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Abstract. We consider the problem of optimizing the sum of a smooth, nonconvex function
for which derivatives are unavailable, and a convex, nonsmooth function with easy-to-evaluate
proximal operator. Of particular focus is the case where the smooth part has a nonlinear least-
squares structure. We adapt two existing approaches for derivative-free optimization of nonsmooth
compositions of smooth functions to this setting. Our main contribution is adapting our algorithm
to handle inexactly computed stationary measures, where the inexactness is adaptively adjusted as
required by the algorithm (where previous approaches assumed access to exact stationary measures,
which is not realistic in this setting). Numerically, we provide two extensions of the state-of-
the-art DFO-LS solver for nonlinear least-squares problems and demonstrate their strong practical
performance.
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1. Introduction. Derivative-free optimization (DFO), also referred to as black-
box optimization, has received growing attention for minimizing a function without
accessing its derivative information. The unavailability of derivatives frequently occurs
in the field of computer science and engineering with a variety of applications [15].
There are several popular approaches to DFO methods such as direct-search and
model-based methods (see [25] for a survey). Here we focus on the derivative-free
model-based algorithms based on trust-region methods (see [13, 33]), where at each
iteration a trial step is computed (inaccurately) by solving a subproblem of minimizing
a model function built through interpolation within a trust region.

In this paper, we consider the minimization of a composite objective function

min
x∈Rn

{Φ(x) = f(x) + h(x)} ,(1.1)

where f : Rn → R is smooth and potentially nonconvex and h : Rn → R ∪ {∞} is a
convex but possibly nonsmooth regularization term. We assume that the derivatives
of f are not accessible. Furthermore, h is Lipschitz continuous in domh := {x ∈ Rn :
h(x) <∞} and its proximal operator is assumed to be cheap to evaluate, which might
be required for solving the trust-region subproblem. Problems of the form (1.1) are
widely studied in data science (e.g. [31]), and in a more traditional DFO context arise
for example in image analysis [17].

Motivated by two different algorithmic approaches in [18] and [20], both primarily
designed for objectives of the form f(x)+h(c(x)) where both f and c are black boxes,
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we design two algorithms for solving (1.1) in a derivative-free trust-region framework.
Our ultimate aim in this work is to specialize both approaches to (1.1) (i.e. c(x) = x)
in the specific case of regularized least-squares problems, where f(x) has a nonlinear
least-squares structure, f(x) =

∑
i ri(x)

2 (and derivatives of ri are not available).
While the approach from [18] transfers readily to this new setting, more work

is required for the approach from [20]. Specifically, we must acknowledge that the
stationary measure from [20] cannot be computed exactly, despite this quantity being
needed in the algorithm. Hence, we need to extend that approach to allow for inexact
estimation of the stationary measure. Our new algorithm extending [20] also allows for
more standard assumptions on the trust-region subproblem solution and incorporates
more sophisticated trust-region management strategies which have been successful in
practical DFO codes [30, 6]. We provide a full first-order convergence and worst-case
complexity analysis of this, while similar guarantees from [18] follow with limited
extra complications. We numerically compare both approaches and provide open-
source implementations which extend the smooth least-squares package DFO-LS [6]
(see Section 7.1 for details).

1.1. Existing Works. Derivative-based algorithms for minimizing a nonsmooth
objective function are well-studied. For example, the proximal point method [5] for
general nonsmooth optimization, the proximal gradient method [5] and its accelerated
variant [2] for minimizing convex but nonsmooth objective function in the form of
(1.1). The main ideas behind these proximal algorithms (see [28] for a comprehensive
survey) consist of approximating the nonsmooth structure by a smooth function and
applying efficient algorithms for smooth optimization. Based on the trust-region
framework, the smoothing trust-region method proposed in [10] uses a sequence of
parameterized smoothing functions to approximate the original nonsmooth objective
function, where the smoothing parameter is updated before applying the trust region
method at each iteration to ensure convergence. Another approach in [7] directly
applies the trust-region method to solve a class of nonsmooth, nonconvex optimization
problems using an appropriate criticality measure. However, the complexity analysis
in [7] builds on the exact evaluations of the trust region subproblem and the criticality
measure, which are not required in our algorithms. More recently, a derivative-based
trust-region method for solving (1.1) with h nonsmooth and possibly nonconvex was
introduced [1].

There are also several model-based DFO methods for nonconvex, nonsmooth
objectives, for which the survey [4] provides a thorough discussion (and Mesh Adaptive
Direct Search [3] is a widely used direct search method for this setting). For problems
where the nonsmoothness arises in a structured way (such as (1.1)), the most common
model-based DFO setting is composite objectives of the form h(c(x)) where h is
nonsmooth and c is a black-box function [18, 20, 21, 24].1 Here, we are particularly
interested in the case where f has a nonlinear least-squares structure, which also has a
(smooth) composite objective form. The works [34, 9] exploit this composite structure
in the least-squares case. Additionally, [12, 22] study model-based DFO methods for
optimisation with convex constraints (i.e. where h is the indicator function of a convex
set).

Here, our focus is on adapting two existing approaches to the setting (1.1), and we

1This structure is sometimes called either ‘gray-box’ or ‘glass-box’ optimization, since the
structure of h is typically assumed to be known.
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describe both these approaches below. Firstly, [20] considers the composite objective

Φ(x) = f(x) + h(c(x)),(1.2)

where f and c are nonconvex, derivative-free functions, and h is convex but potentially
nonsmooth. Here, interpolation-based models are formed for both f and c and used
within a trust-region method. Global convergence and a worst-case complexity bound
of O(| log ϵ| ϵ−2) objective evaluations to reach ϵ-approximate first-order stationary
are then established. However, because of the difficulty of solving the associated
subproblems (the trust-region subproblem and calculating approximate stationary
estimates), it was only implemented in the case where f = 0 and h(c) = maxi ci, in
which case the subproblems reduce to linear programs.

Secondly, [18], as well as establishing complexity bounds for smooth model-based
DFO, considers two nonsmooth problems:

• Where Φ(x) is nonsmooth and nonconvex with no specific structure; and
• The composite form (1.2).

In the first case, they consider the setting where Φ can be approximated by a sequence
of smooth functions (parametrized by some scalar µ→ 0+), and introduce a method
where a sequence of smooth problems with decreasing values of µ is solved inexactly
(using standard smooth model-based DFO methods). They show global convergence
and a worst-case complexity bound of O(ϵ−3) objective evaluations to achieve ϵ-
approximate first-order stationary. In the composite case, they propose a very similar
method to [20] but with an improved worse-case complexity bound of O(ϵ−2) objective
evaluations.

1.2. Contributions. We introduce two implementable methods based on [20]
and [18] for solving (1.1), particularly suited for the case where f(x) has a nonlinear
least-squares structure.

Our adaptation of [20] (as specialized to the case c(x) = x in (1.2)) is different
in several notable respects:

• It allows inexact calculation of stationary measures throughout the algorithm,
where the level of allowable inexactness is adapted to the algorithm’s progress
and requirements. When a regularization term is present, computing the
stationarity measure typically requires solving a convex optimization problem,
and so exact evaluations (as required by [20]) are not available, but arbitrarily
accurate approximations are available through suitable iterative methods.

• The sufficient decrease condition for the trust-region subproblem in [20] is
proportional to the global optimality gap. Here, we propose a new, simpler
sufficient decrease condition to compute the trial step, analogous to the
standard Cauchy decrease condition for the smooth case (but again relying
on inexactly computed stationary estimates).

• The overall algorithmic framework is based on that of DFO-GN [9], which has
a more sophisticated trust-region mechanism which has been demonstrated
to work well in practice.

We show global convergence and a worst-case complexity analysis of this approach,
matching the improved O(ϵ−2) complexity bound from [18].

Adapting the approach [18] to our setting requires less effort. We demonstrate
how to derive suitable smooth approximations to (1.1) based on the Moreau envelope
for h, and show that the convergence and complexity results from [18] apply to this
setting. We extend the global convergence theory from [18] to additionally show
Clarke stationary of all accumulation points of the algorithm.
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Both algorithms require the solution of specific subproblems in each iteration.
For all subproblems encountered by both methods, we demonstrate how a smoothed
variant of FISTA [5, Chapter 10.8.4] can be applied to solve these in practice.

Finally, we implement both techniques for the regularized nonlinear least-squares
setting by extending the state-of-the-art solver DFO-LS [6], which only handles the
cases where h = 0 or h is the indicator function of a convex set [22]. Both methods
outperform NOMAD [26] (which implements the mesh adaptive direct search method)
on this problem class.

Code Availability. Both adaptations of DFO-LS are available on Github.2
Structure of paper. We first introduce our variant of [20] in Section 2. Our new

convergence and complexity analysis of this approach is given in Section 3, and we
then explicitly adapt this method to the nonlinear least-squares case in Section 4. We
then describe our smoothing variant of [18] in Section 5. Our approach for calculating
approximate subproblem solutions is given in Section 6, and numerical results are
provided in Section 7.

Notation. We use ∥·∥ to be the Euclidean norm of vectors and the operator 2-
norm of matrices, and B(x,∆) := {y ∈ Rn : ∥y − x∥ ≤ ∆} to be the closed ball
centered at x ∈ Rn with radius ∆ > 0.

2. Algorithmic Framework. In this section, we outline the general model-
based DFO algorithmic framework for (1.1). Our framework follows the structure
given in [9], except the modifications for including a regularization term based on
[20]. We first introduce the first-order criticality measure for (1.1), and then present
our algorithm.

2.1. Criticality Measure. Similar to [7], we linearize f(x) and the argument
of h around any x to give an approximation of Φ

l(x, s) := f(x) +∇f(x)Ts+ h(x+ s), s ∈ Rn.(2.1)

Then we define the quantity

Ψr(x) := l(x,0)− min
∥s∥≤r

l(x, s).(2.2)

Following [32], Ψr(x) is non-negative and continuous for all x ∈ Rn, and we say
that x∗ is a critical point of Φ if

Ψ1(x
∗) = 0.(2.3)

The condition (2.3) is equivalent to other first-order optimal necessary conditions (see
[32, Lemma 2.1] or the discussion in [7, Section 2], for example).

However, in the DFO setting, we cannot calculate Ψ1 because∇f is not accessible.
Instead, in our algorithm we follow [14] and approximate f with a model constructed
by interpolation to points near the current iterate. Let x0 denote the initial iterate
and suppose that at k-th iteration, we form the model through sampling within a
closed ball B(xk,∆k), where ∆k is bounded above by ∆max. Our notion of model
accuracy is the following [14]:

2From https://github.com/yanjunliu-regina/dfols and https://github.com/khflam/dfols/. See
Section 7.1 for details of both implementations.

https://github.com/yanjunliu-regina/dfols
https://github.com/khflam/dfols/
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Definition 2.1. A model pk ∈ C1 for f ∈ C1 is fully linear in B(xk,∆k) if for
any y ∈ B(xk,∆k),

|f(y)− pk(y)| ≤ κef∆
2
k,(2.4)

∥∇f(y)−∇pk(y)∥ ≤ κeg∆k,(2.5)

where κef and κeg are independent of y, xk and ∆k.

