
manuscript No.
(will be inserted by the editor)

A progressive decoupling algorithm for minimizing the difference of
convex and weakly convex functions over a linear subspace

Welington de Oliveira1 and João Carlos Oliveira
Souza2

July 1, 2024

Abstract Commonly, decomposition and splitting techniques for optimization problems strongly
depend on convexity. Implementable splitting methods for nonconvex and nonsmooth optimization
problems are scarce and often lack convergence guarantees. Among the few exceptions is the Pro-
gressive Decoupling Algorithm (PDA), which has local convergence should convexity be elicitable.
In this work, we furnish PDA with a descent test and extend the method to accommodate a broad
class of nonsmooth optimization problems with non-elicitable convexity. More precisely, we focus
on the problem of minimizing the difference of convex and weakly convex functions over a linear
subspace. This framework covers, in particular, a family of stochastic programs with nonconvex
recourse and statistical estimation problems for supervised learning.

Keywords Nonconvex optimization · Decomposition · Splitting · Stochastic programming

Mathematics Subject Classification (2000) 49J52 · 49J53 · 49K99 · 90C26

1 Introduction.

This work builds upon the Progressive Decoupling Algorithm (PDA) of [1] to minimize a nonconvex
function over the intersection of a convex set with a linear subspace. Differently from [1], convexity
is not assumed to be elicitable (not even locally), and evaluating the function’s proximal mapping
need not be convenient to execute. The manuscript’s main assumption is that the objective function
can be expressed as the difference of convex and weakly convex functions, a broad setting that
covers many practical problems. As pointed out in [2], this function class comprises the family of
difference-of-convex (DC) functions and other composite functions.

For the class of problems of interest, the linear subspace represents the linkage constraint,
meaning that if not for it, the underlying optimization problem (possibly with the weakly convex
function linearized) would be decomposable and thus much easier to handle. This is the case
in nonconvex stochastic programming and some statistical estimation problems for supervised
learning, as detailed in § 2.2 below.

In such linkage problems, when the objective function is convex, several splitting algorithms can
be applied depending on the problem’s structure: the alternating direction method of multipliers
(ADMM) [3, 4], the Spingarn’s method of partial inverses [5], the progressive hedging algorithm
(PHA) [6] as well the scenario decomposition with alternating projection [7] in stochastic pro-
gramming, the progressive decoupling algorithm (PDA) [1], the Douglas Rachford (DR) splitting
method [8, 9], and others. All these methods are particular instances of the celebrated proximal
point method, and thus (elicitable) convexity plays an important role.

1 Mines Paris, Université PSL, Centre de Mathématiques Appliquées (CMA), 06904 Sophia Antipolis, France
2 Department of Mathematics, CCN, Federal University of Piaúı, Teresina, PI 64049-550, Brazil
E-mail: welington.oliveira@minesparis.psl.eu

2 Welington de Oliveira and João Carlos Oliveira Souza

Nonconvexity adds significant difficulty in so much that the proximal point theory can no longer
be applied, at least directly. As a result, only a few splitting methods for nonconvex problems that
explore the linkage structure of the problem exist in the literature. In addition to the PDA of [1]
that requires elicitable convexity, the works [10–13] study the DR method for minimizing the sum
of a differentiable function with Lipschitz continuous gradient (L-smooth function) and a proper
lower semicontinuous function with an easily computable proximal mapping. By defining a merit
function, global subsequential convergence to a critical point and eventual convergence rate are
obtained under some extra assumptions. For instance, local convergence rates for weakly convex
functions are derived in [13]. Concerning ADMM variants for addressing nonconvex problems,
the study [14] examines several approaches under somewhat restrictive assumptions about the
nonsmooth function.

We highlight that the methods in [1, 10–14] do not apply to our broader setting because
the involved functions need not be L-smooth or have easily computable proximal mappings. To
propose an implementable splitting method in this case, we linearize the nonconvex function
at serious iterates (candidate solutions), yielding a convex optimization subproblem dealt with
inexactly via a progressive decoupling scheme furnished with a descent test. The latter mechanism
allows us to define the next serious iterate whenever the objective function improves by a certain
amount. The nonconvex function is then linearized at such a point, and the process repeats. Our
approach, which has convergence guarantees to critical points, can be seen as a splitting method
for finding a zero of the sum of three specific operators: the subdifferential of a convex function,
the subdifferential of a weakly concave function, and the normal cone to a linear subspace. Hence,
the work contributes to broadening the range of applicability of splitting methods in nonsmooth
and nonconvex optimization.

The remainder of this work is organized as follows. Section 2 recalls some key definitions
and prerequisites. Our approach and its convergence analysis are presented in Section 3. Some
numerical experiments reporting on the practical performance of our algorithm is presented in
Section 4, and finally Section 5 concludes the paper.

Notation. The following notation is employed throughout the text. For any points x, y ∈ Rn, ⟨x, y⟩
stands for the Euclidean inner product, and ∥ · ∥ for the associated norm, i.e., ∥x∥ =

√
⟨x, x⟩. For

a convex set X, NX(x) stands for its normal cone at the point x, i.e., the set {y : ⟨y, z − x⟩ ⩽
0 for all z ∈ X} if x ∈ X and the empty set otherwise. The indicator function of X ⊂ Rn is
defined as δX(x) = 0 if x ∈ X and δX(x) = +∞ otherwise. The convex hull of a set X is coX
and the relative interior is denoted by riX. The domain of a function φ : Rn → (−∞,+∞] is
represented by Dom(φ) = {x ∈ Rn : φ(x) < +∞}.

2 Preliminaries

This section presents the problem, examples in nonconvex stochastic programs and statistics-based
learning models, key concepts in variational analysis, some necessary optimality conditions, and a
brief description of the progressive decoupling algorithm of [1].

2.1 Problem statement

This work is concerned with the following class of nonsmooth and nonconvex optimization problems

min
x∈X∩S

f(x), with f(x) := c(x)− w(x), (1)

under the following assumptions:

i) c : Rn → R is a convex function;

ii) w : Rn → R is a weakly convex function, that is, there exists a (possibly unknown) parameter
µw ≥ 0 such that w(x) + µ

2 ∥x∥
2 is convex for all µ ≥ µw;

Title Suppressed Due to Excessive Length 3

iii) X ⊂ Rn is a closed convex set and S ⊂ Rn is a linear subspace such that riX ∩ S ̸= ∅.
Furthermore, we assume that projecting onto S (or its orthogonal complement S⊥) is relatively
convenient to execute.

This function class enjoys favorable properties in so much as they can be recast as Difference-
of-Convex (DC) functions [15]. Hence, problem (1) can, in theory, be recast as a DC program, a
setting that proves practical if explicit DC decompositions are available; see for instance [16, 17]
and references therein. However, if no DC decomposition is known for f , the DC machinery
is unsuitable, and DC methods are not applicable. Compared to DC, the convex-weakly convex
(CwC) structure in (1) appears more naturally in applications [2]. In considering the nonconvex
function, we have in mind the following settings: w(x) = ϕ(x) is a convex function; w(x) = −h(x),
with h being L-smooth; w(x) = ϕ(x) − h(x), with ϕ and h as previously; w(x) = ϕ(G(x)), with
ϕ : Rm → R convex and Lipschitz and G : Rn → Rm a smooth mapping with Lipschitz Jacobian.
In all these settings, the resulting function w is weakly convex as justified in [2, § 2].

2.2 Examples

2.2.1 Nonconvex Stochastic Programs

Let T ≥ 2 be the time horizon where decisions must be taken. For every stage t = 1, . . . , T , the
choice of a vector xt ∈ Rnt is followed by the uncovering of a random event ξt in some support set
Ξt ⊂ Rmt . We denote by Ξ = Ξ1 × . . .× ΞT the set of all scenarios ξ = (ξ1, . . . , ξT) and assume
for simplicity that there are only finitely many of them: Ξ =

{
ξ1, . . . , ξN

}
, and pi = p(ξi) > 0,

i = 1, . . . , N , are the associated probabilities. In reacting to information provided by a scenario ξ,
the decision xt(ξ) ∈ Rnt at stage t must be nonanticipative:

xt(ξ) depends only on the past ξ[t−1] := (ξ1, . . . , ξt−1), not on ξ.

