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Abstract. A second-order block coordinate descent method is proposed for the uncon-
strained minimization of an objective function with Lipschitz continuous Hessian. At each
iteration, a block of variables is selected by means of a greedy (Gauss-Southwell) rule which
considers the amount of first-order stationarity violation, then an approximate minimizer of
a cubic model is computed for the block update. In the proposed scheme, blocks are not
required to have a prefixed structure and their size is allowed to change during the iterations.
For non-convex objective functions, global convergence to stationary points is proved and a
worst-case iteration complexity analysis is provided. In particular, given a tolerance ε, we
show that at most O(ε−3/2) iterations are needed to drive the stationarity violation with
respect to the selected block of variables below ε, while at most O(ε−2) iterations are needed
to drive the stationarity violation with respect to all variables below ε. Numerical results are
finally provided.

Keywords. Block coordinate descent. Cubic Newton methods. Second-order methods.
Worst-case iteration complexity.

1 Introduction

Many challenging problems require the minimization of an objective function with several
variables. In this respect, block coordinate descent methods often represent an advantageous
approach, especially when the objective function has a nice structure, since these methods
update a block of variables at each iteration and might have a low per-iteration cost. In the
literature, block coordinate descent methods have been extensively analyzed in several forms,
employing different rules to choose and update the blocks (see, e.g., [26, 32]).

Most block coordinate descent methods use first-order information and gained great pop-
ularity as they guarantee high efficiency in several applications. When the objective function
is twice continuously differentiable, second-order information can be conveniently used as
well, in order to speed up the convergence of the algorithm and overcome some drawbacks
connected with first-oder methods, such as the performance deterioration in ill-conditioned
or highly non-separable problems [17]. Of course, second-order information should be used
judiciously in a block coordinate descent scheme, so as not to increase the per-iteration cost
excessively.
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Among second-order methods, a common approach in the literature is represented by
cubic Newton methods [7, 8, 14, 15, 19, 20, 24], where, at each iteration, the next point is
obtained by minimizing a cubic model, that is, a second-order model with cubic regulariza-
tion. This class of algorithms requires O(ε−3/2) iterations to drive the norm of the gradient
of the objective function below a given threshold ε, thus improving the bounds obtained for
the steepest descent method [24]. Extensions to higher order models have also been provided
when the objective function is several times continuously differentiable [5, 9].

In recent years, block coordinate descent versions of cubic Newton methods have been
proposed in the literature using different block selection rules. In particular, cyclic block
selection was considered in [1] for high order models that include cubic models as a special
case, whereas random block selection was analyzed in [12, 21] and [33] for convex and non-
convex objective functions, respectively.

Here, still considering a block coordinate descent version of cubic Newton methods, we
focus on the use of a greedy selection rule. Under Lipschitz continuity of the Hessian of
the objective function, we provide the following worst-case iteration complexity bounds for
non-convex objective functions:

• at most O(ε−3/2) iterations are needed to drive the stationarity violation with respect
to the selected block of variables below ε,

• at most O(ε−2) iterations are needed to drive the stationarity violation with respect to
all variables below ε.

Our results are appealing if compared with those given in [1] for cyclic block selection
when using cubic models. Specifically, the former complexity bound of O(ε−3/2) was obtained
in [1] as well, but note that the latter complexity bound of O(ε−2) improves over the one
given in [1], which is of O(ε−3). So, according to current results established in the literature,
the proposed greedy selection seems to be able to provide better complexity bounds than a
cyclic selection when using cubic models.

Let us remark that, for the proposed method, we do not need to know the Lipschitz
constant of the Hessian of the objective function. Moreover, we use inexact minimizers of
the cubic model whose computation does not require additional evaluations of the objective
function or its derivatives. Due to the block structure and the use of inexact information, we
name the proposed algorithm Inexact Block Cubic Newton (IBCN) method.

The rest of the paper is organized as follows. In Section 2, we introduce the problem
and give preliminary results. In Section 3, we describe the proposed method. In Section 4,
we carry out the convergence analysis and give worst-case iteration complexity bounds. In
Section 5, we show some numerical results. Finally, we draw some conclusions in Section 6.

2 Preliminaries and notations

We consider the following unconstrained optimization problem:

min
x∈Rn

f(x), (1)
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where f : Rn → R is a (possibly non-convex) objective function. We assume that the Hessian
matrix ∇2f(x) is Lipschitz continuous over Rn with constant L > 0, that is,

‖∇2f(x)−∇2f(y)‖ ≤ L‖x− y‖ ∀x, y ∈ Rn,

where, here and in the rest of the paper, ‖v‖ is the Euclidean norm for any vector v, whereas
‖A‖ is the norm induced by the vector Euclidean norm for any matrix A. The sup-norm of
a vector v is indicated by ‖v‖∞.

Given I ⊆ {1, . . . , n}, we denote by UI ∈ Rn×|I| the submatrix of the n-dimensional
identity matrix obtained by removing all columns with indices not belonging to I. Then,
given x ∈ Rn and I ⊆ {1, . . . , n}, we use the following notation:

• xI ∈ R|I| is the subvector of x with elements in I, that is,

xI = UTI x;

• ∇If(x) ∈ R|I| is the vector of first-order partial derivatives of f with respect to xi,
i ∈ I, that is,

∇If(x) = UTI ∇f(x); (2)

• ∇2
If(x) ∈ R|I|×|I| is the matrix of second-order partial derivatives of f with respect to

xi, i ∈ I, that is,
∇2
If(x) = UTI ∇2f(x)UI . (3)

For example, if n = 5 and

x =


3
1
4
−2
0

 , ∇f(x) =


2
−1
0
−3
4

 , ∇2f(x) =


−2 3 −6 0 −7
3 1 −5 4 2
−6 −5 7 −3 −1
0 4 −3 5 −4
−7 2 −1 −4 6

 ,
using I = {1, 3, 4} we get

UI =


1 0 0
0 0 0
0 1 0
0 0 1
0 0 0

 , xI =

 3
4
−2

 , ∇If(x) =

 2
0
−3

 , ∇2
If(x) =

−2 −6 0
−6 7 −3
0 −3 5

 .
Note that, for any choice of I ⊆ {1, . . . , n}, we have

‖UI‖ = 1, (4)

