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1 Introduction
This paper is devoted to the local convergence analysis of derivative-free methods for
solving unconstrained optimization problems given in the form

minimize f(x) subject to x ∈ IRn, (1.1)

where f : IRn → IR is a continuously differentiable (C1-smooth) function, not necessarily
convex. In the context of derivative-free optimization (DFO), we assume that only infor-
mation of the function values is available, but for gradient values we have access to some
approximations under certain computation errors. The reader is referred to the excellent
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book by Zaslavski [33] for general aspects of numerical optimization with computational
errors, while here we concentrate for specific DFO algorithms in noiseless settings.

It has been well recognized that DFO theory and algorithms have a lot of applica-
tions in data science [14, 24], biomedical imaging [30] as well as in infinite-dimensional
optimization problems governed by partial differential equations [27], etc. Therefore,
derivative-free optimization methods have received much attention, with major develop-
ments provided by the Nelder-Mead simplex method [28], trust-region methods [11], and
finite-difference-based methods [5, 6, 32]. We refer the reader to the books [4, 10] with
the vast bibliographies therein for various developments and historical remarks. Recently,
empirical results conducted in [5, 32] show that derivative-free optimization methods
based on finite differences are more preferable than other state-of-the-art derivative-free
optimization methods developed in the literature.

In [23], some general derivative-free optimization methods are proposed to solve smooth
problems with and without noise. Specifically, a derivative-free method with constant
stepsize (DFC) is developed in [23] to deal with objective functions of C1,1

L class, (i.e.,
C1-smooth functions whose gradients are globally Lipschitz with constant L), and a
derivative-free method with backtracking stepsize (DFB) is proposed therein to solve
problems with C1,1 objectives, i.e., C1-smooth functions having locally Lipschitzian gra-
dients. The ideas for developing these methods come from the previous papers on inexact
first-order methods, which started from [20, 21] for inexact gradient descent methods and
then continued in [22] for inexact proximal methods with applications to deep learning
provided in [19]. The generality in these algorithmic schemes allows us to encompass
various implementations in many types of gradient approximations within DFC and DFB
that include finite differences [29], the Gupal estimates [12, 15], and gradient estimations
via linear interpolation [5]. Observe that the convergence analysis conducted in [23] fo-
cuses solely on global convergence properties with proving the stationarity of accumulation
points and convergence of iterates under the Kurdyka-Łojasiewicz (KL) inequality.

In this paper, we enrich the convergence analysis for the algorithms in [23], proving
the local convergence of the iterative sequences to nonisolated local minimizers under the
presence of the KL property. First we propose a general framework for derivative-free
methods that cover both DFC and DFB. Then we show that under the presence of the
KL property, the algorithms satisfying the general framework with proper selections of
initial points and parameters converge to a local minimizer, where the isolation of this
local minimizer is not required. The latter feature also emphasizes the main difference
between our work and the [8, Proposition 1.2.5], which assumes the isolation of the local
minimizer. In [3, Theorem 2.10], a local convergence analysis of descent methods is
conducted under the presence of the KL property as well. However, an additional global
quadratic growth condition is assumed in that result, which is not required in our analysis.
In [7], a local convergence analysis of the trust-region method is also considered, which is
a derivative-free method different from ours.

The rest of the paper is organized as follows. Section 2 presents some basic definitions
and preliminaries used throughout the entire paper. The main results of the paper are
presented in Section 3. Concluding remarks on the main contributions of this paper
together with some perspectives of our future research are presented in Section 4.

2 Preliminaries
First we recall some basic notions and notations frequently used in the paper. All our
considerations are given in the space IRn with the Euclidean norm ∥ · ∥. For any i =
1, . . . , n, let ei denote the ith basic vector in IRn. As always, IN := {1, 2, . . .} signifies the
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collection of natural numbers. For any x ∈ IRn and ε > 0, let B(x, ε) and B(x, ε) stand
for the open and closed balls centered at x with radius ε, respectively. When x = 0, these
balls are denoted simply by εB and εB.

Recall that a mapping G : IRn → IRm is Lipschitz continuous on a subset D of IRn if
there exists a constant L > 0 such that we have

∥G(x)−G(y)∥ ≤ L ∥x− y∥ for all x, y ∈ D.

