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Abstract
In this paper, we develop a generic framework of stochastic approximation algorithms for DR-

submodular maximization with convex functional constraints, where both objective and constraints
take expectation formulations. Solving such type of problems can be challenging due to noncon-
vexity and submodularity of the objective, feasibility required by the functional constraints, as well
as stochastic nature of the problem. To tackle these challenges, we leverage the augmented La-
grangian function associated with the original problem and build the algorithm framework based on
stochastic approximations. Theoretical analysis is conducted under mild assumptions and proper
update schemes and demonstrates that our proposed algorithm can reach (1−minx∈X ∥x∥∞) /4-
approximation for problems with non-monotone objective and (1 − 1/e)-approximation when the
objective is monotone. And for both cases the expected errors and constraint violations are all
bounded by O(I−1/3), where I represents the total number of samples. To the best of our knowl-
edge, the study on stochastic approximation algorithms for DR-submodular maximization with
convex functional constraints seems new in the literature.

Keywords: DR-submodular maximization, Functional constraints, Augmented Lagrangian, Stochas-
tic approximation, Approximation ratio

1 Introduction
In many real-world applications, decision makers may encounter situations where the objective and
constraint functions are not deterministic, but involve uncertainty, either influenced by some random
variables or dependent on a large data set. For instance, in financial portfolio [32], decision makers
are often tasked to take into account the probability of asset returns and balance the relationship
between investment returns and risk, and thus find an optimal investment strategy under uncertain
market conditions. In supply chain networks [2], one needs to ascertain inventory levels and order
quantities amidst uncertain conditions, such as demand, delivery time, and supply interruptions, in
order to maximize the reward function while adhering to service level constraints. Submodularity was
originally proposed for optimization over discrete sets [15], and arises in a broad modern applications,
such as sensor placement [25], resource allocation [34], and so forth, including [18, 22, 34, 35, 38].
Extending the concept of set submodularity to continuous domains, DR-submodularity [6] portrays
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a diminishing marginal return property in essence. DR-submodular optimization often models the
variables contained in a convex set, whose structure is not specified. And this convex set is always
assumed to be simple and easy to handle, that is, easy to project to ensure feasibility of points. This
is managable in some easy situations, such as with bound constraints or ball constraints. In general,
however, the feasibility to a convex set can be difficult to realize. Under such circumstances, it is
acceptable to allow a certain degree of constraint violation, provided that it can be under control.

In this paper, we focus on DR-submodular maximization with convex functional constraints, for-
mulated as

max
x∈X

f0(x)

s. t. fi(x) ≤ 0, i ∈ [m] := {1, . . . ,m},
(1.1)

where function f0 : [0, 1]
n → R+, is continuously differentiable and DR-submodular, and fi : [0, 1]

n →
R, i ∈ [m] are convex but possibly nonsmooth. Here, X ⊆ [0, 1]n is a simple convex closed set, and
we assume that a strongly convex quadratic minimization over X can be easily solved. Functions are
given by f0(x) = Eξ[F0(x, ξ)], fi(x) = Eξ[Fi(x, ξ)], i ∈ [m], where the functions F0 : [0, 1]n × Ξ →
R+, Fi : [0, 1]

n × Ξ → R, i = 1, . . . ,m, are continuous with respect to x for almost any ξ ∈ Ξ, where
ξ ∈ Ξ is a random vector following probability distribution P over Ξ and Eξ represents the expectation
taken with respect to ξ. Particularly, when ξ draws a value uniformly from a finite set {ξ1, . . . , ξN},
associated functions will take finite-sum forms. Hence, the objective and constraint functions of (1.1)
can be expressed as

f0(x) =

∫
Ξ
F0(x, ξ)dP(ξ) or 1

N

N∑
j=1

F0(x, ξj),

fi(x) =

∫
Ξ
Fi(x, ξ)dP(ξ) or 1

N

N∑
j=1

Fi(x, ξj), i ∈ [m].

The problem (1.1) arises in a wide range of applications, including data summarization [20], influence
maximization [7], and MAP inference of Determinantal Point Processes (DPPs) [21].

In many scenarios, however, the distribution function of random variable may not be explicitly
represented or the integral is expensive to compute, or N can be large, which causes that the exact
function information of the objective and constraints can be hard to obtain. For any given realization
of random vector ξ and x ∈ X, we may only obtain stochastic zeroth- and first-order information

F0(x, ξ), Fi(x, ξ), ν0(x, ξ), νi(x, ξ), i ∈ [m],

where ν0(x, ξ) is a stochastic gradient of f0 at x, while νi(x, ξ) is a stochastic subgradient of fi at x
for i ∈ [m]. Addressing problem (1.1) entails overcoming several key challenges: the submodularity of
the objective function, feasibility to the functional constraints, and the inherent stochasticity which
impedes access to exact function information. To characterize the properties of an approximation
algorithm for (1.1), the approximation guarantee is another important issue that we need to address.
Thus our goals in this paper are to develop an efficient stochastic approximation algorithm for the
case we are interested in, which reaches the highest possible approximation guarantee with lowest
possible error and constraint violation. More specifically, let x∗ be the optimal solution of (1.1) and x̄
be the output of an associated stochastic approximation algorithm for solving (1.1). We will conduct
approximation analysis by investigating the approximation error γf0(x

∗) − E[f0(x̄)] and constraint
violation E[∥[f(x̄)]+∥], where γ > 0 and f = (f1, . . . , fm)T .
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1.1 Related Work
DR-submodular maximization

The past decade has witnessed the great development on DR-submodular maximization over a contin-
uous convex domain. Based on differential equations, a continuous time framework, a multiplicative
weight updates (MWU) template, is proposed in [10] for handling a class of DR-submodular optimiza-
tion over a polyhedral. The proposed algorithm can find a solution with objective function reaching a
(1−1/e−ϵ)OPT in Õ(ϵ−4) function value oracles. Here OPT denotes the optimal value of the problem
for interest. [6] study a Frank-Wolfe algorithm for maximizing monotone DR-submodular continuous
functions under general down-closed convex constraints and guarantee (1 − 1/e)-approximation and
sub-linear convergence rate. A non-monotone Frank-Wolfe algorithm with 1/e-approximation guar-
antee and sublinear convergence rate is established in [5], aiming for non-monotone DR-submodular
maximization under general down-closed convex constraints. [14] extend the deterministic model by
discarding the assumption of downclosedness of the constraint set. They apply the core concept of the
Frank-Wolfe algorithm and develop a method that achieves a 1/4-approximation after O(ϵ−1) itera-
tion. [17] propose a gradient algorithm by applying stable point theory and remove the down-closed
assumption. A theoretical analysis is presented for both deterministic and stochastic settings with 1/2-
approximation in O(ϵ−1) iterations and O(ϵ−2) iterations, respectively. [26] also study stochastic con-
ditional gradient methods for DR-submodular maximization. Approximation analyses are presented
for several scenarios, including non-monotone case and monotone case. Specifically, for the monotone
case with general convex set constraint the proposed algorithm can reach (1 − 1/e)-approximation,
while for the non-monotone case with downclosed convex set constraint it owns 1/e-approximation.
For both cases the complexity is O(ϵ−3). For the monotone case [16] develop a variant of stochastic
conditional gradient method with (1 − 1/e)-approximation and improve the complexity to O(ϵ−2) in
terms of linear optimization oracles. Later, a class of one sample type algorithms [42, see] are designed
for both non-oblivious and oblivious setting, and it requires at most O(ϵ−2) stochastic gradient evalua-
tions to achieve a (1−1/e)-approximation for monotone DR-submodular maximization. Recently, [30]
and [43] introduce and elucidate a unified approach aimed at maximizing continuous DR-submodular
functions. This approach spans a broad array of settings and is compatible with various types of oracle
access. However, to the best of our knowledge the work on DR-submodular maximization with convex
functional constraints is still rare in the literature.

Constrained stochastic optimization

Driven by practical application scenarios, stochastic optimization with functional constraints are at-
tracting much interest. A series of methods such as stochastic SQP methods [4, 13, see], penalty
methods [19, 36, see], proximal point methods [9, see], have been proposed and studied for stochastic
optimization with deterministic constraints. Stochastic optimization with expectation constraints has
also received much attention in recent years. Based on Polayk’s subgradient method [31, see] and
Nesterov’s note [28, see], [23] introduce a cooperative stochastic approximation algorithm for stochas-
tic convex optimization with a single expectation constraint, and establish the iteration complexity of
O(ϵ−2) in terms of both optimality gap and constraint violation within ϵ > 0. For convex optimiza-
tion with multiple expectation constraints, [40] present a stochastic approximation proximal method
of multipliers, and the proposed algorithm can achieve an objective regret and a constraint violation
regret both of the order O(T−1/2) after T iteration. Furthermore, the authors demonstrate that, with
a probability of no less than 1 − e−T 1/4 , the algorithm maintains no more than O(T−1/4) objective
regret and no more than O(T−1/8) constraint violation regret. Based on this work, [41] develop a
stochastic augmented Lagrangian-type algorithm based on linearizations of the objective function and
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constraint functions. The algorithm displays an expected convergence rate of O(K−1/2) for both the
reduction of the objective function and the constraint violations, where K denotes the number of iter-
ations. Also, from a high probability perspective, the algorithm achieves O(log(K)K−1/2) constraint
violation bound and O(log3/2(K)K−1/2) objective bound. Shortly after, [37] propose an adaptive
primal-dual stochastic gradient method. At each iteration, an unbiased stochastic estimation of the
subgradient of the Lagrangian function is inquired, later the primal variables and dual variables are
updated following the adaptive SGM step and the vanilla SGM step respectively. Under the convexity
assumption, an ergodic convergence rate of O(k−1/2) is also verified in terms of the primal-dual gap
and constraint violation, where k is the number of subgradient inquiries. [9] extend the constraint
extrapolation method, which is a primal-dual type method for convex functional constrained opti-
mization, within a proximal point algorithm framework to address non-convex functional constrained
optimization problems. They establish an oracle complexity of O(ϵ−6), reaching an ϵ-KKT point in ex-
pectation. [24] examine the stochastic inexact augmented Lagrangian methods for addressing problems
with a non-convex composite objective and non-convex smooth functional constraints, establishing a
complexity of O(ϵ−5). [1] introduce single-loop algorithms based on the quadratic penalty method
with the complexity guarantee of Õ(ϵ−5). [12] improves the complexity to O(ϵ−5) by introducing a
feasibility-pursuing phase to locate an approximately feasible initial point. Moreover, the moving av-
erage scheme to approximate constraint function values can ensure an O(I−1/5) error in expectation,
where I denotes the number of oracle calls.