‖UIv‖ = ‖v‖ ∀v ∈ R|I|. (5)

Moreover, for any choice of I ⊆ {1, . . . , n}, we define the block Lipschitz constant LI
such that

‖∇2
If(x+ UIs)−∇2

If(x)‖ ≤ LI‖s‖ ∀x ∈ Rn, ∀s ∈ R|I|. (6)
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Note that

LI ∈ (0, L] (7)

since, recalling (3), we have

‖∇2
If(x+ UIs)−∇2

If(x)‖ = ‖UTI (∇2
If(x+ UIs)−∇2

If(x))UI‖
≤ ‖∇2f(x+ UIs)−∇2f(x)‖‖UI‖2

= ‖∇2f(x+ UIs)−∇2f(x)‖ ≤ L‖UIs‖ = L‖s‖,

where (4) has been used in the second equality and (5) has been used in the last equality.

Let us also define

Lmin = min
I⊆{1,...,n}

LI .

From (7), it follows that

0 < Lmin ≤ LI ≤ L ∀I ⊆ {1, . . . , n}. (8)

Extending known results on functions with Lipschitz continuous Hessian [11, 24], we can
give the following proposition whose proof is reported in Appendix A.

Proposition 1. Given a point x ∈ Rn and a block of variable indices I ⊆ {1, . . . , n}, for all
s ∈ R|I| we have that

‖∇If(x+ UIs)−∇If(x)−∇2
If(x)s‖ ≤ LI

2
‖s‖2, (9)∣∣∣f(x+ UIs)− f(x)−∇If(x)T s− 1

2
sT∇2

If(x)s
∣∣∣ ≤ LI

6
‖s‖3. (10)

3 The Inexact Block Cubic Newton (IBCN) method

In this section, we describe the proposed algorithm, named Inexact Block Cubic Newton
(IBCN) method.

At the beginning of each iteration k, we choose a block of variable indices Ik ⊆ {1, . . . , n}.
In order to update the variables in Ik, we search for a suitable sk ∈ R|Ik| to move from xk
along UIksk. To this aim, we define the cubic model mk(s) as follows:

mk(s) = qk(s) +
Mk

6
‖s‖3, (11)

where Mk is a positive scalar which should overestimate LIk , while qk(s) is the following
quadratic model:

qk(s) = f(xk) +∇Ikf(xk)
T s+

1

2
sT∇2

Ikf(xk)s. (12)

For the sake of convenience, let us also report the gradient of mk(s) as follows:

∇mk(s) = ∇Ikf(xk) +∇2
Ikf(xk)s+

Mk

2
‖s‖s. (13)
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We then compute sk as an approximate minimizer of the cubic model (11). To decide whether
or not to accept sk, we compute

ρk =
f(xk)− f(xk + UIksk)

qk(0)− qk(sk)
(14)

(we will show in Lemma 5 below that the denominator is positive whenever ∇Ikf(xk) 6= 0)
and we check if

ρk ≥ η,

with η ∈ (0, 1). If this is the case, then we accept sk, i.e., we set xk+1 = xk +UIksk, referring
to k as a successful iteration. Otherwise, we do not accept sk, i.e., we set xk+1 = xk, referring
to k as an unsuccessful iteration. Let us also denote by S and U the sets of successful and
unsuccessful, respectively, that is,

S = {k such that ρk ≥ η} and U = {0, 1, . . .} \ S. (15)

In the next subsections, first we describe a greedy selection rule to chose Ik, then we
describe how we compute Mk and sk, finally giving the algorithmic scheme.

3.1 Block selection

In block coordinate descent methods, blocks of variables can be selected by means of dif-
ferent rules [26, 32] such as cyclic (Gauss-Seidel) rules, greedy (Gauss-Southwell) rules and
random rules. For block coordinate descent methods using cubic (or higher order) models,
cyclic selection rules have been analyzed in [1], whereas random selection rules have been
investigated in [12, 21, 33].

Here, we focus on the use of a greedy selection rule. In particular, we consider a classical
Gauss-Southwell strategy [26] where, at each iteration k, the block Ik includes variables
providing a sufficiently large amount of first-order stationarity violation.

Greedy selection rule: There exists a real number θ ∈ (0, 1] such that

‖∇Ikf(xk)‖ ≥ θ‖∇f(xk)‖ ∀k ≥ 0. (16)

Note that the above greedy selection rule does not require the variables to be a priori
partitioned into a fixed number of blocks, so that even the size of the blocks might change
during the iterations.

In the following two propositions, we describe two simple procedures to satisfy the greedy
selection rule (16). For any iteration k, the first one requires Ik to include the variable
corresponding to the largest component in absolute value of ∇f(xk), while the second one,
given an arbitrary number of (possibly overlapping) blocks of variables covering {1, . . . , n},
requires to compute the norm of the subvectors of ∇f(xk) with respect to each block in order
to choose Ik as the one yielding the largest norm.

Proposition 2. For every iteration k, let ı̂k ∈ Argmaxi=1,...,n|∇if(xk)| and assume that
ı̂k ∈ Ik. Then,

‖∇Ikf(xk)‖ ≥ (n+ 1− |Ik|)−1/2‖∇f(xk)‖ ∀k ≥ 0.
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It follows that (16) is satisfied with

θ ≥
(
n+ 1−min

k≥0
|Ik|
)−1/2

.

Proof. Fix any iteration k and let

Ĩk = ({1, . . . , n} \ Ik) ∪ {ı̂k}.

Recalling the definition of ı̂k, we have that

‖∇Ikf(xk)‖∞ = ‖∇Ĩkf(xk)‖∞ = ‖∇f(xk)‖∞ = |∇ı̂f(xk)|.