The local fully linear model pk (for f) induces an approximate criticality measure
below, where in (2.1) we replace ∇f with ∇pk, as used in [20].

Definition 2.2. Given a continuously differentiable model pk : Rn → R for f ,
for each x ∈ Rn we define

l̃(x, s) := f(x) +∇pk(x)Ts+ h(x+ s), s ∈ Rn,(2.6)

and for all r > 0, we define

ηr(x) := l̃(x,0)− min
∥s∥≤r

l̃(x, s).(2.7)

We choose η1 as the approximate criticality measure for our algorithm. When
h ≡ 0, this η1 reduces to ∥gk∥ as expected, and when h ≡ IC is an indicator function
for a convex set C, η1 reduces to the approximate criticality measure chosen in [22].

Fortunately, if pk is a fully linear model for f , the error between the true criticality
measure Ψ1 and our approximation η1 is controlled.

Lemma 2.3. Suppose that f ∈ C1 and h is continuous. Assume that pk : Rn → R
is a fully linear model of f with respect to constant κef and κeg on the ball B(xk,∆k).
Then

|Ψ1(y)− η1(y)| ≤ κeg∆k,(2.8)

for any y ∈ B(xk,∆k).

Proof. This proof is based on [20, Theorem 1]. Take any y ∈ B(xk,∆k). Since
pk is a fully linear model of f on B(xk,∆k), it follows from (2.5) that

∥∇f(y)−∇pk(y)∥ ≤ κeg∆k.(2.9)

Since l(y, s) is continuous with respect to s on B(0, 1) , consider s̃ ∈ B(0, 1) such
that

min
∥s∥≤1

l(y, s) = l(y, s̃).(2.10)

Then from (2.2), (2.7) and (2.9), it follows that

Ψ1(y)− η1(y) =

(
l(y,0)− min

∥s∥≤1
l(y, s)

)
−
(
l̃(y,0)− min

∥s∥≤1
l̃(y, s)

)
,

= min
∥s∥≤1

l̃(y, s)− min
∥s∥≤1

l(y, s),

= min
∥s∥≤1

l̃(y, s)− l(y, s̃),

≤ l̃(y, s̃)− l(y, s̃),

= (∇p(y)−∇f(y))T s̃,
≤ ∥∇p(y)−∇f(y)∥ ,
≤ κeg∆k.(2.11)
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Similarly, considering s̄ ∈ B(0, 1) such that

min
∥s∥≤1

l̃(y, s) = l(y, s̄),(2.12)

We obtain the inequality

η1(y)−Ψ1(y) ≤ κeg∆k.(2.13)

Hence, combining (2.11) and (2.13), we conclude that (2.8) holds.

2.2. Main Algorithm. Our algorithm for solving (1.1) is based on a trust-
region framework [13]. At each iteration, we construct a model mk to approximate
our objective function Φ around the current iterate xk, and in particular within a
trust region B(xk,∆k). Then we find a tentative new point xk+sk by approximately
solving the trust-region subproblem

sk ≈ argmin
∥s∥≤∆k

mk(xk + s).(2.14)

We measure the sufficient decrease in the objective function using the ratio

Rk :=
Φ(xk)− Φ(xk + sk)

mk(xk)−mk(xk + sk)
,(2.15)

which is used to determine the next iterate xk+1 and update the trust region radius
∆k > 0. If Rk is sufficiently large, we accept this step (i.e. xk+1 = xk + sk)
and increase ∆k, otherwise we reject this step (i.e. xk+1 = xk) and decrease ∆k if
necessary.

To construct our model, we first take a quadratic approximation pk for f

f(xk + s) ≈ pk(xk + s) = f(xk) + gT
k s+

1

2
sTHks,(2.16)

for some choices gk ∈ Rn and Hk ∈ Rn×n. We can then construct our model mk for
Φ as

Φ(xk + s) ≈ mk(xk + s) := pk(xk + s) + h(xk + s).(2.17)

This construction relies on our assumption that the regularizer h is known and easy
to evaluate. We note the similarity between (2.17) and the more general model used
for composite nonsmooth optimization in [20].

In practice, the model pk is constructed using the techniques from [15]: we
maintain a set of interpolation points Yk containing xk, and approximate gk and
Hk by enforcing the interpolation conditions

f(y) = pk(y), ∀y ∈ Yk.(2.18)

This model construction allows pk to be fully linear provided Yk satisfies certain
geometric conditions:

Definition 2.4. Let {Λ1(x), . . . ,Λ|Yk|(x)} be the set of Lagrange polynomials for
Yk. For some Λ ≥ 1, Yk is Λ-poised in some ball B(x,∆) if Yk ⊂ B(x,∆) and

max
t=1,...,|Yk|

max
y∈B(x,∆)

|Λt(y)| ≤ Λ.(2.19)
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Algorithm 2.1 DFO-LSR: a model-based DFO method for (1.1).
Input: Starting point x0 ∈ domh and the initial trust-region radius ∆init

0 > 0.
Parameters: maximum trust-region radius ∆max ≥ ∆init

0 with ∆max > 1, trust region radius scaling
factors 0 < γdec < 1 < γinc ≤ γ̄inc and 0 < α1 < α2 < 1, criticality constants ϵC , µ > 0, acceptance
thresholds 0 < β1 ≤ β2 < 1, trust region subproblem constant c1 := min

{
1,∆−2

max

}
/2, safety constants

0 < ωS < 1 and 0 < γS < 2e3c1/(1 +
√
1 + 2e3c1), poisedness constant Λ ≥ 1, accuracy level

0 < e1 < 1, e2 > 0 and 0 < e3 < 1.
1: Build an initial interpolation set Y0 of size n + 1, with x0 ∈ Y0. Set ρinit

0 = ∆init
0 .

2: for k = 0, 1, 2, . . . do
3: Given xk and Yk, solve the interpolation problem in (2.18) to get J init

k and build the model minit
k

in (2.17).
4: Compute ηinit

1 (xk) = l̃init(xk, 0)− l̃init(xk,dk), where

dk ≈ argmin
∥d∥≤1

l̃
init

(xk,d),(2.20)

and

l̃
init

(xk,d) = f(xk) + (g
init
k )

T
d + h(xk + d).(2.21)

Here dk is calculated approximately so that the approximate estimate ηinit
1 (xk) satisfies

η
init
1 (xk)− η

init
1 (xk) < min{(1− e1)ϵC , e2∆

init
k }(2.22)

5: if ηinit
1 (xk) ≤ e1ϵC then

6: Criticality Phase: using Algorithm 2.2, modify Yk and find ∆k ≤ ∆init
k and η1(xk) such that

Yk is Λ-poised in B(xk,∆k), ∆k ≤ µη1(xk) and η1(xk)− η1(xk) < e2∆k. Set ρk = min(ρinit
k ,∆k).

7: else
8: Set mk = minit

k , ∆k = ∆init
k , ρk = ρinit

k and η1(xk) = ηinit
1 (xk)

9: end if
10: Approximately solve (2.14) to get a step sk satisfying ∥sk∥ ≤ ∆k, mk(xk + sk) ≤ mk(xk) and

mk(xk)−mk(xk + sk) ≥ e3c1η1(xk)min

{
∆k,

η1(xk)

max
{
1, ∥Hk∥

}}
.(2.23)

11: Calculate τk := min {η1(xk)/(∥gk∥+ Lh), 1}.
12: if ∥sk∥ < τkγSρk then
13: Safety Phase: Set xk+1 = xk and ∆init

k+1 = max
{
ρk, ωS∆k

}
, and form Yk+1 by making Yk

Λ-poised in B(xk+1,∆
init
k+1).

14: If ∆init
k+1 = ρk, set (ρinit

k+1,∆
init
k+1) = (α1ρk, α2ρk), otherwise set ρinit

k+1 = ρk.
15: goto Line 2.
16: end if
17: Evaluate f(xk + sk) and calculate ratio Rk in (2.15)
18: Accept/reject step and update trust region radius: set

xk+1 =

{
xk + sk Rk ≥ β1,

xk Rk < β1,
and ∆

init
k+1 =


min(max(γinc∆k, γ̄inc ∥sk∥),∆max), Rk ≥ β2,

max(γdec∆k, ∥sk∥ , ρk), β1 ≤ Rk < β2,

max(min(γdec∆k, ∥sk∥)/τk, ρk), Rk < β1.

19: if Rk ≥ β1 then
20: Form Yk+1 = Yk ∪ {xk+1} \ {yt} for some yt ∈ Yk and set ρinit

k+1 = ρk.
21: else if Yk is not Λ-poised in B(xk,∆k) then
22: Model Improvement Phase: Form Yk+1 by making Yk Λ-poised in B(xk+1,∆

init
k+1) and set

ρinit
k+1 = ρk.

23: else [Rk < β1 and Yk is Λ-poised in B(xk,∆k)]

24: Unsuccessful Phase: Set Yk+1 = Yk, and if ∆init
k+1 = ρk, set (ρinit

k+1,∆
init
k+1) = (α1ρk, α2ρk),

otherwise set ρinit
k+1 = ρk.

25: end if
26: end for

Intuitively, the set Yk has ‘good geometry’ if Yk is Λ-poised with a small Λ. The
exact form of interpolation used to construct pk is left open for now, and will be
revisited in the context of regularized nonlinear least-squares problems in Section 4.
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For now, in light of the techniques given in [15, Chapter 6] we simply assume the
existence of procedures which can verify whether or not a set Yk is Λ-poised, and if it
is not, add and remove points from Yk until it becomes Λ-poised.

Remark 2.5. If pk is a linear model, the techniques from [22, Section 4] allow
Definition 2.4 to be weakened to only maximizing over y ∈ B(x,∆) ∩ C in (2.19)
for any closed convex set C with nonempty interior. In our case, we might take
C = domh, for example.

Our main algorithm for solving (1.1) is presented in Algorithm 2.1. The overall
structure is based on DFO-GN [9, Algorithm 1], which is designed for nonlinear least-
squares minimization (c.f. Section 4). Motivated by the practical performance of
DFO-GN, we keep important algorithmic features not present in other similar methods
(e.g. [15, Chapter 10]) such as the safety phase and the maintenance of a lower bound
ρk on the trust region radius ∆k.

