
Quantum Annealing for the two-level Facility
Location Problem

Alessia Ciacco, Francesca Guerriero, Francesco Paolo Saccomanno

Department of Mechanical, Energy and Management Engineering,
University of Calabria, Rende, Italy,

{alessia.ciacco, francesca.guerriero,

francescopaolo.saccomanno}@unical.it

Abstract. This study explores the effectiveness of quantum approaches
in addressing combinatorial optimization problems, arising in the logis-
tics domain. In particular, we concentrate on the two-level Facility Lo-
cation Problem, which is known to be NP-hard and therefore unable
to be solved in a polynomial amount of time. Due to the difficulties in
addressing these problems, we explore the potential of quantum anneal-
ing techniques to solve the Quantum Unconstrained Binary Optimiza-
tion formulation, using the D-Wave solver. Furthermore, given that this
formulation is still underperforming for large instances, we propose a
method to preprocess the logistic network. This method has been devel-
oped with the intention of reducing the size of the logistic network, thus
allowing for improved system performance as the size of the instances
increases.
We demonstrate the efficacy of our proposed solution approach through
the execution of computational experiments. The objective of these ex-
periments is to validate the performance of quantum annealing with our
preprocessing network techniques.

Keywords: Facility Location Problem, Logistics, QUBO, Quantum Al-
gorithms, Quantum Annealing, D-Wave

1 Introduction

In logistics and supply chain management, finding optimal solutions for site allo-
cation is crucial to improve the efficiency and profitability of business operations.
Optimizing these processes ensures efficient distribution of resources and opti-
mal management of goods flows, which are central aspects for companies involved
in trade and industry. The Facility Location Problem (FLP) is an optimization
problem concerned with determining the optimal locations for new plants or facil-
ities in order to minimize total cost and maximize operational efficiency. Within
the domain of FLPs, there exist several variants, each underscoring different ob-
jectives and constraints. The two-levels location problem is a significant subfield
of FLPs. It involves selecting the optimal sites for two-tier logistics facilities, such
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as central distribution centers (CDCs) and regional distribution centers (RDCs),
to maximize operational efficiency and reduce overall costs. CDCs serve as ma-
jor hubs for large-scale product distribution, aggregating goods from production
facilities. RDCs provide local distribution, reaching end customers directly with
efficiency and speed. However, logistics location problems are notoriously com-
plex and classified as NP-hard [7], meaning that finding an optimal solution
requires exponential computational time. Consequently, addressing the increas-
ing complexity and challenges requires the adoption of innovative approaches.
In this context, the use of quantum techniques in operations research offers a
promising prospect. This rapidly evolving field opens new horizons for solving
combinatorial optimization problems more efficiently than traditional computa-
tional methods. The utilization of quantum techniques for optimization presents
numerous benefits, such as the capacity to handle large problems and the po-
tential to obtain more accurate and robust solutions. However, there are also
challenges to be addressed, such as the implementation of efficient and scalable
quantum algorithms. An emerging methodology used in solving optimization
problems with quantum techniques is the Quantum Unconstrained Binary Opti-
mization (QUBO) formulation. The QUBO formulation is a type of combinato-
rial optimization problem that aims to minimize or maximize an unconstrained
quadratic objective function involving only binary variables. This function is
defined as a combination of linear and quadratic terms of the binary variables,
where the coefficients of these terms represent the importance and interaction of
the variables in the problem. This formulation is essential in the field of quan-
tum computing because it allows direct mapping of the QUBO problem onto a
physical system of interacting spins using the Ising Hamiltonian [5]. This map-
ping is accomplished by assigning each QUBO variable a spin, while the terms
of the QUBO objective function correspond to the couplings between the spins.
Solving the QUBO problem involves finding the spin state that minimizes the
energy associated with the Ising Hamiltonian. The connection between Ising’s
Hamiltonian and quantum computers is crucial because it can be implemented
directly on quantum hardware. Solving the associated problem is equivalent to
finding the fundamental state of the quantum system, which corresponds to the
optimal solution of the QUBO problem. This formulation is particularly used for
solving problems with quantum annealers. Quantum Annealing (QA) is an opti-
mization technique that exploits the properties of quantum mechanics to search
for the global minimum of the objective function. In particular, QA uses two
quantum phenomena: superposition, which allows the system to explore many
solutions simultaneously and quantum tunneling, which allows it to overcome
energy barriers that might trap a classical algorithm in a local minimum. The
adiabatic evolution process starts with a quantum system in a simple funda-
mental state and slowly evolves it toward the fundamental state of the QUBO
problem, which is the optimal solution.
The objective of this work is to implement a hybrid classical-quantum algo-
rithm using a quantum annealer for the two-stage FLP problem. This approach
combines classical optimization techniques with QA, exploiting the advantages
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of both methodologies. In our approach, we incorporate a Preprocessing Pro-
cedure of Logistic Network (PPLN) that aims to reduce the complexity of the
network in the FLP problem by minimizing the number of variables involved.
This step is essential to prevent the exponential increase in variables that oc-
curs after the problem is transformed into QUBO. Subsequently, both QUBO
versions were considered: one without PPLN and the other with PPLN applied
and then transformed into QUBO (PQUBO). Both versions were solved using
SA and QA.

