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Abstract

In binary polynomial optimization, the goal is to find a binary point maximizing a given
polynomial function. In this paper, we propose a novel way of formulating this general opti-
mization problem, which we call factorized binary polynomial optimization. In this formulation,
we assume that the variables are partitioned into a fixed number of sets, and that the objective
function is written as a sum of r products of linear functions, each one involving only variables
in one set of the partition. Our main result is an algorithm that solves factorized binary poly-
nomial optimization in strongly polynomial time, when r is fixed. This result provides a vast
new class of tractable instances of binary polynomial optimization, and it even improves on the
state-of-the-art for quadratic objective functions, both in terms of generality and running time.
We demonstrate the applicability of our result through the binary tensor factorization problem,
which arises in mining discrete patterns in data, and that contains as a special case the rank-1
Boolean tensor factorization problem. Our main result implies that these problems can be solved
in strongly polynomial time, if the input tensor has fixed rank, and a rank factorization is given.
For the rank-1 Boolean matrix factorization problem, we only require that the input matrix has
fixed rank.

Key words: binary polynomial optimization; binary quadratic optimization; polynomial time
algorithm; binary tensor factorization; Boolean tensor factorization; Boolean matrix factorization

1 Introduction

Binary polynomial optimization, i.e., the problem of finding a binary point maximizing a given
polynomial function, is a fundamental problem in discrete optimization with a wide range of ap-
plications across science and engineering. To formulate this optimization problem, we use the
hypergraph representation from [14]. Given a hypergraph H = (V,E), with edges of cardinality at
least two, and c : V ∪ E → Q, the associated optimization problem is

max
x

∑
k∈V

ckxk +
∑
e∈E

ce
∏
k∈E

xk

s. t. xk ∈ {0, 1} ∀k ∈ V.

(E)

We call this problem Explicit binary polynomial optimization, since the polynomial objective func-
tion is given explicitly via its nonzero monomials. This problem is strongly NP-hard [26], and a
recent stream of research led to the discovery of several polynomially solvable classes [3,5,6,11–20].

In this paper, we propose a different way of formulating binary polynomial optimization, and
show that it leads to the discovery of a vast class of tractable instances. In this different formulation,
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we assume that the variables are partitioned into s sets, and that the polynomial objective function
is given in a factorized form, written as a sum of products of linear functions, each one involving
only variables in one set of the partition. Formally, this is the optimization problem

max
x1,...,xs

∑
I∈I

∏
j∈I

〈
cI,j , xj

〉
s. t. xj ∈ {0, 1}nj ∀j ∈ [s],

(F)

where we denote by ⟨a, b⟩ the inner product of two vectors a, b of the same dimension. The data
of the problem consists of positive integers s and nj , for j ∈ [s], a nonempty family I of subsets
of [s], and vectors cI,j ∈ Qnj for I ∈ I, j ∈ I. We call this problem Factorized binary polynomial
optimization.

Reading this paper, the reader should always think to the following two parameters as being
fixed numbers: max {|e| : e ∈ E} in Problem E, and s in Problem F. On the one hand, this is the
setting in most applications of practical interest. On the other hand, by far most research so far
is devoted to the cases in which these two parameters are equal to 2 [33, 40], which are already
compelling and strongly NP-hard [26,40].

While quite different on the surface, we will show that Problems E and F are, in fact, equivalent:
we can reformulate Problem E as Problem F, and vice versa. A key advantage of Problem F is that
it can reveal some inner sparsity of the problem that is hidden in Problem E. For example, classes
of Problem E with |E| as large as

∏
j∈[s] nj , can be written in the form of Problem F, with |I| = 1.

In this paper, we show how we can exploit this inner sparsity of the input data to design an efficient
algorithm. The main result of this paper is an algorithm that solves in strongly polynomial time
Problem F, when |I| is a fixed number.

Theorem 1. Problem F can be solved in strongly polynomial time, for any fixed s and |I|.

It is interesting to observe that, in Theorem 1, it is fundamental that, in each product in the
objective function of Problem F, there is at most one linear function for each set of the partition.
In fact, it is known that it is NP-hard to maximize the product of just two linear functions, plus
a third linear function, over all binary points [7, 29]. As a corollary to Theorem 1, we obtain that
also the slightly more general optimization problem obtained from Problem F by replacing each
linear function in the objective with an affine function, can be solved in strongly polynomial time
under the same assumptions (see Corollary 7).

Our algorithm for Problem F is combinatorial in nature, and is based on the construction of
hyperplane arrangements. It is well understood that enumerating cells of hyperplane arrangements,
or equivalently vertices of a zonotope, can help in the design of efficient algorithms with theoretical
guarantees (see, e.g., [1,9,10,25]). Most of these algorithms construct only one arrangement in their
execution. A key feature of our algorithm is that we construct, recursively, s− 1 arrangements on
top of each other. In the first iteration, we construct an arrangement of hyperplanes corresponding
to the vector of variables xs. These hyperplanes live in a carefully chosen low-dimensional “dual”
space, corresponding to the products in the objective function that involve variables xs, and at
least another xj . For each cell of the arrangement, we are able to construct a corresponding partial
solution x̄s ∈ {0, 1}ns , and a child instance of Problem F only in variables x1, x2, . . . , xs−1. We
then recurse on each child instance. This gives rise to a compact tree of subproblems, and at least
one of the leaves will correspond to an optimal solution of Problem F. Our technique results in a
quite elegant algorithm that is simple to state and implement, and only relies on the construction
of hyperplane arrangements.



A consequence of the equivalence of Problems E and F, is that Problem F inherits the applica-
tions of Problem E. To demonstrate the applicability of Theorem 1, we consider the rank-t binary
tensor factorization problem and the rank-t Boolean tensor factorization problem. In these two
problems, the goal is to find t rank-1 binary tensors whose sum, or disjunction (respectively), best
approximates a given tensor of order s. These problems arise in mining discrete patterns in data
and have plenty of applications [24,39,43,47]. Their solutions provide a very useful tool for analyz-
ing tensors to discover latent factors from them, and produce more interpretable and sparser results
than normal factorization methods [38]. Most existing methods to tackle these problems rely on
heuristics, and hence do not provide any guarantee on the quality of the solution [2, 24, 38, 39, 43].
The reader should always think to the parameters s and t, in these problems, as being fixed num-
bers: the case s = 2, t = 1 is the rank-1 Boolean matrix factorization problem, which is already
NP-hard [28], well-studied, and with many applications (see, e.g., [27, 34, 35, 37, 45]). We will see
that Theorem 1 implies the following tractability results.

Corollary 1. The rank-t binary tensor factorization problem on a tensor of order s can be solved
in strongly polynomial time if s, t are fixed, the input tensor has fixed rank, and a rank factorization
is given.

Corollary 2. The rank-1 Boolean tensor factorization problem on a tensor of order s can be solved
in strongly polynomial time if s is fixed, the input tensor has fixed rank, and a rank factorization
is given.

In fact, we do not even need a rank factorization of the input tensor, and any factorization of
the tensor as the sum of a fixed number of rank-1 tensors is sufficient (see Corollaries 10 and 11).
For the rank-1 Boolean matrix factorization problem, we obtain:

Corollary 3. The rank-1 Boolean matrix factorization problem can be solved in strongly polynomial
time if the input matrix has fixed rank.

While the main contribution of this paper is Theorem 1 and its consequences, in this work we
also lay the foundations for a theoretical study of Problem F, since, to the best of our knowledge,
this problem has not been considered before. In Section 2, we see that Problem F is strongly
NP-hard even in very restrictive settings. In Section 3, we discuss the relationship of Problems E
and F: we show that the two problems are equivalent, that Problem F can reveal some inner
sparsity of the problem that is hidden in Problem E, and we provide a link with the concept of
tensor factorization and rank of a tensor. Section 4 is devoted to the binary tensor factorization
problem and the Boolean tensor factorization problem. Our algorithm, the proof of Theorem 1 and
its corollaries, are presented in Section 5.

In Section 6, we compare our Theorem 1 with known tractability results. The focus of this
paper is on polynomial objective functions of degree three or more. In this case, we are not aware
of any other known polynomially solvable class of Problem F, and we show that our result does
not follow from known tractable classes of Problem E. Interestingly, our result also improves on the
state-of-the-art for quadratic objective functions. Consider the optimization problem

max
x1,...,xs

∑
i,j∈[s], i<j

xi
T
Qi,jxj +

∑
j∈[s]

cj
T
xj

s. t. xj ∈ {0, 1}nj ∀j ∈ [s],

(Q)

where Qi,j ∈ Qni×nj , for every i, j ∈ [s] with i < j, and cj ∈ Qnj , for every j ∈ [s]. As a corollary
to Theorem 1, we obtain the following result:



Corollary 4. Problem Q can be solved in strongly polynomial time, provided that s is fixed, and
the rank of each matrix Qi,j, for i, j ∈ [s] with i < j, is fixed.

