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Abstract. In the context of mixed-integer nonlinear problems (MINLPs),
it is well-known that strong duality does not hold in general if the standard
Lagrangian dual is used. Hence, we consider the augmented Lagrangian dual
(ALD), which adds a nonlinear penalty function to the classic Lagrangian
function. For this setup, we study conditions under which the ALD leads to a
zero duality gap for general MINLPs. In particular, under mild assumptions
and for a large class of penalty functions, we show that the ALD yields zero
duality gaps if the penalty parameter goes to infinity. If the penalty function
is a norm, we also show that the ALD leads to zero duality gaps for a finite
penalty parameter. Moreover, we show that such a finite penalty parameter
can be computed in polynomial time in the mixed-integer linear case. This
generalizes the recent results on linearly constrained mixed-integer problems by
Bhardwaj et al. (2024), Boland and Eberhard (2014), Feizollahi et al. (2016),
and Gu et al. (2020).

1. Introduction

We study the mixed-integer nonlinear problem (MINLP)

z∗ := inf
x
f(x) (1a)

s.t. Ax = b, (1b)
g(x) ≤ 0, (1c)
x ∈ Rn1 × Zn2 (1d)

for which A ∈ Rm×n and b ∈ Rm is a given matrix and vector, f : Rn → R as
well as g : Rn → R` are given functions with n := n1 + n2. Additionally, we let
X := {x ∈ Rn1 × Zn2 : g(x) ≤ 0} and consider dualizing the linear constraints
in (1b).

Under some regularity conditions, it is well known that convex problems have
a zero duality gap if the classic Lagrangian dual is considered; see e.g., Bertsekas
et al. (2003). Unfortunately, it is also known that this result does not generalize
to nonconvex problems like Problem (1). Also note that, even in the case in
which f and g are convex functions, the integrality requirements in (1d) lead to a
disconnected feasible region and, thus, Problem (1) is still a nonconvex problem.
Therefore, we focus on the augmented Lagrangian dual (ALD), which, as its name
suggests, augments the classic Lagrangian dual with a nonlinear penalization of
some constraint violation. To this end, we consider the augmented Lagrangian
relaxation (ALR) given by

zLR+
ρ (λ) := inf

x∈X
c>x+ λ>(Ax− b) + ρψ(Ax− b), (2)
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where ρ > 0 is a given penalty parameter and ψ is a penalty function satisfying
ψ(0) = 0 and ψ(z) > 0 if z 6= 0; see e.g., Rockafellar and Wets (1998). The ALD is
then defined as the best lower bound which can be obtained by (2), i.e., the ALD is

zLD+
ρ := sup

λ∈Rm
zLR+
ρ (λ). (3)

It is clear that the ALD reduces to the classic Lagrangian dual for ρ = 0. Moreover,
the inequalities

zLR+
ρ (λ̄) ≤ zLD+

ρ ≤ z∗ (4)
trivially hold for all λ̄ ∈ Rm.

We are primarily interested in conditions under which the ALD can close the
duality gap between the primal (1) and its dual (3). Throughout this paper, we
denote this duality gap by γρ := z∗ − zLD+

ρ and say that the dual is strong (or
that strong duality holds) if and only if γρ = 0 holds for some ρ ∈ R≥0 ∪ {∞}. As
detailed in the literature review below in Section 1.1, recent works on ALD for
mixed-integer problems seem to indicate that ALD is a good candidate for a strong
dual in this setting (Bhardwaj et al. 2024; Boland and Eberhard 2014; Feizollahi
et al. 2016; Gu et al. 2020). Additionally, an interesting question is whether a finite
penalty parameter exists so that γρ = 0 and, if so, under what conditions. We call
such a penalty parameter an exact penalty parameter.

Definition 1 (Exact Penalty Parameter). A penalty parameter ρ > 0 is called an
exact penalty parameter if and only if γρ = 0 and ρ <∞.

While this definition is not in line with classic exactness notions in nonlinear
continuous optimization (see, e.g., Bertsekas (2016)), it is in line with the papers
mentioned above that deal with the mixed-integer case.

1.1. Literature Review. There is a vast literature on ALD approaches for contin-
uous nonconvex problems. For example, in Rockafellar (1974), the authors consider
general nonconvex problems and show that the duality gap can be closed asymptoti-
cally, i.e., by driving the penalty parameter to infinity, using the ALD if the penalty
function is a quadratic function. The paper also discusses the existence of an exact
penalty parameter provided that some stability conditions hold on the problem’s
value function under small perturbations. It should be noted that a nonsmooth
penalty function is often required to obtain general exact penalty parameters; see,
e.g., Chapter 11.K in Rockafellar and Wets (1998). For instance, penalty functions
that are norms are used in Burke (1991). In Huang and Yang (2003), the convexity
assumption of the penalty function is replaced by a level-boundedness assumption.
In Burachik et al. (2017), the authors study the ALD in the context of semi-infinite
programming problems.

More recently, ALD approaches for mixed-integer problems gained interest in the
research community. In Boland and Eberhard (2014), mixed-integer linear problems
(MILPs) are considered and it is shown that a zero duality gap can be reached
asymptotically using the ALD with a certain class of convex penalty functions.
Additionally, the authors show that an exact penalty parameter exists in the pure
integer case. In Feizollahi et al. (2016), a more general class of penalty functions is
considered for MILPs. In particular, they show that the ALD can asymptotically
close the duality gap if the penalty function is a general level-bounded augmenting
function, which does not necessarily need to be convex. Moreover, they show under
mild assumptions that an exact penalty parameter exists if the penalty function
is a norm. Mixed-integer convex-quadratic problems (MIQPs) are studied in Gu
et al. (2020) and similar results are given. Moreover, the authors also discuss the
existence of a “small” exact penalty parameter with norm penalty functions. More
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precisely, they show that an exact penalty parameter exists whose bit-encoding
length is bounded above by a polynomial in the bit-encoding length of the MIQP
instance. Finally, in Bhardwaj et al. (2024), the authors consider linearly constrained
problems with a convex objective function and generalize previous results to this
setting. Another noteworthy contribution is the quantification of the finite penalty
parameter for the ALD with a norm penalty function.

1.2. Main Contributions. Our main contributions are as follows.
(i) We consider nonconvex MINLPs and show that the ALD asymptotically

closes the duality gap under mild assumptions.
(ii) For any finite penalty parameter, we derive bounds on the duality gap

between the primal problem (1) and its augmented Lagrangian relaxation (2).
(iii) If the penalty function is a norm, we show the existence of an exact penalty

parameter for general MINLPs under mild conditions.
(iv) Additionally, we also show that the sets of optimal solutions of (1) and (2)

are equal for a sufficiently large but finite penalty parameter if norm penalty
functions are used.

(v) Finally, in the MILP case, we further show that such an exact penalty
parameter with a bit-encoding length being polynomial in the size of the
input data of the problem can be computed in polynomial time (in the input
data of the problem, and for fixed dimension).

Let us highlight that contributions (i) and (iii) generalize previous results from
the recent literature, in particular, Boland and Eberhard (2014) (Proposition 3 and
Corollary 1), Feizollahi et al. (2016) (Theorem 2 and 4), Gu et al. (2020) (Theorem 10
and 11) and Bhardwaj et al. (2024) (Proposition 4.16 and Theorem 3.3). Our proof
techniques could be considered conceptually simpler than those employed in the
previous literature since they rely on standard results from convex analysis.

Contribution (ii) generalizes Proposition 4.2 of Gu et al. (2020) from the mixed-
integer convex setting with norm penalty functions to general MINLPs with norm-like
penalty functions, which include the sharp and the proximal augmented Lagrangian
dual; see Section 2. Moreover, Contribution (iv) generalizes Proposition 1 of Feizol-
lahi et al. (2016) from the MILP setting to the MINLP setting. Next, Contribution (v)
can be related to Theorem 11 of Gu et al. (2020), which shows the existence of a
(complexity-wise) small exact penalty parameter for convex MIQPs. Our result goes
beyond this result by showing that such a parameter can be computed in polynomial
time for MILPs. We also point out that the result can be easily extended to convex
MIQPs.

Finally, the contributions of the current paper and the recent literature on ALD
for mixed-integer problems is summarized in Table 1. The first column corresponds
to the class of problems considered in a given contribution.1 Then, “Asymptotic”
indicates a positive result on asymptotically closed duality gaps. The “Exactness”
column corresponds to an existence result on finite penalty parameters closing the
duality gap. The columns “Poly. size” and “Poly. time” indicate an existence result
of such a penalty parameter of (complexity-wise) small size, which can be computed
in polynomial time. Finally, the “Opt. set” column indicates an existence result for
exact penalty parameters such that the optimal sets of the primal problem and its
ALR (and hence its ALD) are the same.

