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Abstract. In this work, we instantiate a regularized form of the gradient clipping algorithm and prove that it
can converge to the global minima of deep neural network loss functions provided that the net is of
sufficient width. We present empirical evidence that our theoretically founded regularized gradient
clipping algorithm is also competitive with the state-of-the-art deep-learning heuristics. Hence the
algorithm presented here constitutes a new approach to rigorous deep learning. The modification we
do to standard gradient clipping is designed to leverage the PL* condition, a variant of the Polyak-
 Lojasiewicz inequality which was recently proven [LZB20], to be true for various neural networks for
any depth within a neighbourhood of the initialisation.
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1. Introduction. In various disciplines, ranging from control theory to machine learning
theory there has been a long history of trying to understand the nature of convergence on
non-convex objectives for first order optimization algorithms i.e algorithms which only have
access to an (estimate of) the gradient of the objective [MC01, FGQ97]. The new avatar of
this question in large dimension optimization problems that arise in modern machine learning
applications (like with neural networks) motivate the need for finite time analysis of such
algorithms. A challenging aspect of these modern use cases is their essential need to finely tune
the hyper-parameters in there like, the step-size, momentum, and batch size. In the wake of
this, the “adaptive gradient” algorithms such as Adam [KB14] (and its special case RMSProp)
have become essentially indispensable for doing deep-learning, [SS19, MDB17, BAP+17]. A
reason for the widespread popularity of RMSProp and Adam stems from the fact that it seems
easy to find task-specific and useful neural nets where the default settings of these algorithms
already work well. Adam-like methods use as their update direction a vector which is the
image of a linear combination of some (or all) of the gradients seen until now, under a linear
transformation (often called the “diagonal pre-conditioner”) constructed out of the history
of the gradients. It is generally believed that this “pre-conditioning” makes these algorithms
much less sensitive to the selection of its hyper-parameters. A precursor to RMSProp and
Adam was the AdaGrad algorithm, [DHS11].

Motivated by their far-reaching usefulness in the deep-learning community, adaptive gradients
methods like RMSProp and Adam have attracted significant attempts at their theoretical
justifications in the non-convex setting. But, to the best of our knowledge, there has never
been a theoretical guarantee for any adaptive gradient algorithm to converge to the global
minima of deep neural nets.
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In contrast to the above, in recent times a number of motivations have come to light to consider
training algorithms beyond these conventional adaptive gradient algorithms [BWAA18]. In
works like [SSG19, ZKV+20] a number of reasons have been pointed out as to how gradient
clipping based adaptivity is better suited for deep-learning. In this kind of adaptivity we
primarily seek for mechanisms to prevent the algorithm from using arbitrarily large gradients.
Gradient clipping has been successfully deployed in a wide range of cases, particularly in
natural language processing tasks such as GPTs [BMR+20] and LSTMs [MKS17], and more
recently in computer vision tasks [BDSS21]. Clipping the gradient is also known to alleviate
the exploding gradients problem in recurrent neural networks [PMB12], as well as help provide
privacy guarantees in differentially private machine learning [ACG+16]; [MKH23].

Inspired by the above, in this work, we initiate a form of gradient clipping algorithm which in
experiments we demonstrate to be competitive with Adam, stochastic gradient descent and
standard gradient clipping – while also being guaranteed to train neural nets of arbitrary
depth - when training on the squared loss and when sufficiently wide.

Summary of Results. In [ZHSJ19], the authors study the following specific form of gra-
dient clipping (which from here onwards we will refer to as “standard gradient clipping” or
“GClip”)

Definition 1.1 (GClip). For any η, γ > 0, the GClip algorithm for a differentiable objective
function f is defined as,

(1.1) xt+1 = xt − h(xt) ⋅ ∇f(xt), where h(xt) ∶= η ⋅min{1, γ

∥∇f(xt)∥
} .

The γ term acts as the threshold gradient norm. To the best of knowledge the above has no
known convergence guarantees for deep-learning and thus motivated we present a modification
of GClip – which we refer to as δ−Regularized-GClip (or δ-GClip).

Definition 1.2 (δ−Regularized-GClip). The δ−Regularized-GClip algorithm for a differen-
tiable objective function f would be defined as,

(1.2) xt+1 = xt − h(xt) ⋅ ∇f(xt), where h(xt) ∶= η ⋅min{1,max{δ, γ

∥∇f(xt)∥
}}

for any η, γ > 0 and δ ∈ (0,1).

Note that setting δ = 0 in above recovers standard gradient clipping. A stochastic version
of the above would also be considered when under a certain noisy gradient setup we state a
convergence result for it in Theorem 2.9.

Note that the critical max{δ, ...} term ensures h(xt) ≥ ηδ, and thus preventing h(xt) from
vanishing as ∥∇f(x)∥ → ∞. It is important to note that due to this modification, the distance
between any two iterates ∥xt+1 −xt∥ is not bounded as the gradient norm grows. In Section
2.2 we shall show that in practice δ can be chosen small enough such that the lower bound is
never hit - but its presence is critical for the following convergence guarantee for deep-learning
that we shall establish.
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Theorem 1.3 (Informal Theorem About δ−Regularized-GClip). Given a deep neural
network that is sufficiently wide (parametric in δ), δ−Regularized-GClip will minimise the
square loss to find a zero-loss solution at an exponential convergence rate, for any training
data.