It is known that Problem Q can be solved in polynomial time if s = 2 and the rank of Q1,2

is fixed [32, 40, 42]. Therefore, Corollary 4 extends previously known tractable classes, both in
terms of generality and running time. Furthermore, when s = 2, our algorithm constructs only one
hyperplane arrangement, and our work results in significantly cleaner and shorter algorithm and
arguments.

We remark that the main emphasis of this paper lies on the theoretical computational com-
plexity of the algorithms presented. We do not refer to practically efficient implementations of the
algorithms, which we believe should be studied in the future.

2 NP-hardness

In the next result, we show that Problem F is strongly NP-hard even in very restrictive settings.
Our reduction is inspired from the one in the proof of Theorem 10.2 in [40], where the authors show
that Problem Q is strongly NP-hard for s = 2. The similarity lies in the introduction of a copy of
the original variables, and the addition of a penalty in the objective function to have the original
variables match the copy, in an optimal solution. The main differences are: 1) Our reduction is
form simple max cut, rather than from binary quadratic optimization, which allows us to show the
hardness of the problem in very restrictive settings; 2) Our reduction is to Problem F with s = 2,
whose objective function is given in a factorized form.

Proposition 1. Problem F is strongly NP-hard even if s = 2, n1 = n2, |I| = n1 + 2, and cI,jk is
integer and bounded by n1 in absolute value, for every I ∈ I, j ∈ I, k ∈ [nj ].

Proof. Our reduction is from simple max cut, which is strongly NP-hard [26]. It is well-known that
the simple max cut problem on a graph G = (V,E) with V = [n] can be formulated as

max
x

∑
{i,j}∈E, i<j

(xi + xj − 2xixj)

s. t. x ∈ {0, 1}n .
(MC)

Now consider the optimization problem

max
x,y

∑
{i,j}∈E, i<j

(xi + yj − 2xiyj) + n
∑
i∈[n]

(2xiyi − xi − yi)

s. t. x, y ∈ {0, 1}n .
(MC’)

We claim that Problem MC can be solved by Problem MC’, in the sense that, given an optimal
solution (x, y) to Problem MC’, then x is optimal to Problem MC.

Denote by obj(x) the objective value of x in Problem MC and by obj′(x, y) the objective
value of (x, y) in Problem MC’. It is simple to check that, given x, y ∈ {0, 1}n with x = y, then
obj′(x, y) = obj(x). It then suffices to show that if (x, y) is optimal to Problem MC’, then x = y.
Let (x, y) be optimal to Problem MC’ and assume, for a contradiction, that there is at least one
index ℓ ∈ [n] such that xℓ ̸= yℓ. Let ỹ be obtained from y by flipping component ℓ, so that ỹℓ = xℓ.
We show that the objective value of (x, ỹ) is strictly larger than the objective value of (x, y), which



contradicts the optimality of (x, y):

obj′(x, y)− obj′(x, ỹ) =
∑

{i,j}∈E, i<j

(1− 2xi) (yj − ỹj) + n
∑
i∈[n]

(2xi − 1) (yi − ỹi)

=
∑

i:{i,ℓ}∈E, i<ℓ

(1− 2xi) (yℓ − ỹℓ) + n (2xℓ − 1) (yℓ − ỹℓ)

=
∑

i:{i,ℓ}∈E, i<ℓ

(1− 2xi) (1− 2xℓ) + n (2xℓ − 1) (1− 2xℓ)

= |{i ∈ [ℓ− 1] : {i, ℓ} ∈ E}| − n

≤ (n− 1)− n = −1.

To complete the proof, we write Problem MC’ in the form of Problem F with s = 2, n1 = n2 = n,
|I| = n+ 2, x1 = x, and x2 = y. We rewrite the objective function of Problem MC’ as the sum of
the following three functions:

f(x) :=
∑

{i,j}∈E, i<j

xi − n
∑
i∈[n]

xi

=
∑
i∈[n]

xi (|{j : {i, j} ∈ E, i < j}| − n) ,

g(y) :=
∑

{i,j}∈E, i<j

yj − n
∑
j∈[n]

yj

=
∑
j∈[n]

yj (|{i : {i, j} ∈ E, i < j}| − n) ,

h(x, y) := −2
∑

{i,j}∈E, i<j

xiyj + 2n
∑
i∈[n]

xiyi

=
∑
i∈[n]

2xi︸︷︷︸
=:hi(x)

nyi −
∑

j:{i,j}∈E, i<j

yj


︸ ︷︷ ︸

=:hi(y)

.

Now, the function f(x) corresponds to a set I = {1} with cI,1 the vector of coefficients of the linear
function f(x). The function g(y) corresponds to a set I = {2} with cI,2 the vector of coefficients
of the linear function g(y). For every i ∈ [n], the product hi(x)hi(y) in h(x, y) corresponds to a
set I = {1, 2} with cI,1 and cI,2 the vectors of coefficients of the linear functions hi(x) and hi(y),
respectively. It is simple to check that all these vectors have integer components bounded by n in
absolute value.

3 Binary polynomial optimization: explicit vs factorized

In this section we compare Problem E and Problem F.

3.1 Equivalency of Problems E and F

Our first goal is to establish the equivalency of Problems E and F. While it is clear that we can
directly reformulate Problem F as Problem E, by expanding all products in the objective function,



the opposite direction is less obvious. To reformulate Problem E as Problem F, we expand the
technique that we used in the proof of Proposition 1, from quadratics to higher degree polynomials:
the constructed instance of Problem F features s copies of the original variables, where s denotes
the degree of the objective function of Problem E, and a penalty in the objective function forces
all the copies to match, in an optimal solution.

In the remainder of the paper, we say that a hypergraph H is s-partite, if its node set can be
partitioned into s sets, called the sides of H, such that every edge contains at most one node from
each side.

Proposition 2. Problem E on a hypergraph H = (V,E) can be reformulated, in strongly polynomial
time, as Problem F with s := max {|e| : e ∈ E} and |I| ≤ |V |+ |E|+ s.

Proof. Consider an instance of Problem E, and let obj(x) be its objective function. Construct a
new instance of Problem E as follows: 1) The instance has variables x1, x2, . . . , xs, where s :=
max {|e| : e ∈ E}, and each xj , for j ∈ [s], is a copy of the original vector of variables x of the
original instance. 2) Let f(x1, x2, . . . , xs) be obtained from obj(x) by replacing, for every e ∈ E,
each xk with one of its copies xjk, for j ∈ [s], so that the product

∏
k∈E xk contains at most one

variable from each xj , j ∈ [s]. 3) The objective function of the new instance is then defined by

obj′(x1, x2, . . . , xs) := f(x1, x2, . . . , xs) +M
∑
k∈V

s
∏
j∈[s]

xjk −
∑
j∈[s]

xjk

 ,

where M :=
∑

e∈E |ce|+ 1.
Note that the hypergraph H ′ = (V ′, E′) associated with the new instance of Problem E is

s-partite, and is constructed as follows: 1) V ′ contains s copies of V , which we denote by V j , for
j ∈ [s]. 2) For every edge e ∈ E, we have an edge e′ ∈ E′ obtained from e by replacing each node
with one if its copies, so that e′ contains at most one node from each V j , for j ∈ [s]; Furthermore,
for every k ∈ V , we have an edge in E′ that contains all s copies of k. Therefore, |E′| ≤ |V |+ |E|.

Let (x1, x2, . . . , xs) be an optimal solution to the new instance. We show that x1 is optimal to
the original instance. Define, for every k ∈ V , the penalty function

pk(x
1
k, x

2
k, . . . , x

s
k) := s

∏
j∈[s]

xjk −
∑
j∈[s]

xjk.

Given (x1, x2, . . . , xs) binary with x1 = x2 = · · · = xs, we have pk(x
1
k, x

2
k, . . . , x

s
k) = 0 for every

k ∈ V , thus obj′(x1, x2, . . . , xs) = obj(x1). It then suffices to show that if (x1, x2, . . . , xs) is optimal
to the new instance, then x1 = x2 = · · · = xs. Let (x1, x2, . . . , xs) be optimal to the new instance
and assume, for a contradiction, that there is at least one ℓ ∈ V such that x1ℓ = x2ℓ = · · · = xsℓ
does not hold. Let (x̃1, x̃2, . . . , x̃s) be obtained from (x1, x2, . . . , xs) by setting all components
x̃1ℓ = x̃2ℓ = · · · = x̃sℓ to the same binary value. We show that obj′(x̃1, x̃2, . . . , x̃s) is strictly larger
than obj′(x1, x2, . . . , xs), which contradicts the optimality of (x1, x2, . . . , xs). First, by definition of
M ,

f(x1, x2, . . . , xs)− f(x̃1, x̃2, . . . , x̃s) < M.