The rest of the paper is organized as follows. In Section 2, we formalize and
discuss our main assumptions. In Section 3, we show that the ALD closes the duality

1ILP: Integer linear problem, MILP: Mixed-integer linear problem, MIQP: Convex mixed-
integer quadratic problems, MICP: Mixed-integer convex problem with linear constraints, MINLP:
Mixed-integer nonlinear problem.
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Table 1. State-of-the-Art of ALD for Mixed-Integer Problems

Asymptotic Exactness Poly. size Poly. time Opt. set

ILP (Boland and Eberhard 2014) X X ⇑ ⇑ ⇑
MILP (Feizollahi et al. 2016) X X ⇑ X X
MIQP (Gu et al. 2020) X X X X∗ ⇑
MICP (Bhardwaj et al. 2024) X X ⇑
MINLP (our paper) X X X
Checkmarks in white cells refer to contributions of the paper cited in the first column while those
in gray cells are contributions of the current paper. An upward arrow indicates a result that was

not shown in the corresponding paper but which is a consequence of a later contribution.
The asterisk ∗ indicates that the result is only shown for the MILP case but that it easily extends

to convex MIQPs.

gap if the penalty parameter goes to infinity. This result holds for general penalty
functions under some mild assumptions. In Section 4, we derive bounds on the
duality gap between the primal and its augmented Lagrangian dual. We also show
some convergence rate for the sharp and proximal Lagrangian penalty function in
the MILP case. In Section 5, we give sufficient conditions for the existence of finite
penalty parameters closing the duality gap under the assumption that the penalty
function is a norm.

2. Assumptions

We now state our main assumptions.

Assumption 1 (Compactness). The set X is nonempty and compact. Alternatively,
we may assume that there exists a set E := {q + Pζ : ‖ζ‖E ≤ 1}, for some
norm ‖·‖E, such that at least one solution x∗ to Problem (1) satisfies x∗ ∈ E and
that the function g is closed on X ∩ E.

Assumption 2 (Convex Objective Function). The objective function f : Rn → R
is a convex and differentiable function.

Assumption 3 (Penalty Function). The penalty function ψ : Rm → R≥0 ∪ {∞} is
(i) closed, i.e., epi(ψ) is a closed set;
(ii) continuous on dom(ψ), i.e., limu→u∗ ψ(u) = ψ(u∗);
(iii) positive definite, i.e., ψ(u) > 0 for all u 6= 0 and ψ(0) = 0.

Moreover, ψ is assumed to have a nonempty effective domain, i.e., dom(ψ) 6= ∅.

Assumption 1 is mild in our setting. Note that compactness of X implies the
existence of a set E satisfying X ⊆ E . We briefly show that the second part of
the assumption is weaker than compactness of X. For example, consider a convex
MIQP with unbounded feasible region and rational data. Then, by Lemma 4
in Del Pia et al. (2016), any solution x∗ (if it exists) satisfies ‖x∗‖2 ≤M for some
M > 0 of reasonable size, i.e., whose bit-encoding length is bounded from above
by a polynomial of the bit-encoding length of the input data. Moreover, all the
constraints of an MIQP (other than integrality requirements) are linear and, hence,
closed. Thus, convex MIQPs with an unbounded feasible region satisfy Assumption 1
despite X not being compact.

We highlight that Assumption 2 is made without loss of generality since, if the
objective function would not be differentiable or if it would be nonconvex, one
could resort to an epigraph reformulation to move the objective function f into the
constraints g by using one additional variable, i.e., one could consider

min{t : t ≥ f(x), Ax = b, x ∈ X} = min{f(x) : Ax = b, x ∈ X} = z∗.



EXACT AUGMENTED LAGRANGIAN DUALITY FOR NONCONVEX MINLP 5

Note that since f is differentiable, hence continuous, and X is nonempty and
compact, by the theorem of Weierstraß, maxx∈X f(x) and minx∈X f(x) exist. Thus,
t is bounded.

Finally, Assumption 3 defines the class of penalty functions under consideration
and is similar to those in Bhardwaj et al. (2024), Feizollahi et al. (2016), and Gu
et al. (2020). We now give two well-known examples of penalty functions satisfying
Assumption 3; see, e.g., Rockafellar and Wets (1998).

Definition 2 (Sharp Lagrangian). Let ψ = ‖·‖ with ‖·‖ being any norm. Then, the
ALR (2) is called a sharp Lagrangian.

Definition 3 (Proximal Lagrangian). Let ψ = 1
2‖·‖

2
2. Then, the ALR (2) is called

a proximal Lagrangian.

We close this section with some notation that is used throughout the rest of this
paper.

Notations. For a given set W , let int(W ) denote the interior of W , ri(W ) denote
its relative interior and conv(W ) denote its convex hull, i.e., the smallest convex
set such that W ⊆ conv(W ). When clear from the context, we let projx(W ) denote
the projection of W onto the variables x. For a given function ζ : Rn → R, we
denote by vexW (ζ) its convex envelope, i.e., the function such that epiW (vexW (ζ)) =
conv(epiW (ζ)) where epi(·) denotes the epigraph overW . The domain of ζ is defined
as dom(ζ) := {z ∈ Rn : ζ(z) <∞}. For a given norm ‖·‖, its dual norm is denoted
by ‖·‖∗.

Throughout this paper, we use the notation x = (x1, x2) where x1 is the vector
made of the n1 first components of x. We naturally extend this notation to matrices
and vectors that multiply x, e.g., Ax = A1x1 + A2x2. Moreover, we may write
f(x) = f(x1, x2) instead of f((x1, x2)). We define the sets X1 := projx1

(X) and
X2 := projx2

(X).

3. Asymptotic Zero Duality Gap

In this section, we show that the duality gap γρ goes to zero as the penalty
parameter ρ goes to infinity. This result holds for quite general penalty functions ψ
satisfying Assumption 3. In particular, we highlight that ψ does not need to be
nonsmooth or convex for this result to hold. We start with a lemma.

Lemma 1. Let δ ∈ (0,∞] and let X̃δ := {(x,w) ∈ X × [0, δ] : ψ(Ax − b) ≤ w}.
Then,

conv(X̃δ ∩ (Rn × R≤0)) = conv(X̃δ) ∩ (Rn × R≤0). (5)

Proof. The inclusion from left to right is trivial. To show the other direc-
tion, let (x,w) ∈ conv(X̃δ) be such that w ≤ 0 and assume that (x,w) /∈
conv(X̃δ∩(Rn×R≤0)). Note that w ≤ 0 and ψ(Ax−b) ≤ w implies that w = 0. Now,
by Carathéodory’s theorem, since (x,w) ∈ conv(X̃δ), there exists α1, . . . , αn+2 ≥ 0

and (x̄1, w̄1), . . . , (x̄n+1, w̄n+2) ∈ X̃ such that
∑n+2
k=1 αk = 1 and (x,w) =∑n+2

k=1 αk(x̄k, w̄k). Note that there must exist a k̄ ∈ {1, . . . , n+ 2} such that αk̄ > 0

and w̄k̄ > 0 since, otherwise, this would show that (x,w) ∈ conv(X̃δ ∩ (Rn × R≤0)).
This, however, is impossible since we then have

0 = w =

n+2∑
k=1

αkw̄
k =

∑
k:w̄k=0

αkw̄
k

︸ ︷︷ ︸
=0

+
∑

k:w̄k>0

αkw̄
k

︸ ︷︷ ︸
>0

> 0. �

We illustrate this lemma with a small example.
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(a) conv(X∩{x : Ax = b})
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(b) conv(X̃δ), ψ = ‖·‖1
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(c) conv(X̃δ), ψ = 1
2
‖·‖22

Figure 1. Illustration of Lemma 1 and Example 1

Example 1. Let a mixed-integer linear feasible region be defined as

F := {x ∈ {0, 1}2 : e>x = 1}.

We consider dualizing the constraint “e>x = 1”. Hence, we set X = {0, 1}2, A = e>

and b = 1. Clearly, (0, 1) and (1, 0) are the only feasible points. The convex hull
of F is given by conv(F ) = {x ∈ [0, 1]2 : e>x = 1} and is depicted in Figure 1a. In
Figure 1b and Figure 1c, the set X̃δ is depicted for the sharp Lagrangian (ψ = ‖·‖1)
and the proximal Lagrangian (ψ = 1

2‖·‖
2
2). It is easily seen that fixing w = 0 reduces

conv(X̃δ) to conv(F ) (in a higher dimensional space), i.e., (5) holds.

In the next theorem, we exploit Lemma 1 to show that the best lower bound,
which can be obtained by the augmented Lagrangian relaxation zLR+, evaluates
to z∗, independent of the choice of λ.

Theorem 2. For all λ̄ ∈ Rm it holds

z∗ = sup
ρ∈R≥0

zLR+
ρ (λ̄).

Proof. Let us define δ as the maximum penalization for violating the constraints
“Ax = b” by a point x ∈ X, i.e., let δ := max{ψ(Ax−b) : x ∈ X∩dom(ψ(A(·)−b))}.
Note that, by Assumption 3, ψ is continuous and that dom(ψ(A(·)− b)) is closed.
Moreover, by Assumption 1, X is compact. Thus, δ is finite. Hence,

zLR+
ρ (λ̄) = min

x∈X
f(x) + λ̄>(Ax− b) + ρψ(Ax− b)

= min
(x,w)∈X̃δ

f(x) + λ̄>(Ax− b) + ρw.