Then, we can write

‖∇Ikf(xk)‖2 = (∇ı̂kf(xk))
2 +

∑
i∈Ik\{ı̂k}

∇if(xk)
2

= ‖∇Ĩkf(xk)‖2∞ +
∑

i∈{1,...,n}\{Ĩk}

∇if(xk)
2

≥ |Ĩk|−1
‖∇Ĩkf(xk)‖2 +

∑
i∈{1,...,n}\{Ĩk}

∇if(xk)
2


= |Ĩk|−1‖∇f(xk)‖2.

Since |Ĩk| = n+ 1− |Ik|, then the desired result follows.

Proposition 3. For every iteration k, let J 1
k , . . . ,J

Nk
k be subsets of {1, . . . , n} such that

Nk⋃
j=1
J jk = {1, . . . , n} and assume that Ik ∈ ArgmaxI=J 1

k ,...,J
Nk
k

‖∇If(xk)‖. Then,

‖∇Ikf(xk)‖ ≥ N
−1/2
k ‖∇f(xk)‖ ∀k ≥ 0.

It follows that (16) is satisfied with

θ ≥ max
k≥0

N
−1/2
k .

Proof. Fix any iteration k. Since
Nk⋃
j=1
J jk = {1, . . . , n}, we can write

‖∇f(xk)‖2 ≤
Nk∑
j=1

‖∇J j
k
f(xk)‖2 ≤ Nk‖∇Ikf(xk)‖2,

where the last inequality follows from how Ik is selected, thus leading to the desired result.
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3.2 Computation of Mk

In the cubic model (11), the scalar Mk should overestimate LIk . To account for the fact that
LIk might be unknown, we give two different strategies to compute Mk at any iteration k,
that is,

Mk =


LIk

1− η
if LIk is known,

σk otherwise,
(17)

where η ∈ (0, 1) and σk is updated during the iterations as follows:

σk+1 =

{
σk if k ∈ S,
γσk otherwise (i.e., if k ∈ U),

(18)

for a given γ > 1, with S and U defined as in (15). In particular, we will prove below that
k might be unsuccessful only when Mk does not overestimates LIk adequately, that is, only
when we use the second option in (17) (see Remark 2 below).

We see that (18) is just a simplification of the classical updating rule inherited from trust-
region methods (see, e.g., [7]), differing in that, in our case, σk+1 cannot be decreased from
σk. Essentially, when the Lipschitz constant is unknown, such a choice makes σk increase a
finite number of times until Mk provides a suitable overestimate of LIk (see Propositions 9–10
below).

3.3 Computation of sk

Assuming that ‖∇Ikf(xk)‖ 6= 0, the inexact minimizer sk of the cubic model (11) must satisfy
two conditions. The first one is that the first-order stationarity violation must be sufficiently
small compared to ‖sk‖2, that is,

‖∇mk(sk)‖ ≤ τ‖sk‖2, (19)

with a given τ ∈ [0,∞). The second requirement is that mk(sk) must be sufficiently low,
that is,

mk(sk) ≤ mk(ŝk), where

ŝk = −α̂k∇Ikf(xk) and α̂k = min

{
β

‖∇2
Ikf(xk)‖

,

√
3β

Mk‖∇Ikf(xk)‖

}
,

(20)

with a given β ∈ (0, 1), letting the first argument within the above minimum to be +∞ when
‖∇2
Ikf(xk)‖ = 0.
We see that condition (19) is a straightforward adaptation of those used in [1, 5, 9], while

condition (20) is inspired by the classical Cauchy condition [7] which requires mk(sk) ≤
minα≥0mk(−α∇Ikf(xk)). In our case, mk(sk) is compared to mk(ŝk), hence (20) is weaker
than the Cauchy condition.

As to be shown, for every successful iteration k, using (19)–(20) will allow us to suitably
lower bound (f(xk)− f(xk+1)) (see Theorem 6 below) and upper bound ‖∇Ikf(xk+1)‖ (see
Theorem 7 below), thus leading to the desired complexity bounds.
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Note that we can compute a vector sk satisfying (19)–(20) in finite time without the need
of additional evaluations of f or its derivatives in other points. In particular, we can apply an
algorithm to approximately minimize the cubic model (11) (using, e.g., the methods analyzed
in [4, 6, 18, 23]). In our experiments, for the inexact minimization of the cubic model (11), we
use a Barzilai-Borwein gradient method [28], which was observed to be effective in practice [4].

Finally, observe that (19)–(20) are clearly satisfied if sk is a global minimizer of the cubic
model (11) (details on how to compute global minimizers of a cubic model can be found
in [7, 10, 24]).

3.4 The scheme

The proposed method, named Inexact Block Cubic Newton (IBCN) method, is reported in
Algorithm 1.

Algorithm 1 Inexact Block Cubic Newton (IBCN) method

1: Given x0 ∈ Rn, σ0 ∈ (0,∞), η ∈ (0, 1), γ ∈ (1,∞), τ ∈ [0,∞) and β ∈ (0, 1)
2: while ∇f(xk) 6= 0 do
3: compute Ik ⊆ {1, . . . , n} such that ‖∇Ikf(xk)‖ ≥ θ‖∇f(xk)‖

4: compute Mk =


LIk

1− η
if LIk is known

σk otherwise,

5: compute sk such that

‖∇mk(sk)‖ ≤ τ‖sk‖2 and mk(sk) ≤ mk(ŝk)

where

ŝk = −α̂k∇Ikf(xk)

α̂k = min

{
β

‖∇2
Ikf(xk)‖

,

√
3β

Mk‖∇Ikf(xk)‖

}

6: compute ρk =
f(xk)− f(xk + UIksk)

qk(0)− qk(sk)
7: if ρk ≥ η then
8: set xk+1 = xk + UIksk and σk+1 = σk . k ∈ S
9: else

10: set xk+1 = xk and σk+1 = γσk . k ∈ U
11: end if
12: end while

4 Convergence analysis

We start the convergence analysis of the proposed IBCN method by bounding, for every
iteration, the decrease of the cubic model similarly as when using the Cauchy condition [7].