Next, we have

pℓ(x
1
ℓ , x

2
ℓ , . . . , x

s
ℓ)− pℓ(x̃

1
ℓ , x̃

2
ℓ , . . . , x̃

s
ℓ) ≤ −1

pk(x
1
k, x

2
k, . . . , x

s
k)− pk(x̃

1
k, x̃

2
k, . . . , x̃

s
k) = 0 ∀k ∈ V \ {ℓ} .



Hence,

obj′(x1, x2, . . . , xs)− obj′(x̃1, x̃2, . . . , x̃s) < M −M = 0.

To complete the proof, we write the new instance in the form of Problem F with s as above,
nj = |V | for every j ∈ [s], and |I| ≤ |V | + |E| + s. For every j ∈ [s], the part of the objective
function of the new instance that is linear in variables xj corresponds to a set I = {j} with cI,j

the vector of coefficients of the variables xj . Next, consider a single nonlinear monomial in the
objective function of the new instance, which we can write as c

∏
j∈I x

j
kj
, for some I ⊆ [s] and

kj ∈ [nj ], for j ∈ [s]. This monomial can be written as
∏

j∈I
〈
cI,j , xj

〉
, where the cI,jkj

, for every

j ∈ I, are set in any way so that their product is c, and every other component of cI,j , for every
j ∈ I, is set to zero.

3.2 Tensor factorizations and rank

In Section 3.1, we saw that Problems E and F can be polynomially reduced into each other.
However, in some cases, one formulation can be significantly more succinct than the other. In the
next example we see that, starting from an instance of Problem F with |I| = 1, and expanding all
products in the objective function, it is possible to obtain an instance of Problem E with

∏
j∈[s] nj

monomials with nonzero coefficients. In particular, the hypergraph associated with the obtained
instance of Problem E is s-partite, s-uniform, and contains all possible

∏
j∈[s] nj edges. Recall that

a hypergraph is s-uniform if all its edges have cardinality s.

Example 1. Consider the special case of Problem F with I = {I}, I = [s], and with each vector
cI,j ∈ Qnj , for every j ∈ [s], having all nonzero components. We expand all products in the objective
function and obtain:

∏
j∈[s]

 ∑
kj∈[nj ]

cI,jkj
xjkj

 =
∑

k1∈[n1]

· · ·
∑

ks∈[ns]

cI,1k1
cI,2k2

· · · cI,sks
· x1k1x

2
k2 · · ·x

s
ks .

The hypergraph associated with the obtained instance of Problem E is s-partite and s-uniform. Since
each product cI,1k1

cI,2k2
· · · cI,sks

, for k1 ∈ [n1], k2 ∈ [n2], . . . , ks ∈ [ns], is nonzero, and no cancellation
is possible, it contains all possible

∏
j∈[s] nj edges.

Example 1 highlights how Problem F can provide a much sparser formulation with respect to
Problem E, revealing some inner sparsity of the problem that is hidden in Problem E. Our next
goal is to connect this phenomenon to the concept of tensor factorizations and rank of a tensor.

To avoid unnecessary complicated notation, we mainly focus on the special cases of Problems E
and F that we implicitly considered in Example 1. For Problem E, we focus on the special case
in which the associated hypergraph H is s-partite, with sides V j , for j ∈ [s], and s-uniform. As a
result, H has at most

∏
j∈[s] nj edges, where nj := |V j |, for every j ∈ [s]. We can write each edge

e ∈ E in the form e = (k1, k2, . . . , ks), for some k1 ∈ [n1], k2 ∈ [n2], . . . , ks ∈ [ns]. We can then
write this special case of Problem E in the form

max
x1,...,xs

∑
(k1,...,ks)∈E

ck1,...,ks
∏
j∈[s]

xjkj

s. t. xj ∈ {0, 1}nj ∀j ∈ [s].

(E-U)

Note that the degree of each monomial in the objective function is s. Furthermore, we can define
the associated n1 × n2 × · · · × ns tensor of the coefficients of the objective function C := (ck1,...,ks),



with the understanding that ck1,...,ks is set to zero, if (k1, . . . , ks) /∈ E. On the other hand, in the
special case of Problem F that we consider, we have that all sets I ∈ I coincide with the set [s].
We can then set r := |I| in Problem F and write this special case of Problem F in the form:

max
x1,...,xs

∑
i∈[r]

∏
j∈[s]

〈
ci,j , xj

〉
s. t. xj ∈ {0, 1}nj ∀j ∈ [s].

(F-U)

Next, we show that Problem F-U provides a much sparser formulation with respect to Prob-
lem E-U, when the tensor C of the coefficients of the objective function of Problem E-U can be
written as a sum of few rank-1 tensors:∑

i∈[r]

(ci,1 ⊗ ci,2 ⊗ · · · ⊗ ci,s), (1)

where ⊗ denotes the vector outer product, and where ci,j ∈ Qnj , for every i ∈ [r] and j ∈ [s]. In
this case, we say that (1) is a factorization of C.

Observation 1. Assume that the tensor C of the coefficients of the objective function of Problem E-
U has a factorization of the form (1). Then, Problem E-U can be reformulated as Problem F-U,
where r and the ci,j are the ones from (1).

Proof. Let C = (ck1,...,ks) be the n1×n2×· · ·×ns tensor of the coefficients of the objective function
of Problem E-U. Since it has a factorization of the form (1), the entries of C are

ck1,k2,...,ks =
∑
i∈[r]

∏
j∈[s]

ci,jkj ∀k1 ∈ [n1], k2 ∈ [n2], . . . , ks ∈ [ns].

The objective function of Problem E-U can then be written in the form of the objective function
Problem F-U as follows:∑

(k1,...,ks)∈E

ck1,...,ks
∏
j∈[s]

xjkj =
∑

k1∈[n1]

· · ·
∑

ks∈[ns]

ck1,...,ks
∏
j∈[s]

xjkj

=
∑

k1∈[n1]

· · ·
∑

ks∈[ns]

∑
i∈[r]

∏
j∈[s]

ci,jkj

 ∏
j∈[s]

xjkj

=
∑
i∈[r]

∑
k1∈[n1]

· · ·
∑

ks∈[ns]

∏
j∈[s]

ci,jkj x
j
kj

=
∑
i∈[r]

∏
j∈[s]

 ∑
kj∈[nj ]

ci,jkj x
j
kj


=
∑
i∈[r]

∏
j∈[s]

〈
ci,j , xj

〉
.

Observation 1 allows us to draw a connection with the concept of tensor rank. The rank of an
n1 × n2 × · · · × ns tensor C is the minimum number r such that C has a factorization of the form
(1). In this case, we say that (1) is a rank factorization of C. It is well-known that the rank of an



n1 × n2 × · · · × ns tensor C with s ≥ 2 is less than or equal to the product of the s − 1 smallest
numbers among n1, n2, . . . , ns. In the case s = 2, the definition of rank and of rank factorization
of a tensor reduce to the well-known definitions for a matrix. In fact, we have∑

i∈[r]

(ci,1 ⊗ ci,2) = ABT,

where A is the n1 × r matrix with column i equal to ci,1, and B is the n2 × r matrix with column
i equal to ci,2, for i ∈ [r]. While it is possible to determine the rank of a matrix in polynomial
time, for example via Gaussian elimination, determining the rank of a tensor is NP-hard, even for
a tensor of order 3. This follows from [30], which details how to encode any given 3SAT Boolean
formula in n variables and m clauses as an (n+2m+2)×3n× (3n+m) tensor C with the property
that the 3SAT formula is satisfiable if and only if the rank of C is at most 4n+ 2m.

The next result characterizes the best possible sparsity of Problem F-U in terms of the rank of
the tensor of the coefficients of the objective function of Problem E-U.

Observation 2. Problem E-U can be reformulated as Problem F-U, where the number r in Prob-
lem F-U equals the rank of the tensor C of the coefficients of the objective function of Problem E-U.
This is best possible, in the sense that it is not possible to write the objective function of Problem E-U
in the form of the objective function of Problem F-U with a strictly smaller r.