In particular, we extend the safety phase from DFO-GN (which originates in [29]),
which provides a way to detect insufficient decrease generated by the step size ∥sk∥
before evaluating f(xk) and Rk (2.15). Specifically, to accommodate the proof of
Lemma 3.8, we introduce a new variable τk in the generalized safety phase. This τk
is calculated in line 11 and then used in the entry condition (line 12) and the update
rule for ∆k (lines 18 and 24). If h ≡ 0, then τk = 1 and the generalised safety phase
is equivalent to the original safety phase from DFO-GN.

Of course, we also use our new criticality measure η1(xk) instead of ∥gk∥ in DFO-
GN algorithm, just as in [20]. Unfortunately, to calculate the value of η1(xk), we need
to solve a minimization subproblem as defined in (2.7). So to make our framework
practical, we therefore extend [20] to allow an approximate estimate of η1(xk) up to a
predetermined accuracy level (line 4). Note that if we compute dk in (2.20) inexactly,
then we automatically have η1(xk) ≤ η1(xk).

With the nonsmooth term in our model mk (2.17), our trust-region subproblem
(2.14) and criticality estimation subproblem (2.20) are not straightforward to solve
to the required accuracy. We discuss this issue further in Sections 4 and 6.

We describe the geometry-improvement step used in the criticality phase below,
which is an adaptation of [9, Algorithm 2]. Compared to Algorithm 2.1, the criticality
measure is evaluated approximately up to a different accuracy in line 5.

3. Convergence and Complexity Analysis. Throughout this section, we
consider the following standard assumptions:

Assumption 3.1. The function f (1.1) is bounded below by flow and continuously
differentiable in the convex hull of B := ∪kB(xk,∆max), where ∇f is L∇f -Lipschitz
continuous in B.

Assumption 3.2. h : Rn → R is convex and possibly nonsmooth. We also assume
that h(x) is bounded below by hlow and Lipschitz continuous with Lipschitz constant
Lh in domh.

We also need the assumption that the model Hessians are uniformly bounded
above for the trust-region subproblem (2.14).

Assumption 3.3. There exists κH ≥ 1 such that ∥Hk∥ ≤ κH − 1 for all k.

Lastly, we use the below result to link the Λ-poisedness of Yk with the accuracy
of the model pk.

Lemma 3.4. If Assumption 3.1 holds and Yk is Λ-poised in B(xk,∆k), then pk
is a fully linear model for f .
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Algorithm 2.2 Geometry-Improvement for Criticality Phase
Input: Iterate xk, initial set Yk and trust region radius ∆init

k .
Parameters: µ > 0, ωC ∈ (0, 1) and poisedness constant Λ > 0.

1: Set Y
(0)
k = Yk.

2: for i=1, 2, ... do
3: Form Y

(i)
k by modifying Y

(i−1)
k until it is Λ-poised in B(xk, ω

i−1
C ∆init

k ).
4: Solve the interpolation system for Y

(i)
k to get J

(i)
k , and form m

(i)
k in (2.17).

5: Compute η
(i)
1 (xk) = l̃(i)(xk, 0)− l̃(i)(xk, d̃k), where

d̃k ≈ argmin
∥d∥≤1

l̃
(i)

(xk,d),(2.24)

and

l̃
(i)

(xk,d) = f(xk) + (g
(i)
k )

T
d + h(xk + d).(2.25)

Here d̃k is calculated approximately so that the approximate estimate η
(i)
1 (xk) satisfies

η
(i)
1 (xk)− η

(i)
1 (xk) < e2ω

i−1
C ∆

init
k(2.26)

6: if ωi−1
C ∆init

k ≤ µη
(i)
1 (xk) then

7: return Y
(i)
k , m(i)

k , ∆k ← ωi−1
C ∆init

k , η1(xk)← η
(i)
1 (xk).

8: end if
9: end for

Proof. Different versions of this result are applicable depending on the specific
model construction used for pk, e.g. [15, Theorems 2.11 & 2.12 or Theorem 5.4]. When
we specialize to nonlinear least-squares problems in Section 4, this will be given by
Lemma 4.3.

3.1. Global Convergence Analysis. The following lemma ensures that unless
the current iterate is a critical point, Algorithm 2.2 for the criticality phase terminates
in finite loops. It also provides a bound for the trust region radius ∆k.

Lemma 3.5. Suppose Assumptions 3.1 and 3.2 hold and Ψ1(xk) ≥ ϵ > 0. Then
for any µ > 0 and ωC ∈ (0, 1), the criticality phase in Algorithm 2.2 terminates in
finite time with Yk Λ-poised in B(xk,∆k) and ∆k ≤ µη1(xk) for any µ > 0 and
η1(xk)− η1(xk) < e2∆k. We also have the bound

min

(
∆init

k ,
ωCϵ

κeg + 1/µ+ e2

)
≤ ∆k ≤ ∆init

k .(3.1)

Proof. This proof is similar to [9, Lemma B.1] except that we allow the inaccurate
estimate of our criticality measure η1. First, suppose Algorithm 2.2 terminates on
the first iteration. Then ∆k = ∆init

k , and the result holds. Otherwise, consider
some iterations i where Algorithm 2.2 does not terminate, that is, where ωi−1

C ∆init
k >

µη
(i)
1 (xk). Then since m

(i)
k is fully linear in B(xk, ω

i−1
C ∆init

k ), from Lemma 2.3 and
(2.26), we have

ϵ ≤ Ψ1(xk) = Ψ1(xk)− η
(i)
1 (xk) + η

(i)
1 (xk)(3.2)

≤ κegω
i−1
C ∆init

k + η
(i)
1 (xk) + e2ω

i−1
C ∆init

k(3.3)

≤
(
κeg +

1

µ
+ e2

)
ωi−1
C ∆init

k ,(3.4)
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or equivalently ωi−1
C ≥ ϵ

(κeg + 1/µ+ e2)∆init
k

. That is, if termination does not occur

on iteration i, we must have

i ≤ 1 +
1

| logωC |
log

(
(κeg + 1/µ+ e2)∆

init
k

ϵ

)
,(3.5)

so Algorithm 2.2 terminates finitely. We also have ωi−1
C ∆init

k ≥ ϵ

κeg + 1/µ+ e2
, which

gives (3.1).

Next, we show that having a fully linear model pk for f guarantees a condition
similar to (2.4) for our full (nonsmooth) model mk (2.17).

Lemma 3.6. Suppose Assumptions 3.1, 3.2 and 3.3 hold. If pk is a fully linear
model of f on the ball B(xk,∆k), then

|Φ(xk + sk)−mk(xk + sk)| ≤ κef∆
2
k.(3.6)

Proof. From (2.23), sk must be calculated such that xk + sk ∈ domh. Since
x0 ∈ domh by definition, we must have xk ∈ domh for all k. Hence by definition of
Φ and mk we have

Φ(xk + sk)−mk(xk + sk) = f(xk + sk)− pk(xk + sk)(3.7)

and the result follows from (2.4).

In Algorithm 2.1, if the safety phase is not called, we say an iteration is ‘successful’
if Rk ≥ β1 and ‘very successful’ if Rk ≥ β2.

Lemma 3.7. Suppose Assumptions 3.1, 3.2 and 3.3 hold. If pk is a fully linear
model of f on the ball B(xk,∆k), and

∆k ≤ min

{
1

κH
,
e3c1(1− β2)

κef

}
η1(xk),(3.8)

then, the k-th iteration is either very successful or the safety phase is called.

Proof. This proof is based on [14, Lemma 5.3]. Since ∥Hk∥ ≤ κH and ∆k ≤
η1(xk)

κH
, it follows from Lemma 6.2 that

mk(xk)−mk(xk + sk) ≥ e3c1η1(xk)min

{
∆k,

η1(xk)

max {1, ∥Hk∥}

}
≥ e3c1η1(xk)min

{
∆k,

η1(xk)

κH

}
= e3c1η1(xk)∆k.

Then, applying Lemma 3.6, we obtain

|1−Rk| =
∣∣∣∣ (mk(xk)−mk(xk + sk))− (Φ(xk)− Φ(xk + sk))

mk(xk)−mk(xk + sk)

∣∣∣∣
=
|Φ(xk + sk)−mk(xk + sk)|
|mk(xk)−mk(xk + sk)|

≤ κef∆k

e3c1η1(xk)

≤ 1− β2,
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where we use the fact that ∆k ≤
e3c1(1− β2)η1(xk)

κef
. Hence, Rk ≥ β2, and by

Algorithm 2.1, the safety phase is called if ∥sk∥ ≤ τkγSρk, otherwise the iteration k
is very successful.

The next lemma provides a lower bound for the trust region step size ∥sk∥, which
will be used later to determine that the safety phase is not called under appropriate
assumptions. It is based on [9, Lemma 3.6] but with more work required to handle
the non-standard assumption on the trust-region subproblem decrease (2.23).

Lemma 3.8. Suppose Assumptions 3.1 and 3.2 hold. Then the step sk satisfies

∥sk∥ ≥ c2τk min

{
∆k,

η1(xk)

max {1, ∥Hk∥}

}
,(3.9)

where c2 :=
2e3c1

1 +
√
1 + 2e3c1

< 1 and τk := min

{
η1(xk)

∥gk∥+ Lh
, 1

}
.

Proof. Let hk := max{∥Hk∥ , 1} ≥ 1. Since mk(xk) − mk(xk + sk) ≥ 0 by
Algorithm 2.1, it follows that

mk(xk)−mk(xk + sk) = |mk(xk)−mk(xk + sk)|(3.10)

=

∣∣∣∣gT
k sk +

1

2
sTkHksk − h(xk) + h(xk + sk)

∣∣∣∣(3.11)

≤
∣∣∣∣gT

k sk +
1

2
sTkHksk

∣∣∣∣+ |h(xk)− h(xk + sk)|(3.12)

≤ ∥gk∥ · ∥sk∥+
hk

2
∥sk∥2 + Lh ∥sk∥ .(3.13)

Substituting this into (2.23), we have

1

2
∥sk∥2 +

∥gk∥+ Lh

hk
∥sk∥ − e3c1

η1(xk)

hk
min

{
∆k,

η1(xk)

hk

}
≥ 0.(3.14)

Define Cg
k := (∥gk∥ + Lh)/hk and Cη

k := η1(xk)/hk. For (3.14) to be satisfied, we
require that ∥sk∥ is no less than the positive root of the left-hand side of (3.14), which
gives the inequality below

∥sk∥ ≥
2e3c1C

η
k

Cg
k +

√
(Cg

k)
2 + 2e3c1(C

η
k )

2
min {∆k, C

η
k}(3.15)

Note that τk = min{Cη
k/C

g
k , 1}. If τk ≥ 1, i.e., Cη

k ≥ Cg
k , from (3.15),

∥sk∥ ≥
2e3c1C

η
k

Cη
k +

√
(Cη

k )
2 + 2e3c1(C

η
k )

2
min {∆k, C

η
k}

=
2e3c1

1 +
√
1 + 2e3c1

min {∆k, C
η
k}(3.16)

On the other hand, if τk < 1, that is, Cη
k < Cg

k , it follows from (3.15) that

∥sk∥ ≥
2e3c1C

g
k (C

η
k/C

g
k)

Cg
k +

√
(Cg

k)
2 + 2e3c1(C

g
k)

2
min {∆k, C

η
k}

=
2e3c1 (C

η
k/C

g
k)

1 +
√
1 + 2e3c1

min {∆k, C
η
k} .(3.17)
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Combining (3.16) and (3.17),

∥sk∥ ≥
2e3c1τk

1 +
√
1 + 2e3c1

min {∆k, C
η
k} ,(3.18)

Then we can recover (3.9) from the definition of hk, Cη
k and c2. We conclude by

noting c2 < 1 since e3 < 1 and c1 < 1/2.