To the best of our knowledge, the above establishes the first instance of an adaptive gradient
algorithm that provably trains nets at any depth. Additionally, our experiments will also show
that δ−Regularized-GClip is competitive with the state-of-the-art deep-learning optimizers.

Notation. We denote a Euclidian ball centered at w0 ∈ Rm with radius R as B(w0,R) ∶=
{w ∈ Rm ∶ ∥w0 −w∥2 ≤ R}. Unless otherwise stated, ∥.∥ denotes the ℓ2-norm for vectors and
the spectral norm for matrices.

2. The Main Results. Towards stating the main results we recall the following definition,

Definition 2.1 (µ-PL* Condition). A non-negative loss function L is said to satisfy µ-PL∗ on
a set S ⊂ Rm if ∃µ > 0 such that ∀w ∈ S ∶ ∥∇L(w)∥2 ≥ µL(w).

Further, we recall the following L-hidden layer feed-forward neural network architectures and
their loss setups which were within the ambit of considerations in [LZB20].

Definition 2.2.

f(W ;x) = α(L+1), α(l) = σl (
1

√
ml−1

⋅W (l)α(l−1)) for l ∈ [1, L + 1], α(0) = x(2.1)

where ml is the width of the lth layer, α(l) is the output from the l-th layer. W l ∈ Rml×ml−1

represents the weights for the l-th layer and mL+1 = 1. σl is the activation function for the l-th
layer. We assume that the last layer activation σ(L+1) is Lσ-Lipschitz continuous, βσ-Lipschitz
smooth (βσ-smooth) and satisfies ∣σ′L+1(z)∣ ≥ ρ > 0.

We train f as in equation 2.1 using an n-sample training dataset, {zi = (xi, yi) ∣ i = 1, ..., n},
and we denote the vector of outputs for all training samples as,
F(W ) = (f(W ;x1), ..., f(W ;xn)) ∈ Rn. We utilise the square loss, L(W ) = 1

2∥F(W ) − y∥
2.

Now we have all the requisite background to state the key theorem we will present in this
work.

Theorem 2.3 (δ−Regularized-GClip Provably Trains Wide and Deep Neural Nets).
Suppose an overparametrised neural network F is being trained using the square loss, L(w),
as specified in Definition 2.2. Then ∃ λ0 > 0 s.t for any η,µ, δ > 0 appropriately small enough,
if the minimum width of the network satisfies,

(2.2) m = Ω̃( nR6L+2

(λ0 − µρ−2)2
) where R =

η
√
2β
√
L(w0)

1 −
√

1 − 1
2 ⋅ ηδµ

.

then one can initialize the net s.t w.h.p over initialization the above loss is µ-PL∗ in the
ball B(w0,R) around initialization w0. Further, let βF be s.t F(w) is locally βF -smooth in
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B(w0,R) . Then, training such a network using δ−Regularized-GClip with η < min{ 1
βF

, 1µ}
and δ ∈ (0,1), will result in geometric convergence to a global minimiser of L, w∗ ∈ B(w0,R),
such that L(w∗) = 0. Furthermore, δ−Regularized-GClip will converge with convergence rate,

(2.3) L(wt) ≤ L(w0)(1 −
1

2
⋅ ηδµ)t.

Remark 2.4. The assumptions of η < 1/µ and δ < 1 imply (1 − 1
2 ⋅ ηδµ) ∈ (

1
2 ,1), hence

lim
t→∞
L(wt) = 0.

The proof of the above theorem can be found in Section 4. In subsection 2.1 we state the
lemmas that are required to prove this.

Next, we consider a stochastic version of our algorithm, defined as follows,

Definition 2.5 (Stochastic δ−Regularized-GClip). The Stochastic δ−Regularized-GClip
algorithm for a differentiable function L would be defined as,

(2.4) wt+1 =wt−h(gt)⋅gt, where h(gt) = ηmin{1,max{δ, γ

∥gt∥
}} and, E[gt ∣wt] = ∇L(wt)

for any η, γ > 0 and δ ∈ (0,1) and an arbitrary choice of w1, the initial point.

Towards analyzing the above we make the following assumptions,

Assumption 2.6. ∃ θ ≥ 0 s.t. ∀w, ∥g(w) − ∇L(w)∥ ≤ θ
Assumption 2.7. L is non-negatively lower bounded i.e. minw L = L∗ ≥ 0
Assumption 2.8. L is β-smooth

Thus we have the following convergence theorem,

Theorem 2.9. Given Assumptions 2.6, 2.7 and 2.8, and for an arbitrary choice of ϵ > 0, let
ϵ′ ∶= ϵ

θ . Then for β = 1, δ = 1+2ϵ′2

1+3ϵ′2 , η =
1
4 ⋅

ϵ′2

1+ϵ′2 , stochastic δ−Regularized-GClip iterates satisfy
the following inequality,

for, T = θ4

ϵ4
, min

t=1,...,T
E [∥∇L(wt)∥2] ≤ O(ϵ2)

The proof of the above is given in Appendix A - where we first prove a slightly more general
result than the above. We note that this convergence guarantee above does not need the
gradient norms to be bounded as was also the case for standard stochastic gradient clipping,
Theorem 7 in [ZHSJ19]. But, the convergence guarantee for standard stochastic clipping does
not immediately hold as stated in [ZHSJ19] for the standard smoothness assumption that is
used here. Additionally, unlike standard clipping, here we can get convergence guarantees in
the deterministic (“full gradient”) setting (Theorem 2.3) as well as the noisy setting – for the
same clipping algorithm.
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2.1. Intermediate Lemmas for Theorem 2.3.