Organisation of paper: This paper is structured as follows. In Section 2, we re-
view the scientific literature related to two-level FLPs and quantum resultant
approaches for combinatorial optimization problems. We also describe the main
scientific contributions of this work. Section 3 presents the problem description,
the mathematical formulation and the proposed PPLN. Section 4 describes the
proposed solution approach for the problem. Section 5 presents the computa-
tional tests and analysis of the results. Section 6 summarizes the concluding
remarks and prospects for future studies.

2 Related works

We briefly review the most interesting papers that illustrate the state of the
art regarding the two-level optimization problem in logistics network planning
and the quantum approaches to solving optimization problems. Additionally, we
describe the main scientific contributions of this work.

Two-level FLP: Aardal et al. (1996) [1] propose a novel method for solving
two-level structure location problems using a cutting plane approach. They in-
troduce an extended multi-commodity flow formulation based on the analysis of
the single-level flow formulation. Chardaire et al. (1999) [4] present an formu-
lation of the two-level plant location problem and proposes algorithms to test
the proposed approach. Results indicate that such a method may be promising.
Bumb (2001) [3] presents an approximation algorithm for the two-level uncom-
modity structure localization problem. The author demonstrates that the algo-
rithm achieves a minimum of 47% of the optimal expected value, regardless of the
value of a random variable. Zhang (2006) [14] considers the approximation of the
multi-level structure location problem, focusing mainly on the two-level problem
and variants with “soft” capabilities. An algorithm based on the quasi-greedy
approach is proposed to approximate the problem and other variants, obtaining
significantly better results than previous ones. Addis et al. (2012) [2] present
an experimental analysis of a two-level FLP with practical applications in the
design of telecommunications networks. The authors discuss the effective use of
reformulation techniques through discretization and Dantzig-Wolfe decomposi-
tion. A column generation-based optimization algorithm, enhanced with price
stabilization and improvement techniques, was developed. Experimental analy-
sis demonstrates that this algorithm is significantly more effective than a general
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solver in optimizing instances lacking a specific structure. Ramshani et al. (2019)
[13] propose a two-level FLP with single assignment under outage probability
to determine the optimal locations of two types of facilities and the optimal as-
signment of primary and backup routes for customers. The paper presents two
formulations of the problem and develops a tabu search algorithm (TS) and a
heuristic method based on route subset selection (RSS) to solve them. The study
demonstrates that TS and RSS are superior to the commercial solver Gurobi in
terms of reducing solution time, particularly for larger problems. Additionally, a
sensitivity analysis was conducted on the number of routes used in RSS, reveal-
ing that more precise route selection can significantly enhance solution quality.
Karatas and Dasci (2020) [9] examined the problem of locating and sizing two-
tier facilities to maximize expected demand coverage. The lower-level facilities
serve as the primary points of contact for customers, while the higher-level fa-
cilities function as centers that offer services to these contact points. The paper
presents numerous numerical experiments to evaluate the performance of the
proposed mixed integer linear programming (MILP) models.