Lemma 3.9. In all iterations, η1(xk) ≥ η1(xk) ≥ min

{
e1ϵC ,

∆k

µ

}
. Also, if

Ψ1(xk) ≥ ϵ > 0, then

η1(xk) ≥ η1(xk) ≥ ϵg := min

{
e1ϵC ,

ϵ

1 + (κeg + e2)µ

}
> 0.(3.19)

Proof. Firstly, since η1(xk) ≥ η1(xk), if the criticality phase is not called, then we
must have η1(xk) ≥ η1(xk) = ηinit

1 (xk) > e1ϵC . Otherwise, we have ∆k ≤ µη1(xk) ≤

µη1(xk). Hence, η1(xk) ≥ η1(xk) ≥ min

{
e1ϵC ,

∆k

µ

}
.

The proof of (3.19) follows from [15, Lemma 10.11] except that we must take
into account the inaccuracy when computing η1(xk). We first suppose that the
criticality phase is not called. Then η1(xk) = ηinit

1 (xk) > e1ϵC and hence (3.19)
holds. Otherwise, the criticality phase is called and mk is fully linear in B(xk,∆k)
with ∆k ≤ µη1(xk). In this case, applying Lemma 2.3, we obtain

Ψ1(xk) = Ψ1(xk)− η1(xk) + η1(xk)(3.20)
≤ κeg∆k + η1(xk) + e2∆k(3.21)
≤ (κeg + e2)µη1(xk) + η1(xk).(3.22)

Since Ψ1(xk) ≥ ϵ, then η1(xk) ≥
ϵ

1 + (κeg + e2)µ
and (3.19) holds.

Lemma 3.10. Suppose that Assumption 3.1, Assumption 3.2 and Assumption 3.3
hold. If Ψ1(xk) ≥ ϵ > 0 for all k, then ρk ≥ ρmin > 0 for all k, where

ρmin := min

{
∆init

0 ,
ωCϵ

κeg + 1/µ+ e2
,
c2γdecα1ϵg

2κH
,
c2γdecα1

2

(
κeg +

κef

e3c1(1− β2)
+ e2

)−1

ϵ

}
.

(3.23)

Proof. This proof is similar to [9, Lemma 3.8]. To find a contradiction, suppose
that k(0) is the first k such that ρk < ρmin. That is, we have

ρinit
0 ≥ ρ0 ≥ ρinit

1 ≥ ρ1 ≥ · · · ≥ ρinit
k(0)−1 ≥ ρk(0)−1 ≥ ρmin and ρk(0) < ρmin.(3.24)

We first claim that

ρk(0) = ρinit
k(0) < ρmin.(3.25)

To see this, note that we have either ρk(0) = ρinit
k(0) or ρk(0) = ∆k(0) from Algorithm 2.1.

In the former case, (3.25) holds trivially. In the latter, using Lemma 3.5 and (3.24),
we have that

ρmin > ∆k(0) ≥ min

(
∆init

k(0),
ωCϵ

κeg + 1/µ+ e2

)
≥ min

(
ρinit
k(0),

ωCϵ

κeg + 1/µ+ e2

)
.

(3.26)
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Since ρmin ≤
ωCϵ

κeg + 1/µ+ e2
, then we conclude that (3.25) holds.

Since ρmin ≤ ∆init
0 = ρinit

0 by Algorithm 2.1, we must have k(0) > 0 and ρk(0)−1 ≥
ρmin > ρinit

k(0). This reduction in ρ can only happen from a safety step or an unsuccessful
step, and in both cases, we have ρinit

k(0) = α1ρk(0)−1. Therefore, ρk(0)−1 ≤ ρmin/α1.
Also, by Lemma 3.8, Lemma 3.9 and Assumption 3.3, we have∥∥sk(0)−1∥∥ ≥ c2τk(0)−1 min

{
∆k(0)−1,

ϵg
κH

}
.(3.27)

If we have a safety step, we know∥∥sk(0)−1∥∥ ≤ τk(0)−1γSρk(0)−1 ≤
τk(0)−1γS

α1
ρmin.(3.28)

Combining (3.27) and (3.28), it follows from the assumption γS < c2 in Algorithm 2.1
that

min

{
∆k(0)−1,

ϵg
κH

}
≤ γSρmin

c2α1
<

ρmin

α1
.(3.29)

Since ρmin/α1 ≤ c2γdecϵg/(2κH) ≤ ϵg/κH , then min
{
∆k(0)−1, ϵg/κH

}
= ∆k(0)−1.

Hence in (3.27),
∥∥sk(0)−1∥∥ ≥ c2τk(0)−1∆k(0)−1 > τk(0)−1γSρk(0)−1 , which contradicts

our assumption that the safety step is called. Therefore, the iteration k(0) − 1
must be an unsuccessful step. To obtain reduction in ρ, the update rule of ∆init

k(0)

in Algorithm 2.1 implies that

γdec
∥∥sk(0)−1∥∥ ≤ min

{
γdec∆k(0)−1,

∥∥sk(0)−1∥∥} ≤ τk(0)−1ρk(0)−1.(3.30)

Therefore,
∥∥sk(0)−1∥∥ ≤ τk(0)−1γ

−1
decρk(0)−1 ≤ τk(0)−1γ

−1
decα

−1
1 ρmin. From this, (3.27)

together with (3.23), we have

min

{
∆k(0)−1,

ϵg
κH

}
≤ ρmin

c2γdecα1

<
2ρmin

c2γdecα1

≤ min

{
ϵg
κH

,

(
κeg +

κef

e3c1(1− β2)
+ e2

)−1
ϵ

}
.(3.31)

Then min
{
∆k(0)−1, ϵg/κH

}
= ∆k(0)−1. From this and Lemma 3.9, we obtain

∆k(0)−1 ≤
(
κeg +

κef

e3c1(1− β2)
+ e2

)−1
ϵ and ∆k(0)−1 ≤

ϵg
κH
≤

η1(xk(0)−1)

κH
.

(3.32)

Now suppose that

∆k(0)−1 >
e3c1(1− β2)

κef
η1(xk(0)−1).(3.33)

From Algorithm 2.1, regardless of the call of the criticality phase, we have

η1(xk(0)−1)− η1(xk(0)−1) < e2∆k(0)−1.(3.34)
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Then using Lemma 2.3 and (3.33) we have

ϵ ≤ Ψ1(xk(0)−1) = Ψ1(xk(0)−1)− η1(xk(0)−1) + η1(xk(0)−1)(3.35)
≤ κeg∆k(0)−1 + η1(xk(0)−1)(3.36)
≤ (κeg + e2)∆k(0)−1 + η1(xk(0)−1)(3.37)

<

(
κeg +

κef

e3c1(1− β2)
+ e2

)
∆k(0)−1,(3.38)

contradicting (3.32). That is, (3.33) is false and so together with (3.32), we have
(3.8). Note that pk(0)−1 is a fully linear model of f in the unsuccessful step, then
Lemma 3.7 implies that iteration k(0)− 1 is not an unsuccessful step, which leads to
a contradiction.

Remark 3.11. The proof of Lemma 3.10 fixes a small error in the proof of [9,
Lemma 3.8]: When deriving a bound for the step size

∥∥sk(0)−1∥∥ at iteration k(0)− 1
which is either a safety step or an unsuccessful step, the first inequality in (3.14) of
[9, Lemma 3.8] should be max(γS , γ

−1
dec)ρk(0)−1 instead of min(γS , γ

−1
dec)ρk(0)−1. This

affects the bound of ∆k(0)−1 in (3.16) of [9, Lemma 3.8]. Setting τk(0)−1 = 1 in our
proof, we follow the same approach as [9] to conclude that the safety step is not called.
To deal with the case of an unsuccessful step, we adjust the constant in the expression
of ρmin so that we can bound ∆k(0)−1 in (3.31) similar to (3.16) in [9, Lemma 3.8].
After these corrections, the result in [9, Lemma 3.8] remains unchanged except that
ρmin has a different expression

ρmin := min

(
∆init

0 ,
ωCϵ

κeg + 1/µ
,
c2γdecα1ϵg

2κH
,
c2γdecα1

2

(
κeg +

2κef

c1(1− η2)

)−1
ϵ

)
,

which does not affect any of the results proved later in [9].

Our convergence results below are based on [15, Chapter 10]. Moreover, we
consider the possibility of safety phases and maintenance on ρk as presented in [9].
However, we use a different criticality measure Ψ1 and its inaccurate estimation η1 in
our proofs. The following lemma proves the Lipschitz continuity of Ψ1, which allows
us to follow the convergence analysis in [15, Chapter 10]. Note that when h is chosen
to be an indicator function of a convex set, this lemma is equivalent to [8, Theorem
3.4].

Lemma 3.12. Suppose that Assumptions 3.1 and 3.2 hold. Then Ψ1 is Lipschitz
continuous in domh. That is, for all x, y ∈ domh,

|Ψ1(x)−Ψ1(y)| ≤ LΨ ∥x− y∥ ,(3.39)

where constant LΨ := L∇f + 2Lh.

Proof. Take any x, y ∈ domh. From (2.2), we have

Ψ1(x)−Ψ1(y) = h(x)− h(y) + min
∥s∥≤1

[∇f(y)Ts+ h(y + s)](3.40)

− min
∥s∥≤1

[∇f(x)Ts+ h(x+ s)].(3.41)

Since ∇f and h are continuous by Assumptions 3.1 and 3.2, applying the Weierstrass
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Theorem, there exists sx, sy ∈ B(0, 1) ∩ domh such that

min
∥s∥≤1

∇f(x)Ts+ h(x+ s) = ∇f(x)Tsx + h(x+ sx),(3.42)

min
∥s∥≤1

∇f(y)Ts+ h(y + s) = ∇f(y)Tsy + h(y + sy).(3.43)

Plugging them into (3.40), we obtain

Ψ1(x)−Ψ1(y) = h(x)− h(y) +
(
∇f(y)Tsy + h(y + sy)

)
−
(
∇f(x)Tsx + h(x+ sx)

)
= h(x)− h(y) +∇f(y)Tsy + h(y + sy)−∇f(y)Tsx − h(y + sx)

+ (∇f(y)−∇f(x))T sx + h(y + sx)− h(x+ sx)

≤ |h(x)− h(y)|+
∣∣∣(∇f(y)−∇f(x))T sx

∣∣∣+ |h(y + sx)− h(x+ sx)|

≤ (L∇f + 2Lh) ∥x− y∥ .