Proof. The first part of the statement follows directly from the definition of rank and Observation 1.
In the remainder of the proof we prove the second part of the statement. Assume that the objective
function of Problem E-U can be written in the form of the objective function of Problem F-U:∑

i∈[r]

∏
j∈[s]

〈
ci,j , xj

〉
,

where ci,j ∈ Qnj , for every i ∈ [r] and j ∈ [s]. Let C = (ck1,...,ks) be the n1 × n2 × · · · × ns tensor
of the coefficients of the objective function of Problem E-U. Following the same derivation in the
proof of Observation 1, but in the reverse order, we obtain that the entries of C are

ck1,k2,...,ks =
∑
i∈[r]

∏
j∈[s]

ci,jkj ∀k1 ∈ [n1], k2 ∈ [n2], . . . , ks ∈ [ns].

Hence, C has a factorization of the form (1). From the definition of rank, we have that r is greater
than or equal to the rank of C.

The discussion above about the complexity of determining the rank of a tensor, highlights a
key difference in the complexity of the reductions in Proposition 2 and Observations 1 and 2: The
reformulation in Proposition 2 can be constructed in strongly polynomial time. On the other hand,
the reformulation in Observation 1 can be obtained in strongly polynomial time if the factorization
(1) of C is given. Furthermore, the reformulation in Observation 2 can be obtained in strongly
polynomial time if a rank factorization of C is given, and it cannot be obtained in polynomial time,
in general, unless P=NP.

Observations 1 and 2 are stated in terms of Problems E-U and F-U. Similar results can be also
obtained if we consider, instead of Problem E-U, Problem E in which the associated hypergraph
is s-partite with sides V j , for j ∈ I. In other words, Problem E-U without the assumption that
the hypergraph is s-uniform. A key difference, which results in a significantly more complicated
notation, is that, in this more general problem, we can no longer encode the coefficients of the



objective function with only one tensor. Instead, we need at most 2s − 1 tensors: one for each
subset I of [s] such that there is an edge that contains one node in each V j , for j ∈ I. In these
results, we then need to replace Problem F-U with Problem F. For this pair of more general
problems, one can obtain the following results, which correspond to Observations 1 and 2.

Observation 3. Consider Problem E on an s-partite hypergraph. Assume that all the tensors of
the coefficients of the objective function have a factorization of the form (1). Then, this problem
can be reformulated as Problem F, where |I| equals the sum of all the r in (1), and the cI,j are the
ones from (1).

Observation 4. Consider Problem E on an s-partite hypergraph. This problem can be reformulated
as Problem F, where |I| in Problem F equals the sum of the ranks of the tensors of the coefficients
of the objective function of Problem E. This is best possible, in the sense that it is not possible to
write the objective function of Problem E in the form of the objective function of Problem F with a
strictly smaller |I|.

Observations 3 and 4 follow by applying Observations 1 and 2, respectively, to each tensor of
the coefficients of the objective function of the considered Problem E.

4 Binary tensor factorization and Boolean tensor factorization

To formally introduce the binary tensor factorization problem, and the Boolean tensor factorization
problem, we first define the binary rank and the Boolean rank of a tensor. The binary rank of an
n1 × n2 × · · · × ns tensor C is the minimum number r such that C has a factorization of the form
(1), where ci,j ∈ {0, 1}nj , for every i ∈ [r] and j ∈ [s]. On the other hand, the Boolean rank of an
n1 × n2 × · · · × ns tensor C is the minimum number r such that C has a factorization of the form∨

i∈[r]

(ci,1 ⊗ ci,2 ⊗ · · · ⊗ ci,s), (2)

where ∨ denotes the component-wise “or” operation, and where ci,j ∈ {0, 1}nj , for every i ∈ [r]
and j ∈ [s]. We refer the interested reader to [31] for more informations on the different notions of
rank. In the rank-t binary tensor factorization problem, we are given an n1 × n2 × · · · × ns tensor
A = (ak1,...,ks) and an integer t. The goal is to find an n1 × n2 × · · · × ns tensor B = (bk1,...,ks) of
binary rank t that minimizes the objective function∑

k1∈[n1]

· · ·
∑

ks∈[ns]

(ak1,...,ks − bk1,...,ks)
2 . (3)

Also in the rank-t Boolean tensor factorization problem, we are given an n1 × n2 × · · · × ns tensor
A = (ak1,...,ks) and an integer t. However, the goal is to find an n1×n2×· · ·×ns tensor B = (bk1,...,ks)
of Boolean rank t that minimizes the objective function (3). In the special case t = 1 the two
problems coincide. The case s = 2, t = 1 is the rank-1 Boolean matrix factorization problem. It
is shown in [40] that the latter problem can be formulated as Problem Q with s = 2. Next, we
extend this result to tensors of any order, and to the more general rank-t binary tensor factorization
problem.



Proposition 3. The rank-t binary tensor factorization problem on an n1 × n2 × · · · × ns tensor
A = (ak1,...,ks) can be formulated as the following Problem E on an st-partite hypergraph:

max
xi,j

∑
k1∈[n1]

· · ·
∑

ks∈[ns]

(2ak1,...,ks − 1)
∑
i∈[t]

∏
j∈[s]

xi,jkj − 2
∑

i,i′∈[t], i<i′

∏
j∈[s]

xi,jkj x
i′,j
kj


s. t. xi,j ∈ {0, 1}nj ∀i ∈ [t], j ∈ [s].

(BTF)

Proof. Consider the binary tensor factorization problem. For every k1 ∈ [n1], k2 ∈ [n2], . . . , ks ∈ [ns]
we have

bk1,...,ks =
∑
i∈[t]

xi,1k1 x
i,2
k2

· · ·xi,sks .

Since xi,j is binary, for every i ∈ [t], j ∈ [s], we have, for every k1 ∈ [n1], k2 ∈ [n2], . . . , ks ∈ [ns]:

(ak1,...,ks − bk1,...,ks)
2 =

ak1,...,ks −
∑
i∈[t]

∏
j∈[s]

xi,jkj

2

= a2k1,...,ks − 2ak1,...,ks
∑
i∈[t]

∏
j∈[s]

xi,jkj +

∑
i∈[t]

∏
j∈[s]

xi,jkj

2

= a2k1,...,ks − 2ak1,...,ks
∑
i∈[t]

∏
j∈[s]

xi,jkj +
∑
i∈[t]

∏
j∈[s]

(
xi,jkj

)2
+ 2

∑
i,i′∈[t], i<i′

∏
j∈[s]

xi,jkj x
i′,j
kj

= a2k1,...,ks − 2ak1,...,ks
∑
i∈[t]

∏
j∈[s]

xi,jkj +
∑
i∈[t]

∏
j∈[s]

xi,jkj + 2
∑

i,i′∈[t], i<i′

∏
j∈[s]

xi,jkj x
i′,j
kj

= a2k1,...,ks + (1− 2ak1,...,ks)
∑
i∈[t]

∏
j∈[s]

xi,jkj + 2
∑

i,i′∈[t], i<i′

∏
j∈[s]

xi,jkj x
i′,j
kj

.

Our binary tensor factorization problem can then be formulated as Problem E. Note that, in each
monomial in the objective function, no two variables from the same vector xi,j , for i ∈ [t], j ∈ [s], are
ever multiplied together in the same monomial. Therefore, this optimization problem is Problem E
on an st-partite hypergraph, with t(n1 +n2 + · · ·+ns) variables, and with an objective function of
degree 2s.

Corollary 5. The rank-1 Boolean tensor factorization problem on an n1 × n2 × · · · × ns tensor
A = (ak1,...,ks) can be formulated as the following Problem E-U on an s-partite hypergraph:

max
x1,...,xs

∑
k1∈[n1]

· · ·
∑

ks∈[ns]

(2ak1,...,ks − 1)
∏
j∈[s]

xjkj

s. t. xj ∈ {0, 1}nj ∀j ∈ [s].

(BTF1)

Proof. In the special case t = 1, the rank-1 Boolean tensor factorization problem coincides with
the rank-1 binary tensor factorization problem. It then follows from Proposition 3 that the rank-1
Boolean tensor factorization problem on an n1×n2×· · ·×ns tensor A = (ak1,...,ks) can be formulated
as Problem BTF1, which is of the form of Problem E on an s-partite hypergraph. Note that, in
each monomial in the objective function, precisely one variable from each vector xj , for j ∈ [s], is
present. Therefore, this optimization problem is of the form of Problem E-U.