The application of quantum approaches to combinatorial optimization problems:
Grover et al. (2019) [8] provide a method for formulating and solving QUBO.
The aim is to address the challenge of resolving complex optimization problems
through the use of quantum computing techniques. The approach entails a de-
tailed guide on formulating QUBO problems, utilizing specialized solvers and
applying combinatorial optimization techniques. Results demonstrate the effec-
tiveness of QUBO methods in solving a wide range of optimization problems,
with practical applications in fields such as logistics, finance and operations re-
search. Montanez-Barrera et al. (2023) [11] introduce a novel approach, termed
Unbalanced penalization, for encoding inequality constraints of combinatorial
optimization problems into QUBO penalizations. The approach eliminates the
need for additional slack variables, making it suitable for both gate-based quan-
tum computers and QAs. By employing this method, they demonstrate supe-
rior solutions in terms of both quality and quantity compared to the approach
with slack variables. Results consistently show that the unbalanced penaliza-
tion method outperforms the slack variable approach in solving the Bin Packing
problem with a larger number of items. Montanez-Barrera et al. (2023) [12]
focus on the Traveling Salesman Problem (TSP). Utilizing the unbalanced pe-
nalization method, they compare performance with the slack variable approach
across a wide range of solvers, including the D-Wave Advantage QPU, the hybrid
D-Wave solver and CPLEX. Results indicate that the unbalanced penalization
approach surpasses the slack variable method and enables finding valid solutions
for larger TSP instances. Ding et al. (2021) [6] implement a QA algorithm to
solve logistic network design problems. The approach combines QA with classi-
cal simulation and is tested on 12 logistics network design problems. Malviya et
al. (2023) [10] suggest optimizing the location of distribution centers for package
delivery through logistics network optimization using QA. They use a hybrid
quantum-classical approach with sampling of the QUBO problem using the Ker-
beros sampler.
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Contribution of the paper: the objective of this work is to propose a quantum
approach for solving the two-level FLP. To the best of our knowledge, no other
work has ever addressed the resolution of this type of problem, but exclusively
the resolution of the single-level variant. Furthermore, we propose a PPLN to
decrease the problem size and improve the resolution performance.

3 Problem Definition

3.1 Characteristics of the problem

Consider an optimization problem involving the allocation of CDCs in a context
where production facilities (IPs) must serve these CDCs, which in turn must
serve RDCs. Let I be the set of production facilities, C the set of potential
central distribution centers and R the set of regional distribution centers. Fig. 1
proposes the representation of this problem.

Fig. 1. A multi-level localization problem.

The problem can be represented by a graph G = (V,E), where V is the set of
nodes including IPs, CDCs and RDCs and E is the set of arcs connecting IPs to
CDCs and CDCs to RDCs.
Let aij be the cost depending on distance between each IP i ∈ I and each CDC
j ∈ C, bjr be the cost depending on distance between each CDC j ∈ C and each
RDC r ∈ R and cj be the activation costs associated with each CDC j ∈ C. Let
pi be defined as the maximum amount of goods that an i ∈ I can send to the
CDCs, dr be the demand required by each RDC r and qj be the storage capacity
of the goods for each CDC j. Let Nj be the set of IPs that can serve CDC j
and Tr be the set of CDCs that can serve RDC r. It is assumed that each RDC
must be served by only one CDC.
The aforementioned notations definitions are summarized in Table 1.
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Notation Description

I Set of IPs
C Set of potential CDCs
R Set of RDCs
V Set of nodes including IPs, CDCs and RDCs
E Set of arcs connecting IPs to CDCs and CDCs to RDCs

aij Cost depending on distance between each i ∈ I and each j ∈ C
bjr Cost depending on distance between each j ∈ C and each r ∈ R
cj Activation costs associated with each j ∈ C
pi Maximum amount of goods that an i ∈ I can send to the CDCs
dr Demand required by each r ∈ R
qj Storage capacity of the goods for each j ∈ C
Nj Set of IPs that can serve j ∈ C
Tr Set of CDCs that can serve r ∈ R

Table 1. Notations for the Multi-level Localization Problem.

