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Abstract Thirty years ago, in a seminal paper Ramana derived an exact
dual for Semidefinite Programming (SDP). Ramana’s dual has the following
remarkable features: i) it assumes feasibility of the primal, but it does not
make any regularity assumptions, such as strict feasibility ii) its optimal value
is the same as the optimal value of the primal, so there is no duality gap. iii) it
attains its optimal value when it is finite iv) it yields a number of complexity
results in SDP, which are fundamental, and to date are still the best known.
For example, it proves that SDP feasibility in the Turing model is not NP-
complete, unless NP = co-NP.

In this work we extend and simplify previous analyses of Ramana’s dual.
First, we completely characterize the feasible set of Ramana’s dual for inequal-
ity constrained SDPs. Second, we similarly analyze Ramana’s dual for equality
constrained SDPs. We do this by connecting it to a seemingly very different
way of inducing strong duality: reformulating the SDP using elementary row
operations inherited from Gaussian eliminination. Our characterizations yield
a short and transparent derivation of Ramana’s dual.

Our approach is combinatorial in the following sense: i) we use a minimum
amount of continuous optimization theory ii) we show that feasible solutions
in Ramana’s dual are identified with regular facial reduction sequences, i.e.,
essentially discrete structures.
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1 Introduction

1.1 Semidefinite programs and shortcomings of the usual dual

Semidefinite Programs (SDPs) – optimization problems with linear objective,
linear constraints, and semidefiniteness constraints on matrix variables – are
some of the most versatile and popular optimization problems to emerge in
the last thirty years. SDPs appear in combinatorial optimization, polynomial
optimization, engineering, and other application areas, and can be solved by
efficient optimization algorithms. See, for example, [15,23] for the foundational
theory of interior point methods, [25,24] for efficient implementations of such
methods, and [27,2,6] for efficient algorithms based on different principles.

We formulate an SDP mathematically as

sup c>x
s.t.

∑m
i=1 xiAi � B,

(P)

where the Ai and B are n×n symmetric matrices, c ∈ Rm, and for symmetric
matrices T and S we write S � T to say that T − S is positive semidefinite
(psd).

The problem (P), which we call the primal, has a natural dual problem

inf 〈B, Y 〉
s.t. 〈Ai, Y 〉 = ci (i = 1, . . . ,m)

Y � 0,
(D)

where for symmetric matrices S and T we write 〈T, S〉 := trace(TS) to denote
their inner product. The main role of (D) is to certify boundedness of the
optimal value of (P) and to certify optimality of a feasible solution. For exam-
ple, when x is feasible in (P), and Y in (D), then the weak duality inequality
c>x ≤ 〈B, Y 〉 always holds. Thus, if we find a pair x and Y whose objective
values are equal, then we know they must be both optimal.

Besides weak duality, a desirable property of (P) and of (D) is strong
duality, which is said to hold when the optimal values of (P) and (D) agree,
and the latter is attained, when it is finite. However, strong duality between
(P) and (D) sometimes fails, as the following example shows:

Example 1 Consider the SDP

sup x1 + x2 + x3

s.t. x1

0 1 0
1 0 0
0 0 0


︸ ︷︷ ︸

A1

+x2

0 0 1
0 1 0
1 0 0


︸ ︷︷ ︸

A2

+x3

0 0 0
0 0 1
0 1 0


︸ ︷︷ ︸

A3

�

0 0 0
0 0 0
0 0 1


︸ ︷︷ ︸

B

. (1)

We claim that its optimal value is zero. Indeed, assume that x is a feasible
solution, and let S := B −

∑
i xiAi. Since the upper left corner of S is zero,

we have x1 = x2 = 0. Thus, the (2, 2) element of S is zero, hence x3 = 0.
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The dual is
inf y33
s.t. y12 = 1/2

y22 + 2y13 = 1
y23 = 1/2
Y � 0.

(2)

We claim that (2) has no solution with value zero. Indeed, to get a contradic-
tion, suppose Y is such a solution. Then y33 = 0, and Y � 0 implies y23 = 0,
contradicting the constraint y23 = 1. (With a bit more work one can show
that the optimal value of (2) is 0, but it is not attained.)

Strong duality can be ensured if we assume certain regularity conditions.
The best known such condition is strict feasibility: when (P) is strictly feasible,
i.e., B −

∑
i xiAi is positive definite for some x, then strong duality holds

between (P) and (D). An analogous result holds when (D) is strictly feasible,
i.e., when it has a positive definite feasible Y.

However, assuming strict feasibility is not satisfactory from a theoretical
perspective. Most importantly, it is of no help in finding an exact alternative
system of (P), i.e., a semidefinite system which is feasible, exactly when (P)
is infeasible. Indeed, the usual “Farkas type” system

〈Ai, Y 〉 = 0 (i = 1, . . . ,m)

〈B, Y 〉 = −1

Y � 0

(alt-P)

of (P) is not an exact alternative system 1. For a concise treatment of duality
in conic linear programs, which include SDPs, see, e.g. Renegar [23, Chapter
3].

1.2 Ramana’s dual

Thirty years ago, in a seminal paper Ramana [20] 2 constructed an elegant dual
problem, which avoids the shortcomings of the traditional dual. Ramana’s dual
has the following striking properties: i) it assumes that (P) is feasible, but does
not assume that it is strictly feasible ii) strong duality holds between (P) and
Ramana’s dual. Put simply, it has all desirable properties of (D) when (P) is
strictly feasible, without actually assuming that (P) is strictly feasible!