Lemma 2.10. Corresponding to constants a, b > 0 and aµ < 1 suppose a loss function L is
β-smooth, minL = 0, and satisfies the µ − PL∗ condition within a Euclidean ball B(w0, R),

with R ≥
b
√
2β
√
L(w0)

1 −
√

1 − 1
2 ⋅ aµ

. Then there exists a global minimiser of L, w∗ ∈ B(w0,R) such that

L(w∗) = 0. Furthermore, given a first order adaptive step size algorithm of the form,

(2.5) wt+1 =wt − h(wt) ⋅ ∇L(wt),

where h(wt) is a time/iterate-dependent function such that 0 < a ≤ h(wt) ≤ b < min{ 1β ,
1
µ},

then the algorithm will converge with convergence rate,

(2.6) L(wt) ≤ L(w0)(1 −
1

2
⋅ aµ)t

Lemma 2.11. The δ−Regularized-GClip step size h(w) is bounded ηδ ≤ h(w) ≤ η, given that
0 < δ < 1.
Lemma 2.12. (δ−Regularized-GClip Converges on smooth PL∗ functions) Corresponding to
positive constants η, δ, β, µ s.t η < min{1/β,1/µ} and 0 < δ < 1, suppose there exists a loss
function L that is β-smooth, lower bounded by 0, and satisfies the µ−PL* condition within an

Euclidean ball B(w0,R) where R ≥ η
√

2β
√

L(w0)

1−
√

1− 1
2
⋅ηδµ

. Then there exists a global minimiser of L,

w∗ ∈ B(w0,R) such that L(w∗) = 0. Furthermore, δ−Regularized-GClip will converge at rate,

(2.7) L(wt) ≤ L(w0)(1 −
1

2
⋅ ηδµ)t

The proofs for Lemmas 2.10, 2.11 and 2.12 can be found in Subsection 4.1.

2.2. Experimental Evidence for The Performance of δ−Regularized-GClip. In this sec-
tion we aim to demonstrate that the regularization term in δ−Regularized-GClip helps improve
the performance of standard gradient clipping – which anyway outperforms stochastic gra-
dient descent (SGD) – and is in fact competitive when compared against the most popular
optimizers such as Adam, even superseding it at times. We test in supervised classification as
well as unsupervised distribution learning settings.

We perform four experiments, the first set is on the standard benchmark of a ResNet-18
[HZRS15] being trained on the CIFAR-10 [Kri09] dataset - which we recall is a 10−class image
classification task with 50,000 training images and 10,000 test images. The second set of
experiments is training a VAE model on the Fashion-MNIST dataset - with 60,000 training
samples and 10,000 for testing. Further, we test both with learning rate scheduling – whereby
η (or the learning rate) is reduced at certain points in the training – and without (constant η
throughout).

Note that, in the (supervised) classification experiment the training is done on the cross-
entropy loss and on ReLU gate nets and while using weight-decay (of 5e−4). And the VAE
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setup does not have a loss function in the same conventional sense as considered in the theorem
earlier. Hence these experiments demonstrate the efficacy of regularised gradient clipping
beyond the ambit of the current theory.

The code for the experiments can be found in our GitHub repository1. We built basic custom
implementations of δ−Regularized-GClip and standard GClip and used the standard Pytorch
optimizers for SGD and Adam - which we recall is highly optimized. Hence we would be
demonstrating performance of our modification in competitions which are a priori skewed in
favour of the existing benchmarks.

In the legends of the figures, a notation of, SGD (0.1) stands for stochastic gradient descent
with η = 0.1, δ−GClip (1; 1; 1e−8) is δ−Regularized-GClip with η = 1, γ = 1, δ = 1e − 8, GClip
(5; 1) for standard gradient clipping with η = 5, γ = 1 and Adam (1) is notation for Adam
with η = 1 – and similarly for other hyperparameter choices.

2.2.1. The Setup of the Experiments with ResNet-18 and CIFAR-10. The ResNet-
18 was trained using the full training set using mini-batches of size 512. We tested all the
following hyperparameter combinations, η ∈ {0.0001,0.001,0.01,0.1,1,5}, γ ∈ {0.25,1,5,10}
and δ ∈ {1e−3,1e−8} for each optimizer. For Adam, only the learning rate (η) was modified,
the rest were left at the PyTorch defaults (β1 = 0.9, β2 = 0.999, ε = 1e−8). In the case with
scheduling the η value quoted in the legend denotes the η value at epoch 0 – i.e before any
reductions by the scheduling algorithm are done.

Experiments Without Learning Rate Scheduling. In Figure 2.1 we only plot the
best-performing (in terms of test accuracy) hyperparameter selection for each algorithm.

Experiments With Learning Rate Scheduling. In Figure 2.2 we show a repeat of the above
experiments and again plot the best-performing hyperparameters. In here we start at larger
η values and divide η by 10 at epochs 100 and 150, following the setup from [ZHSJ19]. See
Appendix B, for a version of this experiment with no weight-decay.