We denote by x(·) a function that assigns to each scenarios ξ ∈ Ξ a decision

x(ξ) := (x1(ξ), . . . , xT (ξ)) ∈ Rn1 × . . .× RnT := Rn.

The vector x := (x(ξ1), . . . , x(ξN)) ∈ RnN comprises all the decision variables, and is called a
decision policy. Nonanticipative policies form a linear space denoted by S ⊂ RnN ; see [18, § 3.1.4]
for the equations representating this linear space (see also (19) for the particular example in the
numerical section). Additional constraints are imposed by requiring

x(ξi) ∈ X(ξi) ⊂ Rn where X(ξi) ̸= ∅ is a closed convex set i = 1, . . . , N.

Each decision x(·) has a cost represented by the (random) function

f(x(·), ·) : ξ → f(x(ξ), ξ), from Ξ to R,

for which we assume the CwC decomposition c(x(·), ·)−w(x(·), ·) is available. With this notation,
the problem we are interested in solving is, for X := X(ξ1)× · · · ×X(ξN),

min
x∈X∩S

N∑
i=1

pi[c(x(ξ
i), ξi)− w(x(ξi), ξi)] . (2)

For the simpler two-stage setting, i.e., T = 2, some recent works [2,19] employ a decomposition
per stage. In doing so, the main assumption is that the resulting second-stage subproblems are
convex (although the recourse function can be nonconvex). For more general problems not satis-
fying this hypothesis, decomposition per stage is no longer a choice, and the method presented
in Section 3 below is, to the best of our knowledge, the first decomposition approach capable of
handling problems within such a challenging framework. (The work [13] also deals with noncon-
vex stochastic programs by handling simpler models consisting of relaxing the nonanticipativity
constraints.)

4 Welington de Oliveira and João Carlos Oliveira Souza

The CwC structure above can appear in several ways. For instance, if f(·; ξ) is L-smooth (the
setting in our numerical experiments), we can take c(·; ξ) ≡ 0 and w(·; ξ) = −f(·; ξ). Another situ-
ation appears when f(·; ξ) := c̃(·; ξ)+ρ dist2W (ξ)(·), with c̃(·; ξ) convex, ρ > 0 a penalty parameter,

and dist2W (ξ)(·) the squared distance to a complicating set W (ξ) (e.g., modeling integrability con-

straints). As the distance function has a known DC decomposition [17, Ex. 4], we can write f as
in (2).

2.2.2 Statistics-based Learning Models

Let ξi and pi > 0 be as above, and M(y, ξi) be a piecewise affine model:

M(y, ξ) := max
j∈J1

{
⟨aj , ξ⟩+ αj

}
−max

j∈J2

{
⟨bj , ξ⟩+ βj

}
=: M1(y, ξ)−M2(y, ξ),

with J1 and J2 finite index sets and y :=
{
(aj , αj)j∈J1

, (bj , βj)j∈J2

}
. Accordingly, a piecewise-

affine statistical model for supervised learning is given by

z = M(y; ξ) + ε,

where z ∈ R is the output, ξ ∈ Rd the input, ε is the unobserved random error assumed to have
(conditional) mean zero, and y ∈ Rn the model parameter to be estimated (see [20, Ch. 3] for more
details). Given a training set (zi, ξi), i = 1, . . . , N , and loss function L : R → R+, the population
model minimizes the expected loss subject to prescribed constraints on y:

min
y∈Y

R(y) +

N∑
i=1

piL
(
M1(y, ξ

i)−M2(y, ξ
i)− zi

)
,

where R : Rn → R is a regularizing function (e.g., R is a multiple of the ℓ1-norm, ℓ2-norm, total
variation, etc.). We stress that many loss functions L : R → R+ can be used in practice [20, §

3.1.3]. For instance, if L(·) = | · | is the absolute function, then |M1(y, ξ
i)−M2(y, ξ

i)− zi| =
2max

{
M1(y, ξ

i)− zi, M2(y, ξ
i)
}
− [M1(y, ξ

i)− zi +M2(y, ξ
i)]. By setting

S :=
{
x = (x1, . . . , xN) ∈ RnN : x1 = · · · = xN

}
,

c(x) :=

N∑
i=1

pi[R(xi) + 2max
{
M1(xi, ξ

i)− zi, M2(xi, ξ
i)
}
,

w(x) :=

m∑
i=1

pi[M1(y, ξ
i)− zi +M2(y, ξ

i)],

and X := Y × · · · × Y ⊂ RnN ,

it can be easily seen that the problem fits the general structure in (1) with w being indeed a
convex function. Similar settings appear if the chosen loss function is the one with margin, or an
arbitrary function belonging to the quantile family of loss functions, or the truncated hinge loss,
or others (see [20, pages 125 and 126]).

2.3 Key Variational Concepts

This ubsections recalls some well known concepts in variational analysis; see, for instance, [21] for
more information.

A function f : Rn → R is said to be locally Lipschitz continuous if for each x′ ∈ Rn there is a
neighborhood Vx′ ⊂ Rn of x′ such that, for some Lx′ ≥ 0,

|f(x)− f(y)| ≤ Lx′∥x− y∥ ∀ x, y ∈ Vx′ .

Title Suppressed Due to Excessive Length 5

Function f is said to be Lipschitz continuous if Lx′ = L can be taken independent of x′ ∈ Rn, and
Vx′ in the above inequality is replaced with the entire space Rn.

Let c : Rn → R be a convex function. Then c is locally Lipschitz continuous and, for each
x ∈ Rn, the subdifferential of c at x is denoted by

∂c(x) := {s ∈ Rn : c(y) ≥ c(x) + ⟨s, y − x⟩ ∀ y ∈ Rn} .

The elements of ∂c(x) are referred to as the subgradients of c at x, and the set-valued operator ∂c is
monotone maximal. Recall that a mapping T : Rn ⇒ Rn is monotone (globally) if ⟨y′−y, x′−x⟩ ≥ 0
when y ∈ T (x) and y′ ∈ T (x′). It is maximal monotone if furthermore there is no monotone
mapping T ′ with gphT ′ ⊃ gphT and gphT ′ ̸= gphT , where gphT = {(x, y) ∈ R×R : y ∈ T (x)};
see, for instance, [1].

Let f : Rn → R be a locally Lipschitz continuous function. Then the generalized directional

derivative defined by f◦(x; d) := lim sup
x′→x, τ↓0

f(x′ + τd)− f(x′)

τ
is finite for all x ∈ Rn in every

direction d ∈ Rn [21, Prop. 2.1.1(a)]. Such a mathematical concept permits to define the Clarke
subdifferential of f at x,

∂Cf(x) := {g ∈ Rn : ⟨g, d⟩ ≤ f◦(x; d) for all d ∈ Rn},

which is a nonempty, convex, and compact subset of Rn [21, Prop. 2.1.2(a)] satisfying f◦(x; d) =
maxg∈∂Cf(x)⟨g, d⟩. The elements of ∂Cf(x) are referred to as generalized (or Clarke) subgradients,
as they are the usual subgradients when f is convex [21, Prop. 2.2.7]; i.e., ∂Cf = ∂f if f is convex.
Furthermore, when f is continuously differentiable, ∂Cf(x) reduces to the singleton {∇f(x)}. A
fundamental result concerning the generalized subdifferential is the following one [21, Prop. 2.1.2]:
the mapping ∂Cf is locally bounded in the interior of the domain of f . As a result, since in our
setting Dom(f) = Rn by assumption, the image ∂Cf(X) of every bounded set X ⊂ Rn is bounded
in Rn.

A function w : Rn → R is weakly convex if there exists a (possibly unknown) parameter
µw ≥ 0 such that w(x) + µ

2 ∥x∥
2 is convex for all µ ≥ µw. Such a definition is equivalent to saying

(see [22, Prop. 4.8]) that for all g ∈ ∂Cw(x), the following inequality holds

w(y) ≥ w(x) + ⟨g, y − x⟩ − µw

2
∥y − x∥2 ∀ y ∈ Rn. (3)

Clearly, this inequality holds for all µ ≥ µw.
A locally Lipschitz continuous function f : Rn → R is subdifferentially regular (or simply

regular) at x ∈ Rn if for every d ∈ Rn the ordinary directional derivative at x exists and coincides
with the generalized one:

f ′(x; d) := lim
τ↓0

f(x′ + τd)− f(x′)

τ
= f◦(x; d) ∀ d ∈ Rn.

