disposable, resources
may be dropped if necessary to meet the lower bound of the consumption interval. However, for
non-disposable resources, the consumption interval must be strictly satisfied.

To strengthen the formulation, it is possible to define the so-called elementarity sets (E) and
packing sets (S) on vertices or arcs. Within each S ∈ S, the elements (arcs or vertices) appear
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Figure A.5: The B&B tree of applying CSB and CB strategies to solve the CMT13 instance.



Cadernos do LOGIS-UFF L-2024-2 30

at most once across all paths within any optimal solution. In contrast, within each S ∈ E , the
elements appear at most once in each path that comprises any optimal solution.

It is also possible to define Rounded Capacity Cut (RCC) [LN83] separators, route enumeration
[BCM08, CM14], Rank-1 cuts with limited memory [JPSP08, PPPU17, PPP+17], and branching
strategies [RF81, GDDS95]. For a comprehensive understanding of VRPSolver models, please
refer to [PSUV20].

VRPSolver model for the CVRP proposed by [PSUV20]

Data: Undirected graph G = (V = {0} ∪ V+, E), where 0 is the depot and V+ = {1, . . . , n} are
the customers; positive costs ce, e ∈ E and positive demands di, i ∈ V+; vehicle capacity Q.
Goal : Find a minimum cost set of routes that start and end at the depot, visit all customers, and
ensure that the sum of the demands of the customers on each route does not exceed the vehicle
capacity.
RCSP graph: A single graph G = (V = V,A),A = {(i, j), (j, i) : {i, j} ∈ E}. vsource = vsink = 0.
R = {1}, that is a single monotone disposable resource defined over the demands of the customers
(define d0 = 0); arc consumptions q1a = (di + dj)/2, a = (i, j) ∈ A; and interval consumptions
[l1i , u

1
i ] = [0, Q], i ∈ V .

MP : Define the integer variables xe, e ∈ E. The formulation is:

min
∑
e∈E

cexe (A.1a)

s.t.
∑
e∈δ(i)

xe = 2 i ∈ V+ (A.1b)

xe ≤ 1 e ∈ E \ δ(0); (A.1c)

M(xe) = {(i, j), (j, i)}, e = {i, j} ∈ E; L = ⌈
∑

i∈N di/Q⌉ and U = n.
BCP elements: SV = EV = ∪i∈V+{{i}}. RCC separator given by (∪i∈V+{({i}, di)}, Q). Branching
is over variables x. The enumeration procedure is on.
Comments: Constraints (A.1b) are the degree constraints over the customers. Constraints (A.1c)
are dynamically separated as user cuts. Packing and elementarity sets are defined on vertices. The
RCC separator is defined by setting the capacity as the vehicle capacity Q and a demand function
on the di, i ∈ V+.

VRPSolver model for VRPTW proposed by [PSUV20]

Data: The data of the CVRP with the inclusion of a time window [li, ui] and positive service time
si for each customer i ∈ V+. There are also positive travel times te, e ∈ E.
Goal : The same goal as for CVRP, with the additional constraints that the service at customer i
must start within their time window, and the service at each customer has a duration of si.
RCSP graph: The same graph as CVRP, with the inclusion of a second main monotone disposable
resource defining time, R = {1, 2}. For each te={i,j}, let ta=(i,j) = te + si and ta=(j,i) = te + sj .
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For each arc a = (i, j) ∈ A, the arc consumptions q1a = dj and q2a = ta; and interval consumptions
[l1i , u

1
i ] = [0, Q] and [l2i , u

2
i ] = [li, ui] for each i ∈ V .

MP and BCP elements: The same as CVRP model
Comments: Note that it is also possible to define only time as a graph resource, while capacity is
enforced by RCCs.

VRPSolver model for DCCVRP

Data: The data of the CVRP; maximum travel distance (or time duration) T ; a constant service
time si = s, i ∈ V+.
Goal : The same goal as for CVRP, with the additional constraint that each vehicle must not
exceed a maximum travel distance T in its route, and the service at each customer has a duration
of si.
RCSP graph: The same graph as CVRP, with the inclusion of a second main monotone disposable
resource defining the travel distance, R = {1, 2}. For each arc a = (i, j) ∈ A, the arc consumptions
q1a = dj and q2a = ca + (si + sj)/2 (define s0 = 0); and interval consumptions [l1i , u

1
i ] = [0, Q] and

[l2i , u
2
i ] = [0, T ] for each i ∈ V .

MP and BCP elements: The same as CVRP model
Comments: Note that it is also possible to define only travel distance as a graph resource, while
capacity is enforced by RCCs.
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