3.2 Mathematical formulation

To model this problem, the following binary variables are introduced:

xij =

{
1, if IP i serves CDC j

0, otherwise

yjr =

{
1, if CDC j serves RDC r

0, otherwise

zj =

{
1, if CDC j is activated

0, otherwise

The problem is mathematically formulated as follows.

min
∑
j∈C

∑
i∈Nj

aijxij +
∑
r∈R

∑
j∈Tr

bjryjr +
∑
j∈C

cjzj (1)

s.t.
∑
j∈Tr

yjr = 1 ∀r ∈ R (2)

∑
r∈R

dryjr ≤
∑
i∈Nj

pixij ∀j ∈ C (3)

∑
i∈Nj

pixij ≤ qjzj ∀j ∈ C (4)

xij , yjr, zj ∈ {0, 1} ∀i ∈ I, ∀j ∈ C,∀r ∈ R (5)

The objective function (1) aims to minimize the distance between logistics sites
and the total cost associated with the allocation of CDCs. It is expressed as the
sum of three components:
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– first term: corresponds to the sum of the cost depending on distances be-
tween IPs and the CDCs they serve;

– second term: represents the sum of the cost depending on distances be-
tween the CDCs and the RDCs they serve;

– third term: corresponds to the sum of the activation costs of the activated
CDCs.

Constraints (2) ensure that each RDC must be served by exactly one activated
CDC. Constraints (3) ensure that for each CDC j, the total quantity demanded
by RDCs served by j cannot be greater to the quantity of goods sent by IPs to
j. Constraints (4) assure that the total load sent by IPs to CDC j must conform
to the storage capacity of that CDC, if it is active. Constraints (5) define the
domain of the variables.

3.3 Preprocessing Procedure of Logistic Network

The PPLN aims to reduce the size of the set C before transforming the problem
into the QUBO formulation. As a result, fewer qubits are required to represent
the problem, significantly improving the efficiency and feasibility of the solution,
considering the limited availability of qubits in quantum computers. During pre-
processing, we propose an algorithm that involves the following steps:

1. Creation of set Aj : that represents the set of all RDCs covered by CDC j;

2. Calculation of the values β and γ: the values β and γ, represent the
minimum and maximum number of CDCs required to guarantee the capacity
constraints, respectively. These values are determined by formulas (6) and
(7), respectively:

β =


|R|⌊

max{
∑
i∈I

pi,max{qj ,j∈C}}

min{dr,r∈R}

⌋


(6)

γ =


|R|⌊

min{
∑
i∈I

pi,min{qj ,j∈C}}

min{dr,r∈R}

⌋


(7)

3. Creation of the for loop: we generate a for loop in which the value c
varies from β to γ and for each iteration of the loop:
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(a) Combination Creation: we generate all c CDC combinations covering
all RDCs;

(b) Sorting combinations: we sort the combinations in ascending order
according to the value∑

j∈comb

cj +
∑
i∈I

∑
j∈comb

aij +
∑
r∈R

∑
j∈comb

bjr (8)

(c) Verification of combinations: we check the ordered combinations to
ensure that they guarantee the capacity constraints.

(d) Selection of valid combination: the first combination that satisfies
all capacity constraints is selected as the new set C and the loop is break.

Thus, the PPLN identifies a suboptimal configuration of CDCs that is signifi-
cantly smaller in size than the initial configuration and meets all capacity con-
straints.
Fig. 2 shows a flowchart of the PPLN steps to reduce the set C.

Fig. 2. Flowchart of the PPLN to reduce the set C.
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4 Solution approach

In this work, we adopt a structured, multi-step methodological approach to ad-
dress the two-level FLP. Our methodology began with the conversion of the
MILP formulation of the FLP into a QUBO formulation. However, this trans-
formation has limited scalability due to the large number of binary variables
involved. In theory, when a sufficient number of qubits are available, it will
be possible to effectively solve these problems. Currently, the complexity intro-
duced by the QUBO transformation may negate the benefits of using quantum
methods for solving optimization problems. To address this challenge, we have
incorporated an additional preprocessing step into our approach. Our method,
explained in detail in section 3.3, aims to streamline the problem and reduce the
number of variables to control their excessive growth. We then apply both, the
QUBO and PQUBO version, to solve the problem using SA and QA.
We now describe the solution approach in detail:

1. PPLN: we propose a method of reducing the logistic network by decreasing
the cardinality of the set C;

2. Resolution with Classic Solver: we solve both unpreprocessed and pre-
processed problems using the Gurobi solver to obtain optimal benchmark
solutions;

3. Translation into QUBO formulation: we use the dimod api library to
translate the problems into the QUBO formulation;

4. Resolution with SA: we apply the SA algorithm to solve the problems
translated into the QUBO formulation;

5. Resolution with QA: we use QA of D-Wave solver to solve the problems.

The employed method is presented in detail in Fig. 3, outlining the key steps we
followed to conduct the implementation of the problem.

5 Computational study

This section presents the results of our computational experiments. We solve the
model with Gurobi ver. 11 and the implementation is done entirely in Python.
All computations are performed on an 4Ghz processor and 32GB of RAM.

5.1 Generation of instances

The following section outlines the methodology employed in the generation of
the instances. Experimental tests are conducted within a 100x100 unit square
region. Logistics site coordinates are randomly generated within this region using
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Fig. 3. Problem solving methodology.

Cartesian coordinates. Additionally, randomly generated values were assigned to
pi, dr and qj . The activation cost of CDCs is calculated based on their storage
capacity, qj . A realistic principle is adopted: the higher the storage capacity
of the CDC, the higher its activation cost. To determine the coverage distance
ρ, we calculate the maximum value among all distances, represented by dM ,
i.e., this is the maximum distance within the considered logistic system, and we
then calculate the minimum operational distance between nodes in the network
(excluding zero), represented by dm. The coverage distance ρ is obtained as a
weighted combination of dM and dm, defined as 0.8 dM + (1 − 0.8) dm. This
value represents the maximum distance that a logistics site can effectively cover
another site, both for the coverage of IPs to CDCs and for the coverage of CDCs
to RDCs. This reflects the concept that CDCs must be served by IPs and RDCs
must be served by CDCs. The coverage distance ρ is obtained to generate two
sets: Nc and Tr.
Tables 2 summarizes the parameter setting used for our computational results.

5.2 Numerical results

In order to assess the performance of our proposed solution approach, we evalu-
ate the results obtained along two dimensions: problem size and solution quality.
We initially solve the two-level FLP using the classical solver Gurobi. The prob-
lem is solved in both its MILP and QUBO formulations. Table 3 summarizes
the results obtained in terms of problem size. The first four columns show the
instance name and cardinality of the sets |I|, |C| and |R|. The fifth and sixth
columns present the number of variables of the MILP problem solved with Gurobi
and the problem size after the QUBO transformation (in terms of the number



Quantum Annealing for the two-level Facility Location Problem 11

Notations Description Value

I Set of IPs
C Set of potential CDCs
R Set of RDCs
Nj Set of IPs that can serve j ∈ C
Tr Set of CDCs that can serve r ∈ R

aij Distances between i ∈ I and j ∈ C Manhattan Metric
bjr Distances between j ∈ C and r ∈ R Manhattan Metric
pi Max goods i ∈ I can send to CDCs Random in range (80, 100)
dr Demand required by each r ∈ R Random in range (5, 40)
qj Storage capacity of the good for j ∈ C Random in range (100, 500)
cj Activation costs associated with j ∈ C 1000 + 0, 5 · qj
ρ Coverage Distance 0, 8 · dmax + (1− 0, 8) · dmin

Table 2. Instance Characteristics.

of bits and the number of links between bits), respectively.

Number of Variables Problem Size
Test |I| |C| |R| (MILP) (QUBO)

I1 2 4 6 36 (96,637)
I2 3 6 9 78 (183,1772)
I3 4 8 12 136 (275,3306)
I4 5 10 15 210 (381,5478)
I5 6 12 18 300 (520,8885)
I6 7 14 21 406 (666,13131)
I7 8 16 24 528 (818,18205)
I8 9 18 27 666 (997,24615)
I9 10 20 30 820 (1189,32406)
I10 15 30 45 1830 (2402, 97864)
I11 20 40 60 3240 (3993, 215775)
I12 30 60 90 7260 (8442, 687135)

Table 3. Comparison of problem size MILP and QUBO formulation.