It holds that smooth functions, as well as weakly convex ones, are regular at every point in the
interior of their domains; see [22, Prop. 4.5] and [23, Thm. 1]. Moreover, a finite linear combination
(by nonnegative scalars) of regular functions at x is regular [21, Prop. 2.3.6]. However, although
the convex c and weakly convex function w are regular, their difference f = c−w need not be. The
main inconvenient of non-regularity is the implication of weaker stationarity conditions for (1).

2.4 Necessary Optimality Conditions

It is well-known that the sharpest stationarity condition for nonsmooth and nonconvex optimiza-
tion problems is d(irectional)-stationarity. As X ∩ S is a convex set, x̄ ∈ X ∩ S is a d-stationary
point of problem (1) if

f ′(x̄; (x− x̄)) ≥ 0 ∀ x ∈ X ∩ S.

6 Welington de Oliveira and João Carlos Oliveira Souza

We recall that local optimal solutions are d-stationary, but the converse is not necessarily true.
Another condition is Clarke stationarity

0 ∈ ∂Cf(x̄) +NX∩S(x̄).

It is not difficult to see that this inclusion implies f◦(x̄; (x − x̄)) ≥ 0 for all x ∈ X ∩ S. Being f
non-regular, f◦(x̄; ·) ≥ f ′(x̄; ·) and therefore Clarke stationarity is, in general, a weaker condition
than d-stationarity. Since in this work we deal with f through the decomposition c − w, we may
not be able to numerically compute vectors in ∂Cf but in its enlargement ∂c − ∂Cw (⊃ ∂Cf). As
a result, we may get a weaker optimality condition, denoted by criticality: x̄ ∈ X ∩ S is a critical
point to problem (1) if

0 ∈ ∂c(x̄)− ∂Cw(x̄) +NX∩S(x̄). (4)

If c is differentiable at x̄, then criticality is equivalent to Clarke stationarity: in this case ∂Cf(x̄) =
∇c(x̄)−∂Cw(x̄) = ∂c(x̄)−∂Cw(x̄). The three conditions are equivalent provided w is differentiable
at x̄: under this assumption, not only ∂Cf(x̄) = ∂c(x̄) − ∇w(x̄) = ∂c(x̄) − ∂Cw(x̄) but also
f ′(x̄; ·) = f◦(x̄; ·), i.e., f is regular at x̄. (The latter claim follows from the fact that f ′(x̄; d) =
c′(x̄; d)− ⟨∇w(x̄), d⟩ = maxg∈∂c(x̄)−∇w(x̄)⟨g, d⟩ = maxg∈∂Cf(x̄)⟨g, d⟩ = f◦(x̄; d).)

We now give a different, but equivalent, characterization of criticality in terms of a linkage
problem. Observe that assumption iii) in Section 2.1 implies that riX ∩ riS ̸= ∅ because S is a
linear subspace. Hence, [24, Cor. 23.8.1] ensures that for all x ∈ X ∩ S,

∂δX∩S(x) = NX∩S(x) = NX(x) +NS(x) = ∂δX(x) + ∂δS(x).

Moreover, as Dom(c) = Rn from assumption i), we get that

∅ ≠ riDom(c) ∩ riX ∩ riS, and thus (5a)

∂[c+ δX + δS](x) = ∂c(x) + ∂δX(x) + ∂δS(x) for all x ∈ S. (5b)

Accordingly, the criticality condition in (4) reads as

0 ∈ ∂c(x̄) +NX(x̄) +NS(x̄)− ∂Cw(x̄) = ∂[c+ δX](x̄) +NS(x̄)− ∂Cw(x̄).

As S is a linear subspace, it follows that NS(x) = S⊥ for all x ∈ S. Thus, the above system of
generalized equations can be equivalently written in the form of a linkage problem:

find x̄ ∈ S and ȳ ∈ S⊥ such that ȳ ∈ T (x̄), with T (x) := ∂[c+ δX](x)− ∂Cw(x). (6)

Note that in (6) T : Rn ⇒ Rn is a set-valued operator that fails to be monotone due to
−∂Cw. This fact precludes the application of methods based on the celebrated proximal point
algorithm to solve (6). For the special class of nonmonotone operators with (local) elicitable
maximal monotonicity, the progressive decoupling algorithm (PDA) of [1] is perhaps the sole
proximal-point-like algorithm with local convegence for problem in this class.

2.5 The Progressive Decoupling Algorithm in a Nutshell

Let U : Rn ⇒ Rn be an operator, S a linear subspace of Rn, and consider the linkage problem:

find x̄ ∈ S and ȳ ∈ S⊥ such that ȳ ∈ U(x̄). (7)

The progressive decoupling algorithm (PDA) of [1] is an iterative method designed to solve (7)
provided maximal monotonicity of U is elicitable.

Definition 2.1 (Elicitation, [1] Def. 1) Maximal monotonicity is said to be elicitable globally
at a level e ≥ 0 if the mapping U + e projS⊥ : Rn ⇒ Rn is maximal monotone. (Here, projS⊥ is
the projection operator onto the orthogonal complement of S.) □

Title Suppressed Due to Excessive Length 7

Local elicitation requires U + e projS⊥ be maximal monotone on a neighborhood of a solution
of (7); see [1, Def. 1]. It follows from definition that if monotonicity is elicitable at a level e it is
elicitable at all higher levels e as well.

PDA is an iterative method that produces three sequences of points as follows, for given x1 ∈ S,
y1 ∈ S⊥ and r > e ≥ 0: x̂k s.t. 0 ∈ Uk(x̂k), where Uk(x) := U(x)− yk + r[x− xk]

xk+1 = projS(x̂
k)

yk+1 = yk − (r − e)(x̂k − xk+1).
(8)

PDA’s Convergence analysis is summarized in the following theorem [1].

Theorem 2.1 (Thm. 1 in [1]) Suppose the linkage problem (7) is solvable, and that e ≥ 0 gives
a level at which maximal monotonicity is elicited globally. Then the iterations in (8) for any r > e,
starting from any x1 and y1 ∈ S⊥, will generate a sequence of pairs (xk, yk) that converges to a
pair (x̄, ȳ) solving (7).

Identifying whether maximal monotonicity of an operator is elicitable, and at what level e ≥ 0,
is a non-trivial task in general. Indeed, when applied to the linkage problem (6), global (local)
elicitable monotonicity amounts to saying that there exists e ≥ 0 such that [f +δX](x)+ e

2d
2
S(x) is

globally (locally) convex, where dS(x) := minz∈S ∥z − x∥ = ∥projS⊥(x)∥. Observe that inferring
on the convexity of [f + δX](x) + e

2d
2
S(x) might be difficult for most applications. Furthermore,

many practical problems involve operators whose maximal monotonicity cannot be elicitable. This
are, for instance, the cases of the problems in Subsections 2.2.1 and 2.2.2. Figure 1 gives a simple
example of an elicitable function whereas Figure 2 illustrates the non-elicitable case.

0

10

20

2

x
1

0 -2

x
2

0-2 2

(a)

0

10

20

2

x
1

0 -2

x
2

0-2 2

(b)

Fig. 1 Let f(x) = c(x) − w(x), c(x) = |x1| + 2x2
2, w(x) = x2

1 + x2, and S = {x ∈ R2 : x1 = x2}. (a) Function f

is nonconvex, while in (b), f(x) + 5
2
d2S(x) is convex. Hence, convexity of f is elicitable globally at level e = 5. The

red lines in both subfigures represent the same function ϕ(x) = [f + δS](x), which is convex in this case.

In what follows, we do not assume that convexity in (1) can be elicitable and propose a
new variant of the PDA for computing a critical point to (1), i.e., a pair of vectors solving the
nonmonotone linkage problem (6).

3 CwC Progressive Decoupling Algorithm

This section presents the CwC Progressive Decoupling Algorithm and its convergence analysis.

3.1 The algorithm

Our goal in this section is to present an extension of the progressive decoupling algorithm of [1] for
computing a critical point to the nonconvex problem (1). A naive variant consists of replacing, at

8 Welington de Oliveira and João Carlos Oliveira Souza

0

10

20

2

x
1

0 -2

x
2

0-2 2

(a)

0

10

20

2

x
1

0 -2

x
2

0-2 2

(b)

Fig. 2 Let f(x) = c(x)−w(x), with c(x) = |x1|+ 1
2
x2
2, and w and S be as in Figure 1. (a) Function f is nonconvex

and, in (b), f(x) + e
2
d2S(x) remains nonconvex for all e ≥ 0. Hence, convexity of f is not elicitable at any level.