Online constrained stochastic optimization

In the field of online learning, some researchers have also turned their attention to stochastic con-
strained optimization problems. [39] propose a framework for online convex optimization with convex
stochastic constraints. In their framework, the decision maker performs an action xt first, and dis-
closes the loss function ft(x) and the stochastic constraint function realizations gt(x;ω(t)) at tth round,
t ∈ [T ]. The authors give an upper bound of the discrete time stochastic process adapted to a filtra-
tion. They prove that the orders of both regret and constraint violations in expectation are O(T 1/2),
while in high probability is O(T 1/2 log(T )). [33] also investigate the online framework under stochastic
constraints, where the utility function ft is assumed to be arbitrary from a class of monotone DR-
submodular functions, the constraint function gt is differentiable and randomly drawn following some
unknown underlying distribution over a class of monotone convex functions. Taking inspiration from
the Meta-Frank-Wolfe algorithms [11,27, see], they derive an algorithm that achieves (1− 1/e)-regret
bound of O(T 1−ϵ/2) when compared to a benchmark with a window length of T 1−ϵ, and establishes a
total constraint violation bound of O(T 1−ϵ/2).

1.2 Our contributions
In this paper, we study Diminishing Returns (DR)-submodular maximization with convex functional
constraints, where both objective function and constraints are in expectation formulations. It poses
challenges to solve this type of problems since only stochastic approximations of the objective and
constraint functions are available and the feasibility to constraints are hard to maintain. To address
these challenges, we propose a generic algorithmic framework that exploits stochastic linear approx-
imations of the objective and constraint functions. Under appropriate update schemes the proposed
algorithm framework can be adapted to problems with objective being non-monotone and monotone,
respectively. We show that for the non-monotone case a (1−minx∈X ∥x∥∞) /4-approximation can be
achieved with an expected error bounded by O(I−1/3), where X represents the problem-dependent
convex closed set and I refers to the total number of samples. And the expected constraint vio-
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lation is in order O(I−1/3). For the monotone case and establish the (1 − 1/e)-approximation and
O(I−1/3)-expected error and constraint violation, when X contains the zero vector. Finally, numerical
results are reported on three illustrative examples and showcase the effectiveness and efficiency of the
proposed algorithm.

1.3 Notations, assumptions and organization
We use 1d and 0d to denote the unit vector and zero vector in Rd, respectively, and ej ∈ Rd to refer
the d-dimensional vector whose jth component is one and other components are zero. We define
[d] = {1, . . . , d} and [0] = ∅. For a given vector x ∈ Rd, we denote x(i) as ith component of x. For a
real number a and a vector x ∈ Rd, we denote [a]+ = max{a, 0} and [x]+ = ([x(1)]+, . . . , [x(d)]+)

T .
Without any specification, we refer ∥·∥ to the standard Euclidean norm in the vector space for interest.
We also denote

∑0
1 = 0. The diameter of the convex set X is denoted by d(X) = supx,y∈X ∥x − y∥.

Additionally, for brevity we denote f(x) := (f1(x), . . . , fm(x))T , ν(x, ξ) := (ν1(x, ξ), . . . , νm(x, ξ))T

and ν(x) := Eξ[ν(x, ξ)]. Given x, y ∈ Rd, x ≤ y refers to the element-wise inequality. Moreover,
f0 : [0, 1]

n → R+ is called DR-submodular, if for every x ≤ y ∈ [0, 1]n, i ∈ [n], a ≥ 0 such that x+ aei,
y + aei ∈ [0, 1]n, it gives f0(x+ aei)− f0(x) ≥ f0(y + aei)− f0(y).

We now give some standard assumptions that are exploited in the remainder of this paper.

Assumption 1.1. Function f0 : [0, 1]n → R+ is DR-submodular and continuously differentiable with
L0-Lipschitz continuous gradients. Functions Fi(·, ζ) : Rn → R, i ∈ [m], are convex over [0, 1]n for
almost every ζ ∈ Ξ.

Assumption 1.2. There exist positive constants M2,M3 such that for any x ∈ X, ζ ∈ Ξ and i ∈ [m],
the stochastic zeroth- and first-order approximations satisfy

Eζ [ν0(x, ζ)] = ∇f0(x), Eζ [∥ν0(x, ζ)∥2] ≤ M2
2 , Eζ [νi(x, ζ)] ∈ ∂fi(x), ∥νi(x, ζ)∥ ≤ M3.

Assumption 1.3. There exists a positive constant M1 such that for all x ∈ X, Eζ [∥F (x, ζ)∥2] ≤ M2
1 ,

where F (x, ζ) := (F1(x, ζ), . . . , Fm(x, ζ))T .

Assumption 1.4. (The Slater’s Condition) There exist a positive constant M4 and x̂ ∈ X such that
fi(x̂) ≤ −M4 for any i ∈ [m].

Assumption 1.5. The set X := (argminx∈X ∥x∥∞) ∩ {x | f(x) ≤ 0m} is nonempty.

Remark 1.1. Under Assumption 1.1, it follows from (7.5) in [17] and Lemma 7 in [10] that for any
x, y ∈ [0, 1]n,

⟨∇f0(x), y − x⟩ ≥ f0(x ∨ y) + f0(x ∧ y)− 2f0(x),

f0(x ∨ y) ≥ (1− ∥x∥∞) f0(y),
(1.2)

where ∨ and ∧ are the coordinate-wise maximum and minimum operations, respectively. It is note-
worthy that the expected boundedness required in Assumption 1.3 can be realized through the continuity
of fi over [0, 1]n and the variance boundedness of Fi(x, ζ), i ∈ [m]; that is, Eζ [∥Fi(x, ζ) − fi(x)∥2] is
upper bounded, which is commonly adopted in the literature for stochastic optimization.

Our paper is organized as follows. In Section 2, we present a framework of stochastic approximation
algorithms for solving (1.1). In Section 3, we exhibit a series of auxiliary lemmas to support the
theoretical analysis. In Sections 4 and 5, we delve into the approximation analysis, for the case when
objective is non-monotone and monotone, respectively. In Section 6, we report numerical results on
three illustrative problems. Finally, we draw a conclusion in Section 7.
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2 Algorithm framework
In this section, we propose an algorithm framework of stochastic approximation methods for solving
DR-submodular maximization with convex functional constraints, as described in (1.1). To handle
the functional constraints, we exploit the augmented Lagrangian (AL) function, which is well-known
in continuous optimization community [8, 29]. The AL function associated with (1.1) is defined as

Lβ(x;λ) = −f0(x) +
1

2β

[
∥[λ+ βf(x)]+∥2 − ∥λ∥2

]
, (2.1)

where β > 0 is a penalty parameter and λ ∈ Rm
+ is a vector of Lagrange multipliers, also known

as dual variables. Keeping the penalty parameter and dual variables fixed, traditional augmented
Lagrangian methods aim to (approximately) minimize the AL function at each iteration to update
the primal variable. However, in the context of (1.1) only stochastic approximations of the objective
function f0 and constraint functions fi, i ∈ [m] are available. We thus need to employ these stochastic
approximations to design an algorithm for (1.1).

Our algorithm is organized as a double-loop structure. We set the maximum iteration number
in the outer loop and inner loop as T and K, respectively, and simply denote the total number of
iterations by I = TK. The iteration index in the outer loop is denoted by t located at the subscript
of vectors, while the iteration index in the inner loop is denoted by k, placed at the superscript of
vectors. For any t ∈ [T ] and k ∈ [K], let xkt and λk

t represent the primal iterate and the dual iterate,
respectively. We also introduce a sequence of auxiliary variables vkt to approximate primal iterates.
The basic idea of the algorithm is given as follows. For any t ∈ [T ] and k ∈ [K], we first select a
random sample ξkt ∈ Ξ and compute stochastic estimates F0(x

k
t−1, ξkt ), ν0(xkt−1, ξ

k
t ), F (vkt−1, ξ

k
t ) and

ν(vkt−1, ξ
k
t ). Then based on the AL function (2.1), we construct an approximation model to update

the primal variable. Note that when x is not far from xkt−1 and vkt−1, the original objective function
and the constraint functions around current iterate can be approximated by

F0(x, ξ
k
t ) ≈ F0(x

k
t−1, ξ

k
t ) + ⟨ν0(xkt−1, ξ

k
t ), x− xkt−1⟩,

Fi(x, ξ
k
t ) ≈ Fi(v

k
t−1, ξ

k
t ) + ⟨νi(vkt−1, ξ

k
t ), x− vkt−1⟩, i ∈ [m].

It is noteworthy that we approximate the objective function value around current iterate xkt−1, while
for the constraints we make approximations based on the function information of an approximate
point vkt−1. This plays a crucial role in establishing desired approximation ratios in our paper. We
then introduce the approximation function Qk

t (x) formulated as

Qk
t (x) :=− F0(x

k
t−1, ξ

k
t ) + ⟨−ν0(x

k
t−1, ξ

k
t ), x− xkt−1⟩+

1

2β

m∑
i=1

[
λk
t (i) + β

(
Fi(v

k
t−1, ξ

k
t )

+ ⟨νi(vkt−1, ξ
k
t ), x− vkt−1⟩

)]2
+
− 1

2β
∥λk

t ∥2 +
α

2
∥x− vkt−1∥2 (2.2)

and compute vkt by solving the minimization problem

vkt := argmin
x∈X

Qk
t (x). (2.3)

Clearly, Qk
t (·) is strongly convex over X, thus the subproblem in (2.3) admits a unique solution. We

then compute a new primal iterate xk+1
t through a mapping of xkt and vkt , denoted by

xk+1
t = M(xkt , v

k
t ). (2.4)
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We will specify the setting of operator M in subsequent analysis regarding the non-monotone case
and monotone case, respectively.