In the first inequality, we use the triangle inequality and the fact that sy is a minimizer
of (3.43). The last line follows from Assumptions 3.1 and 3.2, and ∥sx∥, ∥sy∥ ≤ 1.
Since we can interchange the role of x and y in the above argument, Ψ1 is Lipschitz
continuous in domh with Lipschitz constant L∇f + 2Lh.

The following convergence results consider the case when the number of successful
iterations is finite.

Lemma 3.13. Suppose that Assumptions 3.1, 3.2 and 3.3 hold. If there are finitely
many successful iterations, then limk→∞∆k = 0 and limk→∞Ψ1(xk) = 0.

Proof. Let us consider iterations that come after the last successful iteration k0.
From Algorithm 2.1 and Lemma 3.5, we know that we can have either one model-
improving phase or finite many (uniformly bounded by an integer N) iterations of
Algorithm 2.2 in the criticality phase before the model is modified to be fully linear.
Therefore, we have an infinite number of iterations where the model is fully linear.
That is, there are infinitely many iterations that are either safety or unsuccessful steps.
In either case, the trust region radius is reduced by a factor max{α2, ωS , γdec} < 1.
Since ∆k is increased only in successful iterations, then ∆k converges to zero. For
each iteration k > k0, let ik denote the index of the first iteration after k0 for which
pk is a fully linear model for f . Since ∆k is reduced in Algorithm 2.2, then as k →∞,

∥xk − xik∥ ≤ N∆k → 0.(3.44)

Note that we can rewrite Ψ1 and apply the triangle inequality to obtain

Ψ1(xk) ≤ |Ψ1(xk)−Ψ1(xik)|+ |Ψ1(xik)− η1(xik)|+ |η1(xik)− η1(xik)|+ η1(xik)

≤ LΨ ∥xk − xik∥+ κeg∆ik + e2∆ik + η1(xik),(3.45)

which follows from Lemma 3.12, Lemma 2.3 and the approximation error of η1 given
by Algorithm 2.1. We observe that η1(xik) → 0 as k → ∞. Otherwise, (3.8) holds
for sufficiently large k and then by Lemma 3.7, iteration k must be a safety phase.
However, when k is large enough, Lemma 3.8 implies that ∥sk∥ ≥ c2τk∆k ≥ τkγS∆k,

Lemma 3.14. Suppose that Assumptions 3.1, 3.2 and 3.3 hold. Then we have
limk→∞∆k = 0 and hence limk→∞ ρk = 0.
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Proof. This proof is similar to [15, Lemma 10.9]. Let S denote the set of successful
iterations. When |S| < ∞, this follows from Lemma 3.13. Now we consider the case
when S is infinite. For any k ∈ S, we have

Φ(xk)− Φ(xk+1) ≥ β1[mk(xk)−mk(xk + sk)].(3.46)

Applying Lemma 6.2, Lemma 3.9 and Assumption 3.3, we obtain that

Φ(xk)− Φ(xk+1) ≥ β1e3c1 min {e1ϵC ,∆k/µ}min

{
∆k,

min {e1ϵC ,∆k/µ}
κH

}
.(3.47)

Since S is infinite and Φ is bounded below by Assumption 3.2, then the left hand
side of (3.47) converges to 0. Thus, limk∈S ∆k = 0. Let k ̸∈ S be the index of
an iteration after the first successful iteration, and let sk denote the index of the
last successful iteration before k. Since the trust region radius can be increased only
during a successful iteration, and only by a factor of at most γ̄inc, then ∆k ≤ γ̄inc∆sk .
Since sk ∈ S, then ∆sk → 0 as k → 0 and hence ∆k → 0 for k ̸∈ S. Therefore,
limk→∞∆k = 0. It follows immediately from the fact ρk ≤ ∆k that limk→∞ ρk = 0.

Lemma 3.15. Suppose that Assumptions 3.1, 3.2 and 3.3 hold. Then

lim inf
k→∞

Ψ1(xk) = 0.(3.48)

Proof. Assume for contradiction that there is a constant ϵ > 0 such that Ψ1(xk) ≥
ϵ for all k. In this case, by Lemma 3.10, we have that ∆k ≥ ρk ≥ ρmin > 0 for all k,
contradicting Lemma 3.14.

Theorem 3.16. Suppose that Assumptions 3.1, 3.2 and 3.3 hold. Then

lim
k→∞

Ψ1(xk) = 0.(3.49)

Proof. This proof is based on [15, Theorem 10.13] and [9, Theorem 3.12]. Let S
andM denote the set of successful and model-improving iterations, respectively. Our
theorem holds when |S| <∞ by Lemma 3.13. Assume, for the purpose of establishing
a contradiction, that there exists a subsequence {ti} ∈ S of successful iterations such
that

Ψ1(xti) ≥ 2ϵ > 0,(3.50)

for some ϵ > 0 and for all i. From Lemma 3.15, we know that for each ti, there exists
a first successful iteration li > ti such that Ψ1(xli) < ϵ. Now we consider iterations
whose indices are in the set K defined by

K :=
⋃
i∈N
{k ∈ N : ti ≤ k < li},(3.51)

where ti and li belong to the two subsequences defined above. Therefore, for every
k ∈ K, we have Ψ1(xk) ≥ ϵ. By Lemma 3.9, η1(xk) ≥ ϵg > 0 for k ∈ K. From
Lemma 3.14, limk→∞∆k = 0. Therefore, Lemma 3.8 implies that ∥sk∥ ≥ c2τk∆k ≥
τkγS∆k if k is sufficiently large.

∥xti − xli∥ ≤
li−1∑
k=ti
k∈K

∥xk − xk+1∥ =
li−1∑
k=ti

k∈K∩S

∥xk − xk+1∥ ≤
li−1∑
k=ti

k∈K∩S

∆k.(3.52)
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For each k ∈ K ∩ S, using η1(xk) ≥ ϵg and Assumption 3.3, we obtain

Φ(xk)− Φ(xk+1) ≥ β1[mk(xk)−mk(xk + sk)](3.53)

≥ β1e3c1η1(xk)min

{
∆k,

η1(xk)

max{1, ∥Hk∥}

}
(3.54)

≥ β1e3c1ϵg min

{
∆k,

ϵg
κH

}
(3.55)

Since limk→∞∆k = 0 by Lemma 3.14, then min{∆k, ϵg/κH} = ∆k for k large enough.
Thus,

∆k ≤
1

β1e3c1ϵg
[Φ(xk)− Φ(xk+1)](3.56)

Combining (3.52) and (3.56), we have

∥xti − xli∥ ≤
li−1∑
k=ti

k∈K∩S

1

β1e3c1ϵg
[Φ(xk)− Φ(xk+1)]

=
1

β1e3c1ϵg

li−1∑
k=ti
k∈K

[Φ(xk)− Φ(xk+1)]

=
1

β1e3c1ϵg
[Φ(xti)− Φ(xli)].(3.57)

Since Φ is bounded below by Assumption 3.2 and the sequence {Φ(xk)} is monotone
decreasing, then the right hand side of (3.57) converges to zero. Therefore,

lim
i→∞

∥xti − xli∥ = 0.(3.58)

However, from Lemma 3.12, we have that |Ψ1(xti)−Ψ1(xli)| ≤ LΨ ∥xti − xli∥ → 0
as i → ∞. This contradicts our construction of subsequences {ti} and {li} that
Ψ1(xti) − Ψ1(xli) ≥ ϵ > 0. By the principle of contradiction, we conclude that
limk→∞Ψ1(xk) = 0.

3.2. Worst-Case Complexity. Now we study the worst-case complexity of
Algorithm 2.1 following the approach of [9]. We bound the number of iterations and
objective evaluations until Ψ1(xk) < ϵ, where the existence of bounds is guaranteed by
Lemma 3.15 for each optimality level ϵ. Let iϵ be the last iteration before Ψ1(xiϵ+1) <
ϵ for the first time. We classify all iterations until iteration iϵ (inclusive) into five types
with descriptions and symbols below:

1. Criticality Iteration (Ciϵ): the set of criticality iterations k ≤ iϵ. Moreover,
we collect all iterations in Ciϵ where ∆k is not reduced into a set CMiϵ . That is,
CMiϵ is the set of the first iteration of every call of Algorithm 2.2. We denote
the remaining iterations in Ciϵ by CUiϵ := Ciϵ − CMiϵ .

2. Safety Iteration (Siϵ): the set of iterations k ≤ iϵ where the safety phase is
called.

3. Successful Iteration (S): the set of successful iterations k ≤ iϵ.
4. Model Improvement Iteration (Miϵ): the set of iterations k ≤ iϵ where the

model improvement phase is called.
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5. Unsuccessful Iteration (Uiϵ): the set of unsuccessful iterations k ≤ iϵ.
We first count the number of iterations up to iteration iϵ that are successful in the
following lemma.

Lemma 3.17. Suppose that Assumptions 3.1, 3.2 and 3.3 hold. Then

|Siϵ | ≤
Φ(x0)− flow − hlow

β1e3c1
max

{
κHϵ−2g , ϵ−1g ρ−1min

}
,(3.59)

where ϵg is defined in (3.19) and ρmin in (3.23).

Proof. For all k ∈ Siϵ , by Lemma 6.2 and Assumption 3.3, we have that

Φ(xk)− Φ(xk+1) ≥ β1[mk(0)−mk(sk)] ≥ β1e3c1η1(xk)min

{
∆k,

η1(xk)

κH

}
.(3.60)

From Lemma 3.9 and Lemma 3.10, η1(xk) ≥ ϵg and ∆k ≥ ρk ≥ ρmin for any k ≥ iϵ.
This means

Φ(xk)− Φ(xk+1) ≥ β1e3c1ϵg min

{
ρmin,

ϵg
κH

}
.(3.61)

Summing (3.61) over all k ∈ Siϵ , and noting that flow + hlow ≤ Φ(xk) ≤ Φ(x0), we
obtain

Φ(x0)− flow − hlow ≥ |Siϵ |β1e3c1ϵg min

{
ρmin,

ϵg
κH

}
,(3.62)

from which (3.59) follows.