Next, we see how the binary tensor factorization problem and the rank-1 Boolean tensor fac-
torization problem can be formulated succinctly as Problem F and Problem F-U, respectively, if a
factorization of the input tensor A is given. This result will allow us to show our tractability results
for the binary tensor factorization problem and its special cases, Corollaries 1 to 3, as consequences
of our main result.

Proposition 4. Consider the rank-t binary tensor factorization problem on an n1 × n2 × · · · × ns

tensor

A =
∑
p∈[q]

(
ap,1 ⊗ ap,2 ⊗ · · · ⊗ ap,s

)
,

where ap,j ∈ Qnj , for every p ∈ [q], j ∈ [s]. Then, the problem can be reformulated, in strongly
polynomial time, as Problem F with s := st and with |I| := tq + (t2 + t)/2.

Proof. Let A = (ak1,...,ks). From Proposition 3, the rank-t binary tensor factorization problem can
be formulated as Problem BTF. In this problem, the coefficients of the objective function can be
encoded with one tensor for each sum inside the square brackets in the objective function.

First, we consider the first sum, over all i ∈ [t], and we consider now one specific such i.
The corresponding tensor of coefficients is an n1 × n2 × · · · × ns tensor, and the entry in position
(k1, k2, . . . , ks) is 2ak1,...,ks − 1. Clearly, we have

2A =
∑
p∈[q]

(
ap,1 ⊗ ap,2 ⊗ · · · ⊗ 2ap,s

)
.

For every j ∈ [s], let ej be the vector in Qnj with all components equal to one. Then, the
n1 × n2 × · · · × ns tensor with all entries equal to one can be written as

e1 ⊗ e2 ⊗ · · · ⊗ (−es).

We can now write the above tensor of coefficients in the form∑
p∈[q]

(
ap,1 ⊗ ap,2 ⊗ · · · ⊗ 2ap,s

)
+
(
e1 ⊗ e2 ⊗ · · · ⊗ (−es)

)
.

Next, we consider the second sum inside the square brackets in the objective function. This sum
is over all i, i′ ∈ [t] with i < i′, and we consider now one specific such pair i, i′. The corresponding
tensor of coefficients is an n1 × n1 × n2 × n2 × · · · × ns × ns tensor, and all the entries are equal to
−2. We can then write the above tensor of coefficients as

e1 ⊗ e2 ⊗ · · · ⊗ (−2es).

Problem BTF is a special case of Problem E. It then follows from Observation 3 that the
rank-t binary tensor factorization problem can be formulated as Problem F, with s := st and
|I| = t(q + 1) + (t2 − t)/2 = tq + (t2 + t)/2.

Corollary 6. Consider the rank-1 Boolean tensor factorization problem on an n1 × n2 × · · · × ns

tensor

A =
∑
p∈[q]

(
ap,1 ⊗ ap,2 ⊗ · · · ⊗ ap,s

)
,

where ap,j ∈ Qnj , for every p ∈ [q], j ∈ [s]. Then, the problem can be reformulated, in strongly
polynomial time, as Problem F-U with the same s, nj, for j ∈ [s], and with r := q + 1.



More applications. We conclude this section by mentioning some additional applications for
which Problem E, with an associated s-partite hypergraph, and Problem F provide a better fit than
Problem E. In [40] the author provides a number of applications of Problem Q with s = 2. These
are the maximum weight biclique problem, the maximal sum submatrix problem, and the problem
of finding the cut-norm of a matrix. Problem E, with an associated s-partite hypergraph, allows
us to directly formulate problems that contain the ones above as special cases. In the maximum
weight biclique problem, instead of a bipartite graph, we can consider a multipartite graph with
more than two sides, or even a multipartite hypergraph. In the maximal sum submatrix problem,
and in the problem of finding the cut-norm of a matrix, instead of a matrix in input, we can have a
tensor of any order. If this input tensor is given through a factorization of the form (1), then these
problems can be naturally formulated in the form of Problem F-U, due to Observation 1. We leave
the details of these formulations to the reader.

5 Proofs of main results

In this section, we prove our main results. We begin by stating an extended version of Theorem 1,
presented in Section 1. In Problem F, we denote by mj , for j ∈ [s], the number of sets I ∈ I that
contain index j and at least one index strictly smaller than j.

Theorem 2. Problem F can be solved with

sθs−1nm2
2 nm3

3 · · ·nms
s poly(n1, n2, . . . , ns, |I|)

arithmetic operations, where θ is a constant. Furthermore, the size of the numbers produced in
the course of the execution of the algorithm is polynomial in the size of the input. In particular,
Problem F can be solved in strongly polynomial time, provided that s,m2, . . . ,ms are fixed.

Clearly, Theorem 2 implies Theorem 1, since |I| in Problem F is an upper bound on mj , for
every j ∈ [s]. It is interesting to note that the parameter m1, unlike all other mj , for j ∈ [s] \ {1},
never appears as an exponent in the running time in Theorem 2, so it does not need to be fixed
to obtain a polynomial time algorithm. Furthermore, due to the symmetry of the problem, we can
assume without loss of generality that m1 is the largest of the mj , for j ∈ [s]. This detail is lost in
Theorem 1. The proof of Theorem 2 is presented in the next section.

5.1 Proof of Theorem 2

Our algorithm is based on the construction of hyperplane arrangements. We now introduce the
proper terminology. A finite family of hyperplanes in Rd defines a dissection of Rd into connected
sets of various dimensions. We call this dissection the arrangement of these hyperplanes. The
connected sets of dimension d are called cells of the arrangement. We refer the reader to [21, 22]
for more information about hyperplane arrangements.

5.1.1 The algorithm

Case s = 1. We set x̄1 ∈ {0, 1}n1 so that:

x̄1k =

{
1 if

∑
I∈I c

I,1
k > 0

0 if
∑

I∈I c
I,1
k < 0

∀k ∈ [n1], (4)



meaning that in the case
∑

I∈I c
I,1
k = 0, we can set arbitrarily x̄1k to either 0 or 1. Return the

solution (x̄1).

Case s ≥ 2. We partition the family I into Iα, Iβ, and Iγ as follows: Iα contains the sets I ∈ I
that do not contain index s; Iβ contains the sets I ∈ I that strictly contain {s}; Iγ contains the
sets I ∈ I that coincide with {s}. Note that |Iβ| = ms. For every I ∈ Iβ, define variable λI . For
every k ∈ [ns], define the affine function

hk : RIβ → R

λ 7→
∑
I∈Iβ

λIc
I,s
k +

∑
I∈Iγ

cI,sk , (5)

and the corresponding hyperplane in RIβ :

Hk :=
{
λ ∈ RIβ : hk(λ) = 0

}
∀k ∈ [ns]. (6)

Construct the arrangement of these hyperplanes in RIβ with the algorithm in [21, 22], and denote
by A the set of cells of the arrangement.

The remainder of the algorithm should be applied, separately, to each cell C ∈ A, so we now
fix one cell C ∈ A. The cell C induces a signing of the hyperplanes Hk, for every k ∈ [ns]. Namely,
for every k ∈ [ns], we know which inequality among hk(λ) ≥ 0 and hk(λ) ≤ 0 is valid for C, and
note that precisely one of the two inequalities is valid for C, since C is full-dimensional. We then
define the partial solution corresponding to cell C as x̄s ∈ {0, 1}ns as follows:

x̄sk :=

{
1 if hk(λ) ≥ 0 is valid for C

0 if hk(λ) ≤ 0 is valid for C
∀k ∈ [ns]. (7)

Define the child instance of Problem F corresponding to cell C as the optimization problem ob-
tained, from Problem F, by fixing xs to x̄s:∑

I∈Iγ

〈
cI,s, x̄s

〉
+ max

x1,...,xs−1

∑
I∈Iα

∏
j∈I

〈
cI,j , xj

〉
+
∑
I∈Iβ

〈
cI,s, x̄s

〉 ∏
j∈I\{s}

〈
cI,j , xj

〉
s. t. xj ∈ {0, 1}nj ∀j ∈ [s− 1].

(FC)

Problem FC is essentially a new instance of Problem F with the parameter s decreased by one.
However, there are two minor differences that we should point out. First, there is a constant term∑

I∈Iγ
〈
cI,s, x̄s

〉
in the objective function, that we brought outside of the max. Second, there is

a constant factor
〈
cI,s, x̄s

〉
in the sum over I ∈ Iβ. This second issue can be easily remedied by

absorbing the scalar
〈
cI,s, x̄s

〉
in precisely one of the subsequent inner products

〈
cI,j , xj

〉
, say the

one corresponding to the smallest j ∈ I \ {s}. If we denote this index by ĵ, this is accomplished by

redefining cI,ĵ as
〈
cI,s, x̄s

〉
cI,ĵ in the new instance.