Finally, with regard to the update of dual iterates, we adopt the following way

λk
t+1 =

[
λk
t + β

(
F (vkt−1, ξ

k
t ) + ⟨ν(vkt−1, ξ

k
t ), v

k
t − vkt−1⟩

)]
+
. (2.5)

We formalize above considerations into the main algorithm of our paper, Algorithm 1. Algorithm 1
involves setting up the random process, which comes from the sampling of the random variables ξkt , t ∈
[T ], k ∈ [K]. During the algorithmic process, there are three kinds of computational expectations to
take in our theoretical analysis. The first expectation is the conditional expectation with respect to
ξkt given Fk

t , denoted by Eξkt
[·], where

Fk
t := σ({ξji ∪ ξzt | i ∈ [t− 1], j ∈ [k], z ∈ [k − 1]}).

At this point vkt and λk
t+1 depend on the realization of ξkt . The second expectation is taken with

respect to the random vectors ξ11 , ξ21 , . . . , ξKT running through the space Ξ, denoted by Eξ[·]. The third
expectation is taken based on the above randomized process and then takes into account the random
subscripts R at the output, meaning that the total expectation with respect to all random variables
generated in Algorithm 1. We write the notation E[·] := E(R,ξ)[·] for ease.

Algorithm 1:
Input: Positive integers T and K, parameters α > 1, β ∈ (0, 1], x10 = x̄0 ∈ X , {v̄k} ⊆ X and

{λ̄k} ⊆ Rm
+ .

Output: xR := xK+1
R , where R is uniformly randomly chosen from {0, 1, . . . , T − 1}.

1: for k = 1 to K do
2: Set vk0 = v̄k, λk

1 = λ̄k

3: Compute xk+1
0 = M(xk0, v

k
0 )

4: end for
5: for t = 1 to T do
6: Let x1t ∈ X
7: for k = 1 to K do
8: Generate an i.i.d. sample ξkt from Ξ, and obtain F0(x

k
t−1, ξ

k
t ), ν0(xkt−1, ξ

k
t ) and Fi(v

k
t−1, ξ

k
t ),

νi(v
k
t−1, ξ

k
t ), i ∈ [m]

9: Compute vkt through (2.3)
10: Compute xk+1

t through (2.4)
11: Compute λk

t+1 through (2.5)
12: end for
13: end for

3 Auxiliary lemmas
In this section, we will present auxiliary lemmas characterizing basic properties of framework Algorithm
1 and prepare for the forthcoming approximation analyses. Proofs of these auxiliary lemmas are
presented in Appendix A.

Let {xkt }, {λk
t } and {vkt } be generated by Algorithm 1. The following lemma explores the behavior

of multipliers during updates.
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Lemma 3.1. Suppose that the Assumption 1.1 is satisfied. Then for any x ∈ X, t ∈ [T ] and k ∈ [K],
it holds that

1

2β
∥λk

t+1∥2 −
1

2β
∥λk

t ∥2 ≤ ⟨−ν0(x
k
t−1, ξ

k
t ), x− vkt−1⟩+

1

α

∥ν0(xkt−1, ξ
k
t )∥2

2
+ β

∥F (x, ξkt )∥2

2

+ ⟨λk
t , F (x, ξkt )⟩+

α

2
(∥x− vkt−1∥2 − ∥x− vkt ∥2).

(3.1)

Our next lemma aims to investigate the upper bound of the difference between two successive
auxiliary variables vkt and vkt−1.

Lemma 3.2. Suppose that Assumptions 1.1 and 1.2 are satisfied, and 2α− βmM2
3 > 0. Then for any

t ∈ [T ] and k ∈ [K], it holds that

∥vkt−1 − vkt ∥ ≤ 2

2α− βmM2
3

(∥ν0(xkt−1, ξ
k
t )∥+

√
mM3∥λk

t ∥+ β
√
mM3∥[F (vkt−1, ξ

k
t )]+∥).

The lemma below characterizes an upper bound on ∥λk
t ∥ in expectation.

Lemma 3.3. Suppose that Assumptions 1.1-1.4 are satisfied. Then for any t ∈ [T ] and k ∈ [K], it
holds that Eξ[∥λk

t ∥] ≤ θ := E1 +
1
αE2 + βE3 + αβE4, where

E1 = max
k∈[K]

∥λ̄k∥+ 2(M1 +M3d(X))
√
m+

M2d(X)

M4
, E2 =

M2
2

2M4
,

E3 =
√
m(M1 +M3d(X)) +

M2
1

2M4
and E4 =

d(X)2

2M4
.

(3.2)

4 Non-monotone case
Our aim in this section is to establish an approximation guarantee for Algorithm 1 in general case,
where the objective f0 can be non-monotone. In this case, we define M as

M(xkt , v
k
t ) := xkt +

(
vkt − xkt

) 1

K

√
ak

ak+1
with ak :=

(
1 +

k − 1

K

)2
(4.1)

for any t ∈ [T ] ∪ {0}, k ∈ [K]. Let {xkt } be generated by Algorithm 1 applying (4.1) and xR := xK+1
R

with R being uniformly randomly chosen from {0, 1, . . . , T − 1}.
We first provide an upper bound on ∥xkt ∥∞ and put the proof in Appendix B.1.

Lemma 4.1. For each t ∈ [T ]∪{0} and k ∈ [K+1], it holds that ∥xkt ∥∞ ≤ 1−(1−minx∈X ∥x∥∞)/
√
ak.

To establish the approximation guarantee, we need to identify the relationships between f0(x
k+1
t ),

f0(x
k
t ) and f0(x

∗). The detailed proof is presented in Appendix B.2.

Lemma 4.2. It holds that for any t ∈ [T ] and k ∈ [K],

ak+1f0(x
k+1
t−1 )−

k + 1

K

(
1−min

x∈X
∥x∥∞

)
f0(x

∗)−
(
akf0(x

k
t−1)−

k

K

(
1−min

x∈X
∥x∥∞

)
f0(x

∗)
)

≥
〈
∇f0(x

k
t−1), (v

k
t−1 − x∗)

√
ak

K

〉
− L0

2

1

K2
d(X)2.

We now arrive at the main theorem characterizing the approximation guarantee of Algorithm 1 in
non-monotone case.

8



Theorem 4.3. Suppose that Assumptions 1.1-1.3 are satisfied, then

1

4

(
1−min

x∈X
∥x∥∞

)
f0(x

∗)− E[f0(xR)]

≤ 1

K

L0d(X)2

8
+

1

Tβ

maxk∈[K] ∥λ̄k∥2

4
+

1

α

M2
2

4
+ β

M2
1

4
+

α

T

d(X)2

4
.

(4.2)

Proof. Proof Recall that for each t ∈ [T ], k ∈ [K],Fk
t = {ξji ∪ ξzt | i ∈ [t − 1], j ∈ [k], z ∈ [k − 1]}.

Plugging x = x∗ into Lemma 3.1 and then taking expectation with respect to ξkt yield that

1

2β
Eξkt

[∥λk
t+1∥2]−

1

2β
∥λk

t ∥2 ≤ ⟨Eξkt
[−ν0(x

k
t−1, ξ

k
t )], x

∗ − vkt−1⟩+
1

α

Eξkt
[∥ν0(xkt−1, ξ

k
t )∥2]

2

+β
Eξkt

[∥F (x∗, ξkt )∥2]
2

+ ⟨λk
t ,Eξkt

[F (x∗, ξkt )]⟩+
α

2
(∥x∗ − vkt−1∥2 − Eξkt

[∥x∗ − vkt ∥2]).

From Eξkt
[ν0(x

k
t−1, ξ

k
t )] = ∇f0(x

k
t−1) and Eξkt

[F (x∗, ξkt )] = f(x∗), Assumptions 1.3 and 1.2 indicate

1

2β
Eξkt

[∥λk
t+1∥2]−

1

2β
∥λk

t ∥2 ≤⟨−∇f0(x
k
t−1), x

∗ − vkt−1⟩+
1

α

M2
2

2
+ β

M2
1

2
+ ⟨λk

t , f(x
∗)⟩

+
α

2
(∥x∗ − vkt−1∥2 − Eξkt

[∥x∗ − vkt ∥2]).
(4.3)

For any t ∈ [T ], k ∈ [K], it follows from λk
t ≥ 0m and f(x∗) ≤ 0m that

√
ak

K

〈
∇f0(x

k
t−1), v

k
t−1 − x∗

〉
≥

√
ak

K

1

2β
Eξkt

[∥λk
t+1∥2]−

√
ak

K

1

2β
∥λk

t ∥2 −
√
ak

K

( 1
α

M2
2

2

+ β
M2

1

2
+ ⟨λk

t , f(x
∗)⟩+ α

2
(∥x∗ − vkt−1∥2 − Eξkt

[∥x∗ − vkt ∥2])
)

≥
√
ak

K

1

2β
Eξkt

[∥λk
t+1∥2]−

√
ak

K

1

2β
∥λk

t ∥2 −
√
ak

K

( 1
α

M2
2

2
+ β

M2
1

2

+
α

2
(∥x∗ − vkt−1∥2 − Eξkt

[∥x∗ − vkt ∥2])
)

which together with Lemma 4.2 yields

ak+1f0(x
k+1
t−1 )−

k + 1

K

(
1−min

x∈X
∥x∥∞

)
f0(x

∗)−
(
akf0(x

k
t−1)−

k

K

(
1−min

x∈X
∥x∥∞

)
f0(x

∗)
)

≥ −L0

2

1

K2
d(X)2 +

√
ak

K

1

2β
Eξkt

[∥λk
t+1∥2]−

√
ak

K

1

2β
∥λk

t ∥2 −
√
ak

K

( 1
α

M2
2

2

+ β
M2

1

2
+

α

2
(∥x∗ − vkt−1∥2 − Eξkt

[∥x∗ − vkt ∥2])
)
.