Note that ϕ(x) = [f + δS](x), represented by the red lines, is nonconvex.

every iteration ℓ = 1, 2, . . ., the generalized subdifferential ∂Cw in (7) with an element gℓ ∈ ∂Cw(xℓ)
and defining the next iterate as a solution to the following monotone (and thus simpler) linkage
problem:

find xℓ+1 ∈ S and yℓ+1 ∈ S⊥ such that yℓ+1 ∈ T ℓ(xℓ+1) with T ℓ(x) := ∂[c+ δX](x)− gℓ.

In other words, in this simple strategy, iterates are produced as follows:

compute gℓ ∈ ∂Cw(xℓ), and let xℓ+1 ∈ arg min
x∈X∩S

c(x)− [w(xℓ) + ⟨gℓ, x− xℓ⟩].

In pursuing this path, two technical difficulties arise:

– As w need not be convex, the convex function obtained by linearizing w need neither be
an upper nor a lower approximation of f = c − w. As a result, the link between the above
subproblem and (1) is fragile, and this arises some technical difficulties in analyzing the above
scheme.

– Exactly solving the linearized subproblem to define the next iterate can be unaffordable.

To circumvent the first inconvenient, we add the quadratic term µ
2 ∥x− xℓ∥2 to the subproblem’s

objective and update the prox-parameter µ ≥ 0 iteratively in order to estimate the unknown
constant µw given in (3). We target µ such that

c(xℓ+1)− [w(xℓ) + ⟨gℓ, xℓ+1 − xℓ⟩] + µ

2
∥xℓ+1 − xℓ∥2 ≥ c(xℓ+1)− w(xℓ+1),

a key inequality strengthening the link between the linearized problem and (1). We stress that
µ need not be an upper bound for µw, but large enough so that this last inequality holds for
consecutive iterates. Note that if w is convex, then µ = 0 does the job.

To get around the practical inconvenient of solving a difficult convex subproblem per itera-
tion, we propose to employ PDA with a safeguard permitting to stop the algorithm as soon as an
incumbent point is found. Declaring an incumbent point can be a delicate task as PDA may not
produce feasible iterates: note that when U(x) = ∂[c+δX](x) in (8), the algorithm defines x̂k ∈ X,
xk+1 ∈ S, and the constraint X ∩ S is satisfied only asymptotically if no further structure is as-
sumed. Therefore, to declare an incumbent point we furnish PDA with a descent test accompanied
by a penalty function PX : Rn → R+ associated with the convex closed set X, that is, PX(x) = 0
if and only if x ∈ X. We are interested in nonsmooth penalty functions, so that exact penalization
is possible. For instance, if X is simple enough to perform the projection with respect to a given
norm ∥ · ∥⋄, then we may take PX(x) = ρ minz∈X ∥z − x∥⋄, with ρ > 0 a penalty parameter. If,
instead, X is defined by a convex mapping G : Rn → Rm, that is, X = {x ∈ Rn : G(x) ≤ 0}, then
we may take PX(x) = ρ

∑m
i=1 max{Gi(x), 0}. We stress that the use of exact penalty functions

is restricted to the descent test, and they do not enter the optimization subproblems. This is

Title Suppressed Due to Excessive Length 9

an important feature worth highlighting as it avoids numerical errors frequently encountered in
penalization techniques. For problems satisfying the favorable condition

projS(X) ⊂ X, (9)

as the ones of Subsection 2.2.2 above, the use of a penalty function is needless. These ideas are
detailed in Algorithm 1.

Algorithm 1 CwC Progressive Decoupling Algorithm (CwC-PDA)

1: Given x1 ∈ X ∩ S, choose y1 ∈ S⊥, compute g1 ∈ ∂Cw(x1) ▷ Step 0: Initialization
2: Choose 0 < rmin ≤ r1 ≤ rmax <∞, κ ∈ (0, 1

2
), µ1 > 0, and Tol > 0

3: Given a penalty function PX , define ℓ1 ← 1

4: for k = 1, 2, 3, . . . do
5: Let x̂k be the solution to the strongly convex program ▷ Step 1: Trial point

min
x∈X

c(x)− ⟨gℓk + yk, x⟩+
µk

2
∥x− xℓk∥2 +

rℓk

2
∥x− xk∥2 (10)

6: Define xk+1 ← projS(x̂
k) and yk+1 ← yk − rℓk (x̂k − xk+1)

7: Set vk ← max{∥xk+1 − xℓk∥2, ∥yk+1 − yk∥2, ∥xk+1 − xk∥2} ▷ Step 2: Descent test
8: if f(xk+1) + PX(xk+1) ≤ f(xℓk) + PX(xℓk)− κ

2
vk then

9: Set ℓk+1 ← k + 1, xℓk+1 ← xk+1, and µk+1 ← µk ▷ Serious step

10: Choose rℓk+1 ∈ [rmin, rmax] and compute gℓk+1 ∈ ∂Cw(xℓk+1)
11: else
12: Define ℓk+1 ← ℓk and compute ▷ Null step

νk ← 2max

{
w(xℓk) + ⟨gℓk , xk+1 − xℓk ⟩ − w(xk+1)

∥xk+1 − xℓk∥2
, 0

}
(11)

13: If νk ≥ µk − 2κ, set µk+1 ← νk + 1; otherwise µk+1 ← µk

14: end if
15: end for

Step 1 consists of a PDA iteration applied to the maximal monotone operator

T̃ ℓk(x) := ∂[c+ δX](x)− gℓk + µk[x− xℓk], (12)

which is an approximation of the nonmonotone one T (x) = ∂[c + δX](x) − ∂Cw(x) given in (6).
Indeed, the point x̂k satisfies 0 ∈ T k(x̂k), with T k(x) = T̃ ℓk(x) − yk + rℓk [x − xk]. The points
xk+1 and yk+1 are exactly as in (8), with e = 0. Furthermore, as x̂k − xk+1 = x̂k − projS(x̂

k) =
projS⊥(x̂k) we get that yk+1 ∈ S⊥ provided yk ∈ S⊥. Since y1 ∈ S⊥, we conclude from the
definition of x̂k and yk+1 that

yk ∈ ∂[c+ δX](x̂k)− gℓk + µk[x̂k − xℓk] + rℓk [x̂k − xk] and yk ∈ S⊥ for all k. (13)

Note, however, a crucial difference with (8): the operator T̃ ℓk changes along iterations in contrast
with the progressive decoupling algorithm that keeps the same elicitable operator U .

In the examples of Section 2.2, the feasible set is the Cartesian product X = Xi × · · · ×XN ,
and the function c has the following additive structure c(x) =

∑N
i=1 ci(xi). As a result, the convex

subproblem (10) splits into N independent and smaller subproblems:

x̂k
i = argminxi∈Xi

ci(xi)− ⟨gℓki + yki , xi⟩+
µk

2
∥xi − xℓk

i ∥2 + rℓk
2 ∥xi − xk

i ∥2, i = 1, . . . , N.

Hence, the task of computing x̂k in Step 1 is embarrassingly parallel.
Observe that Step 1 gives x̂k ∈ X and xk+1 ∈ S. If condition (9) holds, then it follows that

xk+1 ∈ S ∩X and the algorithm produces a sequence of feasible points {xk} to problem (1). In

10 Welington de Oliveira and João Carlos Oliveira Souza

this favorable case, the penalty function PX is needless. However, if (9) does not hold, then PX

plays an important role in measuring the algorithm’s progress and classifying iterates as serious
(incumbent) or null ones.

The dichotomy between serious and null iterates is borrowed from bundle methods [25, Ch.
10]. In such a class of methods, serious iterates are those improving the objective function and
are kept (momentary or not) as the method’s stability center, that is, the best known solution
candidate so far. This is exactly the same case here, as the serious iterate xℓk enters as a stability
center in (10). Concerning null steps, they are useful in bundle methods to improve a model
that approximates the objective function. This is not the case for Algorithm 1, but note that if
x̂k = x̂ and µk = µ remain fixed forever, then the algorithm boils down to the PDA applied
to the operator given in (12) and, as a consequence, will eventually solve the convex problem
minx∈X∩S c(x) − [w(x̂) + ⟨ĝ, x − x̂⟩ + µ

2 ∥x − x̂∥2 (that can be understood as the evaluation of a
proximal mapping, just like bundle methods do).

