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Abstract. We consider the household assignment problem as it occurs in the
geo-referencing step of spatial microsimulation models. The resulting model
is a maximum weight matching problem with additional side constraints. For
real-world instances such as the one for the city of Trier in Germany, the number
of binary variables exceeds 109, and the resulting instances are far from being
solvable with standard solvers for mixed-integer linear optimization. Hence, we
derive two methods to compute feasible points of good quality—one based on
the Lagrangian relaxation of the side constraints and the other one based on
problem-tailored decomposition strategies. For both, we theoretically analyze
the obtained feasible points. Moreover, we extensively test the two proposed
methods on real-world and synthetic data sets and compare it with Gurobi as a
benchmark. Our results show that the methods are significantly faster while
computing points that are very close to being optimal. The methods are also
much more efficient in terms of memory usage, which renders the application
of classic branch-and-bound solvers impossible for real-world instances. Finally,
our results for the city of Trier also show a realistic demographic distribution,
which illustrates the applicability of our approach in practice.

1. Introduction

Decisions made concerning public policies and large-scale investments of today’s
societies usually have significant consequences for the population. For this reason,
tools capable of predicting situations and providing significant information in this
regard are becoming increasingly important (O’Donoghue et al. 2014). In particular,
microsimulation models are gaining prominence as a powerful tool for such purposes
and have many applications in various sectors of society like in economics (Flory and
Stöwhase 2012; Basu et al. 1998; Pellegrino et al. 2011), in social policy (Atkinson
et al. 2002; Ballas and Clarke 1999), or in the health system (Morrissey et al. 2008;
Spielauer 2007).

Microsimulation models were first presented by Orcutt (1957) and the interest in
considering geographical aspects in microsimulation models quickly started (Häger-
strand 1957). Since then, there have been many studies of a large number of social
phenomena using the application of spatial microsimulation models. For instance, in
Morrissey and O’Donoghue (2011), the model SMILE is used to analyze the spatial
distribution of labor force participation and market earnings in Ireland. In Rephann
and Holm (2004), the effects of Sweden’s liberal immigration policy are studied using
the dynamic spatial microsimulation model SVERIGE, which can evaluate scenarios
arising from the projection of the population over time. Currently, a dynamic
spatial microsimulation model of Germany’s population is under development in
the project MikroSim (Münnich et al. 2020). This model considers a detailed and
realistic synthetic construction of the population at the micro level, taking into
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account a range of different statistical information. This allows the study of “what
if” scenarios and projections over time in various areas like demography, health,
transportation, housing, and others.

An important step in a spatial microsimulation model is the geo-referencing of its
individuals, which usually translates into the need to get a matching for two or more
data sets. This step is usually performed using statistical tools such as iterative
proportional fitting (Deming and Stephan 1940; Birkin and Clarke 1988) or heuristic
approaches such as simulated annealing or genetic algorithms (Williamson et al.
1998; Birkin et al. 2006; Ballas et al. 1999). Regarding the level of information, there
are studies in which precise spatial coordinates are considered in this step; see, e.g.,
Cullinan (2010), where the authors define the location of households by a random
assignment. However, there are also many cases in which the geo-referencing of
units is done on a small area level (Rephann and Holm 2004; Morrissey et al. 2008;
Ballas and Clarke 1999; Lovelace and Dumont 2017).

Similar to the model considered by Reiter (2021), we present a strategy in
which population units are aggregated into households and assigned to dwellings
in specific spatial coordinates on the municipality level by solving the so-called
household assignment problem (HAP). To this end, we formulate this problem as a
maximum weight matching (MWM) problem in a bipartite graph for which statistical
information associated to the households and dwellings is used to define the weights
of the edges. In addition, application-specific side constraints are included in the
formulation to ensure that the resulting allocation satisfies statistical properties or
distributions that can be observed in the considered regions on different hierarchical
levels.

In the last decades, several algorithms based on linear programming (LP) (Wolsey
1998) or Lagrangian relaxations (Schrijver 1986; Korte and Vygen 2019; Jörnsten and
Näsberg 1986) have been developed in the operations-research literature to tackle
matching and assignment problems with side constraints; see, e.g., Pentico (2007)
for a survey. For instance, Mastrolilli and Stamoulis (2012) develop an LP-based
approach for an MWM problem with specific side constraints. Ball and Taverna
(1985) and Ball et al. (1990) study the minimum cost perfect matching problem with
single and multiple side constraints, respectively, and develop Lagrangian-relaxation-
based approaches for these problems. The particular case of the minimum cost
assignment problem with side constraints is considered by Aboudi and Jørnsten
(1990), who design a cutting-plane algorithm for this problem in which both the
LP and an Lagrangian relaxation are used to solve the separation problem. The
assignment problem with side constraints is also studied by Mazzola and Neebe
(1986), who use Lagrangian relaxation in a heuristic approach and a branch-and-
bound algorithm for this problem. In particular, the latter strategy can often be
observed for the generalized assignment problem; see, e.g. Foulds and Wilson (1999)
and Haddadi and Ouzia (2004). A survey of algorithms based on this technique is
also given by Cattrysse and Van Wassenhove (1992).