Taking expectation with respect to all the random vectors ξ11 , ξ
2
1 , . . . , ξ

K
T , we derive

ak+1Eξ[f0(x
k+1
t−1 )]−

k + 1

K

(
1−min

x∈X
∥x∥∞

)
f0(x

∗)−
(
akEξ[f0(x

k
t−1)]

− k

K

(
1−min

x∈X
∥x∥∞

)
f0(x

∗)
)
≥ −L0

2

1

K2
d(X)2 +

√
ak

K

1

2β
Eξ[∥λk

t+1∥2 − ∥λk
t ∥2]

−
√
ak

K

1

α

M2
2

2
−

√
ak

K
β
M2

1

2
−

√
ak

K

α

2
Eξ[∥x∗ − vkt−1∥2 − ∥x∗ − vkt ∥2].
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Summing this inequality over all t ∈ [T ] and using λk
1 = λ̄k, 1 ≤

√
ak ≤ 2, together with

∥∥x∗ − vk0
∥∥ ≤

d(X), imply that

ak+1
T∑
t=1

Eξ[f0(x
k+1
t−1 )]−

T (k + 1)

K

(
1−min

x∈X
∥x∥∞

)
f0(x

∗)−
(
ak

T∑
t=1

Eξ[f0(x
k
t−1)]

− Tk

K

(
1−min

x∈X
∥x∥∞

)
f0(x

∗)
)

≥ −TL0

2

1

K2
d(X)2 +

√
ak

K

1

2β

T∑
t=1

Eξ[∥λk
t+1∥2 − ∥λk

t ∥2]−
√
ak

K

T

α

M2
2

2
− T

√
ak

K
β
M2

1

2

−
√
ak

K

α

2

T∑
t=1

Eξ[∥x∗ − vkt−1∥2 − ∥x∗ − vkt ∥2]

≥ −TL0

2

1

K2
d(X)2 +

√
ak

K

1

2β
Eξ[∥λk

T+1∥2 − ∥λ̄k∥2]−
√
ak

K

T

α

M2
2

2
− T

√
ak

K
β
M2

1

2

−
√
ak

K

α

2
Eξ[∥x∗ − vk0∥2]

≥ − T

K2

L0

2
d(X)2 − 1

Kβ
∥λ̄k∥2 − T

Kα
M2

2 − Tβ

K
M2

1 − α

K
d(X)2.

We thus derive the inequality

aK+1
T∑
t=1

Eξ[f0(x
K+1
t−1 )]− T (K + 1)

K

(
1−min

x∈X
∥x∥∞

)
f0(x

∗)−
(
a1

T∑
t=1

Eξ[f0(x
1
t−1)]

− T

K

(
1−min

x∈X
∥x∥∞

)
f0(x

∗)
)
≥ − T

K

L0

2
d(X)2 − 1

β
max
k∈[K]

∥λ̄k∥2 − T

α
M2

2 − TβM2
1 − αd(X)2.

Noting aK+1 = 4, a1 = 1 and f0(·) ≥ 0 and dividing both sides with T leads to (4.2).

Our next focus is to examine the constraint violation at the output of Algorithm 1.

Theorem 4.4. Suppose that Assumptions 1.1-1.5 are satisfied, and 2α− βmM2
3 > 0, then

E[∥[f(xR)]+∥] ≤
1

Tβ

√
mE1 +

1

Tβα

√
mE2 +

1

T

√
mE3 +

α

T

√
mE4

+
1

2α− βmM2
3

(2M3M2

√
m+ 2M2

3mE1) +
1

2α2 − βαmM2
3

2M2
3mE2

+
αβ

2α− βmM2
3

2M2
3mE4 +

β

2α− βmM2
3

(2M2
3mE3 + 2M2

3mM1),

(4.4)

where E1, E2, E3 and E4 are introduced in (3.2).

Proof. Proof It is worthy to note that for any i ∈ [m], t ∈ [T ] and k ∈ [K],

λk
t+1(i) ≥ λk

t (i) + βFi(v
k
t−1, ξ

k
t ) + β⟨νi(vkt−1, ξ

k
t ), v

k
t − vkt−1⟩

≥ λk
t (i) + βFi(v

k
t−1, ξ

k
t )− βM3∥vkt − vkt−1∥

≥ λk
t (i) + βFi(v

k
t−1, ξ

k
t )− βM3

2

2α− βmM2
3

(∥ν0(xkt−1, ξ
k
t )∥+ ∥λk

t ∥
√
mM3

+ β
√
m∥[F (vkt−1, ξ

k
t )]+∥M3),
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where the first inequality follows from (2.5), the second inequality follows from Cauchy-Schwarz In-
equality and Assumption 1.2, and the third inequality follows from Lemma 3.2. Then it derives

Fi(v
k
t−1, ξ

k
t ) ≤

1

β
(λk

t+1(i)− λk
t (i)) +

2M3

2α− βmM2
3

(∥ν0(xkt−1, ξ
k
t )∥+ ∥λk

t ∥
√
mM3

+ β
√
m∥[F (vkt−1, ξ

k
t )]+∥M3).

Note that it follows from Assumptions 1.3 and 1.2 that

Eξkt
[Fi(v

k
t−1, ξ

k
t )] = fi(v

k
t−1), Eξkt

[∥F (vkt−1, ξ
k
t )∥] ≤ M1 and Eξkt

[∥ν0(xkt−1, ξ
k
t )∥] ≤ M2.

Then we further take expectation with respect to random vectors ξ11 , ξ
2
1 , . . ., ξKT , attaining

Eξ[fi(v
k
t−1)] ≤

1

β
Eξ[λ

k
t+1(i)− λk

t (i)] +
2M3

2α− βmM2
3

(M2 + Eξ[∥λk
t ∥]

√
mM3 + β

√
mM1M3). (4.5)

Let us turn to the iterate update xk+1
t = xkt + (vkt − xkt )

1
K

√
ak

ak+1 , for any t ∈ [T ] ∪ {0}, k ∈ [K]. For
simplicity, we denote ηk = 1

K

√
ak

ak+1 . We recursively apply the series and subsequently observe that

xk+1
t =

k∏
r=1

(1− ηr)x1t +
k−1∑
s=1

k∏
r=s+1

(1− ηr) ηsvst + ηkvkt ,

and
k∏

r=1

(1− ηr) +
k−1∑
s=1

k∏
r=s+1

(1− ηr) ηs + ηk = 1.

Recall that fi is convex, then for any t ∈ [T ] ∪ {0}, i ∈ [m], when k = K it implies

fi(x
K+1
t ) ≤

K∏
r=1

(1− ηr) fi(x
1
t ) +

K−1∑
s=1

K∏
r=s+1

(1− ηr) ηsfi(v
s
t ) + ηKfi(v

K
t ).

Summing t ∈ [T − 1] ∪ {0} and applying Assumption 1.5, we obtain

T−1∑
t=0

fi(x
K+1
t ) ≤

T−1∑
t=0

( K∏
r=1

(1− ηr) fi(x
1
t ) +

K−1∑
s=1

K∏
r=s+1

(1− ηr) ηsfi(v
s
t ) + ηKfi(v

K
t )
)

=
K∏
r=1

(1− ηr)
T−1∑
t=0

fi(x
1
t ) +

K−1∑
s=1

K∏
r=s+1

(1− ηr) ηs
T−1∑
t=0

fi(v
s
t ) + ηK

T−1∑
t=0

fi(v
K
t )

≤
K−1∑
s=1

K∏
r=s+1

(1− ηr) ηs
T−1∑
t=0

fi(v
s
t ) + ηK

T−1∑
t=0

fi(v
K
t ).

Taking expectation with the random vector ξ and applying with (4.5), Lemma 3.3 and

K−1∑
s=1

K∏
r=s+1

(1− ηr) ηs + ηK = 1−
K∏
r=1

(1− ηr) ≤ 1,

11



lead to

Eξ

[ T−1∑
t=0

fi(x
K+1
t )

]

≤
K−1∑
s=1

K∏
r=s+1

(1− ηr) ηs
(
1

β
Eξ[λ

s
T+1(i)− λs

1(i)] +
2TM3M2

2α− βmM2
3

+
2M2

3

√
m

2α− βmM2
3

·
T∑
t=1

Eξ[∥λs
t∥] +

2TβM2
3

√
mM1

2α− βmM2
3

)
+ ηK

(
1

β
Eξ[λ

K
T+1(i)− λK

1 (i)]

+
2TM3M2

2α− βmM2
3

+
2M2

3

√
m

2α− βmM2
3

T∑
t=1

Eξ[∥λK
t ∥] + 2TβM2

3

√
mM1

2α− βmM2
3

)

≤
K−1∑
s=1

K∏
r=s+1

(1− ηr) ηs
(
θ

β
+

2TM3M2

2α− βmM2
3

+
2M2

3

√
m

2α− βmM2
3

Tθ +
2TβM2

3

√
mM1

2α− βmM2
3

)
+ ηK

(
θ

β
+

2TM3M2

2α− βmM2
3

+
2M2

3

√
m

2α− βmM2
3

Tθ +
2TβM2

3

√
mM1

2α− βmM2
3

)
≤ θ

β
+

2TM3M2

2α− βmM2
3

+
2M2

3

√
m

2α− βmM2
3

Tθ +
2TβM2

3

√
mM1

2α− βmM2
3

,

where θ is defined in Lemma 3.3. We further divide both sides of above inequality with T , attaining

E[fi(xR)] =
1

T

T−1∑
t=0

Eξ[fi(x
K+1
t )]

≤ 1

Tβ
(E1 +

1

α
E2 + βE3 + αβE4) +

2M3M2

2α− βmM2
3

+
2M2

3

√
m

2α− βmM2
3

(E1 +
1

α
E2 + βE3 + αβE4) +

2βM2
3

√
mM1

2α− βmM2
3

=
1

Tβ
E1 +

1

Tβα
E2 +

1

T
E3 +

α

T
E4 +

1

2α− βmM2
3

(2M3M2 + 2M2
3

√
mE1) +

1

2α2 − βαmM2
3

· 2M2
3

√
mE2 +

αβ

2α− βmM2
3

2M2
3

√
mE4 +

β

2α− βmM2
3

(2M2
3

√
mE3 + 2M2

3

√
mM1).