If D = IRn, the mapping G is said to be globally Lipschitz continuous. The local Lipschitz
continuity of G on IRn is understood as the Lipschitz continuity of this mapping on every
compact subset of IRn. The latter is equivalent to saying that for any x ∈ IRn there exists
a neighborhood U of x such that G is Lipschitz continuous on U . In what follows, we
denote by C1,1 the class of C1-smooth mappings that have a locally Lipschitz continuous
gradient on IRn, while C1,1

L signifies the class of C1-smooth mappings that have a globally
Lipschitz continuous gradient with constant L > 0 on the entire space IRn.

Our convergence analysis of the numerical algorithms developed in the subsequent
sections largely exploits the following important results and notions. The first result,
which is taken from [17, Lemma A.11], presents a simple albeit very useful property of
real-valued functions with Lipschitz continuous gradients.

Lemma 2.1. Let f : IRn → IR, let x, y ∈ IRn, and let L > 0. If f is differentiable on the
line segment [x, y] with its derivative being L-Lipschitz continuous on this segment, then

|f(y)− f(x)− ⟨∇f(x), y − x⟩| ≤ L

2
∥y − x∥2 . (2.1)

The version of the fundamental Kurdyka-Łojasiewicz (KL) property formulated below
is taken from Absil et al. [1, Theorem 3.4].

Definition 2.2. Let f : IRn → IR be a differentiable function. We say that f satisfies
the KL property at x̄ ∈ IRn if there exist a number η > 0, a neighborhood U of x̄, and a
nondecreasing function ψ : (0, η) → (0,∞) such that the function 1/ψ is integrable over
(0, η) and we have

∥∇f(x)∥ ≥ ψ
(
f(x)− f(x̄)

)
for all x ∈ U with f(x̄) < f(x) < f(x̄) + η. (2.2)

Remark 2.3. If f satisfies the KL property at x̄ with a neighborhood U , it is clear that
the same property holds for any x ∈ U where f(x) = f(x̄). It has been realized that the
KL property is satisfied in broad settings. In particular, it holds at every nonstationary
point of f ; see [2, Lemma 2.1 and Remark 3.2(b)]. Furthermore, it is proved in the
seminal paper by Łojasiewicz [26] that any analytic function f : IRn → IR satisfies the
KL property at every point x̄ with ψ(t) = Mtq for some q ∈ [0, 1); this property with
q = 1/2 was independently i=introduced and applied to gradient methods by Polyak
[31]. As demonstrated in [20, Section 2], the KL property formulated in Attouch et al.
[2] is stronger than the one in Definition 2.2. Typical smooth functions that satisfy the
KL property from [2], and hence the one from Definition 2.2, are smooth semialgebraic
functions and also those from the more general class of functions known as definable in
o-minimal structures; see [2, 3, 25]. The latter property is fulfilled, e.g., in important
models arising in deep neural networks, low-rank matrix recovery, principal component
analysis, and matrix completion as discussed in [9, Section 6.2].
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3 Main results
We begin this section by recalling the global and local approximation considered in [23].

Definition 3.1. Let f : IRn → IR be a C1-smooth function. A mapping G : IRn×(0,∞) →
IRn is said to be :

(i) A global approximation of ∇f if there exists a constant C > 0 such that

∥G(x, δ)−∇f(x)∥ ≤ Cδ for any (x, δ) ∈ IRn × (0,∞). (3.1)

(ii) A local approximation of ∇f if for any bounded set Ω ⊂ IRn and any ∆ > 0, there
exists a constant C > 0 with

∥G(x, δ)−∇f(x)∥ ≤ Cδ for any (x, δ) ∈ Ω× (0,∆]. (3.2)

Remark 3.2. It is obvious that any global approximation of ∇f is also a local approxi-
mation of this mapping. Examples of both global and local approximations can be given
via finite differences [29] as follows:

• Forward finite difference:

G(x, δ) := 1

δ

n∑
i=1

(f(x+ δei)− f(x)) ei for any (x, δ) ∈ IRn × (0,∞), (3.3)

where ei is the ith basis of IRn, i.e., the vector with a one in the ith position and
zeros everywhere else.

• Central finite difference:

G(x, δ) := 1

2δ

n∑
i=1

(f(x+ δei)− f(x− δei)) ei for any (x, δ) ∈ IRn × (0,∞). (3.4)

It is shown in [23, Proposition 3.4] that if f belongs to the classes C1,1
L and C1,1,

then the forward and central differences given by (3.3) and (3.4) are global and local
approximations of ∇f , respectively. More examples of these types of approximations
can be found via Gupal estimates [12, 15] and linear interpolation [5].