We draw two primary conclusions from the above results. Firstly, that a very small value of δ
in δ−Regularized-GClip does not seem to have a significant effect either for loss minimization
or test accuracy. The results for δ−Regularized-GClip and standard GClip set to similar η
and γ values, are practically identical in both scenarios for all small enough values of δ tried.
As alluded to in the previous sections, the gradient norm would have to be larger than ηγ/δ
for the lower bound on h(wt) to be attained - and even for the larger setting of δ = 1e−3 and
a typical γ = 0.25 setting requires a gradient norm of over 250, which is only infrequently seen
along the optimization trajectory.

Secondly, though Adam attained the best test accuracy without learning rate scheduling by a
margin of about ∼ 1% compared to both δ−Regularized-GClip and standard gradient clipping
– but all other optimizers superseded it by ∼ 3% when learning rate scheduling was used.
The best performance with scheduling (which is by our regularized gradient clipping) is better
than for any algorithm without scheduling. Interestingly, with learning rate scheduling Adam

1Experiment code is available at https://github.com/matteo-tucat/delta-gradient-clipping.
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Figure 2.1: δ−Regularized-GClip (δ−GClip) is competitive against SOTA heuristics for train-
ing ResNet-18 on CIFAR-10 without learning-rate scheduling

performed the best in terms of minimizing the training loss while SGD performed the worst,
even though SGD’s solution seems to generalize significantly better (as shown by the ∼ 3
percentage point higher test accuracy).

The significant ability of δ-regularised gradient clipping to exploit learning rate scheduling
motivates an interesting direction for future exploration in theory.

2.2.2. VAE on Fashion-MNIST. We performed the VAE training experiment both with
and without scheduling when training on the Fashion MNIST dataset. We tested the following
hyperparmeter choices η ∈ {1e−5,1e−4,1e−3,1e−2}, γ ∈ {10,50,200,500}, δ ∈ {0.01,0.1,1}.
We utilize the same scheduling as in the ResNet experiment (η division by 10 at epochs 100
and 150) - and the results are given in Figure 2.3.

The VAE results with (and without - though not shown here) learning rate scheduling sup-
ports our earlier observations that the added regularization term of δ helps the performance
w.r.t that of GClip at the same values of step-length and clipping threshold which anyway
outperforms SGD. And it is only mildly underperforming with respect to Adam.

We therefore conclude from our experiments that δ−Regularized-GClip clipping remains com-
petitive with current optimizers, while offering the significant benefit of provable deep neural
network training.
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Figure 2.2: δ−Regularized-GClip (δ−GClip) outperforms other optimizers for training ResNet-
18 on CIFAR-10 with learning-rate scheduling

3. Discussion. In this section, we will give a summary of the state-of-the-art literature
about provable deep-learning algorithms - particularly focusing on the theoretical attempts
that have been made so far in settings that are closest to real-world implementations.

Literature Review of Theory for Adam. Adam was proposed in [KB14] and in [RKK18] it
was proved that for common hyperparameter choices (β1 <

√
β2), there exists a stochastic

convex optimisation problem where Adam does not converge. They presented a modification
to Adam that provably converges for online convex optimization. In [DMU18] the authors
analyse the convergence of Adam in the deterministic case, without the use of convexity, but
leveraging Lipschitz smoothness and a bounded gradient norm they gave the first proof of
Adam’s convergence to an ε-stationary point for such non-convex functions.

For the same optimization target as above, in [CLSH18], a convergence rate of O(logT /
√
T )

was shown for Adam-like adaptive gradient algorithms under the assumption of a bounded
gradient oracle. Later, a burn-in stage was added in [SRK+19] to prove a O(1/

√
T ) con-

vergence rate. In [CG18], the authors introduced a partial adaptive parameter and proved
convergence to criticality for a class of adaptive gradient algorithms, which does not include
RMSProp. It was shown in [ZSJ+19] that generic Adam (including RMSProp) converges with
high probability under certain decaying conditions on β2 and step size - in contrast to the usual
implementations. In [WWB19] the authors proved similar convergence results for AdaGrad
which is a special case of RMSProp.
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Figure 2.3: δ−Regularized-GClip (δ− GClip) is competitive against SOTA heuristics for train-
ing a VAE on the Fashion MNIST dataset with learning-rate scheduling

Review of Theory for Adaptive Gradient Methods Training Neural Nets. In contrast to the
convergence to criticality results mentioned above - there have also been works providing
guarantees of convergence to global minima for adaptive methods in shallow neural network
training scenarios. [WDW19] provides a proof of the convergence of the AdaLoss adaptive
algorithm to global minima on two-layer network, with widths large enough to be in the NTK
regime. [ZCLG21] provides a proof of Adam’s global convergence on two-layer convolutional
neural networks to a zero error solution whilst utilising weight decay regularisation. The
authors further provide evidence that although both GD and Adam converge to zero error
solutions, GD’s solution generalises significantly better. In the context of Generative Ad-
versarial Networks (GANs), [DL22] analysed the performance of Adam-like algorithms and
proved the convergence of Extra Gradient AMSGrad to an ε-stationary point under novel
assumptions they motivated.