By using xR = xK+1
R and E[∥[f(xR)]+∥] ≤

√
mE[∥[f(xR)]+∥∞] we obtain (4.4).

Theorems 4.3 and 4.4 provide estimates on theoretical performances of Algorithm 1. By specifying
parameter settings we summarize the approximation ratio and error bounds in the corollary below.

Corollary 4.5. Suppose that Assumptions 1.1-1.5 are satisfied. Let T = O(I2/3), K = O(I1/3),
α = I1/3, and β = I−1/3. Then it holds that

1

4

(
1−min

x∈X
∥x∥∞

)
f0(x

∗)− E[f0(xR)] = O(I−1/3), E[∥[f(xR)]+∥] = O(I−1/3).

Proof. Proof Under the parameter settings of this corollary, it is easy to obtain from Theorem 4.3 and

12



Theorem 4.4 that

1

4

(
1−min

x∈X
∥x∥∞

)
f0(x

∗)− E[f0(xR)] ≤
1

I1/3

(L0d(X)2

8
+

max
k∈[K]

∥λ̄k∥2

4
+

M2
2

4
+

M2
1

4
+

d(X)2

4

)
,

E[∥[f(xR)]+∥] ≤
1

I1/3
√
m(E1 + E4) +

1

I2/3
√
m(E2 + E3) +

1

2I1/3 − I−1/3mM2
3

(2M3M2

·
√
m+ 2M2

3m(E1 + E4)) +
1

2I2/3 −mM2
3

(2M2
3m(E2 + E3 +M1)),

which are both in order O(I−1/3).

Under the same conditions as Corollary 4.5, by applying Markov’s inequality we obtain the fol-
lowing high probability bounds at xR. More specifically, for any ρo, ρc ∈ (0, 1), it holds that with
probability at least (1− ρo),

1

4

(
1−min

x∈X
∥x∥∞

)
f0(x

∗)− f0(xR)

≤ 1

ρo

( 1

I1/3

(L0d(X)2

8
+

maxk∈[K] ∥λ̄k∥2

4
+

M2
2

4
+

M2
1

4
+

d(X)2

4

))
and with probability at least (1− ρc),

∥[f(xR)]+∥ ≤ 1

ρc

( 1

I1/3
√
m(E1 + E4) +

1

I2/3
√
m(E2 + E3) +

1

2I1/3 − I−1/3mM2
3

(2M3M2

·
√
m+ 2M2

3m(E1 + E4)) +
1

2I2/3 −mM2
3

(2M2
3m(E2 + E3 +M1))

)
.

5 Monotone case
In this section, we study the case when f0 is monotonously increasing. To proceed, we lay out another
assumption that is common for monotone DR-submodular maximization.

Assumption 5.1. The set X ⊆ [0, 1]n contains the zero vector.

Under Assumption 5.1, the initial point x1t is 0n. And to accommodate the monotone case, we
define the mapping M as

M(xkt , v
k
t ) = xkt +

1

K
vkt , ∀t ∈ [T ] ∪ {0}, k ∈ [K]. (5.1)

In the following, let {xkt } be generated by Algorithm 1 with operator M as defined in (5.1) and
xR := xK+1

R with R being uniformly randomly chosen from {0, 1, . . . , T − 1}.
The following two theorems demonstrate the expected approximation bound and constraint viola-

tion at the output xR. Detailed proofs are presented in Appendix C.

Theorem 5.1. Suppose that Assumptions 1.1-1.3 and Assumption 5.1 are satisfied. Then we have(
1− 1

e

)
f0(x

∗)− E[f0(xR)]

≤ 1

K

L0d(X)2

2
+

1

α

M2
2

2
+ β

M2
1

2
+

α

T

d(X)2

2
+

1

βT

maxk∈[K] ∥λ̄k∥2

2
.

(5.2)
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Theorem 5.2. Suppose that Assumptions 1.1-1.4 and Assumption 5.1 are satisfied, and 2α−βmM2
3 >

0. Then it holds that

E[∥[f(xR)]+∥] ≤
√
m

Tβ
(E1 +

1

α
E2 + βE3 + αβE4) +

2
√
mM3M2

2α− βmM2
3

+
2mM2

3

2α− βmM2
3

(E1 +
1

α
E2 + βE3 + αβE4) +

2βmM1M
2
3

2α− βmM2
3

,

where E1, E2, E3, and E4 are introduced in (3.2).
By specifying the parameters in Theorems 5.1 and 5.2 as

T = O(I2/3), K = O(I1/3), α = I1/3, β = I−1/3, (5.3)
we obtain the following relations:

(
1− 1

e

)
f0(x

∗)− E[f0(xR)] ≤
1

I1/3

(L0d(X)2

2
+

M2
2

2
+

M2
1

2
+

d(X)2

2
+

max
k∈[K]

∥λ̄k∥2

2

)
,

E[∥[f(xR)]+∥] ≤
√
m

I1/3
(E1 + E4) +

√
m

I2/3
(E2 + E3) +

2
√
mM3M2

2I1/3 − I−1/3mM2
3

+
2mM2

3

2I1/3 − I−1/3mM2
3

(E1 + E4) +
2mM2

3

2I2/3 −mM2
3

(E2 + E3 +M1),

which are both in order O(I−1/3). For completeness, we summarize these results as follows.
Corollary 5.3. Suppose that Assumptions 1.1-1.4 and Assumption 5.1 hold. Under parameter setting
(5.3) we have

(1− 1/e)f0(x
∗)− E[f0(xR)] = O(I−1/3) and E[∥[f(xR)]+∥] = O(I−1/3).

By applying Markov’s inequality we directly establish high-probability bounds at xR. That is, for
any given ρo, ρc ∈ (0, 1), with probability (1− ρo) such that

(
1− 1

e

)
f0(x

∗)− f0(xR) ≤
1

ρo

(
1

I1/3

(L0d(X)2

2
+

M2
2

2
+

M2
1

2
+

d(X)2

2
+

max
k∈[K]

∥λ̄k∥2

2

))
and with probability (1− ρc) such that

∥[f(xR)]+∥ ≤ 1

ρc

(√
m

I1/3
(E1 + E4) +

√
m

I2/3
(E2 + E3) +

2
√
mM3M2

2I1/3 − I−1/3mM2
3

+
2mM2

3

2I1/3 − I−1/3mM2
3

(E1 + E4) +
2mM2

3

2I2/3 −mM2
3

(E2 + E3 +M1)

)
.

Remark 5.1. In comparison to our work, [33] focus on problems in online setting with stochastic
constraints and deterministic objective function. Here, the stochasticity of constraints refers to that the
constraint function is randomly chosen from a class of functions following an underlining distribution.
At each moment, exact gradients of the objective function and constraint at multiple points need to
be calculated. However, our work differs in that we consider more general stochastic settings. More
specifically, we allow stochastic gradients of the objective function and stochastic subgradients of the
constraint can be accessed. Moreover, in our algorithm only one random sample is called at each
iteration. In addition, [33] require the assumption of smoothness on the constraint functions. We
instead assume the availability of approximate subgradients of constraint functions at a given point.
Besides, [33] only study the case with monotone objective, while we consider both non-monotone and
monotone cases.
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6 Illustrative examples
To validate our theoretical analysis, we present three illustrative examples and report associated test
results. These examples were conducted in Python 3.8 on a server with an Intel® Xeon® Gold 6230
CPU. We apply the V-FISTA variant algorithm ( [3]) to solve (2.3).

6.1 Welfare maximization with production cost
In first example, we consider the welfare maximization with production cost [33], formulated as

max
0n≤x≤1n

f0(x) :=
1

N

N∑
i=1

log det (diag(x) (Li − I) + I)

s. t. f1(x) :=
1

N

N∑
i=1

(xTPix− b) ≤ 0.

(6.1)

We generate Li, Pi ∈ Rn×n, i ∈ [N ] as random positive definite matrices whose eigenvalues are
uniformly chosen from [10−16, 3] and [0.3, 6], respectively, where n = 50, b = 4 and I is the identity
matrix. In this setting, we can easily see that f1(0n) < 0, thus the Slater’s condition is satisfied.

For Algorithm 1, we set the maximum number of iterations in the outer loop as T = 100, and the
number of iterations in the inner loop as K = 10. The initial points are v̄k = 0n and λ̄k = 0, where
k ∈ [K]. For any t ∈ [T ] and k ∈ [K], we randomly and uniformly generate a batch of indices from
[N ] with size as 10. This is used to compute the mini-batch stochastic function values and stochastic
gradients of f0 and f1, respectively, aiming for constructing the model function (2.2). Regarding the
trend of objective function values along with the outer iteration index t, we compute the averaged
values at past iterates to show more stable performance. For instance, we compute 1

t

∑t
s=1 f0(xs),

where xs := xK+1
s and s ∈ [t], and record its trend as t increases to T . Additionally, we compute the

averaged constraint violation 1
t

∑t
s=1[f1(xs)]+.

In numerical tests, we first examine the exact version of our algorithm and compare the results
with Algorithm 1. The exact algorithm refers to the version that in step 8 of Algorithm 1, we compute
exact information of the objective and constraint functions instead of their stochastic approximations.
Considering the increased computational time due to the exact information computations, we slightly
reduce the scale of N to 500. Figure 1 shows the comparison results of the two algorithms, noting
that the accuracy of the solutions from Algorithm 1 is almost indistinguishable from those of exact
algorithm. This indicates that our algorithm can achieve similar accuracy to the exact algorithm
within much less CPU time, highlighting the efficiency advantage of our algorithm.