Now we are ready to propose a general framework for derivative-free methods using
the local approximation mentioned above.
Algorithm 1.

Step 0. Choose a local approximation G of ∇f under condition (3.2). Select an initial
point x1 ∈ IRn, an initial sampling radius δ1 > 0, a sequence {Ck} ⊂ IR+, a reduction
factor θ ∈ (0, 1), and a scaling factor µ > 2. Choose a sequence of manually controlled
sampling radii {νk} ⊂ [0,∞). Set k := 1.

Step 1 (approximate gradient). Find gk and the smallest integer ik ≥ 0 such that

gk = G
(
xk,min

{
θikδk, νk

} )
and

∥∥gk∥∥ > µCkθ
ikδk.

Then set δk+1 := θikδk.

Step 2 (update). Choose a stepsize τk ≥ 0, set xk+1 := xk− τkg
k. and return to Step 1.

The result addressing the local convergence of Algorithm 1 to local minimizers of problem
(1.1) is presented below.
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Theorem 3.3. Let f : IRn → IR be a C1-smooth function, let x̄ ∈ IRn, and let ∆ > 0.
Assume that x̄ is a local minimizer of f satisfying the KL property at x̄, and that ∇f is
locally Lipschitz continuous around x̄. Then we have the assertions:

(i) There exist positive numbers ξ, T , and C such that for any initial point x1 ∈ B(x̄, ξ),
an initial radius δ1 ∈ (0,∆] as well as sequences {τk} ⊂ [0, T ], {Ck} ⊂ [C,∞), and
{νk} ⊂ [0,∞), it holds that the iterative sequence

{
xk
}

of Algorithm 1 converges provided
that ∇f(xk) ̸= 0 for all k ∈ IN.

(ii) If in addition
∑∞

k=1 τk = ∞, then the sequence
{
xk
}

converges to a local minimizer
x̃ of f with f(x̃) = f(x̄).

Proof. Since f satisfies the KL property at x̄, there exist a bounded neighborhood U of
x̄, a number η > 0, and a nonincreasing function ψ : (0, η) → (0,∞) such that 1/ψ is
integrable over (0, η) and that

∥∇f(x)∥ ≥ ψ(f(x)− f(x̄)) for all x ∈ U with f(x̄) < f(x) < f(x̄) + η. (3.5)

Remark 2.3 tells us that (3.5) also holds if x̄ is replaced by any x̃ ∈ U with f(x̃) = f(x̄).
Since x̄ is a local minimizer of f and since f is continuous, we can assume by shrinking U
if necessary that f(x̄) ≤ f(x) < f(x̄) + η for all x ∈ U . Combining this with (3.5) yields

∥∇f(x)∥ ≥ ψ(f(x)− f(x̄)) > 0 for all x ∈ U with f(x) ̸= f(x̄), (3.6)

which implies that f(x̄) is the only critical value of f within U . The local Lipschitz
continuity of ∇f around x̄ gives us numbers ρ, L ≥ 0 such that B(x̄, 2ρ) ⊂ U and ∇f
is Lipschitz continuous with constant L on B(x̄, 2ρ). Choose further T := min

{
1
3L
, µ−2
µL

}
and define φ : [0, η) → [0,∞) by φ(x) :=

∫ x
0

1
ψ(t)

dt for x ∈ (0, η) with φ(0) := 0. By the
right continuity of φ at 0 and the continuity of f at x̄, we find such ξ ∈ (0, ρ) that

∥x− x̄∥+ 4φ(f(x)− f(x̄)) < ρ for all x ∈ B(x̄, ξ). (3.7)

Since G is a local approximation of ∇f under condition (3.2), it gives us C > 0 for which

∥G(x, δ)−∇f(x)∥ ≤ Cδ whenever (x, δ) ∈ U × (0,∆]. (3.8)

Assuming that x1 ∈ B(x̄, ξ), δ1 ∈ (0,∆], {τk} ⊂ [0, T ], and {Ck} ⊂ [C,∞), we now
aim at verifying (i). To proceed, let us first prove the following claim.

Claim 1. Algorithm 1 generates the well-defined iterative sequence
{
xk
}
, which stays

inside B(x̄, ρ) whenever k ∈ IN.