Literature Review of Gradient Clipping. In the smooth non-convex case, [ZHSJ19] proved the
convergence of deterministic gradient clipping to an ε-stationary point under a new smooth-
ness assumption that is strictly weaker than standard Lipschitz smoothness. Their provided
iteration complexity implies that gradient clipping can converge faster than gradient descent
(in constants), while achieving O(ε)−criticality in O(ε−2) steps. The authors provide a similar
analysis in the stochastic case, with the additional assumption of either a bound on the noise
of the stochastic gradient or its distribution being symmetric sub-Gaussian. It is important
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to note that the provided stochastic iteration complexity does not supersede that of SGD in
the general case. They had pointed out, possibly for the first time, that gradient clipping can
converge, in deterministic as well as noisy settings, on smooth functions without the need for
gradients to be bounded.

In [ZKV+20] the authors utilise Lipschitz smoothness while working with non-convex targets

and having heavy-tailed gradient stochasticity to achieve O(1/t 1
4 ) close convergence to criti-

cality in t−steps – which matches that of SGD in the non-heavy tailed setting. In there the
authors gave a lower bound in the same setting, which matches upto constants the run-time
given above and thus proving that their convergence rate is worst-case optimal. Furthermore,
the authors also consider non-smooth but strongly convex functions with a bound on the ex-
pected norm of the stochastic gradients – which we recall had appeared earlier in [SZ13] for
non-heavy tailed settings – and achieve the same convergence, implying that the convergence
rate is optimal even in the Lipschitz smooth and strongly convex setting.

We posit that from above kinds of analysis of adaptive algorithms (including GClip), either for
depth 2 neural networks or in the more general (non-)convex settings, there is no obvious path
towards provable convergence guarantees in deep neural network training for adaptive gradient
algorithms. But, recently, in [LZB20], convergence guarantees where proven for (S)GD for
sufficiently wide, and arbitrarily deep neural networks, by leveraging the novel PL∗ condition
that the authors proved to be true for squared losses for such nets. Next we will briefly review
those results.

Review of the PL∗ Condition. Our motivation behind studying the convergence charac-
teristics of algorithms under the PL* condition comes from the paper [LZB20], where the
authors prove that overparametrised feedforward, convolutional and residual (ResNet) neural
networks can all satisfy the PL∗ condition within a finite radius of the initialisation, given
that they are sufficiently wide. In partiicular, they showed that,

Theorem 3.1. Any neural network of the form described in Definition 2.2, if randomly initial-
ized s.t. W l

0 ∼ N(0, Iml×ml−1) for l ∈ [0, L + 1] and defining λ0 ∶= λmin(KF(W0)) > 0 where
KF(W ) = DF(W )DF(W )⊺, then for any µ ∈ (0, λ0ρ

2) and the minimum layer width of the
network being,

(3.1) m = Ω̃( nR6L+2

(λ0 − µρ−2)2
) ,

the µ-PL* condition holds for the square loss in the ball B(W0,R) where R is a finite radius.

Therefore, a path opened up, that by proving that the iterates of our δ−Regularized-GClip
algorithm never leave a ball of finite radius, and proving the convergence of δ−Regularized-
GClip on locally smooth µ-PL* functions we can argue for the algorithm’s convergence to the
loss global minima in such neural networks.

Conclusion. In this work, we have presented a new adaptive algorithm, δ−Regularized-
GClip, as a modification to the standard gradient clipping algorithm. In contrast to all previ-
ous attempts at finding good adaptive gradient methods, we proved that our δ−Regularized-
GClip algorithm can train deep neural networks (at any depth) with arbitrary data and while
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training on the squared loss. Additionally, we have also given experimental evidence that our
algorithm can compete and sometimes outperform the deep-learning algorithms in current
use. Our proof critically hinges on the interplay between the modification we do to standard
gradient clipping and the µ − PL∗ condition that has previously been shown to be true for
squared losses on deep nets of sufficient width.

Our work suggests an immediate direction of future research into establishing convergence
guarantees for regularized gradient clipping on various other standard losses in use like cross-
entropy and for nets with ReLU activation. We note that recently reported heuristics which
are particularly good for LLM training, [LLH+23] can also be seen as modifications of the
clipping algorithm. We envisage that exciting lines of investigation could open up in trying
explore the efficacy of these new developments crossed with the provably good modifications
of gradient clipping that we instantiated here.

4. Methods. In this section we will give the proofs for the main theorems presented in
this work.

Proof. (of Theorem 2.3)

Firstly, we invoke the assumption that the initialization is s.t that the conditions of Theorem
3.1 apply - which we know from therein to be a high-probability event. In particular we
conclude that L satisfies µ−PL∗ within a finite ball B(w0,R) for some R > 0 and that the
tangent kernel at initialization is positive definite.

If Lσ and βσ are the Lipschitz constant and the Lipschitz smoothness coefficients for the
activation σ then it was shown in [LZB20], that we have for the prediction map F , its Lipschitz
constant LF ≤ Lσ (

√
∥KF(w0)∥ +R

√
n ⋅O(R3L/√m)) as well as its smoothness constant βF ≤

βσLσ (
√
∥KF(w0)∥ +R

√
n ⋅O(R3L/√m))+Lσ ⋅O(R3L/√m). Where KF is the neural tangent

kernel (recall that KF = DF(w)DF(w)⊺).