To evaluate the performance of Algorithm 1 in solving (6.1), we also compare with the benchmark
algorithm, Python’s built-in function minimize, in Figure 2(a). In this setting, we set N = 6000.
The pink line represents the results obtained by Algorithm 1, with values reaching as high as 3.4159,
while the cyan line corresponds to the results obtained by minimize, culminating in a measure of
3.4184 with an slightly constraint violation 10−8. As can be observed from Figure 2(a), the objective
function value and constraint violation by both algorithms converge to a similar level. This indicates
that both Algorithm 1 and the benchmark algorithm are able to effectively solve the problem. Figures
2(b) and 2(c) show the function value and constraint violation v.s. the outer iteration number for 4
function instances with different values of b. It is evident that despite variations in the parameter b,
our proposed algorithm manages to sustain a stable output.
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(a) (b)

Figure 1: (a): function value and constraint violation v.s. outer iteration number for Algorithm 1
and exact algorithm. (b): CPU time (minutes) v.s. outer iteration number for Algorithm 1 and exact
algorithm at the first 40 iterations out of 100 iterations.

(a) (b) (c)

Figure 2: function value and constraint violation v.s. outer iteration number for different settings of
b. (a): b = 4. (b) and (c): b = 2, 4, 8, 16.

6.2 Finite-sum quadratic programming
In second example, we consider the following quadratic programming problem

max
0n≤x≤1n

f0(x) =
1

N

N∑
i=1

(1
2
xTHix+ hTi x+ c

)
s. t. f(x) =

1

N

N∑
i=1

(Aix− bi) ≤ 0m.

(6.2)

In this example, we define the parameters as follows: N = 2000, n = 100, and m = 5. For each
i ∈ [N ], we generate Hi ∈ Rn×n, a random symmetric matrix with uniformly distributed non-positive
entries spanning [−10, 0]. Additionally, Ai ⊆ Rm×n denotes a random matrix with entries uniformly
distributed over [0, 1], and bi = 1m. To preserve the non-monotonic behavior of f0, we set hi =
−0.2HT

i 1n. To guarantee that f0 remains nonnegative, we initially address the optimization problem
(6.2) with c = 0 using Python’s built-in function minimize. Denoting the obtained solution by x̃, we
subsequently adjust c to be f(x̃) + |0.1f(x̃)| in (6.2) to maintain non-negativity. It is apparent that
the Slater’s condition is fulfilled since f(0n) < 0m.

For Algorithm 1, the sampling process to compute approximate function information is the same
as described in Subsection 6.1, except that the batch size is chosen as 5. We choose T = 200 and
K = 44, respectively. The initial points are set as v̄k = 0n and λ̄k = 0m, where k ∈ [K]. To evaluate
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the performance of Algorithm 1 on problem (6.2), we compare it with the algorithm minimize. In
Figure 3(a), we plot the objective function values and constraint violations averaged in the way same
as first example. The objective function value obtained by minimize is 16673. And by the 200th
iteration of Algorithm 1, the averaged objective function value f0(x200) reaches 16632. Concerning the
violation of constraints, Algorithm 1 reaches a feasible solution at the 200th iteration; however, the
value produced by minimize slightly exceeds the limits by 0.05. Overall, the results by two algorithms
are in the same level, demonstrating the comparable performances of Algorithm 1. In Figure 3(b), we
depict the curve of the objective function value as it increases with the number of outer iterations when
the parameter b changes. The main figure details the changes in the objective function throughout the
entire iteration process, where the value increases from 0 to 16000. We show an enlarged detail of the
objective function from the 70th iteration onwards on the secondary axis. Figure 3(c) offers a depiction
of the alterations in the constraint violation with the increase in the number of outer iterations. By
adjusting the parameter b, it provides additional insights into the stability of our algorithm.

(a) (b) (c)

Figure 3: function value and constraint violation v.s. outer iteration number for different settings of
b. (a): b = 1. (b) and (c): b = 0.5, 1, 2, 4.

6.3 Influence maximization
In the influence maximization model, we focus on activating certain nodes in a given social network
with the aim of enabling these nodes to influence as many other nodes as possible. The influence
maximization model with budget allocation, also known as the source-node bipartite influence maxi-
mization model [34], is taken into consideration in the following. Consider a weighted bipartite graph
G(S, T , E , p), p : E → [0, 1] on media channels nodes S and clients nodes T with edges (s, t) ∈ E im-
plying that media channel s ∈ S has the probability ps,t to activate client t ∈ T . Besides, every media
channel s ∈ S is limited by a given budget u(s) and has a weight c(s), and we define its neighboring
media channel set as Γ(s). Allocating budget x(s) to the media channel s allows us to model this
problem in the following form:

max
0n≤x≤u

f0(x) =
1

N

N∑
i=1

(∑
t∈T

(
1−

∏
s∈Γ(t)

(
1− p

(i)
s,t

)x(s) ))

s. t. f1(x) =
1

N

N∑
i=1

(∑
s∈S

c(s)(i)x(s)
)
− b ≤ 0.

Note that the objective function is monotone. In this model, we employed the MovieLens dataset, with
the userId being S and the movieId being T . We pick a segment of the data where the userId in set S
are below 10 and the movieId in set T are below 100. Besides, we set N = 1000, u = 1n, T = 50,K =
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20, v̄k = 0n, λ̄
k = 0, k ∈ [K]. And the batch size is 10. It is worth mentioning that the output of our

algorithm is always feasible, so we only provide illustrations of changes of objective function values
v.s. the maximum outer iteration number in Figure 4, with varying budget b. As can be observed,
although b varies, our algorithm performs stable.

Figure 4: function value v.s. outer iteration number for varying budget b

7 Conclusion
This paper presents an algorithmic framework for stochastic approximation methods to solve DR-
submodular maximization with convex functional constraints. Each subproblem is constructed based
on zeroth-order and first-order stochastic approximations to the objective function and constraint
functions. Under certain update scheme for problems with non-monotone objective and with mono-
tone objective respectively, we present approximation analyses for both cases. For the former case
the proposed algorithm achieves (1−minx∈X ∥x∥∞) /4-approximation, while for the latter case the
approximation ratio is (1−1/e). And the approximation errors and constraint violations for both cases
are in order O(I−1/3), where I denotes the total number of samples. At last, we provide experimental
results on three illustrative examples to showcase the effectiveness of our algorithm.
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A Proofs of auxiliary lemmas in Section 3
A.1 Proof of Lemma 3.1
Proof. Proof Note that Qk

t is α-strongly convex. Then from the optimality of vkt , we have

Qk
t (x)−

α

2
∥x− vkt ∥2 ≥ Qk

t (v
k
t ), ∀x ∈ X, t ∈ [T ], k ∈ [K],

that is,

⟨−ν0(x
k
t−1, ξ

k
t ), x− vkt−1⟩+

1

2β

m∑
i=1

[λk
t (i) + βFi(v

k
t−1, ξ

k
t ) + β⟨νi(vkt−1, ξ

k
t ), x− vkt−1⟩]2+ − 1

2β
∥λk

t ∥2︸ ︷︷ ︸
A

+
α

2
(∥x− vkt−1∥2 − ∥x− vkt ∥2) ≥

1

2β

m∑
i=1

[λk
t (i) + βFi(v

k
t−1, ξ

k
t ) + β⟨νi(vkt−1, ξ

k
t ), v

k
t − vkt−1⟩]2+︸ ︷︷ ︸

B

− 1

2β
∥λk

t ∥2 + ⟨−ν0(x
k
t−1, ξ

k
t ), v

k
t − vkt−1⟩+

α

2
∥vkt − vkt−1∥2︸ ︷︷ ︸

C

. (A.1)

Let us first look at the term “B”. Following the computation of λk
t+1 we obtain

B =
1

2β
∥λk

t+1∥2.

Regarding the term “A”, it follows that

A ≤ 1

2β

m∑
i=1

[λk
t (i) + βFi(x, ξ

k
t )]

2
+ − 1

2β
∥λk

t ∥2 (A.2)

≤ 1

2β

m∑
i=1

(λk
t (i) + βFi(x, ξ

k
t ))

2 − 1

2β
∥λk

t ∥2

=
β

2
∥F (x, ξkt )∥2 + ⟨λk

t , F (x, ξkt )⟩,

where the first inequality is due to that νi(vkt−1, ξ
k
t ) is a subgradient of Fi(x, ξ

k
t ) at vkt−1, λk

t (i) ≥ 0 and
Fi, i ∈ [m] are convex with respect to x. It also uses the fact that [a]+ ≤ [b]+ for a ≤ b. To estimate
the bound of “C”, we can derive that

C = ⟨−ν0(x
k
t−1, ξ

k
t ), v

k
t − vkt−1⟩+

α

2
∥vkt − vkt−1∥2

=
∥∥∥√α

2
(vkt − vkt−1)−

1√
2α

ν0(x
k
t−1, ξ

k
t )
∥∥∥2 − 1

2α
∥ν0(xkt−1, ξ

k
t )∥2

≥ − 1

2α
∥ν0(xkt−1, ξ

k
t )∥2.

Hence, we infer from (A.1) that for any t ∈ [T ], k ∈ [K],

⟨−ν0(x
k
t−1, ξ

k
t ), x− vkt−1⟩+

β

2
∥F (x, ξkt )∥2 + ⟨λk

t , F (x, ξkt )⟩+
α

2
(∥x− vkt−1∥2 − ∥x− vkt ∥2)

≥ −
∥ν0(xkt−1, ξ

k
t )∥2

2α
+

1

2β
∥λk

t+1∥2 −
1

2β
∥λk

t ∥2.

Rearranging the terms leads to (3.1).
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A.2 Proof of Lemma 3.2
Proof. Proof According to the analysis of term “A” in (A.2), we obtain

1

2β

m∑
i=1

[λk
t (i) + βFi(v

k
t−1, ξ

k
t ) + β⟨νi(vkt−1, ξ

k
t ), x− vkt−1⟩]2+ ≤ 1

2β

m∑
i=1

[λk
t (i) + βFi(x, ξ

k
t )]

2
+.