We also have that ψ is closed. Thus, X̃δ is compact. Therefore, by Proposition 2.4
in Tardella (2004), it holds

zLR+
ρ (λ̄) = min

(x,w)∈conv(X̃δ)
vexX(f)(x) + λ̄>(Ax− b) + ρw.

Note that we used projx(X̃δ) = X to argue that vexX̃δ((x,w) 7→ f(x))(x,w) =

vexX(f)(x). Now, by Theorem 1 in Perchet and Vigeral (2015), the following
equalities hold:

sup
ρ∈R≥0

zLR+
ρ (λ̄) = sup

ρ∈R≥0

min
(x,w)∈conv(X̃δ)

vexX(f)(x) + λ̄>(Ax− b) + ρw

= min
(x,w)∈conv(X̃δ)

sup
ρ∈R≥0

vexX(f)(x) + λ̄>(Ax− b) + ρw.

By Assumption 1 and Inequality (4), it must be that w ≤ 0 holds in any optimal
point of the last minimization problem. Thus, it also equals

min
(x,0)∈conv(X̃δ)

vexX(f)(x) + λ̄>(Ax− b),
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which, by Lemma 1, is also equal to

min
(x,0)∈conv(X̃δ∩(Rn×R≤0))

vexX(f)(x) + λ̄>(Ax− b).

Now, applying Proposition 2.4 from Tardella (2004) again, we obtain

min
(x,0)∈X̃δ

f(x) + λ̄>(Ax− b).

The proof is achieved by noticing that (x, 0) ∈ X̃δ implies ψ(Ax− b) = 0, which, in
turn, implies Ax = b and, thus, λ̄>(Ax− b) = 0. �

A direct consequence of Theorem 2 is the following limit result, which states that
the augmented Lagrangian relaxation converges to z∗ as ρ approaches infinity.

Theorem 3. For all λ̄ ∈ Rm it holds

z∗ = lim
ρ→∞

zLR+
ρ (λ̄).

Proof. Let λ̄ ∈ Rm be fixed and define πλ̄ : ρ 7→ zLR+
ρ (λ̄). Then, πλ̄ is a continuous

function because it can be expressed as a minimum of affine functions. Moreover, it
is non-decreasing since, for all ρ1 and ρ2 with ρ1 ≤ ρ2, it holds

f(x) + λ̄>(Ax− b) + ρ1ψ(Ax− b) ≤ f(x) + λ̄>(Ax− b) + ρ2ψ(Ax− b) (7)

for all x ∈ X (since ψ ≥ 0), implying that zLR+
ρ1 (λ̄) ≤ zLR+

ρ2 (λ̄), i.e., πλ̄(ρ1) ≤ πλ̄(ρ2).
By Inequality (4), πλ̄ is bounded by z∗. Thus, the limit exists and coincides with
the supremum. By Theorem 2, the supremum is exactly z∗. �

From this last theorem, one easily concludes that the duality gap between the
primal problem (1) and the augmented Lagrangian dual converges to zero as the
penalty parameter ρ goes to infinity. This is established in the next corollary, which
directly follows from Theorem 3 and Inequality (4).

Corollary 1. Let γρ := z∗ − zLD+
ρ . It holds

lim
ρ→∞

γρ = 0.

4. Gap Guarantees for Finite Penalty Parameters

In the previous section, we show that an infinite penalty parameter can close the
duality gap between the augmented Lagrangian dual and the primal problem (1).
In this section, we study the case in which the penalty parameter ρ is chosen to
be finite and derive guarantees on the quality of the lower bound provided by the
augmented Lagrangian dual. This is particularly interesting since Feizollahi et al.
(2016) show, even in the MILP setting, that the proximal Lagrangian dual cannot
guarantee to close the duality gap with a finite parameter. However, they do not
provide bounds for the gap for finite penalty parameters.

4.1. A Perturbed Value Function. We start by introducing the perturbed value
function p : Rm × R≥0 → R defined by

p(λ, u) := min
x,w

vexX(f)(x) + λ>(Ax− b) (8a)

s.t. w ≤ u, (8b)

(x,w) ∈ conv(X̃δ), (8c)

where vexX(f) denotes the convex envelope of f on X. We make the following
remark.

Remark 1. For all λ ∈ Rm, it holds z∗ = p(λ, 0).
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Proof. This directly follows from Lemma 1, since

p(λ, 0) = min
x,w

vexX(f)(x) + λ>(Ax− b)

s.t. (x,w) ∈ conv(X̃δ ∩ (Rn × R≤0)).

By Tardella (2004), we have

p(λ, 0) = min
x,w

f(x) + λ>(Ax− b)

s.t. (x,w) ∈ X̃δ ∩ (Rn × R≤0),

from which we derive ψ(Ax−b) ≤ 0, which implies Ax = b and λ>(Ax− b) = 0. �

We now state a theorem that puts into relation the perturbed value function
p(λ, u) and the augmented Lagrangian relaxation zLR+

ρ (λ).

Theorem 4. Suppose that there exists a point x̃ ∈ ri(conv(X)) such that Ax̃ = b
holds and let ρ∗(u) denote an optimal Lagrange multiplier of Constraint (8b). Then,
for all fixed λ̄ ∈ Rm, for all u > 0, and for all ρ ≥ ρ∗(u), it holds

p(λ̄, u) ≤ zLR+
ρ (λ̄) ≤ z∗. (11)

Proof. Let λ ∈ Rm and u > 0 be fixed. We first show that the optimization
problem in (8) is strictly feasible, i.e., there exists (x̂, ŵ) ∈ ri(conv(X̃δ)) such that
w ≤ u. By assumption, there exists x̃ ∈ ri(conv(X)) such that Ax̃ = b holds,
which implies that (x̃, 0) ∈ conv(X̃δ). Note that projw(X̃δ) ⊆ R≥0. Thus, it
cannot be that (x̃, 0) ∈ ri(conv(X̃δ)). Yet, we show that there exists (x̄, w̄) ∈
ri(conv(X̃δ)). From this, it will be easy to show that there exists an α ∈ (0, 1)

such that (x̂, ŵ) := α(x̃, 0) + (1 − α)(x̄, w̄) with ŵ ≤ u and (x̂, ŵ) ∈ ri(conv(X̃δ)).
To show the existence of (x̄, w̄) it suffices to take x̄ = x̃. Indeed, since x̃ ∈
ri(conv(X)) and projx(conv(X̃δ)) = conv(X), we have x̃ ∈ ri(projx(conv(X̃δ))) =

projx(ri(conv(X̃δ))), where the last equality holds by Theorem 6.6 in Rockafellar
(1970). By definition of x̃ ∈ projx(ri(conv(X̃δ))), there exists w̄ such that (x̄, w̄) ∈
ri(conv(X̃δ)).

From this, we conclude that strong duality holds for Problem (8); i.e., there exists
a ρ∗ with

p(λ, u) = max
ρ≥0

min
(x,w)∈conv(X̃δ)

vexX(f)(x) + λ>(Ax− b) + ρ(w − u)

= min
(x,w)∈conv(X̃δ)

vexX(f)(x) + λ>(Ax− b) + ρ∗(w − u).

Yet, since u > 0 and ρ ≥ 0, it holds

p(λ, u) ≤ min
(x,w)∈conv(X̃δ)

vexX(f)(x) + λ>(Ax− b) + ρ∗w

= min
x∈X

f(x) + λ>(Ax− b) + ρ∗ψ(Ax− b)

= zLR+
ρ∗ (λ).

The proof is completed by the simple observation that zLR+
ρ∗ (λ) ≤ zLR+

ρ (λ) holds
for all ρ ≥ ρ∗. �

In the following remark, we highlight that Theorem 4 can also be used to prove
Theorem 3 by using the lower-semicontinuity of p(λ̄, ·) for any fixed λ̄ ∈ Rm.

Remark 2. Let λ̄ ∈ Rm be fixed. Then, u 7→ p(λ̄, u) is a lower semi-continuous
function; see Theorem 5.1 in Still (2018). Thus, by definition, it holds

lim inf
u→0

p(λ̄, u) ≥ p(λ̄, 0),
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which, together with Inequality (11) shows that

p(λ, 0) ≤ lim inf
u→0

p(λ̄, u) ≤ lim
ρ→∞

zLR+
ρ (λ̄) ≤ p(λ, 0)

holds and p(λ, 0) = z∗. Here, we used the fact that πλ̄ : ρ 7→ zLR+
ρ (λ̄) is continuous

so that lim infρ→∞ zLR+
ρ (λ̄) = limρ→∞ zLR+

ρ (λ̄).

A clear drawback of Theorem 4 is that the relation between the perturbed
problem (8) and the original problem (1) is not straightforward. We therefore aim
for a more informative theorem. In the next theorem, we first show that the penalty
parameter can be used to control the penalization of an optimal point of (2). To be
numerically applied, this theorem requires that the set E such that x∗ ∈ X ∩ E for
at least one solution x∗ to Problem (1) is known; see Assumption 1. Before stating
the theorem, we give an example in which E can be computed easily.