We then apply the algorithm recursively to Problem FC . Let (x̃1, x̃2, . . . , x̃s−1) be the solu-
tion returned by the algorithm applied to Problem FC . The algorithm then returns the solution
(x̃1, x̃2, . . . , x̃s−1, x̄s) to Problem F.

5.1.2 Correctness

In this section, we show that the algorithm presented in Section 5.1.1 is correct, that is, that it
returns an optimal solution to Problem F.



The proof is by induction on s. In the base case we assume s = 1, and so all sets I ∈ I are
equal to {1}. Problem F takes the form

max
x1

∑
I∈I

〈
cI,1, x1

〉
s. t. x1 ∈ {0, 1}n1 .

The objective function is linear in x1 and can be written in the form

∑
I∈I

〈
cI,1, x1

〉
=

〈∑
I∈I

cI,1, x1

〉
=
∑

k∈[n1]

(∑
I∈I

cI,1k

)
x1k.

It is then simple to check that the solution (x̄1) defined in (4) and returned by the algorithm is
optimal to Problem F.

Next, we consider the induction step, and we assume s ≥ 2. In our first claim, below, we write
the objective function of Problem F as a linear function in xs, if we think to all other variables xj ,
for j ∈ [s − 1], as being fixed. Let Iα, Iβ, and Iγ be the partition of the family I defined in the
algorithm.

Claim 1. The objective function of Problem F can be written in the form∑
I∈Iα

∏
j∈I

〈
cI,j , xj

〉
+
∑

k∈[ns]

hk(λ)x
s
k, (8)

where, for every k ∈ [ns], hk(λ) is the affine function defined by the algorithm in (5), and where

λI :=
∏

j∈I\{s}

〈
cI,j , xj

〉
∀I ∈ Iβ.

Proof. The objective function of Problem F can be written in the form∑
I∈I

∏
j∈I

〈
cI,j , xj

〉
=
∑
I∈Iα

∏
j∈I

〈
cI,j , xj

〉
+
∑
I∈Iβ

∏
j∈I

〈
cI,j , xj

〉
+
∑
I∈Iγ

∏
j∈I

〈
cI,j , xj

〉
. (9)

Since each I ∈ Iβ strictly contains {s}, we can write the second summand in (9) as follows:

∑
I∈Iβ

∏
j∈I

〈
cI,j , xj

〉
=
∑
I∈Iβ

 ∏
j∈I\{s}

〈
cI,j , xj

〉〈cI,s, xs〉

=

〈∑
I∈Iβ

 ∏
j∈I\{s}

〈
cI,j , xj

〉 cI,s, xs

〉

=
∑

k∈[ns]

∑
I∈Iβ

∏
j∈I\{s}

〈
cI,j , xj

〉
cI,sk

xsk.



Since each I ∈ Iγ coincides with {s}, the third summand in (9) can be written as follows:∑
I∈Iγ

∏
j∈I

〈
cI,j , xj

〉
=
∑
I∈Iγ

〈
cI,s, xs

〉
=

〈∑
I∈Iγ

cI,s, xs

〉

=
∑

k∈[ns]

∑
I∈Iγ

cI,sk

xsk.

From (9), we can then write the objective function of Problem F in the form

∑
I∈Iα

∏
j∈I

〈
cI,j , xj

〉
+
∑

k∈[ns]

∑
I∈Iβ

∏
j∈I\{s}

〈
cI,j , xj

〉
cI,sk

xsk +
∑

k∈[ns]

∑
I∈Iγ

cI,sk

xsk =

=
∑
I∈Iα

∏
j∈I

〈
cI,j , xj

〉
+
∑

k∈[ns]

∑
I∈Iβ

∏
j∈I\{s}

〈
cI,j , xj

〉
cI,sk

+

∑
I∈Iγ

cI,sk

xsk

=
∑
I∈Iα

∏
j∈I

〈
cI,j , xj

〉
+
∑

k∈[ns]

∑
I∈Iβ

λIc
I,s
k +

∑
I∈Iγ

cI,sk

xsk

=
∑
I∈Iα

∏
j∈I

〈
cI,j , xj

〉
+
∑

k∈[ns]

hk(λ)x
s
k.

Note that, in (8), the first sum and each hk(λ), for k ∈ [ns], generally depend on xj , for
j ∈ [s− 1], but do not depend on xs. Claim 1 allows us to characterize the vector xs of all optimal
solutions to Problem F, as we see in the next claim.

Claim 2. Let x̆ be an optimal solution to Problem F and let

λ̆I :=
∏

j∈I\{s}

〈
cI,j , x̆j

〉
∀I ∈ Iβ.

We have

x̆sk =

{
1 if hk(λ̆) > 0

0 if hk(λ̆) < 0.
∀k ∈ [ns]. (10)

Furthermore, each solution obtained from x̆ by flipping the value of any number of variables x̆sk,

k ∈ [ns], such that hk(λ̆) = 0, is optimal to Problem F as well.

Proof. For a contradiction, assume there is k ∈ [ns] such that x̆sk does not satisfy the corresponding
condition in (10). Consider now the solution obtained from x̆ by flipping the value of variable x̆sk,
from 0 to 1, or from 1 to 0. It follows from Claim 1 that the objective value of this new solution
is strictly larger than the objective value of x̆. This contradicts the optimality of x̆, thus x̆ must
satisfy conditions (10).

Next, let k ∈ [ns] such that hk(λ̆) = 0. Consider the solution obtained from x̆ by flipping the
value of variable x̆sk. It follows from Claim 1 that this new solution has the same objective value
as x̆, so it is optimal too.



While there are 2ns possible binary vectors xs ∈ {0, 1}ns , our goal is to exploit Claim 2 to
identify a polynomial number of possible candidates. The idea is to use hyperplane arrangements
to consider all possible vectors xs that are compatible with (10). However, the function hk(λ), for
every k ∈ [ns] depends on x1, x2, . . . , xs−1 which amounts to n1+n2+ · · ·+ns−1 variables, and this
would result in an exponential bound using hyperplane arrangements. The key is to observe that
hk(λ), in fact, depends only on the λI , for I ∈ Iβ, as suggested by our purposely chosen notation.

Consider the hyperplanes Hk, for every k ∈ [ns], defined by the algorithm in (6), and let A be
the set of cells of the arrangement of these hyperplanes, as in the algorithm. In the next claim, we
show that there is at least one cell in A which provides a partial solution from an actual optimal
solution to Problem F.

Claim 3. There exists an optimal solution x̊ to Problem F and a cell C ∈ A such that, if we denote
by x̄s ∈ {0, 1}ns the partial solution corresponding to cell C defined in (7), we have x̊s = x̄s.

Proof. Let x̆ be an optimal solution to Problem F and let λ̆I , for every I ∈ Iβ, be defined as in

Claim 2. Note that λ̆ is in at least one cell in A, and it may be contained in more than one. Let
C be any cell in A containing λ̆, and let x̄s ∈ {0, 1}ns be the partial solution corresponding to C
defined in (7). Now we compare x̆s with x̄s and show

x̆sk = x̄sk if hk(λ̆) ̸= 0 ∀k ∈ [ns]. (11)

To prove (11), consider separately the cases hk(λ̆) > 0 and hk(λ̆) < 0. In the first case we have
x̆sk = 1 from (10). Since λ̆ ∈ C, then hk(λ) ≥ 0 is valid for C, therefore we have x̄sk = 1 from (7).

In the second case we have x̆sk = 0 from (10). Since λ̆ ∈ C, then hk(λ) ≤ 0 is valid for C, therefore
we have x̄sk = 0 from (7). This concludes the proof of (11).

Let x̊ be the solution to Problem F defined as follows:

x̊j := x̆j ∀j ∈ [s− 1]

x̊sk :=

{
x̆sk if hk(λ̆) ̸= 0

x̄sk if hk(λ̆) = 0
∀k ∈ [ns].

From Claim 2, x̊ is also an optimal solution to Problem F. Due to (11) and the definition of x̊, we
have x̊s = x̄s.

Consider now the child instance Problem FC of Problem F corresponding to a cell C from
Claim 3. The next simple claim will be useful to conclude the proof of the correctness of our
algorithm.

Claim 4. Let xj ∈ {0, 1}nj for every j ∈ [s − 1]. The objective value of (x1, x2, . . . , xs−1) in
Problem FC equals the objective value of (x1, x2, . . . , xs−1, x̄s) in Problem F.

Proof. Follows directly from the fact that Problem FC is obtained from Problem F by fixing xs to
x̄s.