The results in Table 3 clearly demonstrate that the transformation from the
MILP formulation to the QUBO formulation of the analyzed problem results in
a significant increase in the number of variables as the instance size increases.
Therefore, to limit this rapid growth of the number of variables, we propose the
PPLN described in Section 3.3.
As shown by the results in Table 4, this method is highly effective in significantly
reducing the number of variables after the PQUBO transformation. In partic-
ular, it can be seen that the percentage reduction in terms of the number of
bits (indicator of the number of variables) with the use of our MNLP compared
to when not using it is 87,1% on average. The significance of this outcome is
substantiated by Fig. 4, which illustrates the growth in the number of variables
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as the size of the instance increases. We compare the increase in the number of
variables in the MILP model after transformation to QUBO and when trans-
formed to PQUBO. It can be observed that the growth in number of variables
is effectively mitigated by the implementation of the proposed PPLN.

QUBO PQUBO

Test |I| |C| |R| Problem Size Objective
Function

Problem Size Objective
Function

I1 2 4 6 (96,637) 1782 (26,185) 1782
I2 3 6 9 (183,1772) 1864 (31,285) 1864
I3 4 8 12 (275,3306) 1856 (35,385) 1856
I4 5 10 15 (381,5478) 3157 (77,978) 3217
I5 6 12 18 (520,8885) 2399 (44,666) 2399
I6 7 14 21 (666,13131) 2630 (48,818) 3091
I7 8 16 24 (818,18205) 3479 (104,1996) 3709
I8 9 18 27 (997,24615) 3810 (112,2367) 3888
I9 10 20 30 (1189,32406) 3729 (120,277) 4269
I10 15 30 45 (2402, 97864) 5395 (243, 8175) 5500
I11 20 40 60 (3993, 215775) - (403, 17620) 7315
I12 30 60 90 (8442, 687135) - (710, 45855) 9298
I13 40 80 120 - - - -

Table 4. Comparison of the problem size and objective function for QUBO and
PQUBO formulations.

Fig. 4. Comparison of the growth in problem size between QUBO and PQUBO for-
mulations.

The Table 4 also shows the objective functions obtained without and with the
PPLN. The solution obtained by solving the PQUBO formulation with Gurobi is
optimal for four instances (I1, I2, I3 and I5). Generally, the average gap between
the two solutions is 4% across all instances. For instances I6 and I9, the opti-
mality gap of the objective function is not low. This occurs because our method
identifies the solution by sorting combinations in a manner that sums all activa-
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tion costs and all distances to and from CDCs in the combination. Although this
value may not precisely correspond to the actual activation costs and distances,
it still provides a useful estimate for identifying the most promising solutions.
Furthermore, the method does not search for a superior solution with a greater
number of CDCs, since the objective of PPLN is to minimize the number of
CDCs in the network.
In summary, the results obtained indicate that our primary goal in using MNLP,
i.e., to significantly reduce the size of the problem, has been achieved with a re-
duction of 87,1%, as highlighted above. Regarding the analysis of the quality
of the solutions, there is generally an average gap of 4% in the objective func-
tion over all instances between the optimal solution obtained with and without
MNLP.
While MNLP can be employed to identify a solution for a greater number of
instances (I11 and I12), it is less effective for larger instances, such as I13. Con-
sequently, we have opted to implement our model on quantum hardware, given
that it is theoretically possible that as quantum hardware improves, it will be
able to solve these instances.
The subsequent step is to employ the SA in order to resolve our problem. The SA
algorithm is applied to the translated problems in QUBO and PQUBO formu-
lation to verify the correctness of the different conversions without encountering
the potential errors of current quantum hardware. The results are presented in
Table 5.