Lemma 3.18. Suppose that Assumption 3.1, Assumption 3.2 and Assumption 3.3
hold. Then we have the bounds∣∣CUiϵ ∣∣+ |Fiϵ |+ |Uiϵ | ≤ |Siϵ | ·

log γ̄inc

|logα3|
+

1

|logα3|
log

(
∆init

0

ρmin

)
,(3.63) ∣∣CMiϵ ∣∣ ≤ |Fiϵ |+ |Siϵ |+ |Uiϵ | ,(3.64)

|Miϵ | ≤
∣∣CMiϵ ∣∣+ ∣∣CUiϵ ∣∣+ |Fiϵ |+ |Siϵ |+ |Uiϵ | ,(3.65)

where α3 := max{ωC , ωS , γdec, α2} < 1 and ρmin is defined in (3.23).

Proof. See the proof of [9, Lemma 3.14].

Following [9], we make an additional assumption below, which can be easily
satisfied by appropriate choices of parameters in Algorithm 2.1.

Assumption 3.19. The algorithm parameter ϵC satisfies e1ϵC = c3ϵ for some
constant c3 > 0.

Theorem 3.20. Suppose Assumptions 3.1, 3.2, 3.3 and 3.19 hold. Then the
number of iterations iϵ until Ψ1(xiϵ+1) < ϵ is at most⌊

4(Φ(x0)− flow − hlow)

β1e3c1

(
1 +

log γ̄inc

| logα3|

)
max

{
κH

c24ϵ
2
,

1

c4c5ϵ2
,

1

c4∆init
0 ϵ

}
(3.66)

+
4

| logα3|
max

{
0, log

(
∆init

0 c−15 ϵ−1
)}⌋

,(3.67)
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where c4 := min{e1c3, 1/(1 + (κeg + e2)µ)} and

c5 := min

{
ωC

κeg + 1/µ+ e2
,
c2c4γdecα1

2κH
,
c2γdecα1

2

(
κeg +

κef

e3c1(1− β2)
+ e2

)−1}
.

(3.68)

Proof. From Assumption 3.19 and the definition of ϵg in (3.19), we have ϵg =
c4ϵ. Then ρmin defined in (3.23) can be rewritten as ρmin = min

{
∆init

0 , c5ϵ
}
. Using

Lemma 3.18, the total number of iterations can be bounded by

iϵ =
∣∣CMiϵ ∣∣+ ∣∣CUiϵ ∣∣+ |Fiϵ |+ |Siϵ |+ |Miϵ |+ |Uiϵ |(3.69)

≤ 2
(∣∣CMiϵ ∣∣+ ∣∣CUiϵ ∣∣+ |Fiϵ |+ |Siϵ |+ |Uiϵ |

)
(3.70)

≤ 2
∣∣CUiϵ ∣∣+ 4 (|Fiϵ |+ |Siϵ |+ |Uiϵ |)(3.71)

≤ 4
(∣∣CUiϵ ∣∣+ |Fiϵ |+ |Uiϵ |

)
+ 4 |Siϵ |(3.72)

≤ 4 |Siϵ |
(
1 +

log γ̄inc

|logα3|

)
+

4

|logα3|
log

(
∆init

0

ρmin

)
.(3.73)

Therefore, (3.66) follows from this and Lemma 3.17.

Corollary 3.21. Suppose Assumptions 3.1, 3.2, 3.3 and 3.19 hold. For ϵ ∈
(0, 1], the number of iterations iϵ until Ψ1(xiϵ+1) < ϵ for the first time is at most
O(κHκ2

dϵ
−2), where κd := max(κef, κeg).

Proof. We note that c−14 = O(κeg) = O(κd) from Theorem 3.20.

c−15 = O
(
max

{
κeg, κHc−14 , κef + κeg

})
= O(κHκd).(3.74)

To leading order in (3.66), the number of iterations is

O
(
max{κHc−24 , c−14 c−15 }ϵ−2

)
= O

(
κHκ2

dϵ
−2) ,(3.75)

as required.

4. Adaptation to Regularized Nonlinear Least-Squares. We now consider
the specific case of regularized nonlinear least-squares problems, where (1.1) becomes

min
x∈Rn

Φ(x) := f(x) + h(x) =
1

2
∥r(x)∥2 + h(x),(4.1)

for some function r : Rn → Rm. As above, we assume that r is continuously
differentiable with Jacobian [J(x)]i,j =

∂ri(x)
∂xj

but these derivatives are not accessible.

Assumption 4.1. r(x) is continuously differentiable and its Jacobian is Lipschitz
continuous with Lipschitz constant LJ in the convex hull of B := ∪kB(xk,∆max).
Furthermore, r(x) and J(x) are uniformly bounded in B, i.e. ∥r(x)∥ ≤ rmax and
∥J(x)∥ ≤ Jmax for all x ∈ B.

Note that Assumption 4.1 (taken from [9, Assumption 3.1]) automatically gives
us the smoothness requirements from Section 3.

Lemma 4.2 (Lemma 3.2, [9]). If Assumption 4.1 holds, then Assumption 3.1
holds with

L∇f := rmaxLJ + J2
max.(4.2)

and flow = 0.
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We are now in a position to precisely specify how we construct the model pk (2.16)
to be used in mk (2.17). Our construction is based on a linear interpolating model
for r, a derivative-free analog of the Gauss-Newton method [9]. At k-th iteration, the
linear Taylor series of the residual r(x) around xk is given by

r(xk + s) ≈ r(xk) + J(xk)s,(4.3)

Since J(x) is not accessible, we maintain a set of n+1 interpolation points containing
xk, denoted by Yk := {y0, · · · ,yn} with y0 := xk, and approximate J(xk) by a matrix
Jk ∈ Rm×n. That is, we define mk(xk + s) := r(xk) + Jks, where Jk satisfies the
following interpolation conditions

r(yt) = mk(yt), ∀t = 1, . . . , n.(4.4)

The uniqueness of Jk is guaranteed once the interpolation directions {y1−xk, · · · ,yn−
xk} are linearly independent, and we say that Yk is poised for linear interpolation [15,
Section 2.3]. Our resulting quadratic model pk for f is

f(xk + s) ≈ pk(xk + s) :=
1

2
∥mk(xk + s)∥2 ,(4.5)

and so gk := JT
k r(xk) and Hk := JT

k Jk in (2.16). Therefore, our full model mk (2.17)
for Φ is

Φ(xk + s) ≈ mk(xk + s) := pk(xk + s) + h(xk + s).(4.6)

In this setting, we now have a specific version of Lemma 3.4 for our model
construction (4.5).

Lemma 4.3 (Lemma 3.3, [9]). Suppose Assumption 4.1 holds and Yk is Λ-poised
in B(xk,∆k). Then pk (4.5) is a fully linear model for f in B(xk,∆k) with

κef = κeg +
L∇f + (κr

eg∆max + Jmax)
2

2
and(4.7)

κeg = L∇f + κr
egrmax + (κr

eg∆max + Jmax)
2,(4.8)

where κr
eg := 1

2LJ(
√
nC + 2) and C = O(

√
nΛ). We also have the bound

∥Hk∥ ≤ (Jk
max)

2 = (κr
eg∆max + Jmax)

2.(4.9)

We are now in a position to report the convergence and complexity results for
Algorithm 2.1 applied to (4.1).

Corollary 4.4. Suppose Assumptions 4.1, 3.2, 3.3 and 3.19 hold, and we run
Algorithm 2.1 with the model mk from (4.6). Then limk→∞Ψ1(xk) = 0. For ϵ ∈
(0, 1], the number of iterations iϵ until Ψ1(xiϵ+1) < ϵ for the first time is at most
O(κHκ2

dϵ
−2), where κd = O(n2L2

JΛ
2), and the number of evaluations of r until iϵ is

at most O(κHκ2
dnϵ
−2).

Proof. Lemma 4.2 shows Assumption 3.1 holds. Otherwise, we replace Lemma 3.4
with Lemma 4.3 and apply Theorem 3.16 and Corollary 3.21. Our interpolation set
contains n+1 points, so we require no more than n+1 objective evaluations for each
iteration. Thus, the total number of objective evaluations up to iteration iϵ is O(niϵ),
as expected. The result κd = max(κef, κeg) = O(n2L2

JΛ
2) follows from Lemma 4.3.
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The bound (4.9) suggests that κH = O(κd) is a reasonable estimate (even though
it only holds in iterations where pk is fully linear). This would give a final complexity
bound of O(n6ϵ−2) iterations or O(n7ϵ−2) evaluations of r.

Remark 4.5. Regarding the constant C in Lemma 4.3, we point the reader to [9,
Remark 3.20] for a detailed discussion of the dependency of C on n. In particular, the
results from [18] effectively assume C = O(Λ) and so report an improved dependency
on n in their final complexity bound. In the case of Corollary 4.4, we would instead
get κd = O(n) and a final complexity bound of O(n3ϵ−2) iterations or O(n4ϵ−2)
evaluations of r.

Subproblem solutions. Although Algorithm 2.1 is for the general problem (1.1),
the trust-region subproblem (2.14) (where we require a solution with accuracy (2.23))
is now minimizing the sum of a nonconvex quadratic function and nonsmooth convex
regularizer subject to a ball constraint. However, this problem becomes convex in the
nonlinear least-squares case, where mk (4.6) is convex (since Hk = JT

k Jk is positive
semidefinite).

We also have the convex subproblem of computing the criticality measure (2.20)
to accuracy (2.22) (or (2.24) to accuracy (2.26) in the case of Algorithm 2.2). This is
also convex, requiring the minimization of a linear function plus a nonsmooth convex
regularizer subject to a ball constraint.

We will discuss how both (convex) subproblems can be solved to the desired
accuracy in Section 6.

5. Smoothing-Based Algorithm. We now introduce our second approach for
solving (1.1), based on the smoothing technique from [18]. Here, we introduce a
smoothing parameter γ > 0 and build an approximation Φγ(x) ≈ Φ(x) with Φγ

smooth and Φγ → Φ as γ → 0. For decreasing values of γ, we approximately minimize
Φγ using a DFO method suitable for smooth objectives. This algorithm is summarized
in Algorithm 5.1.

Algorithm 5.1 Smoothing model-based DFO method for (1.1) [18, Algorithm 4.1]
Input: Starting point x0 ∈ domh, initial smoothing parameter γ0 > 0.

Parameters: trust-region termination function d : (0,∞) → (0,∞), smoothing update parameter σ ∈
(0, 1).

1: for j = 0, 1, 2, . . . do
2: Approximately minimize Φγj (x) starting from xj using a globally convergent DFO trust-region

method, terminating when it reaches minimnum trust-region radius ∆j,k < d(γj) and returning
approximate minimizer xj+1.

3: Set γj+1 = σγj .
4: end for

For Algorithm 5.1 to converge, we require the following properties about the
smoothed function Φγ .