8



Andrea Cristofari

Proposition 4. For every iteration k, we have

mk(0)−mk(sk) ≥ mk(0)−mk(ŝk) ≥ (1− β)α̂k‖∇Ikf(xk)‖2,

where ŝk is defined as in (20).

Proof. The first inequality of the thesis follows from the first inequality of (20), so we only
have to show the second inequality. To this aim, recalling the definitions of mk and ∇mk

from (11), (12) and (13), we can write

mk(0)−mk(ŝk) = f(xk)−mk(−α̂k∇Ikf(xk))

= α̂k‖∇Ikf(xk)‖2 −
α̂2
k

2
∇Ikf(xk)

T∇2
Ikf(xk)∇Ikf(xk)+

−
α̂3
kMk

6
‖∇Ikf(xk)‖3

≥ α̂k‖∇Ikf(xk)‖2
(

1−
α̂k‖∇2

Ikf(xk)‖
2

−
α̂2
kMk‖∇Ikf(xk)‖

6

)
.

From the definition of α̂k given in (20), it follows that

1−
α̂k‖∇2

Ikf(xk)‖
2

−
α̂2
kMk‖∇Ikf(xk)‖

6
≥ 1− β

2
− β

2
= 1− β.

Then, the desired result follows.

Using the above proposition, we can easily lower bound the decrease of the quadratic
model at every iteration as follows.

Lemma 5. For every iteration k, we have

qk(0)− qk(sk) ≥ (1− β)α̂k‖∇Ikf(xk)‖2 +
Mk

6
‖sk‖3.

Proof. For any iteration k, from (12) and (11) it follows that

qk(0)− qk(sk) = mk(0)−mk(sk) +
Mk

6
‖sk‖3.

Hence, the desired result is obtained by using Proposition 4.

In the following two theorems we show how, for every successful iteration k, we can lower
bound (f(xk)− f(xk+1)) and upper bound ‖∇Ikf(xk+1)‖.

Theorem 6. For every k ∈ S, we have

f(xk)− f(xk+1) ≥ η
(

(1− β)α̂k‖∇Ikf(xk)‖2 +
Mk

6
‖sk‖3

)
.

Proof. Take any k ∈ S. From the instructions of the algorithm, we have that xk+1 =
xk + UIksk. Recalling the definition of ρk given in (14), then the desired result follows from
the definition of S given in (15) and from Lemma 5.
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Remark 1. The sequence {f(xk)} is monotonically non-increasing since, according to The-
orem 6 and the instructions of the algorithm,

f(xk+1)

{
≤ f(xk) if k ∈ S,
= f(xk) otherwise (i.e., if k ∈ U).

Theorem 7. For every k ∈ S, we have

‖∇Ikf(xk+1)‖ ≤
(
τ +

Mk + LIk
2

)
‖sk‖2.

Proof. Take any k ∈ S. First, we can write

‖∇Ikf(xk+1)‖ ≤ ‖∇Ikf(xk)+∇2
Ikf(xk)sk‖+‖∇Ikf(xk+1)−∇Ikf(xk)−∇2

Ikf(xk)sk‖. (21)

Using (13), we can upper bound the first norm in the right-hand side of (21) as follows:

‖∇Ikf(xk) +∇2
Ikf(xk)sk‖ =

∥∥∥∇mk(sk)−
Mk

2
‖sk‖sk

∥∥∥
≤ ‖∇mk(sk)‖+

Mk

2
‖sk‖2

≤
(
τ +

Mk

2

)
‖sk‖2,

(22)

where the last inequality follows from (19). Using (9) and the fact that, from the instructions
of the algorithm, xk+1 = xk + UIksk since k ∈ S, we can also upper bound the second norm
in the right-hand side of (21) as follows:

‖∇Ikf(xk+1)−∇Ikf(xk)−∇2
Ikf(xk)sk‖ ≤

LIk
2
‖sk‖2. (23)

Then, the desired result follows from (21), (22) and (23).

To establish convergence of the algorithm, we have to upper bound the number of un-
successful iterations, which will be obtained in Proposition 11 below. To get such a result,
we have to pass through a few intermediate steps. First we show that, if Mk is a suitable
overestimate of LIk , then k is a successful iteration.

Theorem 8. Assume that, for an iteration k, we have

Mk ≥
LIk

1− η
.

Then, k ∈ S.

Proof. From (12), we can write

−∇Ikf(xk)
T sk −

1

2
sTk∇2

Ikf(xk)sk = qk(0)− qk(sk). (24)
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Using Lemma 5, it follows that

−∇Ikf(xk)
T sk −

1

2
sTk∇2

Ikf(xk)sk ≥
Mk

6
‖sk‖3. (25)

Using (24) and (10), from the definition of ρk given in (14) we obtain

1− ρk =
−∇Ikf(xk)

T sk − 1
2s
T
k∇2
Ikf(xk)sk − f(xk) + f(xk + sk)

−∇Ikf(xk)T sk − 1
2s
T
k∇2
Ikf(xk)sk

≤ LIk
Mk

,

where, in the last inequality, we have used (10) and (25) to upper bound the numerator by
(LIk/6)‖sk‖3 and lower bound the numerator by (Mk/6)‖sk‖3, respectively. Since Mk ≥
LIk/(1− η) by hypothesis, it follows that 1− ρk ≤ 1− η, that is, ρk ≥ η. Then, the desired
result follows from the definition of S given in (15).

Remark 2. From Theorem 8 and the definition of Mk given in (17), it follows that k might
be an unsuccessful iteration only when Mk is set to σk.

In the following two propositions, we show that both σk and Mk have finite positive
bounds.

Proposition 9. It holds that

0 < σ0 ≤ σk ≤ max

{
σ0,

γL

1− η

}
∀k ≥ 0.