WITHOUT PPLN WITH PPLN

Test |I| |C| |R| Optimal
Objective
Function

Objective
Function

Time
[seconds]

Objective
Function

Time
[seconds]

I1 2 4 6 1782 2793 305,990 1782 75,554
I2 3 6 9 1864 None 625,221 1864 101,307
I3 4 8 12 1856 None 1049,372 1856 120,963
I4 5 10 15 3157 None 1519,322 3795 279,254
I5 6 12 18 2399 None 1615,810 None 177,691

Table 5. Comparison of objective function and iteration time for SA with and without
PPLN.

Table 5 shows the objective function generated when the MILP formulation is
solved with Gurobi without the PPLN (Optimal Objective Function), the ob-
jective function generated with and without the PPLN using the SA method
(with a number of iterations equal to 100000), and the resolution time for SA.
As shown in Table 5, with the SA algorithm to which our PPLN is applied, we
obtain the optimal solution for instances I1, I2, I3 and I5, and an admissible
solution for the other instances. It should be noted that the analysis is limited
to the first five instances, because for larger instances, the SA does not converge
to solution. The “None” designation in the tables indicates that no solution is
found for the instances. The results demonstrate the efficacy of the various con-
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version methodologies by solving the problem with the SA algorithm.
In a final step, experiments are conducted using D-Wave’s QA with and without
PPLN.
Table 6 presents the objective function results obtained by solving the MILP

WITHOUT PPLN WITH PPLN

Test |I| |C| |R| Optimal
Objective
Function

Objective
Function

Time
[seconds]

Objective
Function

Time
[seconds]

I1 2 4 6 1782 2803 354,53 1782 17,01
I2 3 6 9 1864 None 354,42 1864 12,77
I3 4 8 12 1856 None 354,94 1856 67,70
I4 5 10 15 3157 None 354,94 3471 293,05
I5 6 12 18 2399 None 354,94 2399 148,65
I6 7 14 21 2630 None 354,94 3135 292,43
I7 8 16 24 3479 None 536,31 4161 539,03
I8 9 18 27 3810 None 532,85 None 543,60

Table 6. Comparison of objective function and iteration time for QA with and without
PPLN.

formulation with Gurobi without the use of the PPLN (Optimal Objective Func-
tion), the objective function generated with and without the PPLN using the
QA method, as well as the resolution time for QA. As indicated in Table 6,
the application of the PPLN before the use of the QA algorithm resulted in the
optimal solution for instances I1, I2, I3, and I5, while an admissible solution was
obtained for the remaining instances with an average objective gap of 4% across
all instances. It is important to note that the analysis is limited to the initial
eight instances, as the QA algorithm is unable to reach a solution within the
500 second time limit for larger instances. In such cases, the result is denoted as
“None” in the table.
Experiments carried out on actual quantum hardware provide evidence that the
solution derived from the current availability of qubits is effective, thereby con-
firming the viability of the proposed methodology. It is essential to recognize
that quantum hardware is still in its early stages of development. It is thus the
primary objective of this study to demonstrate the capacity of contemporary
quantum computers to address the issues delineated in the domain of logistics.

6 Conclusions

In our work, we developed and implemented a MILP model for the two-level
FLP. This involved optimal site selection for two-level logistics facilities such as
CDCs and RDCs. Our main goal is to integrate a preprocessing method of the
logistics data network to optimize the efficiency and efficacy of QA algorithms.
We, therefore, propose the MNLP with the goal of reducing the complexity of
the problem, increasing the probability of obtaining solutions for large instances,
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and, as a result, effectively implementing the problem using QA. Our numerical
tests confirmed that the our solution method leads to a significant reduction
in problem size, greatly improving performance in terms of execution time and
ability to converge to the optimal solution. In particular, the use of the PPLN
enabled the SA and QA algorithms to converge to optimal solutions for a larger
number of problem instances, with significantly lower execution time than sce-
narios without PPLN. The solutions proposed by QA were found to be closer to
the optimal solution identified by Gurobi, demonstrating a significant improve-
ment in the effectiveness of the optimal value search.
As for future developments, we intend to further expand our approach to even
larger logistics networks and more complex contexts, such as global supply chain
management and distribution in urban environments.

Declarations

Conflicts of interest/Competing interests: The authors have no conflicts
of interest to declare that are relevant to the content of this article.
Code availability: The implemented codes are available on request from the
authors.

References
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