Ramana’s dual yields an exact alternative system of (P), and fundamental
results in complexity theory. The most important of these are:

(1) In the real number model of computing, deciding feasibility of SDP is in
NP ∩ co-NP.

1 More precisely, (alt-P) is an exact alternative system of (P), if there is a positive definite
Y such that 〈Ai, Y 〉 = 0 for all i. However, this assumption is quite restrictive. We can of
course also assume that all the Ai and B are diagonal, so (P) is just a linear program, but
this assumption is even more restrictive.

2 The first version of [20] was circulated in 1995.
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(2) In the Turing model of computing, deciding feasibility of SDPs is not NP-
complete, unless NP = co-NP.

These results are still the best known on SDP feasibility.

To state Ramana’s dual, we assume that the primal (P) is feasible, and we
denote by val() the optimal value of an optimization problem. We denote by
Sn the set of n× n symmetric matrices, and by Sn+ the set of symmetric psd
matrices. We also introduce the linear operator A and its adjoint A∗ as

Ax :=

m∑
i=1

xiAi, A∗Y = (〈A1, Y, . . . , 〈Am, Y 〉)> for x ∈ Rm, Y ∈ Sn.

Theorem 1 Consider the optimization problem called the Ramana dual of
(P):

inf 〈B,Un+1 + Vn+1〉
s.t. A∗(Un+1 + Vn+1) = c

A∗(Ui + Vi) = 0 i = 1, . . . , n
〈B,Ui + Vi〉 = 0 i = 1, . . . , n

Ui ∈ Sn+ i = 1, . . . , n+ 1
Vi ∈ tan(Ui−1) i = 1, . . . , n+ 1

U0 = V0 = 0.

(DRam)

Here for U ∈ Sn+ the set tan(U) is defined as

tan(U) = {W +W> |U � βWW> for someβ > 0 }. (3)

We have

val (P) = val (DRam),

and val (DRam) is attained when finite. ut

To make (DRam) into a proper SDP, we claim that for a psd matrix U we
can represent tan(U) as

tan(U) =

{
W +W> :

(
U W
W> λI

)
� 0 for someλ ≥ 0

}
. (4)

To see why, we use the Schur complement condition for positive semidefi-
niteness. If (U,W, β) satisfy the condition in (3), then (U,W, 1/β) satisfy the
condition in (4). Conversely, if (U,W, λ) satisfy the conditions in (4), then we
can assume λ > 0, and (U,W, 1/λ) satisfy the condition in (3).

Thus, (DRam) can be written as an SDP with polynomially many variables
and constraints.
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Example 2 (Example 1 continued) The Ramana dual of (1) does have a solu-
tion with value zero. We set U0 = V0 = 0, and

U1+V1 =

 1 0 0
0 0 0
0 0 0

 , U2+V2 =

 1 0 −1/2
0 1 0
−1/2 0 0

 , U3+V3 =

 0 1/2 −1/2
1/2 2 1/2
−1/2 1/2 0

 .

(5)
In (23) we show the Ui component of Ui + Vi with circled entries. For

example, U2 is the matrix in which the (1, 1) and (2, 2) elements are 1 and all
other elements are zero.

We see that Vi ∈ tan(Ui−1), with the decomposition Vi = Wi + W>i for
i = 2, 3, where

W2 =

0 0 −1/2
0 0 0
0 0 0

 , W3 =

0 1/2 −1/2
0 1 1/2
0 0 0

 .

1.3 Literature

Ramana’s dual is fundamental, however, the original proof of its correctness
is somewhat lengthy and technical. Thus several papers gave shorter proofs,
and explored connections to other work. Ramana, Tunçel and Wolkowicz [22]
and [17,18,11] connected Ramana’s dual to the facial reduction algorithm of
Borwein and Wolkowicz [1]. Klep and Schweighofer [8] designed a dual with
similar properties, based on algebraic geometry. Luo, Sturm, and Zhang [13]
gave a different proof of the correctness of Ramana’s dual; and Ramana and
Freund [21] studied its dual.

Ramana’s dual was used by DeKlerk et al [4] in self-dual embeddings. Due
to its complexity implications it is often mentioned in the discrete mathematics
and theoretical computer science literature, see for example, Lovász [12] and
O’ Donnell [16]. Ramana’s dual is often cited in surveys and books: see for
example, DeKlerk [3], Drusvyatskiy and Wolkowicz [5], Vandenberghe and
Boyd [26], Nemirovski [14], and Laurent and Rendl [9].

Despite the importance of Ramana’s dual and the many followup papers,
one can make the case that we still need to understand it better. On the one
hand, the cited references characterize its optimal value. However, it would also
be very useful to characterize its feasible set, both from the theoretical, and
possibly a practical perspective. Second, a simple correctness proof, accessible
to the theoretical computer science community, is also desirable.

1.4 Contributions

First we completely characterize the feasible set of (DRam). Second, we simi-
larly analyze a problem (PRam), which is the Ramana dual of (D). Third, we
connect (PRam) to a seemingly very different way of inducing strong duality
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from [10]: reformulating (D) using elementary row operations inherited from
Gaussian elimination. Fourth, using our characterizations we give short and
transparent derivations of Theorem 1 and its primal counterpart Theorem 3.