After a null step, the proximal parameter is increased if νk ≥ µk − 2κ. This rule, originally
from [2], has the goal of estimating the parameter µw from assumption ii). Indeed, µk is increased
to νk + 1 (≥ µk − 2κ+ 1 > µk) whenever the inequality (3) is compromised: note that (11) gives

w(xk+1) ≥ w(xℓk) + ⟨gℓk , xk+1 − xℓk⟩ − νk

2
∥xk+1 − xℓk∥2,

which mimics (3) with y = xk+1 and x = xk. The inequality ν > µk indicates that the current prox-
parameter µk is a poor estimation for µw, and thus the algorithm chooses µk+1 > µk. However,
in our convergence analysis, it is mandatory that sequence {µk} becomes eventually constant if
the algorithm stops producing serious iterates. In other words, the prox-parameter is permitted
to increase only finitely many times in the event of an infinite sequence of consecutive null steps.
This is why the algorithm employs the rule at line 13. This claim is formally stated in the first
lemma below.

3.2 Convergence Analysis

We start the convergence analysis of Algorithm 1 (CwC-PDA) with the following result from [2]
concerning the prox-parameter sequence. For the reader’s convenience, we give its proof in the
Appendix.

Lemma 3.1 (Lemma 5.1 from [2]) The value µmax := supk∈N µk is finite. Furthermore, if
the algorithm produces an infinite sequence of null steps after a last serious step, then the prox-
parameter becomes eventually constant.

Proposition 3.1 (Finitely many serious steps) Assume (5a) and suppose that after a certain
iteration, no more serious steps are performed: ℓk = ℓ is fixed. Then

a) limk→∞ xk+1 = x̃ and limk→∞ vk = ∥x̃−xℓ∥, with x̃ the unique solution to the convex problem

min
x∈X∩S

c(x)− [w(xℓ) + ⟨gℓ, x− xℓ⟩] + µ′

2
∥x− xℓ∥2, (14)

and µ′ > 0 is such that µk = µ′ for all k large enough;

b) If PX(·) is an exact penalty for (14), that is, x̃ also solves the (partially) penalized problem

min
x∈S

c(x) + PX(x)− [w(xℓ) + ⟨gℓ, x− xℓ⟩] + µ′

2
∥x− xℓ∥2, (15)

then x̃ equals xℓ and is a critical point to (1).

Title Suppressed Due to Excessive Length 11

Proof We highlight that the updating rule for µk in Algorithm 1 ensures that the sequence
{µk}k>ℓ is non-decreasing and becomes constant at a certain value µ′ ∈ (0, µmax] after finitely
many steps k′ > ℓ as a consequence of Lemma 3.1. More precisely, the updating rule at line 13 of
Algorithm 1 ensures that

µk = µ′ and νk + 2κ < µ′ for all k > k′. (16)

Hence, from iteration k′ on, Algorithm 1 behaves as the PDA applied to the convex problem (14).
Theorem 2.1 under condition (5a) ensures that: (i) the whole sequence {xk} converges to the
point x̃ solving (14); (ii) the whole sequence {yk} converges to a point ỹ ∈ S⊥; (iii) the pair
(x̃, ỹ) ∈ S × S⊥ satisfies ỹ ∈ ∂[c+ δX](x̃)− gℓ + µ′(x̃− xℓ). Properties (i)-(iii) and definition of vk
prove item a).

Concerning item b), we claim that x̃ = xℓ under the stated additional assumption, and thus xℓ

satisfies, due to (iii) above, the criticality condition (6). To show that, let us assume the opposite,
i.e., x̃ ̸= xℓ, and arrive to a contradiction. In this case, first observe from (i) and (ii) that for
every ϵ > 0 small enough, there exists k′′ ≥ k′ such that ∥xk+1 − xℓ∥2 ≥ ε ≥ ∥yk+1 − yk∥2 and
ϵ ≥ ∥xk+1 − xk∥2 for all k ≥ k′′. As a result, the measure vk becomes vk = ∥xk+1 − xℓ∥2 for all
k ≥ k′′, and the inequality

f(xk+1) + PX(xk+1) > f(xℓ) + PX(xℓ)− κ

2
∥xk+1 − xℓ∥2 for all k ≥ k′′ (17)

follows from the assumption that only null steps are produced after k ≥ ℓ. Next, observe that for
k > k′′ (≥ k′),

w(xℓ) + ⟨gℓ, xk+1 − xℓ⟩ ≤ w(xk+1) +
νk

2
∥xk+1 − xℓ∥2 < w(xk+1) +

µ′ − 2κ

2
∥xk+1 − xℓ∥2.

By passing to the limit as k goes to infinity and recalling continuity of w we get

−[w(xℓ) + ⟨gℓ, x̃− xℓ⟩] ≥ −w(x̃) +
2κ− µ′

2
∥x̃− xℓ∥2.

Furthermore, as PX(·) is an exact penalty function for (14), we get that x̃ solving (14) also
solves (15) [26, Prop. 1.5.1] . Since xℓ is feasible to the latter problem, the above inequality yields

f(xℓ) + PX(xℓ) = c(xℓ)− w(xℓ) + PX(xℓ) ≥ c(x̃)− [w(xℓ) + ⟨gℓ, x̃− xℓ⟩] + µ′

2
∥x̃− xℓ∥2 + PX(x̃)

≥ c(x̃)− w(x̃) +
2κ

2
∥x̃− xℓ∥2 + PX(x̃)

= f(x̃) + PX(x̃) +
2κ

2
∥x̃− xℓ∥2.

Thus, in view of (17) and the fact that PX(x̃) = 0 because x̃ solves (14),

f(x̃) ≤ f(xℓ) + PX(xℓ)− 2κ

2
∥x̃− xℓ∥2 < f(xk+1) + PX(xk+1) +

κ

2
∥xk+1 − xℓ∥2 − 2κ

2
∥x̃− xℓ∥2.

By passing to the limit as k goes to infinity we get f(x̃) ≤ f(x̃) + 0 − κ
2 ∥x̃ − xℓ∥2, contradicting

thus our assumption that x̃ ̸= xℓ. Hence x̃ = xℓ solves (14), vk → 0 and the proof is complete. □

Proposition 3.2 (Infinitely many serious steps) Consider problem (1) and assume that the
level set Lf (x

1) := {x ∈ X ∩ S : f(x) ≤ f(x1)} is bounded. Suppose that Algorithm 1 produces
infinitely many serious steps, i.e., limk→∞ ℓk = ∞. Then all cluster points of the sequence {xℓk}k
are critical points to problem (1). Furthermore, let K be the index set of a converging subsequence
of {xℓk}k. Then limK∋k→∞ vk = 0.

12 Welington de Oliveira and João Carlos Oliveira Souza

Proof Let ιk := ℓk+1 − 1. With this notation the descent test at serious steps reads as

f(xℓk+1) + PX(xℓk+1) ≤ f(xℓk) + PX(xℓk)− κ

2
vιk ,

with vιk = max{∥xℓk+1−xℓk∥2, ∥yℓk+1−yιk∥2, ∥xℓk+1−xιk∥2}. Monotonicity of {f(xℓk)+PX(xℓk)}k
and the assumption that the level set is bounded yield

0 ≤ κ

2

∞∑
k=1

vιk ≤
∞∑
ℓ=1

[f(xℓk)+PX(xℓk)−f(xℓk+1)−PX(xℓk+1)] = f(x1)− lim
ℓ→∞

[f(xℓk+1)+PX(xℓk+1)] < ∞,

showing that limk→∞ vιk = 0. As a result,

0 = lim
k→∞

∥xℓk+1 − xℓk∥ = limk→∞ ∥yℓk+1 − yιk∥ = limk→∞ ∥xℓk+1 − xιk∥, (18)

and thus, from Step 1,

lim
k→∞

(rℓk)2∥x̂ιk − xℓk+1∥2 = limk→∞ ∥yℓk+1 − yιk∥2 = 0.