For the real-world instances we consider in this paper, the HAP’s size can easily
reach the range of billions of variables. Consequently, both its LP and Lagrangian
relaxations are difficult to treat, which prevents the application of the aforementioned
techniques. Moreover, the Lagrangian relaxation of the model considered in this
paper is an MWM problem, for which there are several graph-based algorithms
(Edmonds and Karp 1972; Korte and Vygen 2019; Munkres 1957) and it could
also be solved as an LP due to its total unimodularity property (Schrijver 1986,
Chapter 19). Again, the huge size of the instances we consider prevents the
application of these strategies in practice. However, it is possible to tackle these
problems with approximation algorithms. Therefore, one of the core contributions
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of this paper is a novel approach using approximation algorithms within a scheme
based on Lagrangian relaxations. For this approach, we show that the approximation
guarantee for the relaxed models leads to a quality guarantee for the objective value
of the obtained matching.

The structure of the models considered also does not allow the problem to be
decomposed without a resulting loss in optimality. In these situations, it is possible to
observe the development of problem-specific algorithms that aim to find high-quality
feasible points by decomposing the problem into reasonably sized sub-problems; see,
e.g., Avis and Devroye (1985), Giortzis et al. (2000) or Chapter 5 of Noor-E-Alam
(2013). Hence, another key contribution of this paper is that we derive an algorithm
in which specific attributes of the households and dwellings are used to decompose
the model. Additionally, the concept of a side-constraint-maximal matching is
introduced and it is shown that our decomposition approach obtains a matching
that satisfies this property.

Our last main contribution is an extensive computational study on synthetic
data sets as well as on a real-world data set for the city of Trier in Germany. The
experiments clearly show that the proposed methods are significantly faster and less
memory-consuming than the standard approach to apply a commercial mixed-integer
optimization solver and also compute feasible points that are very close to optimal
ones. Our results for the city of Trier also show a realistic demographic distribution,
which illustrates the applicability of our approach in practice.

The remainder of the paper is organized as follows. In Section 2, we derive the
model. We discuss the decomposition approach in Section 3 and the Lagrangian-
relaxation-based approach in Section 4. In Section 5, we present our computational
study before we conclude in Section 6.

2. Modeling

The population units are grouped into a household data set with the aim that,
in the geo-referencing process, each household shares the same dwelling within an
address. Furthermore, a dwelling data set is used, which carries specific geospatial
coordinates. In this sense, the population is geo-referenced by matching household
and dwelling data sets. For this problem, a bipartite graph G = (V,E) is constructed
whose vertex set V is the disjoint union of the set H of households and the set D of
dwellings, i.e., V = H ∪D. Based on available statistical information in the data
sets, an edge {h, d} ∈ E is added to the graph G if it reflects a realistic housing
possibility.

Using the statistical information from the data sets, it is possible to define a
weight wh,d ∈ (0, 1] so that, given any edge {h, d} ∈ E, the weight wh,d represents
how adequate the dwelling d is for the household h. It would also be possible to
consider real-world data having wh,d = 0 but since the respective edge will never be
chosen in an optimal solution, we omit this here. We represent a matching M in
the graph G by a set of variables xh,d defined by

xh,d =

{
1, if {h, d} ∈M,

0, otherwise.
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Geo-referencing of population units is then achieved by solving the maximum-weight
matching (MWM) problem

max
x

∑
{h,d}∈E

wh,d xh,d (1a)

s.t.
∑

d:{h,d}∈E

xh,d ≤ 1, h ∈ H, (1b)

∑
h:{h,d}∈E

xh,d ≤ 1, d ∈ D, (1c)

xh,d ∈ {0, 1}, {h, d} ∈ E. (1d)

Obviously, depending on infrastructural or socio-economic properties, different
regions may have significantly different housing properties. In this regard, side
constraints are incorporated into Problem (1) to ensure that any feasible matchingM
reflects an allocation that aligns with local housing characteristics. These constraints
can be added to the model on a given grid structure with grid cells considered
over the entire region. The relation between the set of grid cells K and the set of
dwellings D is established by the binary encoding

sd,k =

{
1, if dwelling d is located in grid cell k,
0, otherwise.