As we alluded to in the title, our approach is combinatorial. While a
“combinatorial approach” is not perfectly defined, the main features of our
proof are:

(1) We avoid the use of more technical concepts in convex analysis, such as
relative interiors, and conjugate faces, which play an important role in
the analysis of [22,17,18]. In fact, we only use a single ingredient from
continuous optimization theory: when (P) is strictly feasible, then strong
duality holds between (P) and (D).

(2) We show that feasible solutions in (DRam) are identified with regular facial
reduction sequences, i.e., essentially discreet structures.

In our analysis of (DRam) we use ideas from [11], whose main contribution
is to derive (DRam) using less machinery, than previous papers. However, our
treatment is more extensive, as it characterizes the feasible set of (DRam), and
it is considerably shorter. (Also, the material on (PRam) is not covered in [11]).

1.5 Organization of the paper and guide to the reader

In Subsection 1.6 we fix notation, prove two simple propositions, and define
one of the main players of the paper, regular facial reduction sequences. In
Section 2 we analyse (DRam):

– In Subsection 2.1 we define the maximum rank slack in (P), which measures
“how far” (P) is from being strictly feasible. We then show how to certify
the maximum rank slack using regular facial reducition sequences.

– In Subsection 2.2 we study the strong dual (Dstrong) which has all the prop-
erties required from Ramana’s dual. However, (Dstrong) relies on knowing
the maximum rank slack in (P), which is generally an unknown quantity.

– In Subsection 2.3 we present Theorem 2, which precisely characterizes the
feasible solutions of (DRam).

– In Subsection 2.4 we prove Theorem 1.

Section 3 treats (PRam). In particular,

– In Subsection 3.1 we introduce (PRam) and state Theorem 3, which proves
strong duality between (D) and (PRam).

– In Subsection 3.2 we recall reformulations of (D), and show how they certify
the maximum rank feasible solution in (D).

– In Subsection 3.3 we define the strong primal of (D).
– In Subsection 3.4 we prove Theorem 4, which precisely characterizes feasi-

ble solutions of (PRam).
– In Subsection 3.4 we give a quick proof of Theorem 3.

Some readers of this paper may only want to see a quick and transparent
derivation of (DRam). For them, reading only Subsection 1.6, and Section 2
will probably suffice.
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1.6 Preliminaries

We denote by Sn,k the set of n×n symmetric matrices in which all nonzeroes
are in the first k rows and columns. We let Sn,k+ = Sn+ ∩ Sn,k i.e, the set of
psd matrices in which only the upper left k × k block is nonzero. We denote
by Sn,k++ the matrices in Sn,k in which the upper left k × k block is positive
definite.

Next we state two basic propositions. The proof of Proposition 1 is straight-
forward from the properties of the trace, and the proof of Proposition 2 from
the definition of tan(U).

Proposition 1 Suppose Q is an n× n orthonormal matrix. Then

〈X,Y 〉 = 〈Q>XQ,Q>Y Q〉 (6)

for all X,Y ∈ Sn. Further,

V ∈ tan(U) ⇔ Q>V Q ∈ tan(Q>UQ) (7)

for all U ∈ Sn+, and V ∈ Sn. ut

Proposition 2 The following hold:

(1) If U ∈ Sn,k+ and V ∈ tan(U), then V ∈ Sn,k.
(2) If U ∈ Sn,k++ and V ∈ Sn,k, then V ∈ tan(U).

ut

We visualize Proposition 2 in (8), in which ⊕ stands for a psd submatrix, and
the × stands for a block with arbitrary elements. If U is as given on the left,
and V ∈ tan(U), then V must be of the form given on the right. Further, if
the ⊕ block in U is positive definite, then any V in the form on the right is in
tan(U) :

U =

( k︷︸︸︷
⊕

n− k︷︸︸︷
0

0 0

)
, V =

( k︷︸︸︷
×

n− k︷ ︸︸ ︷
×

× 0

)
. (8)

We next introduce a main player of the paper:

Definition 1 We say that (Y1, . . . , Yk) is a regular facial reduction sequence
for Sn+ 3 if the Yi are in Sn and are of the form

Y1 =


r1︷ ︸︸ ︷ n− r1︷ ︸︸ ︷
Λ1 0
0 0

, . . . , Yi =


r1 + . . .+ ri−1︷ ︸︸ ︷ ri︷ ︸︸ ︷ n− r1 − . . .− ri︷ ︸︸ ︷

× × ×
× Λi 0
× 0 0


for i = 1, . . . , k. Here the ri are nonnegative integers, the Λi diagonal pos-

itive definite matrices, and the × symbols correspond to blocks with arbitrary
elements.

3 Slightly different versions of regular facial reduction sequences have been defined in
other papers, e.g. in [19].
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Note that regular facial reduction sequences are essentially discrete struc-
tures. When we use them, we only use that the Λi are positive definite, and
what their sizes are; however, we never refer to their actual entries.

2 Analysis of (DRam)

As a convention, whenever we consider solutions of (DRam), we assume U0 =
V0 = 0 without spelling this out.

2.1 Certificates for the maximum rank slack in (P)

Definition 2 We say that a positive semidefinite matrix is a slack in (P), if
it is of the form B −Ax for some x ∈ Rm.

Since the rank of a matrix is a nonnegative integer, (P) has a slack of
maximum rank.

Definition 3 We say that we rotate a set of matrices say M1, . . . ,Mk by an
orthonormal matrix Q, if we replace Mi by Q>MiQ for all i.