Boundedness of {rℓk}k gives that limk→∞ ∥x̂ιk − xℓk+1∥ = 0. As {xℓk}k ⊂ Lf (x
1), we conclude

that this sequence is bounded and has at least one cluster point x̄: there exists an index set K ⊂
{1, 2, . . .} such that limK∋k→∞ xℓk = x̄ ∈ S. As 0 = limk→∞ ∥xℓk+1−xℓk∥, then limK∋k→∞ xℓk+1 =
x̄. Moreover, limK∋k→∞ ∥x̂ιk − x̄∥ = limK∋k→∞ ∥(x̂ιk −xℓk+1)+ (xℓk+1 − x̄)∥ = 0 due to the above
limits. All in all,

x̄ = lim
K∋k→∞

xℓk = lim
K∋k→∞

xℓk+1 = lim
K∋k→∞

x̂ιk = lim
K∋k→∞

xιk ,

and limK∋k→∞ vιk = limK∋k→∞ vℓk+1−1 = limK∋k→∞ vk = 0. We now rewrite (13) with k = ℓk
and use the notation ιk to get

gℓk − rℓk(x̂ιk − xιk)− µιk(x̂ιk − xℓk) ∈ ∂[c+ δX](x̂ιk)− yιk .

As yk ∈ S⊥ for all k, we get that −yk ∈ S⊥ and thus

gℓk − rℓk(x̂ιk − xιk)− µιk(x̂ιk − xℓk) ∈ ∂[c+ δX](x̂ιk) + S⊥.

Since the generalized subddifferential is outer-semicontinuous and locally bounded [21, Props.
2.1.2(a) and 2.1.5(b)], we find K′ ⊂ K such that {gℓk}k∈K′ (with gℓk ∈ ∂Cw(xℓk)) converges to an
element ḡ ∈ ∂Cw(x̄). As {µk} is bounded (c.f. Lemma 3.1), by passing to the limit with k ∈ K′

going to infinity at the above inclusion (recalling (18) and outer semi-continuity of ∂[c+ δX](x̂ιk))
we obtain ḡ ∈ ∂[c+ δX](x̄) + S⊥, which implies that x̄ ∈ X is a critical point (c.f. (6)). □

Theorem 3.1 Consider Algorithm 1 applied to problem (1). Under the assumptions i)-iii) on
problem (1), suppose further that the level set Lf (x

1) := {x ∈ X ∩ S : f(x) ≤ f(x1)} is bounded.
Then the following holds:

a) If only finitely many serious steps are produced, then limk→∞ xk+1 = x̃ and limk→∞ vk =
∥x̃−xℓ∥, with x̃ the unique solution to the convex problem (14), with xℓ the last serious iterate
and µk = µ′ for all k large enough. If, in addition, PX(·) is an exact penalty for (14), then
x̃ equals xℓ and is a critical point to (1).

b) If the algorithm produces infinitely many serious steps, then all cluster points of the sequence
{xℓk}k are critical points to problem (1). Furthermore, lim infk vk = 0.

Proof Item a) follows from Proposition 3.1 and item b) from Proposition 3.2. □

Corollary 3.1 If (9) holds, then no penalty function is necessary. The results of Theorem 3.1
can be summarized as follows: if the function has bounded level set, then all cluster points of the
sequence {xℓk}k are critical points to problem (1).

Title Suppressed Due to Excessive Length 13

3.3 Additional Comments and Specialization to the DC Setting

A possible stopping test for algorithm 1 is vk ≤ Tol, with Tol ≥ 0 a given tolerance. Theorem 3.1
ensures that, provided PX(·) is an exact penalty function, lim infk vk = 0. It remains to know
whether vk = 0 implies that xℓk is critical point.

Proposition 3.3 Suppose that vk = 0 at a certain iteration of Algorithm 1. Then xℓk is a critical
point to problem (1).

Proof Observe that vk = 0 implies xk+1 = xk = xℓk and yk+1 = yk. The latter equality implies
x̂k = xk+1 (= xk). Inclusion (13) becomes yk ∈ ∂[c + δX](xℓk) − gℓk , with gℓk ∈ ∂Cw(xℓk), i.e.,
xk ∈ S and yk ∈ S⊥ solve the linkage problem (6). □

The sequence {vk} can also be used to inquire about the correctness of the penalty function
PX(·). Indeed, if the algorithm stops performing serious steps, vk is bounded away from 0 but
vk >> ∥xk+1 − xk∥ ≈ 0 and vk >> ∥yk+1 − yk∥ ≈ 0, we can infer from Proposition 3.1 that {xk}
is converging to the solution x̃ of subproblem (14), and x̃ ̸= xℓ. Given Proposition 3.1 item b),
this can only happen if PX is not an exact penalty function. Thus, if this behavior happens, we
can update the penalty function (normally by increasing its penalty parameter) and continue with
the algorithm’s iterative process.

It turns out that for problems having a DC structure, the quadratic term µk

2 ∥x − xℓk∥2 is
needless. Therefore, Algorithm 1 can be simplified by taking µk = 0 for all k and removing the
rule for updating µk. In the following analysis we assume (9) for the sake of simplicity.

Theorem 3.2 (Simplified variant: specialization to the DC setting) In addition to the
assumptions in Theorem 3.1, suppose that (9) holds and w is strongly convex with modulus γ > 0.
Furthermore, consider the following simplified variant of Algorithm 1 with κ ∈ (0, γ), µk = 0
for all k, the penalty function PX(·) omitted, and equation (11) and line 13 suppressed. Then all
cluster points of the sequence {xℓk}k are critical points to problem (1).

Proof Infinitely many serious steps. For the case in which the algorithm produces infinitely many
serious steps, the result follows directly from the proof of Proposition 3.2 by taking therein µk = 0
for all k. No additional analysis is necessary.

Finitely many serious steps. Let k′ the last serious iteration. Then, for all k > k′, ℓk = ℓ is
fixed and this variant of Algorithm 1 behaves as the PDA applied to the convex problem (recall
that µk = 0)

min
x∈X∩S

c(x)− [w(xℓ) + ⟨gℓ, x− xℓ⟩].

Theorem 2.1 under condition (5a) ensures that: (i) the whole sequence {xk} converges to the point
x̃ solving this subproblem; (ii) the whole sequence {yk} converges to a point ỹ ∈ S⊥; (iii) the pair
(x̃, ỹ) ∈ S × S⊥ satisfies ỹ ∈ ∂[c + δX](x̃) − gℓ. These properties ensure that there exists k′′ > k′

such that vk = ∥xk − xℓ∥ for all k ≥ k′′. Furthermore, strong convexity of w implies that

c(x̃)− w(x̃) +
γ

2
∥x̃− xℓ∥2 ≤ c(x̃)− [w(xℓ) + ⟨gℓ, x̃− xℓ⟩] ≤ c(xℓ)− w(xℓ),

i.e., f(x̃) ≤ f(xℓ) − γ
2 ∥x̃ − xℓ∥2. As κ ∈ (0, γ), we conclude that f(x̃) < f(xℓ) − κ

2 ∥x̃ − xℓ∥2. If
x̃ ̸= xℓ, continuity of f and the fact that vk = ∥xk − xℓ∥ → ∥x̃ − xℓ∥ would give a new serious
step, contradicting the assumption that only null steps are produced after k′. Thus x̃ = xℓ and
optimality of xℓ to the above subproblem coincides with criticality to problem (1). □

4 Numerical Experiments

We consider two classes of stochastic optimization problems: two-stage stochastic standard quadratic
optimization and two-stage stochastic programming with decision-dependent probability. Our
Matlab codes are freely available at https://www.oliveira.mat.br/solvers.