By plugging in the lowerbound on m specified in the theorem, we get that both LF and βF
are upper bounded by a constant and thus m independent. If HL is the Hessian of the loss
function, then by [LZB20] we also have that,

(4.1) βL = sup
w∈B(w0,R)

∥HL(w)∥ ≤ L2
F
+ βF ⋅ ∥F(w0) − y∥

By [JGH18], we have that ∥F(w0) − y∥ is also m independent with high probability for the
given size of the net. Therefore, L can be said to be βL-smooth within B(w0,R), where βL
is m and thus R independent. Hence, we can say that for every R > 0, for some width which
satisfies the given condition, the loss function is β-smooth (and by Theorem 3.1, µ-PL∗) in
B(w0,R) with high probability.

Thus far the argument above was parametric in R. But given that we satisfy all the conditions
to invoke Lemma 2.12 we can compute from it the minimum R value required such that the

iterates of regularized gradient clipping never leave B(w0,R) i.e R = η
√

2β
√

L(w0)

1−
√

1− 1
2
⋅ηδµ

, and conclude
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that δ−Regularized-GClip converges to a zero-loss solution within B(w0,R) at a convergence
rate of L(wt) ≤ L(w0)(1 − ηδµ)t.

4.1. Proofs of the Lemmas .

Proof. (of Lemma 2.10) We shall prove the theorem by induction and our hypothesis is
that, upto step t, wt ∈ B(w0,R) for the given R, L(wt) ≤ L(w0)(1 − 1

2 ⋅ aµ)
t and thus up to

t the algorithm explored a region where the µ−PL∗ condition holds. The base case is trivial,
when t = 0 then w0 ∈ B(w0,R). Now we set out to prove that these continue to hold at t + 1
too.

From the assumptions that, L is β-smooth, we have,

(4.2) L(wt+1) − L(wt) − ∇L(wt)⊺(wt+1 −wt) ≤
β

2
∥wt+1 −wt∥2.

As h(wt) <min{ 1β ,
1
µ}, we have that 1

h(wt)
> β, hence we relax the above inequality to,

(4.3) L(wt+1) − L(wt) − ∇L(wt)⊺(wt+1 −wt) ≤
1

2h(wt)
∥wt+1 −wt∥2

Using the definition of the algorithm, that wt+1 −wt = −h(wt)∇L(wt) and we can rearrange
the above to get,

(4.4) L(wt+1) − L(wt) ≤ −
h(wt)

2
∥∇L(wt)∥2

Further, we can use the induction hypothesis for the µ-PL* condition at the current iterate,
∥∇L(wt)∥2 ≥ µL(wt), to get,

(4.5) L(wt+1) − L(wt) ≤ −
h(wt)

2
∥∇L(wt)∥2 ≤ −

h(wt)µ
2
L(wt)

And the above can be rearranged to,

(4.6) L(wt+1) ≤ (1 −
1

2
⋅ h(wt)µ)L(wt)

Note that for the convergence rate to hold, h(wt)must be bounded such that ∀t, (1− 1
2 ⋅h(wt)µ)

is always positive and less than 1, both of which follow from the bounds on a, b. We then
unroll the recursion to get,

(4.7)
L(wt+1) ≤ L(w0) ⋅

t

∏
i=0

(1 − h(wi)µ
2
)

≤ L(w0)(1 −
1

2
⋅ aµ)t+1

where the last inequality comes from 0 < a ≤ h(wt). Therefore assuming that the convergence
rate holds till time t implies that it also holds till t + 1.
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Next we embark on proving that wt+1 ∈ B(w0,R). From the algorithm’s update equation,
the triangle inequality and recalling that h(wt) ≤ b we get

(4.8) ∥wt+1 −w0∥ ≤
t

∑
i=0

∥h(wi) ⋅ ∇L(wi)∥ ≤ b
t

∑
i=0

∥∇L(wi)∥

We can rearrange the β-smoothness inequality from equation 4.2 and apply Cauchy-Schwarz,

(4.9) 0 ≤ β

2
∥wt+1 −wt∥2 + ∥∇L(wt)∥∥wt+1 −wt∥ + L(wt) − L(wt+1)

We can relax the above inequality dropping the L(wt+1) term and treat the above as a
quadratic in ∥wt+1 −wt∥ and conclude that the inequality only holds if the discriminant is
non-positive, ∥∇L(wt)∥ ≤

√
2βL(wt). Substituting this inequality into equation 4.8 we get,

(4.10) ∥wt+1 −w0∥ ≤ b
t

∑
i=0

√
2βL(wi)

Using the assumed convergence rate till the current iterate we get,

(4.11) ∥wt+1 −w0∥ ≤ b
√
2β
√
L(w0) ⋅

⎛
⎝

t

∑
i=0

i

∏
j=0

(1 − 1

2
⋅ h(wj)µ)1/2

⎞
⎠

Since a ≤ h(wt) < 1/µ, we have, 0 < 1 − 1
2 ⋅ h(wt)µ < 1 − 1

2 ⋅ aµ < 1. Thus we get,

(4.12) ∥wt+1 −w0∥ ≤ b
√
2β
√
L(w0) ⋅ (

t

∑
i=0

(1 − 1

2
⋅ aµ)i/2)

Upper bounding the above by the closed form expression for the infinite geometric series, we
get,

(4.13) ∥wt+1 −w0∥ ≤
b
√
2β
√
L(w0)

1 −
√

1 − 1
2 ⋅ aµ

≤ R

The last inequality follows by the definition of R and hence we have proven that wt+1 ∈
B(w0,R) - and hence up to time t+ 1 the algorithm is still exploring the region within which
the µ−PL* condition holds.