Proposition 3 Suppose we rotate all Ai and B by an orthonormal matrix Q.
This operation does not change the optimal value and attainment in (P), (D),
and (DRam).

Proof The statement is obvious for (P), since x ∈ Rm is feasible in (P) before
the rotation if and only if it is feasible afterwards. To prove it for (D), if Y is
feasible before the rotation, then Q>Y Q is feasible afterwards by part (6) of
Proposition 1.

To deal with (DRam), let A′i = Q>AiQ for all i and B′ = Q>BQ. Suppose
(Uj , Vj)

n+1
j=0 is feasible in (DRam) before the rotation, and let U ′j = Q>UjQ and

V ′j = Q>VjQ for all j.

Then

〈Ai, Uj + Vj〉 = 〈A′i, U ′j + V ′j 〉 for all i, j
〈B,Un+1 + Vn+1〉 = 〈B′, U ′n+1 + V ′n+1〉

V ′i ∈ tan(U ′i−1) for all i,

where the first two equations follow from (6) and the last from (7). Thus,
feasible solutions of the original and rotated problems are in one-to-one corre-
spondence with the same objective value. ut

Lemma 1 Suppose (P) is not strictly feasible. Then there is Y ∈ Sn+ \ {0}
such that

A∗Y = 0
〈B, Y 〉 = 0.

(9)
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Proof Suppose (P) is not strictly feasible. We claim that the optimal value of
the SDP

sup z
s.t. Ax+ zI � B (10)

is zero. Indeed it is ≥ 0 since (P) is feasible. It is ≤ 0, since if it had a feasible
solution (x̄, z̄) with z̄ > 0, then B − Ax̄ would be a strictly feasible solution
in (P). Thus the dual of (10) has a feasible solution Y � 0 which satisfies the
requirements of the lemma: Y is nonzero, due to the dual constraint 〈I, Y 〉 = 1.

ut
The following lemma shows that regular facial reduction sequences can be

used to certify that the maximum rank slack in (P) indeed has maximum rank:

Lemma 2 Suppose r ∈ {0, . . . , n}. Then the following statements are equiva-
lent:

(1) The rank of the maximum rank slack in (P) is r.
(2) There is an orthonormal matrix Q such that after rotating all Ai and B

with Q there is
(a) a slack in (P) of the form

Z =

(
0 0
0 Λ

)
, (11)

where Λ is diagonal positive definite of order r.
(b) a regular facial reduction sequence Y1, . . . , Yk such that k ≤ n and

A∗Yi = 0 for i = 1, . . . , k (12)

〈B, Yi〉 = 0 for i = 1, . . . , k (13)

r1 + · · ·+ rk = n− r, (14)

where the ri are the sizes of the positive definite blocks in the Yi.

Proof For both directions we will use that rotating the Ai and B does not
change the rank of the maximum rank slack in (P).

(1)⇐ (2) : By (2a) the rank of the maximum rank slack in (P) is at least
r. To show it is at most r, suppose S is any slack in (P). Then 〈Y1, S〉 = 0,
so a positively weighted sum of the first r1 diagonal elements of S is zero.
Since these elements are nonnegative, they must all be zero. Since S � 0, the
first r1 rows and columns are of S zero. Continuing, we deduce that the first
r1 + · · ·+ rk rows and columns of S are zero 4.

(1)⇒ (2) : If r = n, then we set k = 0 and Y1, . . . , Yk the empty sequence.
If r < n, then we construct Y1 ∈ Sn+ \ {0} to satisfy (9) in Lemma 1. After

4 This argument explains the parlance “facial reduction sequence,” since the set of such
psd matrices is a face of Sn+. A convex subset F of a convex set Sn+ is a face, if for any
X,Y ∈ Sn+ if the open line segment {λX + (1− λ)Y : 0 < λ < 1} intersects F, then both X
and Y must be in F.
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rotating Y1 by a suitable orthonormal Q and all Ai and B by the same Q we
have

Y1 =

(
Λ1 0
0 0

)
,

where Λ1 is order r1 diagonal positve definite for some r1 > 0. Also, by part
(6) of Proposition 1 (with Ai, B, and I in place of X, and Y1 in place of Y )
the first two equations in (9) still hold.

Now if S is any slack in (P) (after the rotation), then 〈Y1, S〉 = 0. Hence,
as we explained above, the first r1 rows and columns of S are zero. We next
construct an SDP

m∑
i=2

xiFi +G � 0, (15)

where Fi is obtained from Ai by deleting the first r1 rows and columns for
i = 2, . . . ,m and G is obtained from B in the same manner. The maximum
rank of a slack in (15) is still r, so we proceed in a similar manner with this
smaller SDP. Once our process stops, we have the required Y1, . . . , Yk.

Finally, we fix a maximum rank slack Z and rotate the Ai and B by a
matrix that affects only the lower right order r block of Z to put Z into the
form (11).

ut
Note that the constructions in Lemma 1 and 2 are theoretical. While the

proofs are constructive, to actually compute the Yi in Lemma 2 we would need
to solve (10) (and its dual) in exact arithmetic.

Example 3 (Example 1 and 2 continued) In the SDP (1) all variables are zero
in a feasible solution, so the right hand side is the maximum rank slack.

This SDP does not need any rotation. A regular facial reduction sequence
Y1, Y2 that satisfies the conclusions of Lemma 2 is obtained by setting

Yi := Ui + Vi

for i = 1, 2 in the formula (23).