Hence, it implies from (A.1) that

⟨−ν0(x
k
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t ), x− vkt ⟩+

1

2β

m∑
i=1

[λk
t (i) + βFi(x, ξ
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t )]

2
+ +

α

2
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α

2
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2
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By setting x = vkt−1, we derive
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where the second and third inequalities are due to [a]2+ − [b]2+ ≤ 2[a]+|a− b|+ (a− b)2 and [a+ b]+ ≤
|a| + [b]+ for any a, b ∈ R, the fourth inequality is due to Cauchy-Schwarz Inequality together with
the Assumption 1.2. Dividing both sides by ∥vkt − vkt−1∥, we attain

α∥vkt − vkt−1∥ ≤ ∥ν0(xkt−1, ξ
k
t )∥+ (
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m∥λk

t ∥+ β
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mM2
3

2
∥vkt − vkt−1∥,

which further yields the final result due to 2α− βmM2
3 > 0.
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A.3 Proof of Lemma 3.3
Proof. Proof For any t ∈ [T ], k ∈ [K], i ∈ [m], we have

Eξkt
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where the first equality follows from (2.5), the first inequality is by the fact [a + b]+ ≤ [a]+ + [b]+,
for any a, b ∈ R, the second inequality is because of λk

t (i) ≥ 0, Assumption 1.3 and Cauchy-Schwarz
Inequality, and the last inequality is from Assumption 1.2. Then we take expectation with ξ, proving
that

Eξ[λ
k
t+1(i)] ≤ Eξ[λ

k
t (i)] + βM1 + βM3d(X),

In other words, Eξ[λ
k
t+1(i)] increases at most β(M1 + M3d(X)) based on Eξ[λ

k
t (i)] for any k ∈ [K].

Using these recursive relations, and recalling that λk
1(i) = λ̄k(i), we can bound Eξ[λ

k
t (i)] and Eξ[∥λk

t+1∥]
by

Eξ[λ
k
t (i)] ≤ λ̄k(i) + (t− 1)β(M1 +M3d(X)), (A.3)

Eξ[∥λk
t+1∥] ≤ Eξ[∥λk

t + β(M1 +M3d(X))1m∥] ≤ Eξ[∥λk
t ∥] + β(M1 +M3d(X))

√
m. (A.4)

We now introduce γ := ⌈ 1
β ⌉. Our subsequent analysis splits into two cases for t ∈ [T ].

Case 1. t ∈ {1, . . . , γ + 1}. It follows from (A.3) that

Eξ[∥λk
t ∥] ≤ ∥λ̄k + (t− 1)β(M1 +M3d(X))1m∥

≤ ∥λ̄k∥+ (t− 1)β(M1 +M3d(X))
√
m

≤ ∥λ̄k∥+ 2(M1 +M3d(X))
√
m ≤ θ.

Hence, the conclusion holds.
Case 2. t ∈ {γ + 1, γ + 2, . . . , T}. We will prove the conclusion by induction. Note that we have

proved the case when t = γ +1 in Case 1. Now suppose Eξ[∥λk
t ∥] ≤ θ holds for any γ +1 < t ≤ T − 1.

We next show that Eξ[∥λk
T ∥] ≤ θ. It suffices to prove the conclusion when Eξ[∥λk

T ∥] > Eξ[∥λk
T−γ∥].

From Lemma 3.1, for any x ∈ X, t ∈ {T − γ, T − γ + 1, . . . , T − 1} and k ∈ [K], it holds that

1

2β
∥λk

t+1∥2 −
1

2β
∥λk

t ∥2 ≤ ∥ν0(xkt−1, ξ
k
t )∥d(X) +

1

α

∥ν0(xkt−1, ξ
k
t )∥2

2
+ β

∥F (x, ξkt )∥2

2

+ ⟨λk
t , F (x, ξkt )⟩+

α

2
(∥x− vkt−1∥2 − ∥x− vkt ∥2).

Plugging x = x̂ which satisfies the Slater’s condition as in Assumption 1.4, taking conditional expec-
tation given Fk

t with respect to ξkt and utilizing Assumptions 1.3 and 1.2, we obtain

1

2β
Eξkt

[∥λk
t+1∥2]−

1

2β
∥λk

t ∥2

≤ M2d(X) +
1

α

M2
2

2
+ β

Eξkt
[∥F (x̂, ξkt )∥2]

2
+ ⟨λk

t ,Eξkt
[F (x̂, ξkt )]⟩+

α

2
(∥x̂− vkt−1∥2 − Eξkt

[∥x̂− vkt ∥2])

= M2d(X) +
1

α

M2
2

2
+ β

M2
1

2
+ ⟨λk

t , f(x̂)⟩+
α

2

(
∥x̂− vkt−1∥2 − Eξkt

[∥x̂− vkt ∥2]
)
.
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From Assumption 1.4, λk
t (i) ≥ 0 and ∥λk

t ∥ ≤
∑m

i=1 λ
k
t (i) it indicates

⟨λk
t , f(x̂)⟩ =

m∑
i=1

λk
t (i)fi(x̂) ≤

m∑
i=1

λk
t (i)(−M4) ≤ −M4∥λk

t ∥,

which further implies that

1

2β
Eξkt

[∥λk
t+1∥2]−

1

2β
∥λk

t ∥2 ≤ M2d(X) +
1

α

M2
2

2
+ β

M2
1

2
−M4∥λk

t ∥+
α

2
[∥x̂− vkt−1∥2 − Eξkt

[∥x̂− vkt ∥2]].

Taking expectation with respect to random vectors ξ11 , ξ
2
1 , . . . , ξ

K
T , we derive

1

2β
Eξ[∥λk

t+1∥2]−
1

2β
Eξ[∥λk

t ∥2] ≤ M2d(X)+
1

α

M2
2

2
+β

M2
1

2
−M4Eξ[∥λk

t ∥]+
α

2
Eξ[∥x̂−vkt−1∥2−∥x̂−vkt ∥2].

Then summing over all {T − γ, T − γ + 1, . . . , T − 1} yields

1

2β
Eξ[∥λk

T ∥2 − ∥λk
T−γ∥2]

≤
(
M2d(X) +

1

α

M2
2

2
+ β

M2
1

2

)
γ −M4

T−1∑
t=T−γ

Eξ[∥λk
t ∥] +

α

2
Eξ[∥x̂− vkT−γ−1∥2 − ∥x̂− vkT−1∥2].

Recall that Eξ[∥λk
T ∥] > Eξ[∥λk

T−γ∥], which implies

0 <
(
M2d(X) +

1

α

M2
2

2
+ β

M2
1

2

)
γ −M4

T−1∑
t=T−γ

Eξ[∥λk
t ∥] +

α

2
d(X)2.

By rearranging terms of above inequality the following relation holds:

M4

T−1∑
t=T−γ

Eξ[∥λk
t ∥] <

(
M2d(X) +

1

α

M2
2

2
+ β

M2
1

2

)
γ +

α

2
d(X)2. (A.5)

Assume, for a contradiction, that Eξ[∥λk
T ∥] > θ, which joint with (A.4) indicates

Eξ[∥λk
t ∥] > θ − (T − t)β(M1 +M3d(X))

√
m,

for any t ∈ {T − γ, T − γ + 1, . . . , T − 1}. Thus, the left hand side of (A.5) is lower bounded by

M4

T−1∑
t=T−γ

Eξ[∥λk
t ∥] > M4

T−1∑
t=T−γ

[θ − (T − t)β(M1 +M3d(X))
√
m]

= θγM4 − β
(1 + γ)γ

2
M4

√
m(M1 +M3d(X))

≥ θγM4 − (1 + γ)M4

√
m(M1 +M3d(X)),

where the last inequality is due to βγ = β · ⌈ 1
β ⌉ ≤ 1 + β ≤ 2. Then combing with (A.5), we obtain

θγM4 − (1 + γ)M4

√
m(M1 +M3d(X)) <

(
M2d(X) +

1

α

M2
2

2
+ β

M2
1

2

)
γ +

α

2
d(X)2.
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It leads to

θ <
(
1 +

1

γ

)√
m(M1 +M3d(X)) +

(
M2d(X) +

1

α

M2
2

2
+ β

M2
1

2

) 1

M4
+ α

1

γ

d(X)2

2M4

≤ (1 + β)
√
m(M1 +M3d(X)) +

(
M2d(X) +

1

α

M2
2

2
+ β

M2
1

2

) 1

M4
+ αβ

d(X)2

2M4

=
√
m(M1 +M3d(X)) +

M2d(X)

M4
+

1

α

M2
2

2M4
+ β

√
m(M1 +M3d(X)) + β

M2
1

2M4
+ αβ

d(X)2

2M4
.

This however contradicts the setting of θ. Hence, conclusion of the lemma is derived.

B Proofs of lemmas in Section 4
B.1 Proof of Lemma 4.1
Proof. Proof Observe that this is certainly true for k = 1 from x1t ∈ argminx∈X ∥x∥∞ for any t ∈
[T ]∪{0}. When k ≥ 2, according to Step 10 in Algorithm 1, it yields from 1

K =
√
ak−

√
ak−1, ak−1

ak
≤ 1

and vk−1
t ∈ X ⊆ [0, 1]n that

1n − xkt =
(
1n − xk−1

t

)
−
(
xkt − xk−1

t

)
=
(
1n − xk−1

t

)
−
(
vk−1
t − xk−1

t

) 1

K

√
ak−1

ak

≥
(
1n − xk−1

t

)
−
(
1n − xk−1

t

)(√
ak−1

√
ak

− ak−1

ak

)
≥
(
1n − xk−1

t

) √
ak−1

√
ak

.

Continuing this procedure and considering that a1 = 1, we reach the conclusion.

B.2 Proof of Lemma 4.2
Proof. Proof For any t ∈ [T ], k ∈ [K + 1], by (1.2) and Lemma 4.1, we attain that

⟨∇f0(x
k
t−1), x

∗ − xkt−1⟩ ≥ f0(x
k
t−1 ∨ x∗) + f0(x

k
t−1 ∧ x∗)− 2f0(x

k
t−1)

≥ f0(x
k
t−1 ∨ x∗) + 0− 2f0(x

k
t−1)

≥ (1− ∥xkt−1∥∞)f0(x
∗)− 2f0(x

k
t−1)

≥ 1−minx∈X ∥x∥∞√
ak

f0(x
∗)− 2f0(x

k
t−1).