Let ph ∈ N denote the number of persons in the household h, and let Bhhd
k and

Bper
k be an upper bound on the total number of households and persons in grid cell

k, respectively. The constraints∑
{h,d}∈E

sd,k xh,d ≤ Bhhd
k , k ∈ Khhd,

and ∑
{h,d}∈E

ph sd,k xh,d ≤ Bper
k , k ∈ Kper,

are added to Problem (1), where Khhd,Kper ⊆ K are sets of grid cells. In general,
these additional constraints are added to the model only for a fraction of all grid cells,
depending on the regional properties. The MWM problem with side constraints
considered in this work is inspired by the formulation given in Reiter (2021, Chapter
6) and reads as follows:

max
x

∑
{h,d}∈E

wh,d xh,d (2a)

s.t.
∑

d:{h,d}∈E

xh,d ≤ 1, h ∈ H, (2b)

∑
h:{h,d}∈E

xh,d ≤ 1, d ∈ D, (2c)

∑
{h,d}∈E

sd,k xh,d ≤ Bhhd
k , k ∈ Khhd, (2d)

∑
{h,d}∈E

ph sd,k xh,d ≤ Bper
k , k ∈ Kper, (2e)

xh,d ∈ {0, 1}, {h, d} ∈ E. (2f)

In instances of practical size, Problem (2) has a very large number of variables,
which easily reaches the range of billions. Theorem 1 shows that a specific part of the
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binary variables can be relaxed to continuous variables in the problem formulation
to simplify the problem, while keeping the problem size, however, unchanged.

Theorem 1. For DK = {d ∈ D : sd,k = 1, k ∈ Khhd ∪ Kper} consider the
mixed-integer linear problem (MILP)

max
x

∑
{h,d}∈E

wh,d xh,d (3a)

s.t.
∑

d:{h,d}∈E

xh,d ≤ 1, h ∈ H, (3b)

∑
h:{h,d}∈E

xh,d ≤ 1, d ∈ D, (3c)

∑
{h,d}∈E

sd,k xh,d ≤ Bhhd
k , k ∈ Khhd, (3d)

∑
{h,d}∈E

ph sd,k xh,d ≤ Bper
k , k ∈ Kper, (3e)

xh,d ∈ {0, 1}, {h, d} ∈ E, d ∈ DK , (3f)
0 ≤ xh,d ≤ 1, {h, d} ∈ E, d ∈ D \DK . (3g)

If all binary variables xh,d with {h, d} ∈ E and d ∈ DK in Problem (3) are arbitrarily
fixed such that (3d) and (3e) hold, then all extreme points of the feasible set of the
remaining linear problem are integers. In particular, there is an optimal solution
for Problem (3) that is binary.

Proof. Let y be the vector of variables xh,d with {h, d} ∈ E and d ∈ DK and let z
be the vector of variables xh,d with {h, d} ∈ E and d ∈ D \DK . Moreover, let Y be
the set of variable vectors y that satisfy∑

h:{h,d}∈E

xh,d ≤ 1, d ∈ DK ,

∑
{h,d}∈E

sd,k xh,d ≤ Bhhd
k , k ∈ Khhd,

∑
{h,d}∈E

ph sd,k xh,d ≤ Bper
k , k ∈ Kper,

xh,d ∈ {0, 1}, {h, d} ∈ E, d ∈ DK ,

and let Z(y) be the y-depending set of variable vectors z that satisfy∑
d∈D\DK :{h,d}∈E

xh,d ≤ 1−
∑

d∈DK :{h,d}∈E

xh,d, h ∈ H, (4a)

∑
h:{h,d}∈E

xh,d ≤ 1, d ∈ D \DK , (4b)

0 ≤ xh,d ≤ 1, {h, d} ∈ E, d ∈ D \DK . (4c)

By setting
wyy =

∑
d∈DK :{h,d}∈E

wh,d xh,d

and
wzz =

∑
d∈D\DK :{h,d}∈E

wh,d xh,d,

Problem (3) is equivalent to the problem

max
y

P (y) s.t. y ∈ Y,
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where the problem P (y) is given by

max
z

wzz + wyy s.t. z ∈ Z(y).

Given any fixed values for the binary variables xh,d with d ∈ DK that satisfy
Constraints (3d) and (3e), these values correspond to some vector y ∈ Y . Since
Constraints (4a) and (4b) correspond to a totally unimodular matrix, this implies
that all the extreme points of the polytope defined by (4) are integer-valued (Schrijver
1986, Chapter 19), from which the result follows. �

3. Decomposition Methods

In many microsimulation models, the assignment of households to dwellings shall
be performed at a municipal or district level. For a given municipality, the amount
of variables for Model (3) depends on the corresponding amount of households
and dwellings as well as on the available statistical information, which directly
impacts the number of possible assignments of each household. Consequently, it
is possible to observe reasonably-sized municipalities of Germany for which the
number of variables of the Problem (3) is in the range of billions. In such cases, it
is generally not possible to solve the respective instances even with today’s most
involved commercial solvers—let it be due to memory restrictions even on large-scale
high performance computing systems or due to time limits for the solution process.