Example 5. Consider the case in which X is explicitly bounded, i.e., X ⊆ [x, x̄].
Then, setting q = (x̄+ x)/2, P = I(x̄− x)/2, and ‖·‖E = ‖·‖∞ leads to

X ⊆ [x, x̄] = {q + Pζ : ‖ζ‖∞ ≤ 1} =: E .

Theorem 6. Let λ̄ ∈ Rm be fixed and let x∗ρ denote a solution to the augmented
Lagrangian relaxation (2) for a fixed penalty parameter ρ > 0 as well as λ = λ̄ and
and let x∗ denote a solution to the primal problem (1). Let ε > 0 be given. Then,
the inequality

ψ(Ax∗ρ − b) ≤ ε
holds for all ρ ≥ κ1(E , A, b,∇f(x∗), λ̄)/ε with

κ1(E , A, b,∇f(x∗), λ̄) := ‖P>∇f(x∗)‖E∗ + ‖P>(∇f(x∗) +A>λ̄)‖E∗ + λ̄>(b−Aq),
where ‖·‖E∗ is the dual norm of ‖·‖E.

Proof. Let λ̄ ∈ Rm be arbitrary but fixed. For all ρ ≥ 0, zLR+
ρ (λ̄) ≤ z∗ holds;

see (4). Equivalently,

f(x∗ρ) + λ̄>(Ax∗ρ − b) + ρψ(Ax∗ρ − b) ≤ f(x∗) (14a)

⇐⇒ ρψ(Ax∗ρ − b) ≤ f(x∗)− f(x∗ρ) + λ̄>(b−Ax∗ρ) (14b)

=⇒ ρψ(Ax∗ρ − b) ≤ ∇f(x∗)>(x∗ − x∗ρ) + λ̄>(b−Ax∗ρ). (14c)

The last inequality holds by convexity and differentiability of f ; see Assumption 2.
By Assumption 1, we then have

ρψ(Ax∗ρ − b) ≤ ∇f(x∗)>x∗ − (∇f(x∗) +A>λ̄)>x∗ρ + λ̄>b

=⇒ ρψ(Ax∗ρ − b) ≤ max
x∈E
∇f(x∗)>x+ max

x∈E
−(∇f(x∗) +A>λ̄)>x.

Now, by definition of dual norms, for all π ∈ Rn, it holds
max
x∈E

π>x = max
‖ζ‖E≤1

π>(q + Pζ) = q>π + ‖P>π‖E∗.

Thus, with π = ∇f(x∗) and π = −(∇f(x∗) +A>λ̄), we conclude

max
x∈E
∇f(x∗)>x = ∇f(x∗)>q + ‖P>∇f(x∗)‖E∗,

max
x∈E
−(∇f(x∗) +A>λ̄)>x = −(∇f(x∗) +A>λ̄)>q + ‖P>(∇f(x∗) +A>λ̄)>‖E∗.

Combining these results with (14c), we obtain

ρψ(Ax∗ρ − b) ≤ ‖P>∇f(x∗)‖E∗ + ‖P>(∇f(x∗) +A>λ̄)‖E∗ + λ̄>(b−A>q)︸ ︷︷ ︸
=:κ1(E,A,b,∇f(x∗),λ̄)

.
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The proof is achieved by the implications

ρ ≥ 1

ε
κ1(E , A, b,∇f(x∗), λ̄)

=⇒ ρψ(Ax∗ρ − b) ≥
1

ε
κ1(E , A, b,∇f(x∗), λ̄)ψ(Ax∗ρ − b)

=⇒ κ1(E , A, b,∇f(x∗), λ̄) ≥ 1

ε
κ1(E , A, b,∇f(x∗), λ̄)ψ(Ax∗ρ − b)

=⇒ ψ(Ax∗ρ − b) ≤ ε. �

Remark 3. Since f is a convex function, it is Lipschitz continuous over any compact
set. Hence, it holds ‖∇f(x∗)‖E∗ ≤ L with L > 0 being the Lipschitz constant of
f over X w.r.t. ‖·‖E∗. Hence, it is not necessary to know x∗ for Theorem 6 to be
applied.

In the next section, we show how Theorem 6 can be further exploited to relate
solutions to the augmented Lagrangian relaxation (2) to those of a more “natural”
perturbed problem compared to (8).

4.2. Norm-Like Penalty Functions. Theorem 6 is particularly interesting for
cases in which ψ has some relation to a given norm. In such a case, it is possible
to relate solutions to the augmented Lagrangian relaxation (2) to those of the
perturbed problem

z̃∗ε,‖·‖ := min
x

f(x) (15a)

s.t. ‖Ax− b‖ ≤ ε, (15b)
x ∈ X. (15c)

Arguably, the relation between the perturbed problem (15) and the original prob-
lem (1) is much more natural compared to the relation between (8) and (1).

In the next definition, we formalize the concept of norm-like penalty functions.
Note that such functions have already been used by Boland et al. (2012) in the study
of the feasibility pump heuristic (Fischetti et al. 2005) for mixed-integer problems
under the name of “integer compatible regularization function”. More recently, they
are also used by Fabiani et al. (2022) in the context of mixed-integer Nash equilibria.

Definition 4 (Norm-Like Penalty Functions). Let ‖·‖ϕ be a given norm. A
penalty function ψ is called ‖·‖ϕ-norm-like if and only if there exists a bijection
ϕ : R≥0 → R≥0 such that for all ε ≥ 0 and any x ∈ Rn, it holds

ψ(x) ≤ ε =⇒ ‖x‖ϕ ≤ ϕ(ε).

Obviously, any norm is a norm-like penalty function. We now show another
example of a norm-like penalty function, namely, proximal functions. This example
is particularly relevant since Feizollahi et al. (2016) shows that, even in the mixed-
integer linear setting, such a penalty function cannot guarantee to close the duality
gap.

Example 7 (Proximal Penalty Function). Assume ψ(·) = 1
2‖·‖

2
2. Clearly, we have

that 1
2‖x‖

2
2 ≤ ε implies ‖x‖2 ≤

√
2ε for all ε ≥ 0. Thus, the proximal Lagrangian

penalty function is a norm-like penalty function.

A direct consequence of Theorem 6 is that the penalty parameter ρ can be used
to control the violation of the dualized constraints “Ax = b” by optimal points of
the augmented Lagrangian relaxation (2), provided that ψ is norm-like. Hence, we
get the two following corollaries.
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Corollary 2. Assume that ψ is ‖·‖ϕ-norm-like. Let λ̄ ∈ Rm be fixed and let x∗ρ
denote an optimal point of (2) for a fixed penalty parameter ρ > 0 and λ = λ̄. Let
ε > 0. Then, the inequality

z̃ε,‖·‖ϕ ≤ z
LR+
ρ (λ̄) ≤ z∗

holds for all ρ ≥ κ1(E , A, b,∇f(x∗), λ̄)/ϕ−1(ε).

Proof. According to Theorem 6, ρ is such that ψ(Ax∗ρ − b) ≤ ϕ−1(ε) holds. Since
ψ is ‖·‖ϕ-norm-like, it holds ‖Ax∗ρ − b‖ϕ ≤ ϕ(ϕ−1(ε)) = ε. Thus, x∗ρ is feasible
for (15). �

Corollary 3. Assume that ψ is ‖·‖ϕ-norm-like. Let λ̄ ∈ Rm be fixed and let x∗ρ
denote an optimal point of (2) for a fixed penalty parameter ρ > 0 and λ = λ̄. Let
ε > 0. Then, the inequality

z̃ε,‖·‖∞ ≤ z
LR+
ρ (λ̄) ≤ z∗

holds for all ρ ≥ κ1(E , A, b,∇f(x∗), λ̄)/ϕ−1(Cϕε) with Cϕ being a constant such
that Cϕ‖·‖∞ ≤ ‖·‖ϕ holds.

Proof. According to Corollary 2, ρ is such that z̃Cϕε,‖·‖ϕ ≤ zLR+
ρ (λ̄) holds. Moreover,

{x ∈ X : ‖Ax− b‖ϕ ≤ Cϕε} ⊆ {x ∈ X : ‖Ax− b‖∞ ≤ ε},
which shows z̃Cϕε,‖·‖ϕ ≥ z̃ε,‖·‖∞ . �

Although Corollary 2 and 3 are very simple, they are key to proving the next
theorem. Assuming ψ is ‖·‖ϕ-norm-like and that (1) is a linear problem if x2 is
temporarily held fixed and appears in the right-hand side, we show that ϕ can be
used to bound the distance between zLR+

ρ (λ) and z∗.

Theorem 8. Assume that ψ is ‖·‖ϕ-norm-like. Let c ∈ Zn and T ∈ Z`×n be a given
vector, resp., matrix and let g̃2 : Rn2 → R`. Suppose f(x) = c>x = c>1 x1 + c>2 x2

and g(x1, x2) = T1x1 + g̃2(x2). Then, for all ρ > 0, the inequality

z∗ − 1

Cϕ
κ2(E , CE , A, b, T1, θ)ϕ(κ1(E , A, b, c, λ̄)/ρ) ≤ zLR+

ρ (λ̄) ≤ z∗

holds for some constant κ2(E , CE , A, b, T1, θ) with CE such that ‖x‖∞ ≤ CE‖x‖E
holds for all x ∈ Rm and θ := max{‖g̃2(x2)‖∞ : x2 ∈ X2}.