Rearranging these terms derives(
1−min

x∈X
∥x∥∞

)
f0(x

∗) ≤
√
ak
(
⟨∇f0(x

k
t−1), x

∗ − xkt−1⟩+ 2f0(x
k
t−1)

)
. (B.1)
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Then it yields that

ak+1f0(x
k+1
t−1 )−

1−minx∈X ∥x∥∞
K

f0(x
∗)− akf0(x

k
t−1)

= ak+1
(
f0(x

k+1
t−1 )− f0(x

k
t−1)

)
+ (ak+1 − ak)f0(x

k
t−1)−

1−minx∈X ∥x∥∞
K

f0(x
∗)

= ak+1

(
f0

(
xkt−1 + (vkt−1 − xkt−1)

1

K

√
ak

ak+1

)
− f0(x

k
t−1)

)
+ (ak+1 − ak)f0(x

k
t−1)

− 1−minx∈X ∥x∥∞
K

f0(x
∗)

≥ ak+1

(〈
∇f0(x

k
t−1), (v

k
t−1 − xkt−1)

1

K

√
ak

ak+1

〉
− L0

2

1

K2

ak

(ak+1)2
∥vkt−1 − xkt−1∥2

)
+ (ak+1 − ak)f0(x

k
t−1)−

1−minx∈X ∥x∥∞
K

f0(x
∗)

≥ ak+1

(〈
∇f0(x

k
t−1), (v

k
t−1 − xkt−1)

1

K

√
ak

ak+1

〉
− L0

2

1

K2

ak

(ak+1)2
d(X)2

)
+ (ak+1 − ak)f0(x

k
t−1)−

√
ak

K

(〈
∇f0(x

k
t−1), x

∗ − xkt−1

〉
+ 2f0(x

k
t−1)

)
≥ f0(x

k
t−1)

(
(ak+1 − ak)− 2

√
ak

K

)
+
〈
∇f0(x

k
t−1), (v

k
t−1 − x∗)

√
ak

K

〉
− L0

2

1

K2
d(X)2

= f0(x
k
t−1)

1

K2
+
〈
∇f0(x

k
t−1), (v

k
t−1 − x∗)

√
ak

K

〉
− L0

2

1

K2
d(X)2

≥
〈
∇f0(x

k
t−1), (v

k
t−1 − x∗)

√
ak

K

〉
− L0

2

1

K2
d(X)2

for any t ∈ [T ], k ∈ [K], where the second equality follows from the update of xk+1
t−1 in Algorithm 1,

the first inequality is because of the L0-smoothness of f0, the second inequality is due to (B.1) and
the definition of d(X), and the last equality follows from the setting of ak, k ∈ [K + 1].

C Proofs of theorems in Section 5
C.1 Proof of Theorem 5.1
Proof. Proof The monotonicity of f0, along with the DR-submodularity of f0 as given in (1.2), ensures
that

⟨−∇f0(x
k
t−1), x

∗⟩ ≤ ⟨−∇f0(x
k
t−1), (x

∗ − xkt−1) ∨ 0n⟩ = ⟨−∇f0(x
k
t−1), x

∗ ∨ xkt−1 − xkt−1⟩
≤ −(f0(x

∗ ∨ xkt−1)− f0(x
k
t−1))

≤ −(f0(x
∗)− f0(x

k
t−1)).

(C.1)

Besides, the L0-smoothness of f0 joint with the update (5.1) leads to

f0(x
k+1
t−1 )− f0(x

k
t−1) = f0

(
xkt−1 +

1

K
vkt−1

)
− f0(x

k
t−1)

≥
〈
∇f0(x

k
t−1),

1

K
vkt−1

〉
− L0

2K2
∥vkt−1∥2

≥
〈
∇f0(x

k
t−1),

1

K
vkt−1

〉
− L0d(X)2

2K2
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implying that

⟨∇f0(x
k
t−1), v

k
t−1⟩ ≤ K(f0(x

k+1
t−1 )− f0(x

k
t−1)) +

L0d(X)2

2K
. (C.2)

Adding (C.1) and (C.2) enables us gain the following bound

⟨∇f0(x
k
t−1),−x∗ + vkt−1⟩ ≤ −(f0(x

∗)− f0(x
k
t−1)) +K(f0(x

k+1
t−1 )− f0(x

k
t−1)) +

L0d(X)2

2K
.

which, together with (4.3), f(x∗) ≤ 0m and λk
t ≥ 0m, indicates that

1

2β
Eξkt

[∥λk
t+1∥2]−

1

2β
∥λk

t ∥2 ≤ −(f0(x
∗)− f0(x

k
t−1)) +K(f0(x

k+1
t−1 )− f0(x

k
t−1)) +

L0d(X)2

2K

+
1

α

M2
2

2
+ β

M2
1

2
+ 0 +

α

2
(∥x∗ − vkt−1∥2 − Eξkt

[∥x∗ − vkt ∥2]).

By taking expectation with respect to all the random vectors ξ11 , ξ
2
1 , . . . , ξ

K
T we obtain

1

2β
Eξ[∥λk

t+1∥2]−
1

2β
Eξ[∥λk

t ∥2] ≤− Eξ[f0(x
∗)− f0(x

k
t−1)] +KEξ[f0(x

k+1
t−1 )− f0(x

k
t−1)]

+
L0d(X)2

2K
+

1

α

M2
2

2
+ β

M2
1

2
+

α

2
(Eξ[∥x∗ − vkt−1∥2]− Eξ[∥x∗ − vkt ∥2]).

After rearrangement, dividing both sides by K shows that

Eξ[f0(x
∗)− f0(x

k+1
t−1 )] ≤

(
1− 1

K

)
Eξ[f0(x

∗)− f0(x
k
t−1)] +

1

K2

L0d(X)2

2
+

1

Kα

M2
2

2
+

β

K

M2
1

2

+
1

2βK
Eξ[∥λk

t ∥2 − ∥λk
t+1∥2] +

α

2K
Eξ[∥x∗ − vkt−1∥2 − ∥x∗ − vkt ∥2].

By summing up the above inequality over t = 1, . . . , T , we obtain from λk
1 = λ̄k and ∥x∗− vk0∥ ≤ d(X)

that

Eξ[Tf0(x
∗)−

T∑
t=1

f0(x
k+1
t−1 )] ≤

(
1− 1

K

)
Eξ[Tf0(x

∗)−
T∑
t=1

f0(x
k
t−1)] +

T

K2

L0d(X)2

2
+

T

Kα

M2
2

2
+

Tβ

K

M2
1

2

+
1

2βK
∥λ̄k∥2 + α

K

d(X)2

2
, ∀k ∈ [K].

From the above recursive relations and denoting C1 = T
K2

L0d(X)2

2 + T
Kα

M2
2
2 + Tβ

K
M2

1
2 + α

K
d(X)2

2 , we
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further derive

Eξ[Tf0(x
∗)−

T∑
t=1

f0(x
K+1
t−1 )]

≤
(
1− 1

K

)
Eξ[Tf0(x

∗)−
T∑
t=1

f0(x
K
t−1)] + C1 +

1

2βK
∥λ̄K∥2

≤
(
1− 1

K

)[(
1− 1

K

)
Eξ[Tf0(x

∗)−
T∑
t=1

f0(x
K−1
t−1 )] + C1 +

1

2βK
∥λ̄K−1∥2

]
+ C1 +

∥λ̄K∥2

2βK

≤
(
1− 1

K

)2
Eξ[Tf0(x

∗)−
T∑
t=1

f0(x
K−1
t−1 )] + 2C1 +

1

2βK
(∥λ̄K−1∥2 + ∥λ̄K∥2) ≤ · · · ≤

≤
(
1− 1

K

)K
Eξ[Tf0(x

∗)−
T∑
t=1

f0(x
1
t−1)] +KC1 +

1

2βK

K∑
k=1

∥λ̄k∥2

≤ 1

e
Eξ[Tf0(x

∗)] +KC1 +
1

2β
max
k∈[K]

∥λ̄k∥2,

where the last inequality follows from (1 − 1
K )K ≤ 1

e and f0(·) ≥ 0. Rearranging the terms, dividing
by T and applying the randomness of R imply that(

1− 1

e

)
f0(x

∗)− E[f0(xR)] ≤
K

T
C1 +

1

2βT
max
k∈[K]

∥λ̄k∥2,

which indicates (5.2).

C.2 Proof of Theorem 5.2
Proof. Proof For any t ∈ [T ], according to the update scheme defined through (5.1), we have xK+1

t−1 =

0n + 1
K

∑K
k=1 v

k
t−1. It then indicates from the convexity of fi that

Eξ[fi(x
K+1
t−1 )] = Eξ

[
fi

( 1

K

K∑
k=1

vkt−1

)]
≤ 1

K

K∑
k=1

Eξ[fi(v
k
t−1)].

Therefore, we conclude from (4.5) and I = TK that for any i ∈ [m],

E[fi(xR)] =
1

T

T∑
t=1

Eξ[fi(x
K+1
t−1 )] ≤ 1

I

K∑
k=1

T∑
t=1

Eξ[fi(v
k
t−1)]

≤1

I

K∑
k=1

T∑
t=1

{ 1

β
Eξ[λ

k
t+1(i)− λk

t (i)] +
2M3

2α− βmM2
3

[M2 + Eξ[∥λk
t ∥]

√
mM3 + β

√
mM1M3]

}
≤ 1

Iβ

K∑
k=1

Eξ[λ
k
T+1(i)− λk

1(i)] +
2M3M2

2α− βmM2
3

+
1

I

K∑
k=1

T∑
t=1

Eξ[∥λk
t ∥]

2
√
mM2

3

2α− βmM2
3

+
2β

√
mM1M

2
3

2α− βmM2
3

≤ 1

Tβ
θ +

2M3M2

2α− βmM2
3

+ θ
2
√
mM2

3

2α− βmM2
3

+
2β

√
mM1M

2
3

2α− βmM2
3

,

where the fourth inequality is due to Lemma 3.3. Therefore, the conclusion is valid relying on the
definition of θ and the relationship between ∥ · ∥ and ∥ · ∥∞.
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