In particular,

σ0 ≥
L

1− η
⇒ σk = σ0 ∀k ≥ 0.

Proof. From Theorem 8 and the definition of Mk given in (17), we can write

k ∈ U ⇒ Mk = σk <
LIk

1− η
≤ L

1− η
,

where we have used (8) to upper bound LIk in the last inequality. Taking into account the
updating rule of σk given in (18), we get

σk ≤ σk+1 ≤ max

{
σk,

γL

1− η

}
∀k ≥ 0,

Proceeding by induction and recalling that σ0 > 0 from the algorithm initialization, the
desired bounds on σk follows.

Proposition 10. Two finite positive constant Mmin and Mmax exist such that

Mmin ≤Mk ≤Mmax ∀k ≥ 0.

In particular,

Mmin = min

{
Lmin

1− η
, σ0

}
and Mmax = max

{
σ0,

γL

1− η

}
.
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Proof. Using the definition of Mk given in (17), we can write

min

{
LIk

1− η
, σk

}
≤Mk ≤ max

{
LIk

1− η
, σk

}
∀k ≥ 0.

Using the bounds on LIk given in (8) and the bounds on σk given in Proposition 9, then
Mmin ≤Mk ≤Mmax for all k ≥ 0. Finally, Mmin and Mmin are positive as σ0 > 0 from the
algorithm initialization.

Using the previous results, we can give a finite upper bound on the total number of
unsuccessful iterations.

Proposition 11. There exists a finite constant Umax such that

|U| ≤ Umax.

In particular,

Umax =


0 if Mk ≥

LIk
1−η for all k ≥ 0,⌊

max
{

0,
log(L)− log(σ0(1− η))

log(γ)
+ 1
}⌋

otherwise.

Proof. If Mk ≥ LIk/(1− η) for all k ≥ 0, it follows from Theorem 8 that k ∈ S for all k ≥ 0.
Since U ∪ S = {0, 1, . . .} from (15), then we conclude that |U| = 0.

Now assume that σ0 ≥ L/(1−η). Since, from Proposition 9 and (8), for all k ≥ 0 we have
σk ≥ σ0 and L ≥ LIk , respectively, then σk ≥ LIk/(1− η) for all k ≥ 0. Using the definition
of Mk given in (17), we conclude that Mk ≥ LIk/(1− η) for all k ≥ 0, still obtaining |U| = 0
reasoning as in the previous case.

The last case to analyze is when σ0 < L/(1− η). For any iteration k ≥ 1, define

jk = |{j < k : j ∈ U}|,

that is, jk is the number of unsuccessful iterations up to iteration k. From the updating rule
of σk given in (18), we have that σk = γjkσ0 for all k ≥ 1. So, using the upper bound on σk
given in Proposition 9, we can write

γjkσ0 = σk ≤ max

{
σ0,

γL

1− η

}
≤ γL

1− η
∀k ≥ 1,

where the last inequality follows from the fact that we are considering the case σ0 < L/(1−η)
and γ > 1. Applying the logarithm, we get

jk ≤
⌊

max
{

0,
log(L)− log(σ0(1− η))

log(γ)
+ 1
}⌋

∀k ≥ 1.

Since |U | = maxk≥1 jk, then the desired result follows.

Remark 3. As appears from the proof of Proposition 11, if σ0 ≥ L/(1− η), then Umax = 0.
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Now, to establish convergence to stationary points, we need an assumption on the bound-
edness of f and ∇2f over the following level set:

L0 = {x ∈ Rn : f(x) ≤ f(x0)}. (26)

Assumption 1. Two finite positive constants fmin and B exist such that, for all x ∈ L0, we
have f(x) ≥ fmin and ‖∇2f(x)‖ ≤ B, where L0 is defined as in (26).

We see that Assumption 1 is satisfied if L0 is compact. Note also that, since {f(xk)}
is monotonically non-increasing from Remark 1, then {xk} ⊆ L0. It follows that, under
Assumption 1, we have

f(xk) ≥ fmin ∀k ≥ 0, (27)

‖∇2
Ikf(xk)‖ ≤ B ∀k ≥ 0. (28)

In oder to show convergence of IBCN to stationary points, we first give the following
result, which will also be useful in the worst-case iteration complexity analysis.

Proposition 12. Given ε ∈ [0, 1], if Assumption 1 holds, then

f(xk)− f(xk+1) ≥ c1ε2 ∀k ∈ S : ‖∇f(xk)‖ ≥ ε,

where

c1 = θη(1− β) min

{
θβ

B
,

√
3θβ

Mmax

}
.

Proof. Take any iteration k ∈ S such that ‖∇f(xk)‖ ≥ ε, with ε ∈ [0, 1]. Using Theorem 6
and the greedy selection rule (16), we have that

f(xk)− f(xk+1) ≥ η(1− β)α̂k‖∇Ikf(xk)‖2 ≥ θη(1− β)α̂k‖∇f(xk)‖‖∇Ikf(xk)‖.

Since ‖∇f(xk)‖ ≥ ε, we obtain

f(xk)− f(xk+1) ≥ θη(1− β)εα̂k‖∇Ikf(xk)‖. (29)

Now, using the definition of α̂k given in (20), we can write

α̂k‖∇Ikf(xk)‖ = min

{
β‖∇Ikf(xk)‖
‖∇2
Ikf(xk)‖

,

√
3β‖∇Ikf(xk)‖

Mk

}
.

Since, from (28) and Proposition 10, respectively, ‖∇2
Ikf(xk)‖ ≤ B and Mk ≤ Mmax, then

we get

α̂k‖∇Ikf(xk)‖ ≥ min

{
β‖∇Ikf(xk)‖

B
,

√
3β‖∇Ikf(xk)‖

Mmax

}
.