From now on we assume

(1) We rotated all Ai and B so the Yi in Lemma 2 exist.
(2) There is a maximum rank slack Z in (P) of rank

r ∈ {0, . . . , n}, of the form given in (11).

2.2 The strong dual

Lemma 3 can be proved by standard convex optimization techniques. To make
the paper self contained, in Section A we give a proof that only uses the result
“strict feasibility of (P) implies strong duality between (P) and (D)” and avoids
the concept of relative interior. Our strong dual is essentially equivalent to
the minimal cone based dual of [1].
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Lemma 3 Consider the optimization problem

inf 〈B, Y 〉
s.t. A∗Y = c

Y22 ∈ Sr+.
(Dstrong)

Then
val (P) = val (Dstrong),

and the optimal value of (Dstrong) is attained when it is finite. Here Y22 stands
for the lower right r × r block of Y. ut

2.3 Connecting regular facial reduction sequences to Ramana’s dual

We now present the main result of the paper, Theorem 2, which connects
regular facial reduction sequences and feasible solutions of (Dstrong) to fea-
sible solutions of (DRam). It shows that regular facial reduction sequences
correspond to U1, V1, . . . , Un, Vn in (DRam) and feasible solutions of (Dstrong)
correspond to Un+1 and Vn+1 in (DRam).

Before stating it, we note that in Lemma 2 we can assume k = n. Indeed, if
k < n, then we can just add Y1 = · · · = Yn−k = 0 at the start of the sequence,
and renumber the remaining Yi.

We also need a definition:

Definition 4 We say that a Q orthonormal matrix is admissible, if

Q =

(
Q′ 0
0 Ir

)
.

for some Q′ orthonormal matrix.

Clearly, if we rotate the Ai and B by an admissible Q, then the maximum
rank slack remains as in the form required in (11); hence the optimal value
and attainment in (Dstrong) is unaffected.

Theorem 2 The following hold:

(1) Suppose Y1, . . . , Yn is a regular facial reduction sequence constructed by
Lemma 2 (with k = n), and Yn+1 is feasible in (Dstrong). Then there is a
decomposition

Yi = Ui + Vi for i = 1, . . . , n+ 1, (16)

such that (Ui, Vi)
n+1
i=0 is feasible in (DRam).

(2) Suppose (Ui, Vi)
n+1
i=0 is feasible in (DRam). Then we can rotate all Ai, B, Ui, Vi

by an admissible matrix so that after the rotation

U1 + V1, . . . , Un + Vn is a regular facial reduction sequence (17)

and
Un+1 + Vn+1 is feasible in (Dstrong). (18)
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Further, if after this rotation the sizes of the positive definite blocks in
Ui + Vi are ri for i = 1, . . . , n, then

Ui ∈ Sr1+···+ri,n
+ for i = 1, . . . , n. (19)

Proof of (1): For i = 1, . . . , n let Λi be the positive definite block in Yi, suppose
the order of Λi is ri, and define

Ui :=


r1 + · · · + ri−1︷ ︸︸ ︷

I

ri︷︸︸︷
0

n−
∑i

`=1 r`︷ ︸︸ ︷
0

0 Λi 0
0 0 0

 , Vi := Yi−Ui =


r1 + · · · + ri−1︷ ︸︸ ︷

×

ri︷︸︸︷
×

n−
∑i

`=1 r`︷ ︸︸ ︷
×

× 0 0
× 0 0

 .

(20)

Also, let Ȳ be the lower right order r block of Yn+1 and define

Un+1 =

(n− r︷︸︸︷
0

r︷︸︸︷
0

0 Ȳ

)
, Vn+1 := Yn+1 − Un+1 =

(n− r︷︸︸︷
×

r︷ ︸︸ ︷
×

× 0

)
.

The above notation stresses which blocks of the Ui and Vi can be nonzero.
By part (2) of Proposition 2 we deduce Vi ∈ tan(Ui−1) for i = 2, . . . , n+ 1.

Also, the Ui and Vi satisfy the equality constraints of (DRam) by (12)–(13).
So (Ui, Vi)

n+1
i=0 is feasible in (DRam), as wanted.

Proof of (2): Let Yi = Ui + Vi for all i.
Since Y1 = U1 ∈ Sn+ and 〈Y1, Z〉 = 0, the last r rows and columns of Y1 are

zero. So we rotate all Ai, Ui, Vi, Yi and B by an admissible matrix to ensure

Y1 =

(
Λ1 0
0 0

)
, (21)

where Λ1 is diagonal positive definite.
Suppose next that 1 ≤ i ≤ n and Y1, . . . , Yi is a regular facial reduction

sequence, in which the positive definite blocks have size r1, . . . , ri, respectively.
Also assume U1 ∈ Sr1,n+ . Both of these statements are true, when i = 1.

We claim

U1 ∈ Sn,r1+ ⇒ V2 ∈ Sn,r1 ⇒ U2 ∈ Sn,r1+r2
+ ⇒ V3 ∈ Sn,r1+r2

. . . ⇒ Ui ∈ Sn,r1+···+ri
+ ⇒ Vi+1 ∈ Sn,r1+···+ri .

(22)

Indeed, the first implication is by V2 ∈ tan(U1) and part (1) of Proposition
2. The second implication follows, since Y2 = U2 + V2. The third is by V3 ∈
tan(U2) and again by part (1) of Proposition 2. The other implications follow
similarly.