Assumption 5.1. For any γ > 0, the function Φγ : Rn → R satisfies:
(a) Φγ has LΦ(γ)-Lipschitz continuous gradient for some LΦ(γ) > 0 and is

bounded below on Rn.
(b) For any x ∈ Rn, limγ→0+ Φγ(x) = Φ(x).

In [18], the sufficient decrease condition in the inner loop (line 2 of Algorithm 5.1)
is required to be based on the ratio

Rk :=
Φγj (xk)− Φγj (xk + sk)− c∆p

k

mk(xk)−mk(xk + sk)
(5.1)
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for some c > 0 and p > 1, which is a slight modification of (2.15).
The global convergence for Algorithm 5.1 is given by the following result.

Theorem 5.2 (Theorem 4.3, [18]). Suppose Assumption 5.1 holds, and all
model Hessians used in line 2 of Algorithm 5.1 are uniformly bounded. Then if
limγ→0+ d(γ) = 0 and limγ→0+ LΦ(γ)d(γ) = 0, then limj→∞ ∥∇Φγj (xj)∥ = 0.

We also note that [18, Corollary 4.1] provides a worst-case complexity bound for
Algorithm 5.1 of O(| log(ϵ)|ϵ−3) function evaluations to reach an outer iteration j
with ∥∇Φγj (xj)∥ < O(ϵ) (with constants depending on the dimension n), provided
we choose p = 3/2 in (5.1) and trust-region termination function d(γ) = γ2, and
LΦ(γ) = O(1/γ) in Assumption 5.1.

5.1. Adaptation to Regularized Least-Squares. We now outline how we
adapt Algorithm 5.1 to the regularized least-squares setting (4.1). Our approach
uses DFO-GN [9, Algorithm 1]—essentially Algorithm 2.1 with h = 0—with modified
interpolation models similar to (4.6).

For the objective Φ (4.1), our smoothed approximation will be

Φγ(x) := f(x) +M
µ(γ)
h (x) =

1

2
∥r(x)∥2 +M

µ(γ)
h (x),(5.2)

where

Mµ
h (x) := min

z∈domh

{
h(z) +

1

2µ
∥z − x∥2

}
,(5.3)

is the Moreau envelope of h for the parameter µ > 0. Note that for a given γ, we will
choose a value µ(γ) for the Moreau envelope parameter. We will use the following
standard properties of Mµ

h .

Lemma 5.3. Suppose h satisfies Assumption 3.2. Then for any µ > 0, we have:
(a) Mµ

h (x) ≤ h(x) ≤Mµ
h (x) +

L2
hµ
2 for all x ∈ domh.

(b) Mµ
h is a convex and differentiable function on domh, and ∇Mµ

h is Lipschitz
continuous with Lipschitz constant 1

µ .

Proof. See for example [5, Theorems 6.55, 6.60 & 10.51].

From this, we see that our smoothed approximation (5.2) is a suitable choice for
Algorithm 5.1.

Lemma 5.4. Suppose r satisfies Assumption 4.1 and h satisfies Assumption 3.2.
If µ(γ) = Θ(γ) as γ → 0+ then Φγ (5.2) satisfies Assumption 5.1 with LΦ(γ) =
O(1/γ).

Proof. This follows immediately from Assumptions 4.1 and 3.2, together with
Lemmas 4.2 and 5.3.

In DFO-GN (called in line 2 of Algorithm 5.1), as in Section 4, we build linear
interpolation models of r(x) of the form

r(xk + s) ≈mk(xk + s) := r(xk) + Jks,(5.4)

for some Jk derived from the interpolation conditions (4.4), yielding our model

Φγ(xk + s) ≈ mk(xk + s) :=
1

2
∥mk(xk + s)∥2 +M

µ(γ)
h (xk + s).(5.5)



BLACK-BOX OPTIMIZATION FOR REGULARIZED LEAST-SQUARES PROBLEMS 23

From Lemma 4.3, this model is a fully linear approximation for Φγ whenever the
interpolation set used for (4.4) is Λ-poised, and so all geometry-improving procedures
from DFO-GN can be used here.

It only remains to describe how the trust-region subproblem

min
∥s∥≤∆k

mk(xk + s) =
1

2
∥mk(xk + s)∥2 +M

µ(γ)
h (xk + s)(5.6)

is solved, and the choice of µ(γ). These are discussed in Section 6.

5.2. Global Convergence. Theorem 5.2 establishes the global convergence of
Algorithm 5.1, but it does not provide any standard first-order optimality results.
We now show that any accumulation point of the xj generated by Algorithm 5.1 is a
Clarke-stationary point of Φ.

Theorem 5.5. Suppose the assumptions of Theorem 5.2 and Lemma 5.4 hold. If
x∗ is any accumulation point of the iterates xj of Algorithm 5.1, then 0 ∈ ∂CΦ(x

∗).

Proof. From Theorem 5.2, we have ∇f(xj) + ∇M
µ(γj)
h (xj) → 0, and so since

xjk → x∗ for some subsequence of iterates and f is continuously differentiable, we
have ∇Mµ(γjk

)

h (xjk) → −∇f(x∗). From [23, Theorem 5.5] and µ(γjk) → 0, we
conclude that −∇f(x∗) ∈ ∂h(x∗). Finally, we have ∂CΦ(x) = ∇f(x) + ∂h(x) from
[11, Corollary 1, p. 39] and the result follows.

6. Calculating Subproblem Solutions. There are three places where we need
an algorithm to calculate subproblem solutions: the trust-region subproblem (2.14)
in Algorithm 2.1, calculating η1(xk) in Algorithms 2.1 and 2.2 (in (2.20) and (2.24)
respectively), and the trust-region subproblem (5.6) in the smoothed DFO method
Algorithm 5.1. In the case where Hk is positive semidefinite, as in the case solving
regularized nonlinear least-squares problems (4.1) (with models (4.6) and (5.5)), this
becomes practical.

In all three cases, our subproblems can be written in the form

min
d

G(d) := gTd+
1

2
dTHd+ h(x+ d) + IC(d),(6.1)

where H is positive semidefinite and IC is an indicator function for the Euclidean
ball C := B(0, r). This problem is the sum of a smooth convex function and two
nonsmooth convex functions. To solve this to arbitrary accuracy, we will use S-FISTA
[5, Chapter 10.8], a smoothed version of FISTA.

Using Lemma 5.3, we approximate h by Mµ
h to obtain a smoothed formulation of

(6.1):

min
d

Gµ(d) := f(x) + gTd+
1

2
dTHd+Mµ

h (x+ d) + IC(d),(6.2)

for some smoothing parameter µ > 0. Defining Fµ(d) := f(x) + gTd + 1
2d

THd +
Mµ

h (x+ d), from [5, Theorem 6.60] we have

∇Fµ(d) = g +Hd+
1

µ
(x+ d− proxµh(x+ d)),(6.3)

where the proximal operator proxµh(·) is defined by

proxµh(y) := arg min
z∈domh

{
h(z) +

1

2µ
∥z − y∥2

}
.(6.4)
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Note that the proximal operator of IC is the (well-defined) Euclidean projection PC

onto the set C. The S-FISTA algorithm [5, Chapter 10.8.4], specialized to the problem
(6.1) is given in Algorithm 6.1.

Algorithm 6.1 S-FISTA [5, Chapter 10.8.4] for solving (6.1)
Input: smoothing parameter µ > 0.
1: Set d0 = y0 = 0, t0 = 1, and step size L = ∥H∥+ 1

µ .
2: for k=0, 1, 2, . . . do
3: set dk+1 = PC

(
yk − 1

L∇Fµ(y
k)
)
;

4: set tk+1 =
1+
√

1+4t2k
2 ;

5: compute yk+1 = dk+1 +
(

tk−1
tk+1

)
(dk+1 − dk).

6: end for

The following theorem shows that for a given accuracy level ϵ, the smoothing
parameter µ and the number of iterations K in Algorithm 6.1 can be chosen carefully
to guarantee optimality ϵ in O( 1ϵ ) iterations.

Theorem 6.1. Suppose Assumption 3.1, Assumption 3.2 and Assumption 3.3
hold. Consider the set C := {d : ∥d∥ ≤ r}. Let {dk}k≥0 be the sequence generated by
S-FISTA. For an accuracy level ϵ > 0, if the smoothing parameter µ and the number
of iterations K are set as

µ =
2ϵ

Lh(Lh +
√

L2
h + 2 ∥H∥ ϵ)

and K =
r(2Lh +

√
2 ∥H∥ ϵ)

ϵ
,(6.5)

then for any k ≥ K, it holds that G(dk)−G(d∗) ≤ ϵ, where d∗ is in the optimal set
of problem in (6.1).

Proof. Substitute (α, β,Γ, Lf ) = (1,
L2

h

2 , r2, ∥H∥) into [5, Theorem 10.57].

6.1. Trust-region subproblem. We are now able to show that Algorithm 6.1
can be used to solve (2.14) for Algorithm 2.1 in the case of nonlinear least-squares
problems (where mk is given by (4.6)). Within Algorithm 6.1, we set r := ∆k, g := gk,
H := Hk and ϵ := (1 − e3)c1η1(xk)min

{
∆k,

η1(xk)
max{1,∥Hk∥}

}
. We use K iterations of

Algorithm 6.1 with smoothing parameter µ as per Theorem 6.1. Lemma 6.2 below
shows that this gives us the required decrease (2.23).

Lemma 6.2. Suppose Assumption 3.2 holds and the step sk is calculated such that

mk(xk + sk)−mk(xk + s∗k) ≤ (1− e3)c1η1(xk)min

{
∆k,

η1(xk)

max{1, ∥Hk∥}

}
,(6.6)

where s∗k is an exact minimizer of (2.14). Then the step sk satisfies (2.23) with

c1 :=
1

2
min

{
1,

1

∆2
max

}
.

Proof. This proof follows [19, Lemma 11], with the main difference being the use
of η1(xk) instead of Ψ1(xk).