Proof. Let ρ > 0 be fixed. Note that ∇f(x∗) = c. According to Corollary 3,
ρ guarantees that z̃∗ε̃,‖·‖∞ ≤ z

LR+
ρ (λ̄) with ε̃ := ϕ(κ1(E , A, b, c, λ̄)/ρ)/Cϕ. To ease

readability, we temporarily drop the subscript ‖·‖∞. We now adapt a proof by Beck
et al. (2023) to show that there exists κ′ such that z̃∗ε̃ ≥ z∗ − ε̃κ′. To this end, let
us use the notation z̃ε(x2) for

z̃ε(x2) := c>2 x2 + min
x1

c>1 x1 (16a)

s.t. ‖A1x1 +A2x2 − b‖∞ ≤ ε, (16b)
T1x1 ≤ −g̃(x2) (16c)

for some x2 ∈ X2. Note that z̃∗ε = minx2∈X2
z̃ε(x2) and z̃0 = z∗. Thus, it suffices to

show that there exists κ′ such that z̃ε̃(x2) ≥ z̃0(x2)− ε̃κ′ for all x2 ∈ X2, because
then, this implies

z̃ε̃(x2) ≥ z̃0(x2)− ε̃κ′ ∀x2 ∈ X2

=⇒ min
x2∈X2

z̃ε̃(x2) ≥ min
x2∈X2

{z̃0(x2)} − ε̃κ′

⇐⇒ z̃ε̃ ≥ z∗ − ε̃κ′.
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Now, (16) can be formulated as the linear program

c>2 x2 + min
x1

c>1 x1

s.t. A1x1 ≤ εe+ b−A2x2,

−A1x1 ≤ εe− b+A2x2,

T1x1 ≤ −g̃(x2).

Following the argument in the proof of Lemma 1 in Beck et al. (2023), we consider
a solution (α∗, β∗, γ∗) to the LP dual of (16) with ε = 0, i.e., let (α∗, β∗, γ∗) be a
solution to

max
α,β,γ

(α− β)>(b−A2x2)− γ>g̃2(x2)

s.t. A>1 (α− β) + T>1 γ = c1,

α, β, γ ≤ 0.

Moreover, let xε̃ denote a solution to (16) with ε = ε̃. Then, for all fixed x2 ∈ V ,
the following holds:

z̃ε̃(x2) = c>1 x
ε̃
1 + c>2 x2

= (A>1 (α∗ − β∗) + T>1 γ
∗)>xε̃1 + c>2 x2

= (α∗ − β∗)>(A1x
ε̃
1) + γ∗>(T1x

ε̃
1) + c>2 x2

≥ (α∗ − β∗)>(b−A2x2 + ε̃e)− γ∗>g̃2(x2) + c>2 x2

= z̃0(x2) + ε̃(‖β∗‖1 − ‖α∗‖1)

≥ z̃0(x2)− ε̃‖α∗‖1.
Thus, we achieve the proof by bounding ‖α∗‖1. Note that (α∗, β∗, γ∗) is a solution
to a linear problem, which, w.l.o.g, is an extreme point of its feasible region. By
Lemma 4 in Buchheim (2023), it holds

‖α∗‖1 ≤ (2m+ `)! max{‖b−A2x2‖∞, ‖g̃2(x2)‖∞}max{‖A1‖∞, ‖T1‖∞}2m+`−1.

Then, it remains to argue that ‖b − A2x2‖∞ ≤ ‖b‖∞ + ‖A1‖∞‖x2‖∞ and, since
X2 ⊆ projx2

(E), that

‖x2‖∞ ≤ CE‖x2‖E ≤ CE

(
max

x′2∈projx2 (E)
‖x′2‖E

)
≤ CE (‖q‖E + ‖P‖E)

holds, where we again use that ‖q + Px2‖E ≤ ‖q‖E + ‖P‖E‖x2‖E and ‖x2‖E ≤ 1
hold for all x2 ∈ projx2

(E). Additionally, for all x2 ∈ X2,

‖g̃2(x2)‖∞ ≤ max
x2∈X2

‖g̃(x2)‖∞ =: θ.

This shows that ‖α∗‖1 ≤ κ2(E , CE , A, b, T, θ). �

Remark 4. In Theorem 8, let us further assume that g̃2(x2) = T2x2 + r. Then,
κ2(E , CE , A, b, T1, θ) can be replaced by κ′2(E , CE , A, b, T, r) with T = (T1, T2).

Proof. It holds

θ = max
x2∈X2

‖T2x2 + r‖∞ ≤ ‖r‖∞ + ‖T2‖∞

(
max

x∈projx2 (E)
‖x‖∞

)
. �

Applying Theorem 8 to norms and to the proximal penalty function leads to
the following examples, which are generalizations of Theorem 2 in Feizollahi et al.
(2016) for the MILP setting.
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Example 9 (Approximation Guarantees). Assume that f(x) = c>x and g(x) =
Tx + r for some rational vectors and matrices c, T , and r. Let λ̄ ∈ Rm be fixed.
Then, for all ρ > 0, the following holds.

• If ψ = ‖·‖, then

z∗ − o
(

1

ρ

)
≤ zLR+

ρ (λ̄) ≤ z∗.

• If ψ = 1
2‖·‖

2
2, then

z∗ − o
(

1
√
ρ

)
≤ zLR+

ρ (λ̄) ≤ z∗.

Note that the square root is due to the square root appearing in Example 7.

5. Exact Penalty Parameter

In this section, we study conditions for the existence of an exact penalty parameter.
Before doing so, we show that, if a finite penalty parameter exists such that the value
of the primal problem (1) and the one of its augmented Lagrangian relaxation (2)
are equal, then one also exists so that they share the same set of (global) optimal
points. Hence, all our existence theorems for an exact penalty parameter extend to
existence of such parameters so that Problem (1) and (2) are fully equivalent.

Theorem 10. Let S∗ denote the set of optimal points of the primal problem (1) and
let S∗ρ(λ) denote the set of optimal points of the augmented Lagrangian relaxation (2).
Let λ ∈ Rm be arbitrary but fixed and assume that there exists a finite exact penalty
parameter ρ, i.e., assume that there exists ρ <∞ such that z∗ = zLR+

ρ (λ), then, for
any ρ′ > ρ, it holds

S∗ = S∗ρ′(λ).

This, in particular, implies
z∗ = zLR+

ρ′ (λ).

Proof. Let ρ be an exact penalty parameter and let ρ′ > ρ. We first show S∗ρ′(λ) ⊆ S∗.
To this end, consider a point x+ ∈ S∗ρ′(λ). Note that it is sufficient to show that x+

satisfies Ax+ = b since, then, it follows that

zLR+
ρ (λ̄) = f(x+) + λ̄>(Ax+ − b) + ρ′ψ(Ax+ − b)︸ ︷︷ ︸

=0

= f(x+),

which implies

f(x+) ≤ f(x) + λ̄>(Ax− b) + ρ′ψ(Ax− b) for all x ∈ X
=⇒ f(x+) ≤ f(x) for all x ∈ X with Ax = b

⇐⇒ x+ is a solution to (1).

Hence, for the sake of contradiction, suppose that Ax+ 6= b, i.e., ψ(Ax+ − b) > 0. It
then holds

z∗ = zLR+
ρ (λ) ≤ f(x+) + λ>(Ax+ − b) + ρψ(Ax+ − b)

< f(x+) + λ>(Ax+ − b) + ρ′ψ(Ax+ − b)

= zLR+
ρ′ (λ).

The first inequality holds by x+ ∈ X (since x+ ∈ S∗ρ′(λ)) which shows that x+

a feasible point of Problem (2) with penalty parameter ρ. The strict inequality
follows from ψ(Ax+ − b) > 0 and ρ < ρ′. Hence, we reach the contradiction that
z∗ < zLR+

ρ′ (λ) despite zLR+
ρ′ (λ) being a lower bound on z∗; see Inequality (4). Hence,

it must be that Ax+ = b.
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We end the proof by showing S∗ ⊆ S∗ρ′(λ̄). To this end, let x∗ ∈ S∗ and assume,
for the sake of contradiction, that x∗ /∈ S∗ρ′(λ̄). Then, for all x+ ∈ S∗ρ′(λ̄),

f(x+) + λ̄>(Ax+ − b) + ρ′ψ(Ax+ − b) < f(x∗) + λ̄>(Ax∗ − b) + ρ′ψ(Ax∗ − b).
Yet, as shown above, both x+ and x∗ are feasible for (1). Thus, we conclude that
f(x+) < f(x∗), which contradicts x∗ ∈ S∗. Hence, S∗ ⊆ S∗ρ′(λ̄). �

5.1. General Penalty Functions. In the next theorem, we give a sufficient
condition for the existence of a finite exact penalty parameter. This result holds
for the general class of penalty functions satisfying Assumption 3 and generalizes
Theorem 3 of Feizollahi et al. (2016) from the mixed-integer linear to the mixed-
integer nonlinear setting.