Let (x̃1, x̃2, . . . , x̃s−1) be the solution returned by the algorithm applied to Problem FC .

Claim 5. The solution (x̃1, x̃2, . . . , x̃s−1, x̄s) is optimal to Problem F.

Proof. By induction, the solution (x̃1, x̃2, . . . , x̃s−1) is optimal to Problem FC . Let x̊ be an opti-
mal solution to Problem F as in Claim 3. Since (x̃1, x̃2, . . . , x̃s−1) is optimal to Problem FC , its
objective value in Problem FC is greater than or equal to the objective value of (̊x1, x̊2, . . . , x̊s−1)



in Problem FC . From Claim 4, the objective value of (x̃1, x̃2, . . . , x̃s−1) in Problem FC equals
the objective value of (x̃1, x̃2, . . . , x̃s−1, x̄s) in Problem F. Claim 4 also implies that the objec-
tive value of (̊x1, x̊2, . . . , x̊s−1) in Problem FC equals the objective value of (̊x1, x̊2, . . . , x̊s−1, x̄s)
in Problem F. Hence, in Problem F, the objective value of (x̃1, x̃2, . . . , x̃s−1, x̄s) is greater than or
equal to the objective value of (̊x1, x̊2, . . . , x̊s−1, x̄s). From Claim 3, we have (̊x1, x̊2, . . . , x̊s−1, x̄s) =
(̊x1, x̊2, . . . , x̊s−1, x̊s), hence this solution is optimal to Problem F.We then obtain that also (x̃1, x̃2, . . . , x̃s−1, x̄s)
is optimal to Problem F.

5.1.3 Running time

In this section, we prove the bound on the running time of our algorithm stated in Theorem 2.

Claim 6. The algorithm presented in Section 5.1.1 performs at most

sθs−1nm2
2 nm3

3 · · ·nms
s poly(n1, n2, . . . , ns, |I|)

arithmetic operations, where θ is a constant.

Proof. In the first iteration, the algorithm constructs at most θnms
s child instances of the form of

Problem FC in at most θnms
s arithmetic operations, where θ is a constant [21, 22]. The parameter

s associated with each child instance is decreased by one, and the dimensions of the vectors of
variables in the new instances are unchanged: n1, n2, . . . , ns−1. It follows from the construction
of Problem FC that also the values mj , for j ∈ [s − 1], associated with the child instances, are
unchanged. The total number of problems of the form Problem F considered in the recursive
algorithm, and the number of arithmetic operations to construct them, is then at most

1 + θnms
s + θ2nms

s n
ms−1

s−1 + · · ·+ θs−1nms
s n

ms−1

s−1 · · ·nm2
2 ≤ sθs−1nms

s n
ms−1

s−1 · · ·nm2
2 ,

where the inequality holds because we can assume, without loss of generality, that θ ≥ 1. For each
instance considered, the number of remaining arithmetic operations performed by the algorithm is

poly(n1, n2, . . . , ns, |I|).

To conclude the proof of Theorem 2, it suffices to show the following result.

Claim 7. The size of the numbers produced in the course of the execution of the algorithm presented
in Section 5.1.1 is polynomial in the size of the input.

Proof. In each iteration of the algorithm, the size of the numbers produced by the algorithm is
polynomial in the size of the data of the instance of Problem F considered at the beginning of
that iteration. This includes the numbers produced by the algorithm in [21, 22] to construct the
arrangement of the hyperplanes.

On the other hand, we show that the size of the data of each child instance Problem FC

constructed throughout the execution of the algorithm is polynomial in the size of the data of the
original instance of Problem F. In fact, from the construction of Problem FC , each child instance
is obtained from the original instance of Problem F by fixing each component of xt, xt+1, . . . , xs,
for some t ∈ {2, 3, . . . , s}, to zero or one. As a result, each number appearing in a child instance is
obtaining by summing or multiplying polynomially many numbers from the original instance.



5.2 Corollaries

In this section, we discuss some consequences of Theorem 1, for different optimization problems.

5.2.1 An extension of factorized binary polynomial optimization

First, we remark that our algorithm can be used, with minor modifications, to prove the same
result for the slightly more general optimization problem obtained from Problem F by replacing
each linear function in the objective with an affine function:

max
x1,...,xs

∑
I∈I′

∏
j∈I

(〈
cI,j , xj

〉
+ dI,j

)
s. t. xj ∈ {0, 1}nj ∀j ∈ [s].

(F′)

The data of the problem consists of positive integers s and nj , for j ∈ [s], a nonempty family I ′ of
nonempty subsets of [s], vectors cI,j ∈ Qnj , and scalars dI,j ∈ Q, for I ∈ I ′, j ∈ I. We decided to
give our algorithm only for Problem F, to avoid overloading the notation, which is already quite
heavy. Furthermore, the tractability of Problem F′ can be obtained directly from the tractability
of Problem F, as we see next.

Corollary 7. Problem F′ can be solved in strongly polynomial time, for any fixed s and |I ′|.

Proof. For every I ∈ I ′, the corresponding product in the objective function,
∏

j∈I
(〈
cI,j , xj

〉
+ dI,j

)
,

can be expanded to a sum ∑
I′∈S(I)

∏
j∈I

〈
c′
I,j

, xj
〉
+ dI ,

where S(I) is a set of nonempty subsets of I, c′I,j ∈ Qnj for j ∈ I, and dI ∈ Q. Therefore,
Problem F′ can be written in the form of Problem F with the same parameter s and with |I| ≤ 2s|I ′|.
The result then follows from Theorem 1.

5.2.2 Explicit binary polynomial optimization on an s-partite hypergraph

Using Observation 3, we obtain the following corollaries to Theorem 1 for Problem E on an s-partite
hypergraph.

Corollary 8. Consider Problem E on an s-partite hypergraph. This problem can be solved in
strongly polynomial time if s is fixed, and all the tensors of the coefficients of the objective function
are given through a factorization of the form (1), with r fixed.

Corollary 9. Consider Problem E on an s-partite hypergraph. This problem can be solved in
strongly polynomial time if s is fixed, and all the tensors of the coefficients of the objective function
have fixed rank and rank factorizations are given.

5.2.3 Binary tensor factorization and rank-1 Boolean tensor factorization

Next, we discuss consequences of Theorem 1 for the binary tensor factorization problem and the
rank-1 Boolean tensor factorization problem. Theorem 1, Proposition 4, and Corollary 6 directly
imply the following results.



Corollary 10. The rank-t binary tensor factorization problem on an n1 × n2 × · · · × ns tensor

A =
∑
p∈[q]

(
ap,1 ⊗ ap,2 ⊗ · · · ⊗ ap,s

)
,

where ap,j ∈ Qnj , for every p ∈ [q], j ∈ [s], can be solved in strongly polynomial time for any fixed
q, s, t.

Corollary 11. The rank-1 Boolean tensor factorization problem on an n1 × n2 × · · · × ns tensor

A =
∑
p∈[q]

(
ap,1 ⊗ ap,2 ⊗ · · · ⊗ ap,s

)
,

where ap,j ∈ Qnj , for every p ∈ [q], j ∈ [s], can be solved in strongly polynomial time for any fixed
q, s.

When the input tensor A has fixed rank and a rank factorization is given, from Corollaries 10
and 11, we obtain Corollaries 1 and 2, stated in Section 1. In the special case s = 2, Corollary 2
implies Corollary 3, since a rank factorization of a matrix can be computed in strongly polynomial
time via Gaussian elimination [23].

5.2.4 The quadratic case

Regarding quadratic objective functions, Corollary 4 can be obtained easily from Theorem 1
and Observation 3. We give a proof that does not use Observation 3, since the algebra in this
special case is significantly simpler.

Proof of Corollary 4. Consider a matrix Q ∈ Qm×n. We can compute in strongly polynomial time,
via Gaussian elimination [23], a rank factorization of Q, that is, matrices A ∈ Qm×r, B ∈ Qn×r

such that Q = ABT, where r is the rank of Q [46]. If we denote column i of A by ai, and column i
of B by bi, for every i ∈ [r], we can write

xTQy = xTABTy

= xT

∑
i∈[r]

(
ai ⊗ bi

) y

= xT

∑
i∈[r]

(
aibi

T
) y

=
∑
i∈[r]

(
xTaibi

T
y
)

=
∑
i∈[r]

(〈
ai, x

〉 〈
bi, y

〉)
.