Indeed, by ∇f(xk) ̸= 0 for all k ∈ IN, the existence of gk in Step 2 of Algorithm 1
is guaranteed in each iteration, which ensures that the iterative sequence

{
xk
}

is well-
defined. To verify that

{
xk
}

⊂ B(x̄, ρ), we proceed by induction. Fix K ∈ IN and
assume that xk ∈ B(x̄, ρ) for all k = 1, . . . , K. To show that xK+1 ∈ B(x̄, ρ), observe
that δk ≤ δ1 ≤ ∆ for all k ∈ IN by the selection of δ1 and the construction of {δk} in
Algorithm 1. Since {Ck} ⊂ [C,∞), we deduce from (3.8) and gk = G(xk,min {δk+1, νk})
in Step 1 of Algorithm 1 that∥∥gk −∇f(xk)

∥∥ ≤ Cmin {δk+1, νk} ≤ Ckδk+1 ≤ µ−1
∥∥gk∥∥ for all k = 1, . . . , K. (3.9)

It follows from (3.9) with k := K, the triangle inequality, and the choice of µ > 2 that∥∥∇f(xK)∥∥ ≥
∥∥gK∥∥−

∥∥gK −∇f(xK)
∥∥ > (1− µ−1)

∥∥gK∥∥ > 1
2

∥∥gK∥∥ . (3.10)
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Since xK ∈ B(x̄, ρ), we deduce from the Lipschitz continuity of f on B(x̄, 2ρ) that∥∥∇f(xK)∥∥ =
∥∥∇f(xK)−∇f(x̄)

∥∥ ≤ L
∥∥xK − x̄

∥∥ ≤ Lρ.

Combining this with the update xk+1 = xk − τkg
k, τk ≤ T ≤ (3L)−1, and (3.10) gives us∥∥xK+1 − xK

∥∥ = τk
∥∥gK∥∥ ≤ 2T

∥∥∇f(xK)∥∥ ≤ 2TLρ < ρ,

which means that xK+1 ∈ B(x̄, 2ρ). Since ∇f(xK+1) ̸= 0 and f(x̄) is the minimum value
of f within B(x̄, 2ρ), we get that f(xK+1) > f(x̄). It follows from the triangle inequality
and estimate (3.9) that∥∥gk∥∥ ≥

∥∥∇f(xk)∥∥−
∥∥gk −∇f(xk)

∥∥ ≥
∥∥∇f(xk)∥∥− µ−1

∥∥gk∥∥ ,
which implies in turn that∥∥∇f(xk)∥∥ ≤ (1 + µ−1)

∥∥gk∥∥ ≤ 2
∥∥gk∥∥ for all k = 1, . . . , K. (3.11)

The Lipschitz continuity of ∇f on B(x̄, 2ρ) ⊃
{
xk | k = 1, . . . , K + 1

}
with the Lipschitz

constant L > 0 ensures that

f(xk+1)− f(xk) ≤
〈
∇f(xk), xk+1 − xk

〉
+
L

2

∥∥xk+1 − xk
∥∥2 (3.12a)

= −τk
〈
∇f(xk), gk

〉
+
Lτ 2k
2

∥∥gk∥∥2 (3.12b)

= −τk
〈
∇f(xk)− gk, gk

〉
− τk

∥∥gk∥∥2
+
Lτ 2k
2

∥∥gk∥∥2

≤ τk
∥∥∇f(xk)− gk

∥∥∥∥gk∥∥− τk
∥∥gk∥∥2

+
Lτ 2k
2

∥∥gk∥∥2 (3.12c)

≤ τk
1

µ

∥∥gk∥∥2 − τk
∥∥gk∥∥2

+
Lτ 2k
2

∥∥gk∥∥2 (3.12d)

≤
∥∥τkgk∥∥∥∥gk∥∥( 1

µ
− 1 +

Lτk
2

)
≤ −1

2

∥∥xk+1 − xk
∥∥∥∥gk∥∥ (3.12e)

≤ −1

4

∥∥xk+1 − xk
∥∥∥∥∇f(xk)∥∥ for all k = 1, . . . , K, (3.12f)

where (3.12a) follows from Lemma 2.1, (3.12b) follows from the iterative update xk+1 =
xk − τkg

k, (3.12c) follows from the Cauchy-Schwarz inequality, (3.12d) is deduced by∥∥gk −∇f(xk)
∥∥ ≤ 1

µ

∥∥gk∥∥ from (3.9), (3.12e) follows from τk ≤ T ≤ µ− 2

µL
, and (3.12f) is

deduced by
∥∥∇f(xk)∥∥ ≤ 2

∥∥gk∥∥ from (3.11). Therefore,
1

4

∥∥xk+1 − xk
∥∥∥∥∇f(xk)∥∥ ≤ f(xk)− f(xk+1) whenever k = 1, . . . , K. (3.13)