Theorem 11. Let Assumptions 1–3 hold. Assume that for all x ∈ X such that
Ax 6= b it holds ψ(Ax − b) ≥ δ > 0. Then, for all λ̄ ∈ Rm, there exists a finite
penalty parameter ρ such that z∗ = zLR+

ρ (λ̄).

Proof. Let ρ ≥ 2κ1(E , A, b,∇f(x∗), λ̄)/δ be fixed and let x∗ρ ∈ S∗ρ(λ̄). With the
same argument as in the proof of Theorem 10, it suffices to show that x∗ρ satisfies
Ax∗ρ = b to conclude that x∗ρ ∈ S∗ and, thus, that z∗ = zLR+(λ̄). By Theorem 6, ρ
is sufficiently large to guarantee that ψ(Ax∗ρ− b) ≤ δ/2. Yet, assuming that Ax∗ρ 6= b
leads to the contradiction

0 < δ ≤ ψ(Ax∗ρ − b) ≤ δ/2. (20)

Hence, it must be that Ax∗ρ = b, which ends the proof. �

A clear consequence of this theorem is that a finite penalty parameter closing the
duality gap always exists for integer nonlinear problems. Hence, the next corollary
generalizes Corollary 1 from Boland and Eberhard (2014) to nonlinearly constrained
integer problems.

Corollary 4. Let Assumption 1–3 hold and assume that n1 = 0, i.e., Problem (1)
is an integer problem. Then, for all λ̄ ∈ Rm, there exists a finite ρ such that
z∗ = zLR+

ρ (λ̄).

Proof. Under the stated assumption, the set {x ∈ X : Ax 6= b} is compact and ψ is
continuous, hence, min{ψ(Ax− b) : x ∈ X,Ax 6= b} exists. Positive definiteness of
ψ shows the existence of a δ as required by Theorem 11. �

While Theorem 11 applies to general penalty functions, it requires the existence
a positive minimal penalization of violated constraints. This is a rather strong
assumption. Moreover, even checking that such a condition is satisfied seems to be
challenging. Corollary 4 exhibits a class of problems for which it is easy to ensure
the existence of such minimal violation δ > 0. Yet, this class of problems is far from
covering the general class of problems that can be cast as Problem (1). Note that
this is, in fact, necessary since Feizollahi et al. (2016) shows that the ALD equipped
with the proximal Lagrangian penalty function fails to close the duality gap on some
mixed-integer linear instances; see Proposition 7 in Feizollahi et al. (2016). Since
the proximal Lagrangian penalty function satisfies Assumption 3, one cannot hope
for a stronger result with such a generality. In the next section, we specialize the
penalty function ψ to be a norm and derive weaker sufficient conditions for exact
penalty parameters to exist.

Before moving to the next section, we show that the existence of a finite exact
penalty parameter for a given penalty function ψ can be used to show the existence
of a finite exact penalty parameter with a different penalty function.
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Theorem 12. Let Assumption 1–3 hold. Let λ̄ ∈ Rm be fixed and assume that
there exists ρ <∞ such that z∗ = zLR+

ρ (λ̄), i.e., there exists a finite exact penalty
parameter for the ALR equipped with ψ. Let ψ′ be a penalty function satisfying
Assumption 3 and assume that, for every x ∈ X with Ax = b, there exists a
neighborhood N (x) satisfying the following two conditions:

(i) there exists γ > 0 such that, for all x′ ∈ X ∩N (x) with Ax′ 6= b, it holds

ψ′(Ax′ − b) ≥ γψ(Ax′ − b);
(ii) there exists δ > 0 such that for all x′ ∈ X\N (x) with Ax′ 6= b, it holds

ψ′(Ax′ − b) ≥ δ.
Then, there exists a finite penalty parameter for the ALR equipped with ψ′.

Proof. To avoid ambiguity, we let x∗ρ(ψ) denote an optimal point of the ALR (2)
equipped with the penalty function ψ. Similarly, we let zLR+

ρ (λ̄, ψ) denote its
objective function. Let now

ρ′ > max

{
2κ1(E , A, b,∇f(x∗), λ̄)

δ
,
ρ

γ

}
.

Following the argument in the proof of Theorem 11, it is sufficient to show that
x∗ρ′(ψ

′) satisfies Ax∗ρ′(ψ
′) = b to conclude z∗ = zLR+

ρ′ (λ̄, ψ′). Hence, for the sake of
contradiction, assume that x∗ρ′(ψ

′) is such that Ax∗ρ′(ψ
′) 6= b. We have two cases.

1. Suppose x∗ρ′(ψ
′) ∈ N (x) for some x ∈ X satisfying Ax = b. It holds

z∗ = zLR+
ρ (λ̄, ψ)

≤ f(x∗ρ′(ψ
′)) + λ̄>(Ax∗ρ′(ψ

′)− b) + ρψ(Ax∗ρ′(ψ
′)− b)

≤ f(x∗ρ′(ψ
′)) + λ̄>(Ax∗ρ′(ψ

′)− b) +
ρ

γ
ψ′(Ax∗ρ′(ψ

′)− b)

< f(x∗ρ′(ψ
′)) + λ̄>(Ax∗ρ′(ψ

′)− b) + ρ′ψ′(Ax∗ρ′(ψ
′)− b)

= z∗ρ′(λ̄, ψ
′).

Hence, we reach the contradiction that the primal problem (1) is strictly upper
bounded by its ALR equipped with the penalty function ψ′; see Inequality (4).

2. Suppose x∗ρ′(ψ
′) /∈ N (x) for all x ∈ X satisfying Ax = b. By assumption, it

holds ψ′(Ax∗ρ′(ψ
′)− b) ≥ δ > 0. Using Theorem 6, we conclude that ρ is sufficiently

large to guarantee ψ′(Ax∗ρ′(ψ
′)− b) ≤ δ/2. Hence, we reach the contradiction

0 < δ ≤ ψ′(Ax∗ρ′(ψ′)− b) ≤ δ/2.
All in all, we conclude that x∗ρ′(ψ

′) satisfies Ax∗ρ′(ψ
′) = b and, thus, the theorem

holds. �

Let us note that Theorem 12 is a generalization of Theorem 5 from Feizollahi
et al. (2016) in two ways. First, we consider general MINLPs instead of MILPs.
Second, we consider two general penalty functions ψ and ψ′ instead of a general
penalty function ψ and the infinity norm. Later, we will specialize this result in the
context of norms; see Lemma 2.

5.2. Sharp Lagrangian. Throughout this section, we make the assumption that the
penalty function is a norm. Note that this assumption is stronger than Assumption 3.
For instance, the proximal penalty function fulfills Assumption 3 but is not a norm.
However, it is clear that any norm satisfies the properties of Assumption 3.

Assumption 4. ψ = ‖·‖ for some norm ‖·‖.
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To simplify our proofs, we first show that the existence of an exact penalty
parameter with ψ = ‖·‖∞ is enough to show the existence of an exact penalty
parameter for any other norm ‖·‖. Even more, we show that this also implies an
existence result for the nonconvex penalty function ‖·‖r with 0 < r ≤ 1.

Lemma 2. Assume that there exists an exact penalty parameter for ψ = ‖.‖∞.
Then, there exists an exact penalty parameter for ψ = ‖·‖r with ‖·‖ being any norm
and r ∈ (0, 1].

Proof. By the equivalence of norms in finite-dimensional spaces, there exists γ > 0
such that ‖·‖ ≥ γ‖·‖∞. Then, for any x ∈ X with Ax = b, there exists a neighbor-
hood N (x) such that, for all x′ ∈ X∩N (x) with Ax′ 6= b, it holds ‖Ax′−b‖ ≤ 1 and,
for all x′ ∈ X\N (x) with Ax′ 6= b, ‖Ax′−b‖ ≥ 1 holds. Hence, for all x′ ∈ X∩N (x),
it holds

γ‖Ax′ − b‖∞ ≤ ‖Ax′ − b‖ ≤ ‖Ax′ − b‖r.
Moreover, for all x ∈ X\N (x) with Ax′ 6= b, we have ‖Ax′ − b‖ ≥ 1 and, thus,
‖Ax′ − b‖r ≥ 1. Hence, by Theorem 12, the claimed result holds. �

Note that the same result has been frequently used in the recent literature with
r = 1; see, e.g., Feizollahi et al. (2016) and Gu et al. (2020). In the next lemma, we
also show that focusing on the case λ = 0 is sufficient.

Lemma 3. Assume that there exists a finite ρ∗ such that z∗ = zLR+
ρ∗ (0) with

ψ = ‖·‖∞. Then, for all λ̄ ∈ Rm,
z∗ = zLR+√

m‖λ̄‖2+ρ∗
(λ̄).