Thus induction follows and we have that ∀t, wt ∈ B(w0,R) and L(wt) ≤ L(w0)(1− 1
2 ⋅ aµ)

t.

Proof of δ−Regularized-GClip Having a Bounded Step Size.

Proof. (of Lemma 2.11) Utilising δ−Regularized-GClip’s definition for h, we get that if
∥∇L(wt)∥ ≥ γ/δ, then, h(wt) = min{η, ηδ} Otherwise, if ∥∇L(wt)∥ < γ/δ then, h(wt) =
min{η, ηγ

∥∇L(wt)∥
} The smallest possible h for the above would be if ∥∇L(wt)∥ was as large as it

could be, which would result in h(wt) =min{η, ηδ}. As δ < 1, we conclude 0 < ηδ ≤ h(wt) ≤ η.
13



Proof of δ−Regularized-GClip Convergence on Smooth PL∗ Functions.

Proof. (of Lemma 2.12) From Lemma 2.11, we know that δ−Regularized-GClip satisfies the
condition 0 < ηδ ≤ h(wt) ≤ η. Therefore, by setting η < min{ 1β ,

1
µ} and δ < 1, we can apply

Lemma 2.10 and obtain the convergence rate,

(4.14) L(wt) ≤ L(w0)(1 −
1

2
⋅ ηδµ)t,

as well as that the PL* condition must hold within a ball B(w0, R) where,

R ≥
η
√
2β
√
L(w0)

1 −
√

1 − 1
2 ⋅ ηδµ

.
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Appendix A. A Proof of Convergence for Stochastic δ−Regularized-GClip.

We start by proving a more general result as follows,

Theorem A.1. Given Assumptions 2.6, 2.7 and 2.8, and for an arbitrary choice of ϵ > 0,

consider 1 > δ >
(1+( ϵ

θ
)
2
)

(1+3( ϵ
θ
)
2
)

and 0 < η <
δ(1+3( ϵ

θ
)
2
)−(1+( ϵ

θ
)
2
)

2β(1+( ϵ
θ
)
2
)

, stochastic δ−Regularized-GClip

satisfies the following inequality over any T > 0 iterations,

min
t=1,...,T

E [∥∇L(wt)∥2] ≤ ϵ2 +
1

T
⋅ L(w1)
(η
2(3δ − 1) − βη2)

It’s clear from above that we can choose any ϵ > 0 howsoever small and T > 0 howsoever large
and have the minimum value over iterates of the expected gradient norm be similarly small.
To prove Theorem A.1 we need the following two lemmas.

Lemma A.2.

(A.1) E [h(gt)2⟨gt −∇L(wt),∇L(wt)⟩ ∣wt] ≤ η2θ∥∇L(wt)∥.

Proof. We begin by employing Cauchy-Schwarz and Assumption 2.6 to get,

E [h(gt)2⟨gt −∇L(wt),∇L(wt)⟩ ∣wt] ≤ E [h(gt)2∥gt −∇L(wt)∥ ∣wt] ∥∇L(wt)∥
≤ E [h(gt)2 ∣wt] ∥∇L(wt)∥θ
≤ η2∥∇L(wt)∥θ(A.2)

where in the last inequality we invoked the fact that h(gt) ≤ η.
Lemma A.3.

(A.3) E [(−h(gt))⟨gt −∇L(wt),∇L(wt)⟩ ∣wt] ≤ (η − ηδ) ⋅ θ ⋅ ∥∇L(wt)∥

Proof. Because of gt being an unbiased gradient estimate we have,

E[(−h(gt)) ⋅ ⟨gt −∇L(wt),∇L(wt)⟩∣wt] = E[(η − h(gt)) ⋅ ⟨gt −∇L(wt),∇L(wt)⟩∣wt](A.4)

Noting that 0 ≤ η − h(gt) ≤ η − ηδ, we get,

E[(−h(gt)) ⋅ ⟨gt −∇L(wt),∇L(wt)⟩∣wt] ≤ (η − ηδ) ⋅ θ ⋅ ∥∇L(wt)∥(A.5)
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A.1. Proof of Theorem A.1.

Proof. We parameterize the line from wt to wt+1 as κ(t) = twt + (1− t)wt+1 and applying the
Taylor’s expansion and then Cauchy-Schwartz formula for the loss evaluated at its end-point
we get,

E[L(wt+1) ∣wt]

≤ E [L(wt) − h(gt)⟨gt,∇L(wt)⟩ +
1

2
∫

1

0
(wt+1 −wt)⊺∇2L(κ(s))(wt+1 −wt)ds ∣wt]

≤ L(wt) −E[h(gt)⟨gt,∇L(wt)⟩ ∣wt]