As a consequence of the above, we have the inequalities

f(x̄) + η > f(xk) ≥ f(xK+1) > f(x̄) for all k = 1, . . . , K + 1,

which ensure together with xk ∈ B(x̄, 2ρ) and (3.6) that
∥∥∇f(xk)∥∥ ≥ ψ(f(xk)− f(x̄)) for

all k = 1, . . . , K. Combining the latter with (3.13) leads us to the conditions

1

4

∥∥xk+1 − xk
∥∥ ≤ f(xk)− f(xk+1)

ψ(f(xk)− f(x̄))
=

∫ f(xk)

f(xk+1)

1

ψ(f(xk)− f(x̄))
dt

≤
∫ f(xk)

f(xk+1)

1

ψ(t− f(x̄))
dt

= φ(f(xk)− f(x̄))− φ(f(xk+1)− f(x̄)) for all k = 1, . . . , K,
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where the second inequality follows from the nondecreasing property of ψ. Therefore, the
triangle inequality gives us the relationships

∥∥xK+1 − x̄
∥∥ ≤ ∥x1 − x̄∥+

K∑
k=1

∥∥xk+1 − xk
∥∥

≤ ∥x1 − x̄∥+ 4
K∑
k=1

[φ(f(xk)− f(x̄))− φ(f(xk+1)− f(x̄))]

= ∥x1 − x̄∥+ 4
[
φ(f(x1)− f(x̄))− φ(f(xK+1)− f(x̄))

]
≤ ∥x1 − x̄∥+ 4φ(f(x1)− f(x̄)) < ρ,

where the latter inequality is a consequence of the selection x1 ∈ B(x̄, ξ) and ξ in (3.7).
This means that xK+1 ∈ B(x̄, ρ). By induction we arrive at xk ∈ B(x̄, ρ) for all k ∈ IN,
which verifies the claimed assertion.

Claim 2. The sequence of iterates
{
xk
}

converges to some x̃ ∈ B(x̄, ρ). If in addition we
have

∑∞
k=1 τk = ∞, then x̃ is a local minimizer of f .

Picking any K ∈ IN and arguing similarly to the proof of Claim 1 with taking into account
that xk ∈ B(x̄, ρ) for all k ∈ IN, we get the estimates

K∑
k=1

∥∥xk+1 − xk
∥∥ ≤ 4

K∑
k=1

[φ(f(xk+1)− f(x̄))− φ(f(xk)− f(x̄))] ≤ 4φ(f(x1)− f(x̄)).

Passing there to the limit as K → ∞ yields
∑∞

k=1

∥∥xk+1 − xk
∥∥ < ∞, which tells us that{

xk
}

converges to some point x̃ ∈ B(x̄, ρ). Let now
∑∞

k=1 τk = ∞ be satisfied. Since{
xk
}
⊂ B(x̄, ρ), we proceed similarly to the proof of (3.12e) in Claim 1 to show that

f(xk+1)− f(xk) ≤ −1

2

∥∥xk+1 − xk
∥∥∥∥gk∥∥ for all k ∈ IN. (3.14)

Combining this with the fact that f(xk) ≥ f(x̄) for all k ∈ IN yields

∞∑
k=1

τk
∥∥gk∥∥2

=
∞∑
k=1

∥∥xk+1 − xk
∥∥∥∥gk∥∥ ≤ 2

∞∑
k=1

(f(xk)− f(xk+1))

≤ 2(f(x1)− f(x̄)) <∞.

Supposing that there is r > 0 with
∥∥gk∥∥ ≥ r for all k sufficiently large, the above inequality

gives us
∑∞

k=1 τk < ∞, which is a contradiction. Therefore, 0 ∈ IRn is an accumulation
point of

{
gk
}
, i.e., there exists an infinite set J ⊂ IN such that gk J→ 0. As in the proof

of (3.9) in Claim 1 with taking now xk ∈ B(x̄, ρ) into account, we get the estimate∥∥gk −∇f(xk)
∥∥ ≤ µ−1

∥∥gk∥∥ for all k ∈ IN.