14 Welington de Oliveira and João Carlos Oliveira Souza

4.1 Two-Stage Stochastic Standard Quadratic optimization.

This subsection considers a special family of nonconvex stochastic programs (2), with T = 2
and quadratic objective. The problem, which finds applications in minimal variance portfolio
investments, social network problems, and others [27], is denoted by two-stage stochastic standard
quadratic optimization problem and is formulated as:

min
z,u

z⊤Az +
∑N

i=1 pi[2z
⊤B(ξi)⊤ui + u⊤

i C(ξi)ui]

s.t. e⊤z + e⊤ui = 1, i = 1, . . . , N
z ≥ 0, ui ≥ 0, i = 1, . . . , N,

with A ∈ Rn1×n1 , B(ξ) ∈ Rn2×n1 , and C(ξ) ∈ Rn2×n2 given (non positive semi-definite) matrices.
Observe that he problem’s size rapidly increases with the number of scenarios N . To decompose
this problem by scenario, we replicate the z vector N times, denote the linear subspace by

S :=
{
(zi, ui) ∈ R(n1+n2)N , i = 1, . . . , N : z1 = · · · = zN

}
, (19)

and rewrite the problem as
min

(z,u)∈S

∑N
i=1 pi[z

⊤
i Azi + 2z⊤i B(ξi)⊤ui + u⊤

i C(ξi)ui]

s.t. e⊤zi + e⊤ui = 1, i = 1, . . . , N
(zi, ui) ≥ 0, i = 1, . . . , N.

(20)

Without further assumptions, convexity is not elicitable (because the problem is nonconvex even
for N = 1). However, the above problem fits our general structure (1) with c ≡ 0 and w the
objective function in (20) multiplied by minus one: w has Lipschitz gradients, and is thus weakly
convex. In this case, the solution of the convex subproblem (10) is nothing but the projection of
N vectors of dimension n1 + n2 onto the simplex. These projections can be computed in parallel
by efficient specialized algorithms.

We have randomly generated data by the following rule: matrices A and C(ξ) are randomly and
uniformly generated in the interval [0, 1], and matrices B(ξ) are uniformly generated in the interval
[−1, 0] (in this way, both vectors zi and ui composing a solution of (20) are nonzero vectors).
None of these matrices needs to be positive semi-definite. We have considered 100 instances of
problem (20), obtained by varying n1, n2 ∈ {5, 10, 15, 20, 30} and N ∈ {1000, 2000, 3000, 4000},
and the following solvers:

– CwC-PDA - Convex-weakly convex Progressive Decoupling Algorithm. This is Algorithm 1 coded
in Matlab with the following choice of parameters: r1 = 5 ·10−2 and rk ∈ [10−5, 103] increased
by 10% after three consecutive null steps, and decreased by the same amount after three
consecutive serious steps. We also set µ1 = 2 · 10−5 + 10−8, κ = 10−5, and MaxIter = 6× 103.
We have employed the stopping test vk ≤ Tol, with Tol = 5× 10−5.

– IPOPT - Interior Point Optimizer. This solver was called from Matlab through the interface
available at https://github.com/ebertolazzi/mexIPOPT. We applied IPOPT twice, with tol-
erances 10−5 and 10−6. Figure 3 employs the functional value and CPU time of IPOPT with
Tol = 10−6 as references.

Since problem (20) does not satisfy condition (9), we have equipped CwC-PDA with the penalty

function P (x) = 500
∑N

i=1 pi|e⊤zi + e⊤ui − 1|. With this choice, the critical points computed by

the solver satisfy
∑N

i=1 pi|ē⊤z̄i + e⊤ūi − 1| ≤ 10−7 in all problem instances (recall that, being an
interior point method, IPOPT computes feasible points). Figure 3 summarizes the obtained results.

Concerning the function values, the figure on the left shows that the median (red line) is lower
for the values computed by CwC-PDA, indicating that the critical points computed by the solver
are of better quality than those computed by IPOPT. With respect to CPU time (the figure on
the right), it is clear that CwC-PDA outperformed IPOPT in this class of problems. Indeed, CwC-PDA

Title Suppressed Due to Excessive Length 15

IPOPT CwC-PDA

-60

-40

-20

0

20

40

60

80

%

IPOPT CwC-PDA

-100

-50

0

50

100

150

200

250

300

%

Fig. 3 Comparison between CwC-PDA and IPOPT (Tol = 10−5) on 100 instances of two-stage stochastic standard
quadratic problem. Functional value and CPU time of IPOPT with Tol = 10−6 are taken as references.

computed critical points for the 100 test problems in less than one hour, while IPOPT (Tol = 10−6)
required more than eight hours in a computer with the following configuration: Intel Core i7, CPU
@ 2.70GHz, 32 GB RAM, 64-Bit Window 10, and Matlab 2021b.

4.2 Two-Stage Stochastic Programming with Decision-Dependent Probability

This subsection presents numerical results for a nonconvex two-stage problem of the form
min
x,y

c̃⊤x+

N∑
i=1

pi(x)[q(ξ
i)⊤y(ξi)]

s.t. x ∈ X, y(ξi) ∈ Y, i = 1, . . . , N
T (ξi)x+W (ξi)y(ξi) = h(ξi), i = 1, . . . , N.

The difficulty here is that the scenario probability depends on the decision variable x: we assume
that p(x) =

∑
j∈J p̃jxj ∈ RN , with p̃j vectors on the (N + 1)-simplex. The problem fits our

general structure (1) with c ≡ 0 and w the objective function above multiplied by minus one:
w has Lipschitz gradients, and is thus weakly convex. We consider the power system planning
application from [19], with data and solver DPME available at https://github.com/lhyoung99/
Decomposition_NonvexSP:

– DPME - Partial Moreau envelope method. This is the solver (in Matlab) provided by the authors
of [19], with default parameters;

– CwC-PDA - Convex-weakly Convex Progressive Decoupling Algorithm. This is Algorithm 1 with
the following choice of parameters: r1 = 5 · 10−4 and rk ∈ [10−5, 103] increased by 10% after
three consecutive null steps, and decreased by the same amount after three consecutive serious
steps. We also set µ1 = 2 · 10−5 + 10−8, κ = 10−5, and let the algorithm stop after 10 (variant
CwC-PDA-10) and 20 (variant CwC-PDA-20) iterations.

As in [19], the solvers are initialized with the same initial point. Figures 4 and 5 report some
results obtained by both solvers on 100 instances of the problem with N = 5000 and N = 10000
scenarios, respectively. Once the solvers provide an approximate critical point x̄, the function value
is computed as

f(x̄) = c̃⊤x̄+

N∑
i=1

pi(x̄)

{
min
y∈Y

q(ξi)⊤y s.t. W (ξi)y = h(ξi)− T (ξi)x̄

}
.

16 Welington de Oliveira and João Carlos Oliveira Souza

DPME CwC-PDA-10 CwC-PDA-20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

%

DPME CwC-PDA-10 CwC-PDA-20

-50

0

50

100

150

200

250

%

Fig. 4 Comparison between CwC-PDA and DPME on 100 instances of the two-stage stochastic problem with N = 5000
scenarios.

In Figures 4 and 5, tref stands for the CPU time required by IPOPT to compute the functional
value fref .

In terms of functional value, Figure 4 shows that IPOPT and DPME have similar accuracy.
The median of relative errors is 0.1689% for CwC-PDA-10, and 0.006% for CwC-PDA-20. As for
infeasibility, the median is is 7.7 · 10−5 for CwC-PDA-10 and 1.1 · 10−4 for CwC-PDA-20. The figure
also shows that, compared to IPOPT, the solvers DPME, CwC-PDA-10 and CwC-PDA-20 reduce CPU
time, being DPME the fastest one. Total CPU time in seconds required by the four solvers to solve
the 100 instances are given in Table 1.

CPU time in seconds
Number of scenarios IPOPT DPME CwC-PDA-10 CwC-PDA-20

5000 4567 2521 2024 3181
10000 8693 4605 3374 5636

Table 1 Total CPU time to solve 100 instances of the considered two-stage stochastic problem with decision-
dependent probability.

For the case N = 5000, we have observed that, on average, DPME satisfies its stopping test
in only twelve iterations. On the other hand, as expected from a splitting method, our approach
quickly computes a reasonable approximate solution but takes long to improve its quality (compare
variants CwC-PDA-10 and CwC-PDA-20).

A similar analysis carries over Figure 5 that considers the case with N = 10 000 scenarios.
The median of relative errors is 0.304% for CwC-PDA-10 and 0.022% for CwC-PDA-20. The median
of CPU time reduction is 67% for DPME, 64% for CwC-PDA-10, and 35% for CwC-PDA-20. In our
numerical experiments, almost all iterates of our approach were declared serious iterates.