Proof. Let λ̄ ∈ Rm be fixed and assume that there exists a finite ρ∗ such that
z∗ = zLR+

ρ∗ (0). Then, by the Cauchy–Schwarz inequality and using ‖·‖2 ≤
√
n‖·‖∞,

we get

z∗ = min
x∈X

c>x+ ρ∗ψ(Ax− b)

= min
x∈X

c>x+ λ̄>(Ax− b)− λ̄>(Ax− b) + ρ∗ψ(Ax− b)

≤ min
x∈X

c>x+ λ̄>(Ax− b) + ‖λ̄‖2‖Ax− b‖2 + ρ∗ψ(Ax− b)

≤ min
x∈X

c>x+ λ̄>(Ax− b) +
√
m‖λ̄‖2‖Ax− b‖∞ + ρ∗ψ(Ax− b)

= min
x∈X

c>x+ λ̄>(Ax− b) + (
√
m‖λ̄‖2 + ρ∗)ψ(Ax− b)

= zLR+√
m‖λ̄‖2+ρ∗

(λ̄).

The proof is achieved by Inequality (4). �

We are now ready to state conditions under which the existence of an exact
penalty parameter is guaranteed for the primal problem (1). We do so in the
following sections. The first section is dedicated to convex MINLPs, i.e., we assume
that all complicating variables are integer. Then, we specialize this result for MILPs
and show that such an exact penalty parameter can be computed in polynomial
time. Finally, in the last section, we study general MINLPs.

5.2.1. Convex MINLPs. In this section, we consider convex MINLPs. That is, we
assume that Problem (1) is a convex problem if x2 is fixed. In this case, we show
that an exact penalty parameter always exists under mild conditions. To this end,
we need the following additional assumption.



EXACT AUGMENTED LAGRANGIAN DUALITY FOR NONCONVEX MINLP 17

Assumption 5 (Slater’s Condition). Let N ⊆ {1, . . . , `} denote the set of indices
such that gi is nonlinear. For all x2 ∈ X2, there exists x1 ∈ Rn1 such that
A1x1 = b−A2x2, gi(x1, x2) < 0 for all i ∈ N and gi(x1, x2) ≤ 0 for all i /∈ N .

Assumption 5 states that Slater’s condition hold for the primal problem (1) if
the complicating variables x2 are fixed. Note that these conditions are immediately
satisfied by the class of problems previously studied in the literature and is not
restrictive in this sense. For instance, Assumption 5 holds for MILPs (Feizollahi et al.
2016), convex MIQPs (Gu et al. 2020), and linearly constrained convex problems
(Bhardwaj et al. 2024).

Before we state the theorem, we introduce the notation zLR+
ρ (λ, x2) for

zLR+
ρ (λ, x2) := λ>(A2x2 − b) + min

x1

f(x1, x2) + λ>A1x1 + ρψ(Ax− b)

s.t. g(x1, x2) ≤ 0,

x1 ∈ Rn1

with x2 ∈ X2 and λ ∈ Rm. Similarly, we define z∗(x2) as Problem (1) for a fixed
x2 ∈ X2.

Theorem 13. Let Assumptions 1–5. For all λ̄ ∈ Rm, there exists ρ∗ <∞ such that

z∗ = zLR+
ρ∗ (λ̄).

Proof. By Lemma 2 and 3, it is sufficient to consider ψ = ‖·‖∞ and λ̄ = 0. We first
show that, for all x2 ∈ X2, there exists ρ∗(λ̄, x2) <∞ such that

z∗(x2) = zLR+
ρ∗(λ̄,x2)

(λ̄, x2).

To this end, let x̂2 ∈ X2 be fixed. Note that, by Assumption 5, Slater’s Condition
is satisfied for the convex problem

z∗(x̂2) := min
x1,w

f(x1, x̂2)

s.t. A1x1 = b−A2x̂2,

g(x1, x̂2) ≤ 0,

x1 ∈ Rn1 .

Thus, its optimal value is equal to the one of its dual and it holds

z∗(x̂2) = max
α∈Rm,β≥0

min
x1

f(x1, x̂2) + β>g(x1, x̂2) + α>(A1x1 +A2x̂2 − b). (22)

Moreover, the maximum is attained at some point (α∗(x̂2), β∗(x̂2)) ∈ Rm × R`≥0.
Now, consider the reformulation of zLR+

ρ (λ, x̂2) in which “‖A1x1+A2x̂2−b‖∞ ≤ w”
has been linearized, i.e., consider

zLR+
ρ (λ, x̂2) = min

x1,w
f(x1, x̂2) + ρw

s.t. A1x1 ≤ we+ b−A2x̂2,

−A1x1 ≤ we− b+A2x̂2,

g(x1, x̂2) ≤ 0,

x1 ∈ Rn1 .

By strong duality, it holds

zLR+
ρ (λ, x2) = max

α−,α+,β≥0
min

x1∈X1,w≥0
f(x1, x̂2) + ρw + β>g(x1, x̂2)

+ (α+ − α−)>(A1x1 +A2x̂2 − b)− (α+ + α−)>ew.
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With the change of variables α = α+ − α−, we obtain

zLR+
ρ (λ, x̂2) = max

α∈Rm,α−,β≥0
min
x1∈X1

f(x1, x̂2) + β>g(x1, x̂2)

+ α>(A1x1 +A2x̂2 − b) + min
w≥0

(ρ− e>(α+ 2α−))w.

Looking at the last minimization problem, it follows that

zLR+
ρ (λ, x̂2) = max

e>(α+2α−)≤ρ,
α∈Rm,α−,β≥0

min
x1∈X1

f(x1, x̂2) + β>g(x1, x̂2) +α>(A1x1 +A2x̂2− b).

Observe that α− can be fixed to zero since it only appears in a ≤-constraint with
a nonnegative coefficient. Thus, for a sufficiently large ρ, this last optimization
problem is exactly the dual Problem (22). Clearly, ρ = ‖α∗(x̂2)‖1 is finite and large
enough so that zLR+

ρ (λ, x̂2) = z∗(x̂2). Thus, for all x2 ∈ X2, there exists an exact
penalty parameter ρ∗(x̂2, λ).

Now, consider ρ∗ = maxx2∈X2
ρ∗(λ, x2), which is a finite maximum of finite

numbers since X2 is discrete and bounded (X2 = projx2
(X) ⊂ Zn2 with X bounded)

and ρ∗(λ, x2) <∞ for all x2 ∈ X2. Hence, ρ∗ <∞. For all x2 ∈ X2, it then follows
that

z∗(x2) = zLR+
ρ∗(λ,x2)(λ, x̂2) ≤ zLR+

ρ∗ (λ, x̂2).

Taking the minimum over X2 leads to

z∗ ≤ zLR+
ρ∗ (λ).

The proof is achieved by Inequality (4). �

5.2.2. MILPs. In this section, we show that an exact penalty parameter can be
computed in polynomial time if the primal problem (1) is a MILP. We start with a
lemma showing that the second part of Assumption 1 is fulfilled if the problem is
feasible and bounded from below.

Lemma 4. Let Ã ∈ Zm̃×ñ with m̃ ≤ ñ, b̃ ∈ Zm̃, and c̃ ∈ Zñ be integer matrices
and vectors and consider the MILP

min
x

c̃>x (23a)

s.t. Ãx = b̃, (23b)

x ∈ Rñ1

≥0 × Zñ2

≥0, (23c)

with ñ = ñ1 + ñ2. Assume that (23) is feasible and bounded from below. Then, there
exists a solution x∗ to Problem (23) satisfying ‖x∗‖∞ ≤M for some finite M > 0.
Moreover, there exists a polynomial-time algorithm (in the input data and for fixed
dimension (m̃, ñ)) computing M with input data Ã and b̃.

Proof. Since (23) is feasible, bounded from below, and has rational entries, its
continuous relaxation is feasible and bounded from below. Let x̃∗ denote a solution
to the continuous relaxation of Problem (23). Without loss of generality, x̃∗ is an
extreme point of {x ∈ Rñ≥0 : Ãx = b̃}. By Lemma 4 in Buchheim (2023), it holds

‖x̃∗‖∞ ≤ m̃!‖b̃‖∞‖Ã‖m̃−1
∞ . (24)

Now, by Theorem 17.2 in Schrijver (1998), there exists an optimal solution x∗ to (23)
which is such that

‖x∗ − x̃∗‖∞ ≤ ñ∆, (25)
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with ∆ an upper bound on each sub-determinant of Ã. Now let Ā denote any square
sub-matrix of Ã of size k. It holds

det(Ā) =
∑
σ∈Sk

sgn(σ)

k∏
j=1

(Ā)j,σ(j) ≤
∑
σ∈Sk

k∏
j=1

∣∣(Ā)j,σ(j)

∣∣ ≤ k!‖Ā‖k∞.

Thus, it holds ∆ ≤ m̃!‖Ã‖m̃∞. By the reverse triangular inequality, it then follows
that

‖x∗‖∞ ≤ ‖x∗ − x̃∗‖∞ + ‖x̃∗‖∞ ≤ ñ∆ + ‖x̃∗‖∞.
Using (24) and (25), it follows that

‖x∗‖∞ ≤ ñm̃!‖Ã‖m̃∞ + m̃!‖b̃‖∞‖Ã‖m̃−1
∞ .