Unifying the latter with gk
J→ 0 ensures that ∇f(xk) J→ 0. Remembering that

{
xk
}

converges to x̃, we have that ∇f(xk) → ∇f(x̃) as k → ∞. Therefore, ∇f(x̃) = 0, i.e.,
x̃ is a stationary point of f on B(x̄, 2ρ). Since f(x̄) is the only critical value of f within
B(x̄, 2ρ), we get that f(x̃) = f(x̄), which tells us that x̃ is a local minimizer of f .

Remark 3.4. Note that the condition ∇f(xk) ̸= 0 for all k ∈ N in Theorem 3.3 is a
standard assumption in the convergence analysis of derivative-free optimization methods
since there is no tool available to determine whether ∇f(xk) equals zero or not. Similar
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assumptions can also be found at [10, Section 4] and [15, Corollary 3.3]. Quite recently,
the paper by Josz et al. [18] has developed a local convergence analysis for exact momen-
tum methods with constant stepsizes while mainly focusing on semi-algebraic functions
with gradients being locally Lipschitzian everywhere. It is necessary to emphasize that
this analysis does not encompass the obtained convergence properties in Theorem 3.3.
Specifically, our work focuses on derivative-free methods with variable stepsizes when ap-
plied to C1-smooth functions satisfying the KL property. These functions have gradients
that are locally Lipschitzian but only in the vicinity of local minimizers. Observe also
that the local convergence result above does not follow from the one in [3, Theorem 2.10].
The latter relies on the global conditions (H1) and (H2) therein, along with the local
growth condition (H4), which are not assumed in our derivative-free context and may not
be satisfied within the scope of our given assumptions.

If the condition
∑∞

k=1 τk = ∞ is removed in Theorem 3.3, a trivial example with
τk = 0 for all k ∈ IN can be used to show that the iterative sequence

{
xk
}

generated
by Algorithm 1 may remain at the given initial point, which is not a stationary one,
and thus it does not converge to any local minimizer of f. Even when τk > 0 for all
k ∈ IN but

∑∞
k=1 τk < ∞, the following example shows that

{
xk
}

may still converge to
a nonstationary point, which confirms the necessity of the assumption

∑∞
k=1 τk = ∞ in

deriving the local optimality of x̃ in Theorem 3.3.

Example 1. Considering the function f(x) := x2, it is clear that its derivative f ′ is
globally Lipschitz continuous, and that f satisfies the KL property at the local minimizer
0 with ψ(t) := 2t

1
2 . Therefore, all the assumptions in Theorem 3.3 are satisfied except for∑∞

k=1 τk = ∞. Now we consider Algorithm 1 with G(x, δ) being chosen via the central
finite difference. Then for any x ∈ IR, we have

G(x, δ) = f(x+ δ)− f(x− δ)

2δ
=

(x+ δ)2 − (x− δ)2

2δ
=

4xδ

2δ
= 2x = f ′(x) whenever δ > 0.

(3.15)

Let us show that for any positive numbers ξ, T and C, there exists an iterative sequence{
xk
}

generated by Algorithm 1 with the initial point x1 ∈ B(0, ξ), with the sequence of
stepsizes {τk} ⊂ (0, T ], and with Ck = C for all k ∈ IN such that

{
xk
}

converges to
a nonstationary point of f . To proceed, take any ξ, T, C > 0 and choose x1 := ξ/2 ∈
B(0, ξ). The sequence {τk} is constructed inductively as follows. For any k ∈ IN with
xk > x1/2 > 0, we deduce from Step 1 of Algorithm 1 and (3.15) that

gk = G(xk, δk+1) = f ′(xk) = 2xk for all k ∈ IN.

Choosing τk := min
{
T, 1

4
− x1

8xk

}
> 0 tells us that

xk+1 = xk − τkg
k = (1− 2τk)x

k ≥
(
1− 1

2
+

x1

4xk

)
xk

=
xk

2
+
x1

4
>
x1

2
.

Arguing by induction with the usage of x1 > x1

2
ensures that the sequence of positive

stepsizes {τk} constructed as above provides xk > x1

2
for all k ∈ IN. This implies that{

xk
}

does not converge to 0, which is the only stationary point of f . We can actually
find the exact limit for lim

k→∞
xk to see that it is clearly not 0. Since xk > 0 for all k ∈ IN,
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the iterative procedure xk+1 = xk − 2τkx
k shows that

{
xk
}

is decreasing, and thus it has
a limit x̄ by taking into account its boundedness from below. Therefore,

τk =
xk − xk+1

2xk
≤ xk − xk+1

4x1
→ 0 as k → ∞

which implies by the selection of τk that lim
k→∞

x1

8xk
=

1

4
, i.e., lim

k→∞
xk =

x1

2
. It can also

be observed that the assumption
∑∞

k=1 τk = ∞ is not satisfied in this example since
x1τk ≤ 2τkx

k = xk − xk+1 yields

∞∑
k=1

τk ≤
1

x1

∞∑
k=1

(xk − xk+1) =
1

x1
(x1 − lim

k→∞
xk) <∞.