Since Ui+1 ∈ Sn+ and Vi+1 ∈ Sn,r1+···+ri , the lower right order n−
∑i

`=1 r`
block of Yi+1, which we call Ȳ , is psd. We now distinguish two cases.

First suppose i < n. Since 〈Yi+1, Z〉 = 0, the lower right order r block of
Ȳ is zero, so the last r rows and columns of Ȳ are zero. Thus
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Yi+1 =


r1 + · · · + ri︷ ︸︸ ︷
×

n−
∑i

`=1 r` − r︷ ︸︸ ︷
×

r︷ ︸︸ ︷
×

× Y ′ 0
× 0 0

, Q>Yi+1Q =


r1 + · · · + ri︷ ︸︸ ︷
×

ri+1︷︸︸︷
×

n−
∑i+1

`=1
r`︷ ︸︸ ︷

×
× Λi+1 0
× 0 0

,
where Y ′ is psd, Q is an orthonormal matrix of the form

Q =

Ir1+···+ri 0 0
0 Q′ 0
0 0 Ir

 ,

[] and Λi+1 is diagonal positive definite. So we rotate all Ai, Ui, Vi, Yi and B by
Q, and afterwards Y1, . . . , Yi+1 is a regular facial reduction sequence. Further,
U1 ∈ Sr1,n+ still holds. After we are done with the rotations for i = 1, . . . , n−1
we have that Y1, . . . , Yn is a regular facial reduction sequence and (19) holds.

Second, assume i = n. Since Vn+1 ∈ Sn,r1+···+rn and r1 + · · ·+ rn ≤ n− r,
we see that the lower right order n− r block of Yn+1 is psd, hence it is feasible
in (Dstrong).

ut

2.4 Proof of Theorem 1

By Theorem 2 we see that (Dstrong) and (DRam) are equivalent in the following
sense: one is feasible iff the other is; when they are feasible, their optimal values
are equal; and when they are feasible, one attains its optimal value if and only if
the other one does. Combining this argument with Lemma 3 implies Theorem
1. ut
Example 4 (Examples 1, 2 and 3 continued) As we saw in Example 2

U1 =

 1 0 0
0 0 0
0 0 0

 , U2 =

1 0 0
0 1 0
0 0 0

 , V2 =

 0 0 −1/2
0 0 0
−1/2 0 0

 . (23)

with the U3 and V3 listed in (23) is feasible in the Ramana dual of (1). However,
the Ramana dual of (1) has other feasible solutions as well.

Part (2) of Theorem 2 helps us describe all feasible solutions. First, we
see that (Y1 := U1, Y2 := U2 + V2) is a regular facial reduction sequence and
the sizes of the positive definite blocks in Y1 and Y2 are r1 = 1 and r2 = 1,
respectively. Suppose we decompose Y2 as

Y2 = U ′2 + V ′2 with U ′2 � 0, V ′2 ∈ tan(U ′1). (24)

Then by part (2) of Theorem 2 we have U ′2 ∈ S
3,2
+ . Indeed, all decompositions

of Y2 which obey (24) have

U ′2 =

α β 0
β 1 0
0 0 0

 , V ′2 = Y2 − U ′2, (25)

where the upper left 2×2 block of U2 is psd. If we choose α and β so this block
is positive definite, then U1, U

′
2, V

′
2U3, V3 is an optimal solution of (DRam).
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3 Ramana’s primal

In this section we assume that (D) is feasible.

3.1 Statement of Ramana’s primal

First we state the Ramana dual of (D), which, with some abuse of terminology
we call Ramana’s primal:

Theorem 3 Consider the optimization problem called Ramana’s primal

sup c>x
s.t. B −Ax ∈ Sn+ + tan(Un)

Axi = Ui + Vi i = 1, . . . , n
c>xi = 0 i = 1, . . . , n
Ui ∈ Sn+ i = 1, . . . , n+ 1
Vi ∈ tan(Ui−1) i = 1, . . . , n+ 1

U0 = V0 = 0,

(PRam)

We have
val (D) = val (PRam),

and val (PRam) is attained when finite. ut

3.2 Reformulations to certify the maximum rank solution in (D)

In this section we recall reformulations of (D) and show how they certify the
maximum rank solution of a feasible solution in (D).

Definition 5 We say that (D) is in partial rank revealing form,or partial RR
form, if for some 0 ≤ k ≤ m

(1) A1, . . . , Ak a regular facial reduction sequence
(2) c1 = · · · = ck = 0

We say that (D) is in complete rank revealing form, or complete RR form,

if it is in partial RR form, and n −
∑k

`=1 is the rank of the maximum rank
solution in (D).

We next explain the terminology “rank revealing form” Suppose Y is feasible
in (D), and (D) is in partial RR form with (A1, . . . , Ak) a regular facial reduc-
tion sequence, in which the sizes of the positive definite blocks are r1, . . . , rk,
respectively, and c1 = · · · = ck = 0. Then 〈A1, Y 〉 = 0 implies that the first
r1 rows and columns of Y are zero; 〈A2, Y 〉 = 0 implies the next r2 rows and
columns of Y are zero; etc.

Definition 6 We say that we reformulate (D) if we apply the following oper-
ations (in any order):
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(1) Elementary row operations on the equations: multiply an equation 〈Ai, Y 〉 =
ci by a nonzero scalar; exchange two equations; add a nonzero multiple of
an equation to another equation.

(2) rotations applied to A1, . . . , Am and B.

We also say that by reformulating (D) we obtain a reformulation.