So, using the greedy selection rule (16) and the fact that ‖∇f(xk)‖ ≥ ε, with ε ∈ [0, 1], we
obtain

α̂k‖∇Ikf(xk)‖ ≥ min

{
θβε

B
,

√
3θβε

Mmax

}
≥ εmin

{
θβ

B
,

√
3θβ

Mmax

}
. (30)

Then, combining (29) and (30), the desired result follows.

13
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Now, we can finally show global convergence of IBCN to stationary points.

Theorem 13. If Assumption 1 holds, then

lim
k→∞

∇f(xk) = 0.

Proof. Since |U| is bounded from Proposition 11, with U ∪ S = {0, 1, . . .} from (15), then an
iteration k̄ exists such that k ∈ S for all k ≥ k̄. Now, reasoning by contradiction, assume
that {∇f(xk)} does not converge to 0. It follows that there exists ε ∈ (0, 1] such that

lim sup
k→∞

‖∇f(xk)‖ ≥ ε.

Since k ∈ S for all k ≥ k̄, from Proposition 12 it follows that {f(xk)} → −∞, thus contra-
dicting (27).

4.1 Worst-case iteration complexity

Here, we analyze the worst-case iteration complexity of the proposed IBCN method, providing
two main results.

First, in the following theorem, we show that at most O(ε−3/2) iterations are needed to
drive ‖∇Ikf(xk+1)‖ below a given threshold ε > 0. Note that, in the proof of the following
theorem, no role is played by the greedy selection rule (16), that is, the result holds for any
arbitrary choice of the blocks.

Theorem 14. Given ε > 0, let

Kb
ε = {k ≥ 0: ‖∇Ikf(xk+1)‖ ≥ ε}.

If Assumption 1 holds, then

|Kb
ε | ≤

⌊
f(x0)− fmin

c2
ε−3/2

⌋
+ Umax,

where

c2 =
Mmin

6

(
τ +

Mmax + L

2

)−3/2
.

Proof. Since S ∪ U = {0, 1, . . . , } from (15), then

|Kb
ε | = |Kb

ε ∩ S|+ |Kb
ε ∩ U|. (31)

To obtain the desired result, in the following we want to upper bound |Kb
ε ∩S| and |Kb

ε ∩U|.
Using the lower bound for f(xk) given in (27) and the fact that, from Remark 1, {f(xk)}

is monotonically non-increasing, we can write

f(x0)− fmin ≥
∑

k∈Kb
ε∩S

(f(xk)− f(xk+1)). (32)

14
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Now we want to lower bound the right-hand side term of (32). First, from Theorem 6, we
have that

f(xk)− f(xk+1) ≥
Mk

6
‖sk‖3 ≥

Mmin

6
‖sk‖3 ∀k ∈ S, (33)

where, in the last inequality, we have Proposition 10 to lower bound Mk. Moreover, from
Theorem 7, we have that

‖∇Ikf(xk+1)‖ ≤
(
τ +

Mk + LIk
2

)
‖sk‖2 ≤

(
τ +

Mmax + L

2

)
‖sk‖2 ∀k ∈ S, (34)

where, in the last inequality, we have used Proposition 10 and (8) to upper bound Mk and
LIk , respectively. Therefore, from (33) and (34), we obtain

f(xk)− f(xk+1) ≥ c2‖∇Ikf(xk+1)‖3/2 ∀k ∈ S. (35)

It follows that
f(xk)− f(xk+1) ≥ c2ε3/2 ∀k ∈ Kb

ε ∩ S.
Using this inequality in the right-hand side of (32), we obtain

f(x0)− fmin ≥ |Kb
ε ∩ S|c2ε3/2.

Hence, we can upper bound |Kb
ε ∩ S| as follows:

|Kb
ε ∩ S| ≤

⌊
f(x0)− fmin

c2
ε−3/2

⌋
. (36)

Now, using Proposition 11, we can also upper bound |Kb
ε ∩ U| as follows:

|Kb
ε ∩ U| ≤ |U| ≤ Umax. (37)

Then, the desired result follows from (31), (36) and (37).

From Theorem 14 we see that, to drive the stationarity violation with respect to the
selected block of variables below ε, we need at most O(ε−3/2) iterations, thus matching the
complexity bound given in [1] for cyclic selection.

In particular, when Ik = {1, . . . , n} for all k, we retain the complexity bound of standard
cubic Newton methods, that is, at most O(ε−3/2) iterations are needed to obtain ‖∇f(xk)‖ <
ε.

In a general case where |Ik| < n, Theorem 14 does not provide information on how many
iterations are needed in the worst case to drive the stationarity violation with respect to all
variables below ε. Such a complexity bound is given in the next theorem, ensuring that at
most O(ε−2) are needed to get ‖∇f(xk)‖ < ε.

Theorem 15. Given ε ∈ (0, 1], let

Kε = {k ≥ 0: ‖∇f(xk)‖ ≥ ε}.

If Assumption 1 holds, then

|Kε| ≤
⌊
f(x0)− fmin

c1
ε−2
⌋

+ Umax,

where c1 is defined as in Proposition 12.
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Proof. Since S ∪ U = {0, 1, . . . , } from (15), then

|Kε| = |Kε ∩ S|+ |Kε ∩ U|. (38)

To obtain the desired result, in the following we want to upper bound |Kε ∩S| and |Kε ∩U|.
Using the lower bound for f(xk) given in (27) and the fact that, from Remark 1, {f(xk)}

is monotonically non-increasing, we can write

f(x0)− fmin ≥
∑

k∈Kε∩S
(f(xk)− f(xk+1)).

From Proposition 12, it follows that

f(x0)− fmin ≥ |Kε ∩ S|c1ε2.

Hence, we can upper bound |Kε ∩ S| as follows:

|Kε ∩ S| ≤
⌊
f(x0)− fmin

c1
ε−2
⌋
. (39)

Now, using Proposition 11, we can also upper bound |Kε ∩ U| as follows:

|Kε ∩ U| ≤ |U| ≤ Umax. (40)

Then, the desired result follows from (38), (39) and (40).