+ E[∥wt+1 −wt∥2 ∣wt]
2

∫
1

0
∥∇2L(κ(s))∥ds

Invoking ∥wt+1 −wt∥ = h(gt)∥gt∥ and ∥∇2L(κ(s))∥ ≤ β we have,

(A.6) E[L(wt+1) ∣wt] ≤ L(wt) −E[h(gt)⟨gt,∇L(wt)⟩ ∣wt] +
β

2
E [h(gt)2∥gt∥2 ∣wt]

Substituting ∇L(wt) + gt −∇L(wt) for gt in the second and the third term above, we get,

E[L(wt+1) ∣wt] ≤ L(wt)
−E[h(gt)⟨gt −∇L(wt),∇L(wt)⟩ ∣wt] −E[h(gt) ∣wt]∥∇L(wt)∥2

+ β

2
E [h(gt)2 (∥∇L(wt)∥2 + ∥gt −∇L(wt)∥2 + 2⟨∇L(wt),gt −∇L(wt)⟩) ∣wt](A.7)

Recalling that ηδ ≤ h(gt) ≤ η and given that δ ∈ (0,1) we get,

E[L(wt+1) ∣wt] ≤ L(wt)
−E[h(gt)⟨gt −∇L(wt),∇L(wt)⟩ ∣wt] − ηδ∥∇L(wt)∥2

+ βη2

2
∥∇L(wt)∥2 +

βη2θ2

2

+ βE [h(gt)2⟨gt −∇L(wt),∇L(wt)⟩ ∣wt](A.8)

Now we invoke Lemma A.3 on the second term above and Lemma A.2 on the last term of the
RHS above and take total expectations to get,
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E[L(wt+1)] ≤ E[L(wt)] + {η(1 − δ)θ + βη2θ}E[∥∇L(wt)∥]

− (ηδ − βη2

2
)E [∥∇L(wt)∥2]

+ βη2θ2

2
(A.9)

Given a T ∈ Z+ and summing the above over all t = 1, . . . , T and recalling that w1 is an
arbitrary non-random initialization, we get,

(ηδ − βη2

2
)

T

∑
t=1

E [∥∇L(wt)∥2] ≤L(w1) −E[L(wT+1)]

+ {η(1 − δ)θ + βη2θ}
T

∑
t=1

E[∥∇L(wt)∥] +
βη2θ2

2
T(A.10)

Invoking the inequality, θ ⋅ ∥∇L(wt)∥ ≤ 1
2 ⋅ (θ

2 + ∥∇L(wt)∥2) and that L ≥ 0 we get,

(ηδ − βη2

2
)

T

∑
t=1

E [∥∇L(wt)∥2]

≤ L(w1) + {η(1 − δ) + βη2}
T

∑
t=1

E[1
2
⋅ ∥∇L(wt)∥2]

+ (βη
2 + η(1 − δ) + βη2

2
) θ2T

(A.11)

The above implies,

(ηδ − βη2

2
− η(1 − δ) + βη2

2
)

T

∑
t=1

E [∥∇L(wt)∥2] ≤ L(w1) + (
2βη2 + η(1 − δ)

2
) θ2T

Invoking the assumption that δ >
(1+( ϵ

θ
)
2
)

(1+3( ϵ
θ
)
2
)

> 1
3 and η <

δ(1+3( ϵ
θ
)
2
)−(1+( ϵ

θ
)
2
)

2β(1+( ϵ
θ
)
2
)

< 3δ−1
2β we get,

min
t=1,...,T

E [∥∇L(wt)∥2] ≤
1

T

T

∑
t=1

E [∥∇L(wt)∥2]

≤ L(w1)
T ⋅ (η2(3δ − 1) − βη2)

+
⎛
⎝

2βη2 + η(1 − δ)
2 ⋅ (η2(3δ − 1) − βη2)

⎞
⎠
θ2(A.12)
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Now for an arbitrary ϵ > 0. we can solve the inequation,

η(1 − δ) + 2βη2
η(3δ − 1) − 2βη2 < (

ϵ

θ
)
2

Ô⇒ η ∈
⎛
⎜
⎝
0,

δ (1 + 3 ( ϵθ)
2) − (1 + ( ϵθ)

2)

2β(1 + ( ϵθ)
2)

⎞
⎟
⎠

Note that the above upperbound on η is the range of η chosen in the statement. And thus we
get the desired theorem statement.

A.2. Proof of Theorem 2.9.

Proof. Substituting the given choices of η, δ and β we get,

1

η ⋅ (3δ−12 − βη)
= 16(1 + ϵ′2)2(1 + 3ϵ′2)

ϵ′2(3ϵ′4 + 9ϵ′2 + 4) =
4

ϵ′2
+ 11 + ϵ′2

4
+ 51ϵ′4

16
+O(ϵ′6)

Substituting the above into the guarantee of Theorem A.1 along with T = 1
ϵ′4 we get the result

claimed.

Appendix B. ResNet-18 on CIFAR-10 Without Weight Decay. For completeness, in Figure
B.1 we present a version of the experiments ran in Section 2.2, but without weight-decay for
any of the algorithms considered.

The performance of the gradient clipping based algorithms, as well as Adam, do not show
significant changes with the removal of weight decay, however, SGD performs significantly
worse. In summary, the discussion around the effectiveness of δ−Regularized-GClip still stands
as given in the main text.
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Figure B.1: δ−Regularized-GClip (δ−GCLip) matches the best heuristics for training a
ResNet-18 on CIFAR-10 with learning-rate scheduling, but no weight-decay
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