We begin by defining s∗k as a global minimizer of the subproblem (2.14). Let us
also define s̃k to be a global minimizer of l̃(xk, s) for s ∈ B(0,∆k) (which exists since
h is continuous by Assumption 3.2), and so η∆k

(xk) = l̃(xk,0)− l̃(xk, s̃k). Note also
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that since h is convex, we have, for any θ ∈ [0, 1],

h(x+ θs̃k) ≤ (1− θ)h(x) + θh(x+ s̃k).(6.7)

Hence, for any θ ∈ [0, 1], we have

mk(xk)−mk(xk + s∗k)

≥ mk(xk)−mk(xk + θs̃k)(6.8)

= h(xk)− θ∇pk(xk)
T s̃k −

1

2
θ2s̃TkHks̃k − h(xk + θs̃k)(6.9)

≥ θh(xk)− θ∇pk(xk)
T s̃k −

1

2
max{1, ∥Hk∥}∆2

kθ
2 − θh(x+ s̃k)(6.10)

= θη∆k
(xk)−

1

2
max{1, ∥Hk∥}∆2

kθ
2.(6.11)

Since θ ∈ [0, 1] was arbitrary, (6.11) is equivalent to

mk(xk)−mk(xk + s∗k) ≥ max
0≤θ≤1

{
θη∆k

(xk)−
1

2
max {1, ∥Hk∥}∆2

kθ
2

}
.(6.12)

This is a concave quadratic in θ, with constrained maximizer

θ∗ = min

(
1,

η1(xk)

max{1, ∥Hk∥}∆2
k

)
.(6.13)

Using this value of θ∗, we get

mk(xk)−mk(xk + s∗k) ≥
1

2
min

{
η∆k

(xk),
[η∆k

(xk)]
2

max {1, ∥Hk∥}∆2
k

}
.(6.14)

Then [7, Lemma 2.1]3 gives

mk(xk)−mk(xk + s∗k) ≥
1

2
min{1,∆k}η1(xk)min

{
1,

min{1,∆k}η1(xk)

max {1, ∥Hk∥}∆2
k

}
.(6.15)

If ∆k ≤ 1, then (6.15) reduces to

mk(xk)−mk(xk + s∗k) ≥
1

2
η1(xk)min

{
∆k,

η1(xk)

max {1, ∥Hk∥}

}
.(6.16)

If ∆k ≥ 1, and noting that ∆max > 1 (by assumption in Algorithm 2.1), it follows
from (6.15) and ∆k ≤ ∆max ≤ ∆2

max that

mk(xk)−mk(xk + s∗k) ≥
1

2
η1(xk)min

{
1,

η1(xk)

max {1, ∥Hk∥}∆2
k

}
≥ 1

2∆2
max

η1(xk)min

{
∆2

max,
η1(xk)

max {1, ∥Hk∥}

}
≥ 1

2∆2
max

η1(xk)min

{
∆k,

η1(xk)

max {1, ∥Hk∥}

}
(6.17)

Therefore, combining (6.16) and (6.17), since η1(xk) ≤ η1(xk), we obtain:

mk(xk)−mk(xk + s∗k) ≥ c1η1(xk)min

{
∆k,

η1(xk)

max {1, ∥Hk∥}

}
.(6.18)

Subtracting (6.6) from (6.18) gives (2.23) as required.
3Stating that ηr(x) ≥ min{1, r}η1(x) for any r > 0 and x ∈ Rn.
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6.2. Computing criticality measures. When we implement S-FISTA for the
approximate criticality measure η1 in Algorithm 2.1 (i.e. in (2.20) and (2.24)), we
choose r := 1, g := ∇pk(xk) = gk and H := 0 in (6.5). The accuracy level is set to be
ϵ := min{(1 − e1)ϵC , e2∆

init
k } in (2.20) and ϵ := e2ω

i−1
C ∆init

k in (2.24), matching our
requirements (2.22) and (2.26) respectively.

6.3. Smoothed trust-region subproblem. In the case of solving the trust-
region problem (5.6) for Algorithm 5.1, we follow (6.5) from Theorem 6.1 and at each
iteration use the value

µ(γ) :=
2γ

Lh(Lh +
√
L2
h + 2 ∥Hk∥ γ)

,(6.19)

where ∥Hk∥ = ∥JT
k Jk∥ from (5.5). The total number of iterations K is also given by

substituting ϵ ← γ in (6.5). This ensures that our trust-region subproblem is solved
to global optimality level γ, which decreases to zero as Algorithm 5.1 progresses.

7. Numerical Experiments.

7.1. Implementation. We investigate the performance of both approaches for
solving the regularized least-squares problem (4.1) by implementing two modifications
of the original DFO-LS software [6]:

• DFO-LSR (DFO-LS with Regularization): Algorithm 2.1 with directly solves
(4.1).4

• DFO-LSSR (DFO-LS with Smoothed Regularizion): Algorithm 5.1, which
iteratively smoothing (4.1) to (5.2).5 We used parameters σ = 0.1, γ0 = 0.01
and trust-region termination function d(γj) = µ(γj)

2 for µ(γ) given by (6.19).
All other algorithm parameters are set to their default values in DFO-LS. As described
in Section 6, the different subproblems are solved using S-FISTA (Algorithm 6.1) with
parameters as described above. In practice, we additionally terminate S-FISTA after
500 iterations, which produces comparable numerical results to using the expected
number of iterations, but improves the overall algorithm runtime.

7.2. Testing Setup. The computational performance of DFO-LSR is compared
with PyNOMAD, which is a Python interface for NOMAD [26], a solver for black-box
optimization based on the Mesh Adaptive Direct Search (MADS) algorithm and is
capable of solving nonsmooth problems. We note that NOMAD is not aware of the
problem structure in (4.1), it simply can evaluate Φ(x) as a black-box, whereas our
algorithms receive more problem information, namely r(x) and h (plus its proximal
operator). We build our test suite based on [27], a collection of 53 unconstrained
nonlinear least squares problems with dimension 2 ≤ n ≤ 12 and 2 ≤ m ≤ 65. For
each problem, we set f(x) to be the nonlinear least squares from [27] and h(x) =
∥x∥1. Both solvers are tested additionally on our test suite where stochastic noise
is introduced in the evaluations of the residuals ri. Specifically, we introduce i.i.d.
ϵ ∼ N(0, σ2) for each i and x and implement two unbiased noise models as follows:

• Multiplicative Gaussian noise: we evaluate residual r̃i(x) = ri(x)(1+ ϵ); and
• Additive Gaussian noise: we evaluate residual r̃i(x) = ri(x) + ϵ.

For our testing, we took the noise level to be σ = 10−2. Each solver was run 10 times
on every problem with noise, and a maximum budget of 100(n + 1) evaluations was
given (for an n-dimensional problem).

4Implementation available from https://github.com/yanjunliu-regina/dfols.
5Implementation available from https://github.com/khflam/dfols/.

https://github.com/yanjunliu-regina/dfols
https://github.com/khflam/dfols/
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(e) Data profile, τ = 10−7
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(f) Performance profile, τ = 10−7

Fig. 1. Comparison of DFO-LSR, DFO-LSSR and NOMAD on smooth/noiseless test
problems for increasing accuracy levels τ = 10−3, τ = 10−5 and τ = 10−7.

To compare solvers, we use the data and performance profiles [16]. For every
solver S, each problem p, we determine the number of function evaluations Np(S; τ)
required for a problem to be solved up to a given accuracy level τ ∈ (0, 1):

(7.1) Np(S; τ) := # objective evals before Φ(xk) ≤ Φ∗ + τ (Φ(x0)− Φ∗) ,
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where Φ∗ is an approximation to the true minimum of problem p. In our numerical
experiments, we take Φ∗ to be the smallest objective value generated by either of
the two solvers. We set Np(S; τ) = ∞ if the inequality in (7.1) is not achieved for
a corresponding S, p and r in the maximum computational budget allowed, here
100(np + 1).

We compare solvers by calculating the proportion of problems solved in our
problem suite P for a given computational budget. Consider solver S, problem p and
accuracy level τ ∈ (0, 1), for data profiles, we normalize Np(S; τ) by the dimension
for problem p and plot

(7.2) dS,τ (α) :=
{p ∈ P : Np(S; τ) ≤ α(np + 1)}

|P|
, α ∈ [0, Ng],

where Ng is the maximum computational budget, measured in simplex gradients.
For performance profiles, we plot Np(S; τ) normalized by the minimum number of
objective evaluations N∗p (τ) := minS Np(S; τ):

(7.3) πS,τ (α) :=

∣∣{p ∈ P : Np(S; τ) ≤ αN∗p (τ)}
∣∣

|P|
, α ≥ 1.

7.3. Test Results. In Figure 1, we compare our methods DFO-LSR and DFO-
LSSR with NOMAD for problems with noiseless objective evaluations, for accuracy
levels τ ∈ {10−3, 10−5, 10−7}. As we would expect, both DFO-LSR and DFO-LSSR
significantly outperform NOMAD at all accuracy levels, as they have much more
information about the problem structure, including the full residual vector r(x) and
the proximal operator of h. Overall, the performance of DFO-LSR and DFO-LSSR
are similar, but we observe that DFO-LSSR outperforms DFO-LSR for lower accuracy
levels, but DFO-LSR is better able to reach high accuracy solutions, τ = 10−7.

For problems with noisy objective evaluations, we show the full numerical results
at accuracy levels τ ∈ {10−3, 10−5} in Appendix A. We do not include the highest
accuracy level τ = 10−7 here, since such reaching high accuracy requirements is
usually impractical for noisy problems without further algorithmic improvements
(e.g. sample averaging). For noisy problems, again both DFO-LSR and DFO-LSSR
outperform NOMAD. The performance difference between the DFO-LSR and DFO-
LSSR is quite small, and so it is not clear from these results which variant is to be
preferred in this setting.

8. Conclusions and Future Work. We introduce two model-based derivative-
free approaches for solving (1.1), and in particular its specialization to nonlinear
least-squares (4.1). First, Algorithm 2.1 extends the approach from [20] to handle
inexact stationarity measures, a simpler sufficient decrease condition for the trust-
region subproblem, and a more complicated algorithmic framework inherited from
[9], without sacrificing global convergence or worst-case complexity results. Secondly,
Algorithm 5.1 adapts the smoothing approach from [18] to our setting, and we add to
its convergence theory by showing that all accumulation points of the algorithm are
Clarke stationary. Our numerical results indicate that both approaches perform well,
although there is some evidence to suggest that the smoothing approach is slightly
better at achieving low accuracy solutions, while Algorithm 2.1 is better at finding
high accuracy solutions.

The most promising direction for future research on this topic is to extend our
approaches to the case where f does not have a nonlinear least-squares structure. The
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extra difficulty in this setting is to appropriately handle the nonconvex, nonsmooth
subproblems that would arise in this setting.
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Appendix A. Supplementary Numerical Results. Below we show our
numerical results for problems with noisy objectives, described in Section 7.2. Results
for problems with multiplicative Gaussian noise are shown in Figure 2 and problems
with additive Gaussian noise in Figure 3.
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(c) Data profile, τ = 10−5
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Fig. 2. Comparison of DFO-LSR, DFO-LSSR and NOMAD on test problems with
multiplicative Gaussian noise for accuracy levels τ = 10−3 and τ = 10−5.
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Fig. 3. Comparison of DFO-LSR, DFO-LSSR and NOMAD on test problems with additive
Gaussian noise for accuracy levels τ = 10−3 and τ = 10−5.
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