Next we recall the algorithms designed in [23] and derive their corresponding local
convergence results by employing Theorem 3.3.
Algorithm 2 (DFC).

Step 0. Choose a global approximation G of ∇f under condition (3.1). Select an initial
point x1 ∈ IRn, an initial sampling radius δ1 > 0, a constant C1 > 0, a reduction factor
θ ∈ (0, 1), and scaling factors µ > 2, η > 1, κ > 0. Set k := 1.

Step 1 (approximate gradient). Find gk and the smallest integer ik ≥ 0 such that

gk = G(xk, θikδk) and
∥∥gk∥∥ > µCkθ

ikδk.

Then set δk+1 := θikδk.

Step 2 (update). If f
(
xk − κ

Ck
gk
)
≤ f(xk)− κ(µ− 2)

2Ckµ

∥∥gk∥∥2, then xk+1 := xk − κ

Ck
gk

and Ck+1 := Ck. Otherwise, xk+1 := xk and Ck+1 := ηCk.

Corollary 3.5. Let f : IRn → IR be a C1-smooth function with a globally Lipschitz
continuous gradient, let x̄ ∈ IRn, and let ∆ > 0. Assume that x̄ is a local minimizer of
f satisfying the KL property at x̄, and that ∇f(xk) ̸= 0 for all k ∈ IN. Then there exist
constants ξ, C > 0 such that for any initial point x1 ∈ B(x̄, ξ), any initial sampling radius
δ1 ∈ (0,∆], any C1 ≥ C and other parameters listed in Algorithm 2, we have that

{
xk
}

converges to a local minimizer x̃ of f with f(x̃) = f(x̄).

Proof. By Theorem 3.3, there exist ξ, T, C > 0 such that for any initial point x1 ∈ B(x̄, ξ),
initial radius δ1 ∈ (0,∆], and sequences τk ⊂ [0, T ] and Ck ⊂ [C,∞), it holds that
any sequence of iterates generated by Algorithm 1 exhibits the convergence properties
presented in Theorem 3.3. By choosing a larger C if necessary, we can assume that
κ/C ≤ T , where κ > 0 is the parameter taken from Algorithm 2.

It suffices to show that Algorithm 2 with initial point x1 ∈ B(x̄, ξ), C1 ≥ C, δ1 ∈ (0,∆],
and the other parameters therein is a special case of Algorithm 1 with the parameters
listed above, and thus Algorithm 2 enjoys the desired convergence properties. It is clear
from the construction of Algorithm 2 that Ck+1 ≥ Ck for all k ∈ IN, which implies that
Ck ≥ C1 ≥ C whenever k ∈ IN. The selection of

{
gk
}

in Step 1 of Algorithm 1 reduces
to that of Algorithm 2 by choosing νk ≥ δ1 whenever k ∈ IN. The iterative procedure of
Algorithm 2 can be rewritten as

xk+1 = xk − τkg
k with either τk = 0, or τk = κ/Ck ≤ κ/C ≤ T for all k ∈ IN

9



telling us that {τk} ⊂ [0, T ]. The proof of [23, Theorem 4.3] guarantees that Ck are
constant for large k ∈ IN, which ensures by Step 2 of Algorithm 2 that the stepsizes τk are
equal to a positive constant for large k ∈ IN. This guarantees that the sequence {τk} is
bounded away from 0, and furthermore

∑∞
k=1 τk = ∞. All the assumptions in Theorem 3.3

are satisfied, so
{
xk
}

converges to some local minimizer x̃ of f with f(x̃) = f(x̄).

Algorithm 3 (DFB).

Step 0 (initialization). Choose a local approximation G of ∇f under condition (3.2).
Select an initial point x1 ∈ IRn and initial radius δ1 > 0, a constant C1 > 0, factors
θ ∈ (0, 1), µ > 2, η > 1, linesearch constants β ∈ (0, 1/2), γ ∈ (0, 1), τ̄ > 0, and an initial
bound tmin

1 ∈ (0, τ̄). Choose a sequence of manually controlled errors {νk} ⊂ [0,∞) such
that νk ↓ 0 as k → ∞. Set k := 1.