Lemma 4 We can always reformulate (D) to put it into complete RR form.
ut

Lemma 4 was proved in Theorem 2 of [10]. We can give a simpler proof, by
relying only on “strong duality holds under strict feasibility,” similarly to how
we proved Lemma 2. We do not give this proof (for the sake of brevity), but
invite the reader to work out its details.

Example 5 To illustrate reformulations of (D), we consider a semidefinite sys-
tem with data

A1 =


1 0 1 0
0 −1 0 0
1 0 0 0
0 0 0 1

 A2 =


0 0 −1 1
0 1 −1 0
−1 −1 1 0

1 0 0 1

 , A3 =


0 0 0 1
0 0 −1 0
0 −1 1 0
1 0 0 2

 ,

A4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 c = (1, 1, 2, 1).

(26)
Suppose we perform the operations

(A1, c1) := (A1, c1) + (A2, c2)− (A3, c3)
(A2, c2) := (A2, c2)− (A3, c3) + (A4, c4)

and obtain the problem with data

A1 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , A2 =


0 0 −1 0
0 1 0 0
−1 0 0 0

0 0 0 0

 , A3 =


0 0 0 1
0 0 −1 0
0 −1 1 0
1 0 0 2

 ,

A4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 c = (0, 0, 2, 1).

(27)

This system is in partial RR form, since (A1, A2) is a regular facial reduction
sequence, and c1 = c2 = 0 5. Now the sizes of the positive definite blocks in

5 Of course (A1, A2, A3) is also a regular facial reduction sequence, but c3 6= 0.
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A1 and A2 are r1 = r2 = 1. However, it is not in complete RR form, since
there is no feasible Y with rank 2.

If we further perform

(A3, c3) := (A3, c3)− 2(A4, c4),

then we get the SDP with data

A1 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , A2 =


0 0 −1 0
0 1 0 0
−1 0 0 0

0 0 0 0

 , A3 =


0 0 0 1
0 0 −1 0
0 −1 1 0
1 0 0 0

 ,

A4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , c = (0, 0, 0, 1).

(28)

This system is in complete RR form, since the matrix Y in which the lower
right element is 1, and all other elements are zero satisfies its constraints.

Proposition 4 Reformulating (D) does not change the optimal value and at-
tainment in (D), (P), and (PRam).

Proof First consider (P) and (D). Rotations do not change their optimal value
and attainment by Proposition 3. The same is true of elementary row opera-
tions by a straightforward argument.

To deal with (PRam), suppose x1, . . . , xn, x is feasible in it (with some
suitable Ui and Vi), before the reformulation. First suppose we perform an
elementary row operation on (D). This amounts to replacing the equations
A∗Y = c by MA∗Y = Mc where M : Rm → Rm is an invertible linear map.
Thus, M>x1, . . . ,M

>xn,M
>x is feasible afterwards in (PRam), with the same

objective value.

Next suppose we rotate the Ai and B by an orthonormal matrix Q. Also
suppose we rotate all Ui and Vi by the same Q. Then by part (7) of Proposition
1 we see that x, x1, . . . , xn with the rotated Ui and Vi is feasible in (PRam)
after the rotation. ut

Example 6 (Example 5 continued) Proposition 4 will help us analyze (PRam).
It also helps to analyze pathological SDPs. For example, suppose we seek the
infimum of y12 subject to the constraints of (26). We claim this SDP has
optimal value zero, which is attained; however, the primal has no solution
with value zero.

How do we prove this statement? For the original problem (26) this argu-
ment is actually not easy to carry out. However, for the reformulated version
(28) it is straightforward.
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3.3 The relaxed primal and the strong primal

Inn this section we introduce the relaxed and strong primals of (D). The latter
is a counterpart of the strong dual (34).

Definition 7 Suppose (D) is in partial RR form with A1, . . . , Ak a regular
facial reduction sequence. Let ri be the order of the positive definite block in
Ai for i = 1, . . . , k. We call the optimization problem

sup c>x

s.t. S = B −Ax
S22 ∈ Sr+.

(29)

the relaxed primal of (D). Here S22 stands for the lower right order n− (r1 +
· · · + rk) block of S. If (D) is in complete RR form, then we call (29) the
strong primal of (D).

Lemma 5 Suppose (D) is in partial RR form and x is feasible in its relaxed
primal. Then

val (D) ≥ c>x. (30)

If (D) is in complete RR form, then equality holds in (30) for some x feasible
in the strong primal of (D). ut

Lemma 5 can be proved similarly to Lemma 3.

Example 7 (Example 5 continued) Suppose again we set up an SDP which
seeks inf y12 in the semidefinite system of (28). Thus the objective matrix B
of this SDP has 1/2 in the (1, 2) and (2, 1) positions, and zeros everywhere
else.

In the strong primal of this SDP only the lower right 1 × 1 corner of
B −

∑4
i=1 xiAi must be psd (i.e., nonnegative). Thus the strong primal has

value 0, which is attained.

3.4 Connecting reformulations to Ramana’s primal

This section presents Theorem 4, which connects reformulations of (D) to
Ramana’s primal. Its proof has some common elements with the proof of
Theorem 2, so we only sketch these portions.

Before stating it, we note that in a complete RR form of Definition 5 we
may assume k = n. Indeed, a complete RR form with r1 + · · ·+ rk ≤ n exists,
since we can discard the Ai in which the size of the positive definite block is
zero. If k < n, then we can just add n− k redundant constraints of the form
〈0, Y 〉 = 0 in the beginning of (D), and renumber the other Ai.