Remark 4. Since c1 = O(θ3/2), with θ ∈ (0, 1], it follows that the larger θ the better the
complexity bound of Theorem 15. Lower bounds for θ have been derived in Propositions 2–3
when using two simple strategies for the block selection.

First-order methods usually guarantee an upper bound of O(ε−2) on the maximum num-
ber of iterations needed to obtain ‖∇f(xk)‖ < ε since, at every iteration, they satisfy
f(xk) − f(xk+1) ≥ c‖∇f(xk)‖2, with a finite positive constant c, using either a greedy [25]
or a cyclic [2] block selection rule. So, for the proposed IBCN method, Theorem 15 ensures
the same worst-case iteration complexity as first-order methods.

When using cyclic block selection with cubic models, an upper bound of O(ε−3) was
obtained in [1] on the maximum number of iterations needed to obtain ‖∇f(xk)‖ < ε, thus
worse than the proposed IBCN method and than first-order methods.

5 Numerical experiments

In this section, we report some numerical results. The experiments were run in Matlab
R2024a on an Apple MacBook Pro with an Apple M1 Pro Chip and 16 GB RAM.

Given a set of samples {a1, . . . , am} ⊆ Rn and labels {b1, . . . , bm} ⊆ R, let ϕx : Rn → R
be a prediction function parameterized by a vector x. We consider optimization problems
from regression and classification models where the objective function has the following form:

f(x) =
1

m

m∑
i=1

`(bi, ϕx(ai)) + λP (x),
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with ` : R×R→ [0,∞) being a loss function, P : Rn → [0,∞) being a regularizer and λ ≥ 0
being a regularization parameter. In particular, a non-convex regression model is considered
in Subsection 5.1, while a convex classification model is considered in Subsection 5.2.

We compare IBCN with two block coordinate descent methods using greedy selection
rules. In particular, we consider both a first-order method and a second-order method,
referred to as BCD1 and BCD2, respectively. At each iteration k of BCD1 and BCD2, given
the current point xk and a block of variables Ik, we compute a search direction dk ∈ R|Ik| as
follows:

• For BCD1, we use the steepest descent direction, that is,

dk = −∇Ikf(xk);

• For BCD2, we use a diagonally scaled steepest descent direction [3, 30], that is,

dk = −(Hk)
−1∇Ikf(xk),

where Hk ∈ R|Ik|×|Ik| is symmetric and positive definite. To compute Hk, we choose a
diagonal Hessian approximation as in [30, Subsection 7.2], that is,

Hk = diag(vk), with vk =
[
min{max{∇2

{j}f(xk), 10−2}, 109}
]
j∈Ik

,

where diag(vk) denotes the diagonal matrix constructed from the vector vk.

For both BCD1 and BCD2, once dk is obtained, we set xk+1 = xk +αkUIkdk, with αk being
computed by means of an Armijo line search, similarly as in [3, 30].

At each iteration k of IBCN, BCD1 and BCD2, a block of variables Ik is chosen as
described in Proposition 2, that is, such that ‖∇Ikf(xk)‖∞ = ‖∇f(xk)‖∞. More specifically,
first we compute the index ı̂k corresponding to the largest component in absolute value of
∇f(xk), then Ik is set to include ı̂k with the other variable indices being chosen randomly.
In our experiments, we use blocks of size q ∈ {1, 5, 10, 20, 50, 100}.

In IBCN, we set σ0 = 1, η = 0.1, γ = 2 and τ = 1, choosing Mk at each iteration k by the
second option of (17). To compute sk at each iteration k of IBCN, we set sk = ŝk, with ŝk
defined as in (20), if this choice satisfies (19). Otherwise, we run a Barzilai-Borwein gradient
method [28] to mk(s), starting from ŝk, until a point s is produced such that (19) holds with
sk replaced by s.

In all experiments, we run IBCN, BCD1 and BCD2 from the starting point x0 = 0 for 104

iterations without using any other stopping condition. Then, considering a sequence {xk}
produced by a given algorithm, we analyze the decrease of the objective error (f(xk)− f∗),
with f∗ being the best objective value found for a given problem, and the decrease of the
stationarity violation ‖∇f(xk)‖.

5.1 Sparse least squares

The problem of recovering sparse vectors from linear measurements is central in many ap-
plications, such as compressive sensing [13] and variable selection [16]. To obtain sparse
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solutions, a popular approach is to use least-square with l1-norm regularization, resulting in
a convex formulation known as LASSO [29]. But, in order to overcome the bias connected to
the l1 norm, some non-convex regularizers have also been introduced in the literature [31].

Here we consider a non-convex sparsity promoting term considered in, e.g., [22, 27], given
by P (x) =

∑n
i=1(x

2
i + ω2)p/2, with small ω > 0 and p ∈ (0, 1). Using the least squares as

loss, we hence obtain the following non-convex problem:

min
x∈Rn

1

m
‖Ax− b‖2 + λ

n∑
i=1

(x2i + ω2)p/2,

where A =
[
a1 . . . am

]T ∈ Rm×n and b =
[
b1 . . . bm

]T ∈ Rm. In our experiments we set
λ = 10−3, ω = 10−2 and p = 0.5. After generating the elements of the matrix A randomly
from a uniform distribution in (0, 1), with m = 500 and n = 10, 000, a vector x̂ ∈ Rn was
created with all components equal to zero except for 5% of them, which were randomly set
to ±1. Then, we set b = Ax̂ + ζ, where ζ ∈ Rm is a noise vector with elements drawn from
a normal distribution mean 0 and standard deviation 10−3. We run 10 simulations and the
average results with respect to the number of iterations and the CPU time are reported in
Figures 1–2, respectively.

We see that, for q = 1, all the considered methods perform very similarly and give almost
identical results, but IBCN clearly outperforms both BCD1 and BCD2 as the size of the
blocks increases. In particular, for q ≥ 5, IBCN makes both the objective function and the
norm of its gradient decrease much faster. Within the given limit of 104 iterations, IBCN is
always able to achieve a lower objective value with a smaller norm gradient.