Step 1 (approximate gradient). Select gk and the smallest integer ik ≥ 0 so that

gk = G(xk,min
{
θikδk, νk

}
) and

∥∥gk∥∥ > µCkθ
ikδk. (3.16)

Then set δk+1 := θikθk.

Step 2 (linesearch). Set tk := τ̄ . While

f(xk − tkg
k) > f(xk)− βtk

∥∥gk∥∥2 and tk ≥ tmin
k , (3.17)

set tk := γtk.

Step 3 (stepsize and parameters update). If tk ≥ tmin
k , then set τk := tk, Ck+1 := Ck,

and tmin
k+1 := tmin

k . Otherwise, set τk := 0, Ck+1 := ηCk and tmin
k+1 := γtmin

k .

Step 4 (iteration update). Set xk+1 := xk − τkg
k. Increase k by 1 and return to Step 1.

Corollary 3.6. Let f : IRn → IR be a C1-smooth function with a locally Lipschitzian
gradient, let x̄ ∈ IRn and ∆ > 0. Assume that x̄ is a local minimizer of f , which satisfies
the KL property at x̄, and that ∇f(xk) ̸= 0 for all k ∈ IN. Then there are constants
ξ, T, C > 0 such that for any initial point x1 ∈ B(x̄, ξ), any initial sampling radius δ1 ∈
(0,∆], τ̄ ∈ (0, T ], C1 ≥ C, and the other parameters of Algorithm 3, the sequence of
iterates {xk} in this algorithm converges to some local minimizer x̃ with f(x̃) = f(x̄).

Proof. By Theorem 3.3, there exist positive numbers ξ, T, C such that for any initial
point x1 ∈ B(x̄, ξ), any initial radius δ1 ∈ (0,∆], and any sequences {τk} ⊂ [0, T ], and
{Ck} ⊂ [C,∞), the sequence of iterates generated by Algorithm 1 exhibits the properties
listed in Theorem 3.3(i,ii).

It is sufficient to verify that Algorithm 3 with the initial point x1 ∈ B(x̄, ξ), C1 ≥
C, τ̄ ∈ (0, T ], δ1 ∈ (0,∆], and with other parameters taken from Algorithm 3 is a special
case of the general Algorithm 1, and hence it enjoys the claimed convergence properties.
We see from the structure of Algorithm 3 that Ck+1 ≥ Ck for all k ∈ IN, which tells us
that Ck ≥ C for all k ∈ IN.

It follows from Step 2 of Algorithm 3 that τk ≤ τ̄ for all k ∈ IN. Combining this with
τ̄ ≤ T , ensures that τk ⊂ [0, T ]. Moreover, the selection of

{
gk
}

in Step 1 of Algorithm 1
also reduces to that of Algorithm 3 since {νk} ↓ 0 as k → ∞. Theorem 3.3(i) tells us that
the sequence of iterates

{
xk
}

generated by Algorithm 3 converges, and thus it is bounded.
By using equation (5.27) in the proof of [23, Theorem 5.5], we get that the sequence of
stepsizes {τk} is bounded away from 0. This guarantees the condition

∑∞
k=1 τk = ∞ in
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Theorem 3.3(ii), which verifies therefore that
{
xk
}

converges to some local minimizer x̃
of f with the convergence rates as in Theorem 3.3(ii). Thus the proof is complete.

Remark 3.7. Let us now summarize the main differences between the three algorithms
mentioned above. Algorithm 1 is a general one that does not specify the selection of
the stepsize, while the stepsize of Algorithm 2 is determined via an inequality and will
reduce to a constant stepsize after a finite number of iterations [23, Theorem 4.3], and
the stepsize of Algorithm 3 is determined via the standard backtracking line search.

4 Conclusion
This paper conducts a local convergence analysis for derivative-free optimization meth-
ods introduced in [23], which are derivative-free methods with constant stepsize (DFC)
and derivative-free methods with backtracking stepsize (DFB). The analysis shows that
whenever the KL property holds at a nonisolated local minimizer of a smooth objective
function with a proper initialization, the convergence of DFC and DFB to a local min-
imizer near the nonisolated local minimizer in question is guaranteed. An example is
presented to illustrate the necessity of the imposed condition on the nonsummability of
the stepsize sequence in the main theorem. In the future, we intend to develop this local
analysis, as well as the global analysis in [23], to model-based derivative-free methods.
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