We apply the above argument to each matrix Qi,j ∈ Qni×nj , for i, j ∈ [s] with i < j, in the
objective function of Problem Q. There are (s2 − s)/2 of these matrices, and we denote by r the
maximum of their ranks. Problem Q can then be written in the form of Problem F, where |I| is at
most r(s2 − s)/2+ s. This number is fixed, since by assumption s and r are fixed. The result then
follows from Theorem 1.



6 Comparison with known tractability results

Every instance of Problem F can be reformulated as an instance of Problem E by expanding all
products in the objective function; thus we can employ known algorithms for Problem E to solve
Problem F. In this section we show that our Theorem 1 does not follow from known tractability
results of Problem E. To the best of our knowledge, five main polynomially solvable classes of
Problem E on a hypergraph H = (V,E) have been identified so far. These are instances such that:
C1 The objective function is supermodular (see Chapter 45 in [44]);
C2 H is a β-acyclic hypergraph [12,13,19] (see also [5, 15,18]);
C3 H is a cycle hypergraph [11];
C4 The primal treewidth of H is bounded by log(poly(|V |, |E|)) [3, 8, 36];
C5 The incidence treewidth of H is bounded by log(poly(|V |, |E|)) [6].

It will suffice to consider the special case of Problem F in Example 1: Problem F-U with r = 1,
and with each vector c1,j ∈ Qnj , for every j ∈ [s], having all nonzero components. It is also
sufficient to consider the case n1 = n2 = · · · = ns, and we set n := n1. Theorem 1 implies that
this problem can be solved in strongly polynomial time for any fixed s. As we saw in Example 1,
expanding all products in the objective function, the problem takes the form of Problem E-U, where
the corresponding hypergraph is s-partite, with sides V j , for j ∈ [s], of cardinality n, is s-uniform,
and contains all possible ns edges; We denote this hypergraph by Hs

n.
The following facts imply that even the polynomial solvability of this special case of Problem F,

for every s ≥ 2 fixed, does not follow from any of the known tractable classes C1–C5 above.

Fact 1. The objective functions of the problems considered in Example 1 are not generally super-
modular, for every s ≥ 2, n ≥ 1.

Fact 2. The hypergraph Hs
n is not β-acyclic, for every s ≥ 2, n ≥ 2.

Fact 3. The hypergraph Hs
n is not a cycle hypergraph, for every s ≥ 2, n ≥ 3.

Fact 4. The primal treewidth of Hs
n is (s− 1)n, for every s ≥ 2, n ≥ 1.

Fact 5. The incidence treewidth of Hs
n is at least n, for every s ≥ 2, n ≥ 1.

Facts 1 to 3 are easy to verify.

Proof of Fact 1. It suffices to partition the set [s] into nonempty sets S1, S2, and construct one
solution x̄ = (x̄1, x̄2, . . . , x̄s) with all x̄j , j ∈ S1, with all components one, and all xj , j ∈ S2, with
all components zero. The objective values of x̄ and 1−x̄ are zero, and so is the objective value of the
componentwise minimum x̄ ↓ (1− x̄). On the other hand, the objective value of the componentwise
maximum x̄ ↑ (1− x̄) is the sum of all edge costs, which can easily be made negative.

Proof of Fact 2. Let vj1, v
j
2 be two distinct nodes in V j , for every j ∈ [s]. A β-cycle of length four

is

v11,
{
v11, v

2
1, . . . , v

s
1

}
, vs1,

{
v12, v

2
1, v

3
1, . . . , v

s
1

}
, v12,

{
v12, v

2
2, . . . , v

s
2

}
, vs2,

{
v11, v

2
2, v

3
2, . . . , v

s
2

}
, v11.

Proof of Fact 3. For every s ≥ 2 and n ≥ 3, in the hypergraph Hs
n, each node is contained in at

least three edges. However, in a cycle hypergraph, each node is contained in at most two edges.



In the remainder of the section, we prove Facts 4 and 5. We start by defining the primal
treewidth and the incidence treewidth of a hypergraph H = (V,E). First, we associate two graphs
to H. The primal graph Gprim(H) of H is defined as the graph whose node set is V and edge set is
{{u, v} : u ̸= v, ∃e ∈ E, {u, v} ∈ e}. Intuitively, the primal graph is obtained by replacing every
edge of H by a clique. The incidence graph Ginc(H) of H is defined as the bipartite graph whose
node set is V ∪E and the edge set is {{v, e} : v ∈ V, e ∈ E, v ∈ e}. The primal treewidth ptw(H)
of H is the treewidth of its primal graph, that is ptw(H) = tw(Gprim(H)), while the incidence
treewidth itw(H) is the treewidth of its incidence graph, that is itw(H) = tw(Ginc(H)). In the next
result, we characterize the treewidth of a complete s-partite graph, which is an s-partite graph that
contains all possible edges (of cardinality two).

Lemma 1. Let K be the complete s-partite graph, with s ≥ 2, and with sides V j of cardinality n,
for j ∈ [s]. Then tw(K) = (s− 1)n.

Proof. It is well-known that the treewidth of K is the minimum size of the largest clique minus
one, in a chordal completion of K.

Let h ∈ [s]. Let G be the graph obtained from K by adding, for each j ∈ [s] \ {h}, all edges
between all pairs of nodes in V j . The graph G is chordal because it has the following perfect
elimination ordering: First we list all nodes in V h in any order, and next all nodes in V \ V h in
any order. Since any maximal clique of G consists of all nodes in V \ V h and one node in V h, the
size of the largest clique in G is (s− 1)n+ 1.

Now let G′ = (V, F ) be a chordal graph containing K. We claim that there is h ∈ [s] such
that, for every j ∈ [s] \ {h}, F contains all edges between all pairs of nodes in V j . Assume by
contradiction that this does not hold. Then there exist two distinct indices s, t ∈ [s], two nodes
u1, u2 ∈ V s and two nodes v1, v2 ∈ V t such that {u1, u2}, {v1, v2} /∈ F . But then u1, v1, u2, v2, u1 is
a chordless cycle of G′ of length 4, a contradiction. This completes the proof of our claim. Hence,
G′ contains as a subgraph the graph G from the previous paragraph. So the size of the largest
clique in G′ is at least (s− 1)n+ 1. The treewidth of K is then (s− 1)n.

We are now ready to prove Facts 4 and 5.

Proof of Fact 4. The graph Gprim(H
s
n) is the complete s-partite graph with sides V j of cardinality

n, for j ∈ [s]. From Lemma 1, tw(Gprim(H)) = (s − 1)n. We obtain ptw(H) = tw(Gprim(H)) =
(s− 1)n.

Proof of Fact 5. Consider the graph Ginc(H
s
n), whose node set is V ∪ E. Let G′ be the minor of

Ginc(H
s
n) obtained by deleting all nodes in V 3 ∪V 4 ∪ · · · ∪V s, and then contracting the edges with

one node in E and the other node in V 2. G′ is then the complete 2-partite graph with sides V 1,
V 2. From Lemma 1, tw(G′) = n. We obtain itw(Hs

n) = tw(Ginc(H
s
n)) ≥ tw(G′) = n, where the

inequality holds because G′ is a minor of Ginc(H
s
n) (see, e.g., lemma 14 in [4]).

The quadratic case. The special case s = 2 of Problem Q is the binary bipartite quadratic
optimization (BQO) problem studied in [40–42]:

max
x1,x2

x1
T
Qx2 + c1

T
x1 + c2

T
x2

s. t. x1 ∈ {0, 1}n1 , x2 ∈ {0, 1}n2 ,
(BQO)

where Q ∈ Qn1×n2 , c1 ∈ Qn1 , and c2 ∈ Qn2 . A polynomial time algorithm for Problem BQO,
under the assumption that the rank of Q is fixed, follows by combining the algorithm for the



continuous relaxation of Problem BQO in [32] with the rounding procedure in [41], as observed
in [40]. This algorithm is not strongly polynomial, since it needs to solve linear optimization
problems. An algorithm that solves Problem BQO in strongly polynomial time if Q has rank one,
is given in [40,42]. In [42], the authors also present an algorithm for Problem BQO that is strongly
polynomial if the rank of Q is fixed and some “dual non-degeneracy assumptions” are satisfied.
As mentioned by the authors, it seems possible to lift these dual non-degeneracy assumptions by
constructing an appropriate perturbation of the objective function.

The special case s = 2 of our Corollary 4, implies that Problem BQO can be solved in strongly
polynomial time if the rank of Q is fixed. Therefore, our result, even in the very special setting,
significantly expands previously known results, both in terms of generality, since our graph is s-
partite and not just bipartite, and in terms of computational complexity, since our algorithm is
strongly polynomial rather than just weakly polynomial.
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