We stress that for these test problems, both solvers require solving N quadratic programs
(QPs) per iteration. However, if the problem had convex nonlinear second-stage subproblems,
the conclusion on CPU time could be different: DPME would require solving N convex nonlinear
programs per iteration, while CwC-PDA the same N QPs. This different computation burden per
iteration can be counter-balanced by the fact that being a splitting method, CwC-PDA is likely to
require more iterations to achieve the same level of quality than DPME does. We recall that if the
problem had T > 2 stages or nonconvex subproblems, DPME would not apply. This fact contrasts

Title Suppressed Due to Excessive Length 17

DPME CwC-PDA-10 CwC-PDA-20

0

0.5

1

1.5

2
%

DPME CwC-PDA-10 CwC-PDA-20

-50

0

50

100

150

200

%

Fig. 5 Comparison between CwC-PDA and DPME on 100 instances of the two-stage stochastic problem with N = 10000
scenarios.

with CwC-PDA that is applicable in the nonlinear multistage setting as long as the objective function
has the general CwC structure.

5 Conclusions

This work introduces a new variant of the progressive decoupling algorithm of [1] for a broad class of
nonconvex and nonsmooth optimization problems consisting of minimizing the difference of convex
and weakly convex functions over a linear subspace. Computing a critical point for problems
of this class amounts to solving a linkage problem whose operator fails to be monotone. We
combine linearization, penalization, and PDA to address the challenge. Penalization is restricted
to the descent test and does not enter the optimization subproblems. Furthermore, penalization
is dismissed in several applications of the consensus type, where the linear subspace appears as a
mere modeling artifice. For the particular case of DC programming, the given algorithm can be
significantly simplified (c.f. Theorem 3.2).

We provided convergence analysis (to critical points) and illustrated the approach’s numerical
performance on two nonconvex two-stage stochastic programs. Studying the method’s convergence
rate is left for future research.

Acknowledgements The first author acknowledges financial support from the Gaspard-Monge program for Op-
timization and Operations Research (PGMO) project “SOLEM - Scalable Optimization for Learning and Energy
Management”.
The datasets generated during and/or analysed during the current study are available from the corresponding
author’s web-page: www.oliveira.mat.br/solvers.

References

1. R. Tyrrell Rockafellar. Progressive decoupling of linkages in optimization and variational inequalities with
elicitable convexity or monotonicity. Set-Valued and Variational Analysis, 27(4):863–893, oct 2019.

2. K. Syrtseva, W. de Oliveira, S. Demassey, and W. van Ackooij. Minimizing the difference of convex and weakly
convex functions via bundle method. To appear in Pacific Journal of Optimization, 2024, doi: 10.61208/pjo-
2024-004.

3. Roland Glowinski and Patrick Le Tallec. Augmented Lagrangian Methods for the Solution of Variational
Problems, pages 45–121. 1987.

18 Welington de Oliveira and João Carlos Oliveira Souza

4. Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine
Learning, 3(1):1–122, 2011.

5. Jonathan E. Spingarn. Partial inverse of a monotone operator. Applied Mathematics & Optimization, 10(1):247–
265, jun 1983.

6. R. T. Rockafellar and Roger J.-B. Wets. Scenarios and policy aggregation in optimization under uncertainty.
Mathematics of Operations Research, 16(1):119–147, February 1991.

7. Welington de Oliveira. Risk-averse stochastic programming and distributionally robust optimization via oper-
ator splitting. Set-Valued and Variational Analysis, 29(4):861–891, Dec 2021.

8. Jim Douglas and H. H. Rachford. On the numerical solution of heat conduction problems in two and three
space variables. Transactions of the American Mathematical Society, 82(2):421–439, 1956.

9. Jonathan Eckstein and Dimitri P. Bertsekas. On the Douglas-Rachford splitting method and the proximal
point algorithm for maximal monotone operators. Mathematical Programming, 55(1–3):293–318, April 1992.

10. Guoyin Li and Ting Kei Pong. Global convergence of splitting methods for nonconvex composite optimization.
SIAM Journal on Optimization, 25(4):2434–2460, January 2015.

11. Guoyin Li and Ting Kei Pong. Douglas–Rachford splitting for nonconvex optimization with application to
nonconvex feasibility problems. Mathematical Programming, 159(1–2):371–401, November 2016.

12. Andreas Themelis and Panagiotis Patrinos. Douglas–Rachford splitting and admm for nonconvex optimization:
Tight convergence results. SIAM Journal on Optimization, 30(1):149–181, January 2020.

13. Felipe Atenas. Convergence rate of nonconvex Douglas-Rachford splitting via merit functions, with applications
to weakly convex constrained optimization. Technical report, ArXiv 2303.16394, 2023.

14. Yu Yang, Xiaohong Guan, Qing-Shan Jia, Liang Yu, Bolun Xu, and Costas J. Spanos. A survey of ADMM
variants for distributed optimization: Problems, algorithms and features. Technical Report 2208.03700, 2022.
Availabel at https://arxiv.org/abs/2208.03700.

15. P. Hartman. On functions representable as a difference of convex functions. Pacific Journal of Mathematics,
9(3):167–198, 1959.

16. Hoai An Le Thi and Tao Pham Dinh. Dc programming and dca: thirty years of developments. Mathematical
Programming, 169(1):5–68, January 2018.

17. Welington de Oliveira. The ABC of DC programming. Set-Valued and Variational Analysis, 28(4):679–706,
2020.

18. Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczyński. Lectures on Stochastic Programming: Mod-
eling and Theory. MPS-SIAM Series on Optimization. SIAM - Society for Industrial and Applied Mathematics
and Mathematical Programming Society, Philadelphia, 2009.

19. Hanyang Li and Ying Cui. A decomposition algorithm for two-stage stochastic programs with nonconvex
recourse. Technical report, ArXiv:2204.01269, 2022.

20. J.-S. Pang Y. Cui. Modern Nonconvex Nondifferentiable Optimization. SIAM, 2022.
21. F.H. Clarke. Optimisation and Nonsmooth Analysis. Classics in Applied Mathematics. Society for Industrial

and Applied Mathematics, 1990.
22. Jean-Philippe Vial. Strong and weak convexity of sets and functions. Mathematics of Operations Research,

8(2):231–259, 1983.
23. R.T. Rockafelar. Favorable classes of lipschitz continuous functions in subgradient optimization. In Progress

in Nondifferentiable Optimization, IIASA Collaborative Proceedings Series, International Institute of Applied
Systems Analysis, Laxenburg, Austria, pages 125–144, 1982.

24. R.T. Rockafellar. Convex Analysis. Princeton University Press, 1st edition, 1970.
25. J.F. Bonnans, J.C. Gilbert, C. Lemaréchal, and C. Sagastizábal. Numerical Optimization: Theoretical and

Practical Aspects. Springer-Verlag, 2nd edition, 2006.
26. Dimitri P. Bertsekas. Convex Optimization Algorithms. Number 1st. Athena Scientific, 2015.
27. Immanuel M. Bomze, Markus Gabl, Francesca Maggioni, and Georg Ch. Pflug. Two-stage stochastic standard

quadratic optimization. European Journal of Operational Research, 299(1):21–34, 2022.

Proof of Lemma 3.1. Let µ̄ := max{µw, µ1} > 0, with µw the convexification parameter of the weakly
convex function w, and µ1 given to the algorithm at initialization. Then, by taking y := xk+1 and x := xℓk in (3)
it follows that

2
w(xℓk) + ⟨gℓk , xk+1 − xℓk ⟩ − w(xk+1)

∥xk+1 − xℓk∥2
≤ µ̄ for all k with xk+1 ̸= xℓk .

As a result, νk ≤ µ̄ for all k. Note that the prox-parameter is only increased after a null step such that νk ≥ µk−2κ.
In this case, the rule employed in Step 4 of the algorithm sets µk+1 = νk + 1, which gives µk+1 = νk + 1 ≤ µ̄+ 1.
Since the algorithm keeps the prox-parameter unchanged after a serious step or null step such that νk < µk − 2κ,
we conclude that µmax := supk∈N µk ≤ µ̄ + 1 is finite. Finally, note that the prox-parameter is sharply increased

after a null step such that νk ≥ µk − 2κ: µk+1 = νk + 1 ≥ µk − 2κ + 1 > µk because κ ∈ (0, 1
2
). As a result, if

the algorithm produces an infinite sequence of null steps after a last serious step, then the inequality νk < µk − 2κ
will be satisfied for all k large enough and the prox-parameter will become constant (otherwise µk would increase
indefinitely, which contradicts that µmax is finite). □