Theorem 4 The following hold:
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(1) Suppose (D) is in complete RR form with k = n, and x is feasible in its
strong primal. Then e1, . . . , en, x is feasible in (PRam) with some suitable
Ui and Vi.

(2) Suppose x, x1, . . . , xn and (Ui, Vi)
n+1
i=0 is feasible in (PRam). Then we can

rotate all Ai, B, Ui, Vi so that after the rotation the following hold:

(a) The SDP
inf 〈B, Y 〉
s.t. 〈Axi, Y 〉 = 0 for i = 1, . . . , n

〈Aj , Y 〉 = cj for j ∈ J
(31)

is in partial RR form for some suitable J ⊆ {1, . . . ,m},
(b) B −Ax is feasible in its relaxed primal.

Further, if after this rotation the sizes of the positive definite blocks in
Ax1, . . . ,Axn are ri for i = 1, . . . , n, then

Ui ∈ Sr1+···+ri,n
+ for i = 1, . . . , n. (32)

Proof of (1) Let us make the assumptions. For i = 1, . . . , n we do the following.
We let Λi be the positive definite block in Ai, assume the order of Λi is ri and
define Ui as in (20). We also define Vi = Ai−Ui. Using the same argument as
in the proof of Theorem 2 we deduce Vi ∈ tan(Ui−1) for all i.

Also, let S := B − Ax. Since x is feasible in the strong primal of (D),
the lower right order n−

∑n
`=1 ri corner of S is psd. Thus S ∈ Sn+ + tan(Un).

Summarizing, x, e1, . . . , en with the Ui and Vi is feasible in (PRam), as required.

Proof of (2) Let us make the assumptions. First we prove (2a), i.e., that after
a suitable rotation (Ax1, . . . ,Axn) is a regular facial reduction sequence and
(32). We can do this just how we proved (2) and (19) in Theorem 2, so we
omit the details. Since we also have c>xi = 0 for i = 1, . . . , n, we can replace
some of the equations in (D) by 〈Axi, Y 〉 = 0 to put it into partial RR form.

Also, after the rotation we still have B −Ax ∈ Sn+ + tan(Un). Since Un ∈
Sn,r1+···+rn
+ , we see that the lower right order n−

∑n
`=1 r` block of B−Ax is

psd. So it is feasible in the relaxed primal of (31), as required.

3.5 Proof of Theorem 3

By Lemma 4 we can put (D) into complete RR form. Hence for some x feasible
in the strong primal we have

val (D) = c>x ≤ val (PRam),

where the equality is from Lemma 5 and the inequality is from part (1) in
Theorem 4. Also, (PRam) has a solution with value c>x by part (1) in Theorem
4.

On the other hand, suppose x, x1, . . . , xn is feasible in (PRam) with some
Ui and Vi. Then

val (D) ≥ c>x ≥ val (PRam),
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where the second inequality is obvious. The first inequality follows since by
part (2) of Theorem 4 x is feasible in the relaxed primal of (31), hence Lemma
5 applies.

3.6 Discussion

The characterizations of Theorem ?? and 4 can turn out to be useful if (or
hopefully when) Ramana’s dual is implemented. On the one hand, a full im-
plementation with all the Ui and Vi may be cumbersome. On the other hand,
even an implementation using just a few Ui and Vi can close the duality gap,
or lead to an attained dual optimal value in some pathological SDPs.

A Proof of Lemma 3

Suppose

Z = B −Ax̄ for some x̄ ∈ Rm,

and we replace B by Z in (P), i.e. subtract Ax̄ from B. It is straightforward that by doing
so we subtract c>x̄ from the optimal value of (P) and (Dstrong). Also, if the optimal value
of (Dstrong) is attained before this replacement, then it is also attained afterwards. Thus,
for this proof we assume w.l.o.g. that the right hand side in (P) is Z.

For i = 1, . . . ,m let Di ∈ Sr be the lower right r × r submatrix of Ai and Ei ∈ Sn the
matrix obtained by replacing Di by the all zero matrix. Also, define the linear operators
D : Rm → Sr and E : Rm → Sn as

Dx =
m∑
i=1

xiDi, Ex =
m∑
i=1

xiEi for x ∈ Rm.

Suppose x is feasible in (P). Note that the Yi constructed in Lemma 2 satisfy equations
(12)–(13) with Z in place of B. Thus, using the argument after the statement of Lemma 2
we see that the first n− r rows and columns of Z −Ax are zero, hence Ex = 0.

Let G : Sn → Rm be a linear operator from Rm to Sn such that N (E) = R(G). Thus
we can write any x feasible solution in (P) as x = GU for some U ∈ Sn. So (P)–(D) are
equivalent to the primal-dual pair

sup c>(GU) = 〈G∗c, U〉
s.t. DGU � Λ

U ∈ Sn
(33)

inf 〈Λ, Y22〉
s.t. G∗D∗Y22 = G∗c

Y � 0.

(34)

Since (33) is strictly feasible, the optimal values of (33) and (34) agree, and the latter is
attained when finite. The constraints in (34) are equivalent to

A∗Y − c ∈ N (G∗) = R(E∗).

Thus, Y is feasible in (34) if and only if there is V ∈ Sn such that

〈Di, Y22〉+ 〈Ei, V 〉 = ci for all i. (35)

Thus (34) is equivalent to (Dstrong), as wanted. ut
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