Clearly, the constant in the right-hand side can be computed in polynomial time (in
Ã and b̃ and for fixed dimension (m̃, ñ)). �

We now state the complexity result.

Theorem 14. Let ψ = ‖·‖∞. Assume that Problem (1) is feasible and bounded from
below and that f(x) = c>x = c>1 x1 + c>2 x2, and g(x) = Tx+ r = T1x1 + T2x2 + r
for some matrix T ∈ Z`×n and some vectors c ∈ Zn, r ∈ Z`. Then, for all λ̄ ∈ Qm,
there exists a polynomial-time algorithm computing a finite ρ such that z∗ = zLR+

ρ (λ̄)
with input data A, b, c, T, r and for fixed dimension (`,m, n).

Proof. By Lemma 4, since A, b, c, r, and T are integral matrices, there exists an
M > 0, which can be computed in polynomial time such that ‖x∗‖∞ ≤ M for
at least one solution to the primal problem (1). Hence, Assumption 1 is satisfied.
Assumption 2 is also fulfilled as f is linear. Since assuming ψ = ‖·‖∞ is stronger
than Assumption 4 and 3, they are readily satisfied. Again, since all constraints are
linear, Assumption 5 is also satisfied. Finally, note that, by Lemma 3, it suffices
to consider the case λ̄ = 0 since ‖λ̄‖∞ can be computed in polynomial time and√
m ≤ m. Thus, we consider λ̄ = 0.
Following the proof of Theorem 13, let x̂2 ∈ X2 be fixed. We show that a solution

α∗(x̂2) to the dual problem (22) exists such that ‖α∗(x̂2)‖∞ ≤ ᾱ for all x̂2 ∈ X2

and ᾱ is a constant, which can be computed in polynomial time with input data A,
b, c, T , r and for fixed dimension (`,m, n). Now, the dual can be expressed as

c>2 x̂2 + max
α,β

(b−A2x̂2)>α− (r + T2x̂2)>β

s.t. A>1 α+ T>1 β = c1,

β ≤ 0.

Since x̂2 is fixed, this problem is an LP with rational entries and, w.l.o.g., there exists
a solution α∗(x̂2) which is an extreme point of the feasible region. By Lemma 4 in
Buchheim (2023), it follows that there exists α∗ such that

‖α∗(x̂2)‖∞ ≤ n1!‖c1‖∞max{‖A1‖∞, ‖T1‖∞}n1+1 =: ᾱ.

By equivalence of norms, we conclude that ‖α∗(x̂2)‖1 ≤ n1ᾱ. By the same
argument as in the proof of Theorem 13, it follows that any ρ with ρ ≥ n1ᾱ ≥
maxx2∈X2

‖α∗(x2)‖1 is an exact penalty parameter for Problem (1). Clearly, nᾱ can
be computed in polynomial time. �

5.2.3. General MINLPs. We now turn to general MINLPs and give a sufficient
condition for the existence of a finite exact penalty parameter. Note that Theorem 11
and Corollary 4 already show that a finite exact penalty parameter exists if all
variables in Problem (1) are integer. Thus, we may now assume that some variables
are continuous, i.e., n1 ≥ 1.
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Following the idea of the proof of Theorem 13, it is sufficient to show that a
finite exact penalty parameter exists for Problem (1) if all integer variables are fixed.
Then, it suffices to consider the maximum of these finite exact penalty parameters
over the set of all possible fixations (i.e., over X2) to obtain a finite exact penalty
parameter for the complete problem (1). Moreover, in virtue of Lemma 2 and
Lemma 3, it is sufficient to consider the existence of a finite penalty parameter in
the case ψ = ‖·‖∞ and λ = 0. Hence, we first need a theorem on exact penalization
for nonlinear problems. The next theorem is due to Di Pillo and Grippo (1989).

Theorem 15 (Di Pillo and Grippo (1989), Theorem 4.a). Consider the general
nonlinear problem

min
x

f̃(x) (27a)

s.t. g̃i(x) ≤ 0, i = 1, . . . , m̃, (27b)

h̃i(x) = 0, i = 1, . . . , p̃, (27c)

in which f̃ , g̃, and h̃ are continuously differentiable functions. Let S̃∗ denote the set
of global solutions to (27) and assume that the Mangasarian–Fromovitz Constraint
Qualification (MFCQ) holds at any x∗ ∈ S̃∗, i.e., assume that ∇h̃1(x∗), . . . ,∇h̃p̃(x∗)
are linearly independent and that there exists a direction d ∈ Rñ such that

∇gi(x∗)>d < 0 i ∈ I(x∗) := {i : gi(x
∗) = 0},

∇hi(x∗)>d = 0 i = 1, . . . , p̃.

Assume that the feasible region F := {x ∈ Rñ : g̃(x) ≤ 0, h̃(x) = 0} is nonempty
and compact so that there exists a compact set D with F ⊂ int(D). Then, there
exists a positive ρ <∞ such that S̃∗ coincides with the set of global solutions to the
penalized problem

min
x∈int(D)

f̃(x) + ρ
(
‖g̃(x)+‖∞ + ‖h̃(x)‖∞

)
.

In the next theorem, we apply the result of Theorem 15 to Problem (1). To this
end, we introduce the following assumption.

Assumption 6. Let x̂2 ∈ X2 be given and consider the optimization problem (1)
in which variables x2 have been fixed to x̂2, i.e., consider

z∗(x̂2) := min
x

f(x1, x̂2) (28a)

s.t. g(x1, x̂2) ≤ 0, (28b)
A1x1 = b−A2x̂2. (28c)

Let S∗(x̂2) denote the set of global solutions to (28). We assume that f and g are
continuously differentiable functions and that MFCQ holds at every point in S∗(x̂2),
i.e., A1 has full row rank and, for all x∗1 ∈ S∗(x̂2), there exists a direction d ∈ Rn1

such that

∇gi(x∗1)>d < 0 i ∈ I(x∗1, x̂2) := {i : g(x∗1, x̂2) = 0},

A>1 d = 0.

Theorem 16. Let Assumption 1–4 and 6 hold and let λ̄ ∈ Rm be arbitrary but fixed.
Then, there exists a ρ∗ <∞ such that z∗ = zρ∗(λ̄).

Proof. As anticipated, it is sufficient to consider ψ = ‖·‖∞ and λ̄ = 0; see Lemma 2
and 3. Now, with x̂2 ∈ X2 arbitrary but fixed and using Theorem 15, it is easy to
show that a finite ρ∗(λ̄, x̂2) exists such that

z∗(x̂2) = min
(x1,x̂2)∈int(E)

f(x1, x̂2)+ρ∗(λ̄, x̂2)
(
‖g(x1, x̂2)+‖∞ + ‖A1x1 +A2x̂2 − b‖∞

)
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for a properly chosen E as defined in Assumption 1, potentially enlarging it so that
X ⊂ int(E). Note that, for any global solution x∗1 ∈ S∗(x̂2) it holds g(x∗1, x̂2) ≤ 0 so
that

z∗(x̂2) = min
x1

f(x1, x̂2) + ρ∗(λ̄, x̂2)‖A1x1 +A2x̂2 − b‖∞

s.t. g(x1, x̂2) ≤ 0,

(x1, x̂2) ∈ int(E).

By construction of E , we directly obtain

z∗(x̂2) = min
x1∈X1

f(x1, x̂2) + ρ∗(λ̄, x̂2)‖A1x1 +A2x̂2 − b‖∞ = zLR+
ρ(λ̄,x2)

(λ̄).

We can now argue as in the proof of Theorem 13. For all x̂2 ∈ X2, there exists
a finite ρ∗(λ̄, x̂2) such that z∗(x̂2) = zLR+

ρ∗(λ̄,x̂2)
(λ̄). Hence, we can define ρ∗ =

maxx2∈X2 ρ∗(λ̄, x2), which is a finite maximum of finite numbers. Hence, ρ∗ is
finite and it holds

z∗(x̂2) = zLR+
ρ(λ̄,x2)

(λ̄) ≤ zρ∗(λ̄, x̂2).

Taking the minimum over all x2 ∈ X2 leads to

z∗ ≤ zρ∗(λ̄),

which, by Inequality (4), ends our proof. �

6. Conclusion

In this paper, we have shown that, under mild assumptions, the ALD equipped
with any norm leads to a zero duality gap for nonconvex MINLPs. While this
constitutes a generalization of the existing literature (see Table 1), several open
questions remain.

For the case of MILPs and MIQPs, we have shown that a (complexity-wise) small
exact penalty parameter can be computed in polynomial time. However, while the
proof is constructive, the derived penalty parameter is too large to be useful in
practical applications. Hence, the existence of a polynomial-time algorithm capable
of computing a smaller exact penalty parameter is still an open and practically
important question. Related to the previous question, we do not know if computing
the smallest exact penalty parameter can be done in polynomial time. We conjecture
a negative answer to this question. In the same vein, the existence of an exact
penalty parameter of polynomial size is limited to MIQPs and it is still open if
such a result can be obtained for a more general class of problems such as, e.g.,
quadratically constrained quadratic problems.
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