5.2 Regularized logistic regression

To asses how IBCN works on convex problems, we consider the l2-regularized logistic regres-
sion. In particular, assuming that bi ∈ {±1}, i = 1, . . . ,m, the optimization problem can be
formulated as follows:

min
(x,z)∈Rn+1

1

m

m∑
i=1

log
(

1 + e−b
i(aTi x+z)

)
+ λ‖x‖2,

We use the following three datasets from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

datasets/:

(i) gisette (train), m = 6000, n = 5000;

(ii) leu (train), m = 38, n = 7129;

(iii) madelon (train), m = 2000, n = 500;

scaling all features of the last dataset in [−1, 1], while the other ones had already been scaled
or normalized.

Results with respect to the number of iterations are reported in Figures 3–4. We see that,
for q = 1, IBCN and BCD2 have similar performance and both of them give better results
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(a) (b)

Figure 1: Results on sparse least squares with respect to the number of iterations, using
blocks of size q. In each plot, the y axis in logarithmic scale.
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(a) (b)

Figure 2: Results on sparse least squares with respect to the CPU time in seconds, using
blocks of size q. In each plot, the y axis in logarithmic scale.
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than BCD1. For larger values of q, IBCN provides a faster objective decrease and is able
to produce points with a smaller norm of ∇f than the two competitive methods. Also for
this class of problems, the performances of IBCN improve as the size of the blocks increases,
similarly as what was obtained in the previous subsection for non-convex problems.

Finally, results with respect to the CPU time are reported in Figure 5 only for the gisette
dataset since, for the other datasets, the methods take a few seconds in most cases. We see
that IBCN seems to provide the best results for q ≥ 5, confirming the above findings.

6 Conclusions

In this paper, we have considered the unconstrained minimization of an objective function
with Lipschitz continuous Hessian. For this problem, we have presented a block coordinate
descent version of cubic Newton methods using a greedy (Gauss-Southwell) selection rule,
where blocks of variables are chosen by considering the amount of first-order stationarity
violation. To update the selected block at each iteration, an inexact minimizer of a cubic
model is computed. In practice, such an inexact minimization can be carried out in finite
time without the need of additional evaluations of the objective function or its derivatives in
other points. In the proposed scheme, blocks are not required to have a prefixed structure and
their size might even change during the iterations. Moreover, the knowledge of the Lipschitz
constant of the Hessian is not needed.

In a non-convex setting, we have shown global convergence to stationary points and ana-
lyzed the worst-case iteration complexity. Specifically, we have shown that at most O(ε−3/2)
iterations are needed to drive the stationarity violation with respect to the selected block
of variables below ε, while at most O(ε−2) iterations are needed to drive the stationarity
violation with respect to all variables below ε.

Then, we have tested the proposed method on non-convex and convex problems used
to build regression and classification models. Numerical results show that the proposed
approach is effective and its performances improve as the size of the blocks increases.

Finally, further investigation needs to be devoted to analyzing the worst-case iteration
complexity in convex and strongly convex problems.

Data availability Codes are available at https://github.com/acristofari/ibcn, in-
cluding those to generate the datasets used in Subsection 5.1, whereas the datasets used in
Subsection 5.2 were downloaded from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

datasets/.
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(a) (b)

Figure 5: Results on l2-regularized logistic regression with respect to the CPU time in seconds,
using blocks of size q, for gisette dataset. In each plot, the y axis in logarithmic scale.
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Appendix A Properties from Lipschitz continuity

Proof of Proposition 1. Choose I ⊆ {1, . . . , n} and define the function ψ : Rn → R|I|, ψ(x) =
UTI ∇f(x). Namely, using (2),

ψ(x) = ∇If(x) ∀x ∈ Rn.

Now, take x ∈ Rn and s ∈ R|I|. Applying the mean value theorem to ψ, we can write

∇If(x+ UIs)−∇If(x) = ψ(x+ UIs)− ψ(x)

=

∫ 1

0
∇ψ(x+ tUIs)

TUIs dt

=

∫ 1

0
UTI ∇2f(x+ tUIs)UIs dt

=

∫ 1

0
∇2
If(x+ tUIs)s dt,

where we have used (3) in the last equality. Adding −∇2
If(x)s to all terms, we obtain

‖∇If(x+ UIs)−∇If(x)−∇2
If(x)s‖ =

∥∥∥∫ 1

0
(∇2
If(x+ tUIs)−∇2

If(x))s dt
∥∥∥

≤
∫ 1

0
‖(∇2

If(x+ tUIs)−∇2
If(x))s‖ dt

≤ ‖s‖
∫ 1

0
‖∇2
If(x+ tUIs)−∇2

If(x)‖ dt

≤ LI‖s‖2
∫ 1

0
t dt

=
LI
2
‖s‖2,

(41)

where the last inequality follows from (6). Thus, (9) holds.

To show (10), by the mean value theorem we can write

f(x+ UIs)− f(x) =

∫ 1

0
∇f(x+ tUIs)

TUIs dt =

∫ 1

0
∇If(x+ tUIs)

T s dt, (42)

where we have used (2) in the last equality. Adding −∇If(x)T s− 1
2s
T∇2
If(x)s to all terms,
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we obtain ∣∣∣f(x+ UIs)− f(x)−∇If(x)T s− 1

2
sT∇2

If(x)s
∣∣∣ =∣∣∣∫ 1

0
(∇If(x+ tUIs)−∇If(x)− t∇2

If(x)s)T s dt
∣∣∣ ≤∫ 1

0
|(∇If(x+ tUIs)−∇If(x)− t∇2

If(x)s)T s
∣∣dt ≤

‖s‖
∫ 1

0
‖∇If(x+ tUIs)−∇If(x)− t∇2

If(x)s‖dt ≤

LI
2
‖s‖3

∫ 1

0
t2 dt =

LI
6
‖s‖3,

where the last inequality follows from (9). Thus, (10) holds.
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