For optimization problems that require vast amounts of time or memory, applying
heuristics and exploiting problem-specific information facilitate the computation
of high-quality feasible points. These points are often found via solving smaller
sub-problems (Giortzis et al. 2000; Noor-E-Alam 2013, Chapter 5), usually arising
from a decomposition of the original problem. In this section, we present two such
decomposition strategies.

First, the information about the households’ sizes is used to decompose Prob-
lem (3) into sub-problems of the same mathematical structure, but considering only
possible assignments of households of a specific size to dwellings with a sufficient ca-
pacity. Since for smaller household sizes the amount of possibilities to find dwellings
tends to increase naturally, it can often be seen that these sub-problems still have too
many variables to be solved using reasonable time and memory resources. For this
reason, we derive a second strategy that takes regional information into account to
additionally decompose these sub-problems if necessary. This leads to an algorithm
that is capable of finding a feasible solution for the full problem. For the latter
decomposition heuristic, we incorporate verification steps to obtain both a good
objective value for the assignments made and the maximality of the corresponding
matching with respect to the side constraints.

3.1. Decomposition by Household Size. Given a possible assignment {h, d} ∈ E,
one of the most important aspects for computing the weight wh,d is the relationship
between the household’s size ph ∈ N and the dwelling’s capacity cd ∈ N. Considering
general housing aspects of German municipalities, it is reasonable to define that
an edge {h, d} only exists if ph ≤ cd. Moreover, the closer cd − ph is to zero, the
bigger is the weight wh,d. Therefore, although the computation of the weights
considers all the available statistical information to define how realistic a possible
assignment {h, d} is, the values ph and cd play an important role. This fact implies
that an algorithm that decomposes Problem (3) into sub-problems related to the
allocation of households of a specific size has a good chance to lead to a good
objective function value.

Motivated by this discussion, we present a decomposition by household size
for Problem (3). Each iteration of the algorithm starts by finding the largest
household size pmax

h . With this value, we define Hmax = {h ∈ H : ph = pmax
h },
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Dmax = {d ∈ D : cd ≥ pmax
h }, and Emax = {{h, d} ∈ E : h ∈ Hmax, d ∈ Dmax}.

Then, we first assign the households in Hmax by solving the problem

max
x

∑
{h,d}∈Emax

wh,d xh,d (5a)

s.t.
∑

d:{h,d}∈Emax

xh,d ≤ 1, h ∈ Hmax, (5b)

∑
h:{h,d}∈Emax

xh,d ≤ 1, d ∈ Dmax, (5c)

∑
{h,d}∈Emax

sd,k xh,d ≤ Bhhd
k , k ∈ Khhd, (5d)

∑
{h,d}∈Emax

ph sd,k xh,d ≤ Bper
k , k ∈ Kper, (5e)

xh,d ∈ {0, 1}, {h, d} ∈ Emax, d ∈ DK , (5f)
0 ≤ xh,d ≤ 1, {h, d} ∈ Emax, d ∈ D \DK . (5g)

After each solution of Problem (5), we iterate the process by considering all house-
holds except for those in Hmax and taking only those dwellings into account that no
household was assigned to. This heuristic is formally detailed in Algorithm 1.

Algorithm 1: Decomposition by Household Size
Input: Problem (3)
Output: A feasible point x̂ for Problem (3).

1 Initialize x̂← 0.
2 while H 6= ∅ do
3 Set pmax

h ← max{ph : h ∈ H}.
4 Set Hmax ← {h ∈ H : ph = pmax

h } and Dmax ← {d ∈ D : cd ≥ pmax
h }.

5 Set Emax ← {{h, d} ∈ E : h ∈ Hmax, d ∈ Dmax}.
6 Solve Problem (5) and let x be the solution.
7 Set Dassign ← ∅.
8 for d in Dmax do
9 if ∃h ∈ Hmax : xh,d = 1 then

10 Set Dassign ← Dassign ∪ {d}.
11 Let kd be the grid cell in which d is located.
12 if kd ∈ Khhd then
13 Set Bhhd

kd
← Bhhd

kd
− 1.

14 end
15 if kd ∈ Kper then
16 Set Bper

kd
← Bper

kd
− ph.

17 end
18 end
19 end
20 Set H ← H \Hmax and D ← D \Dassign.
21 for {h, d} in Emax do
22 Set x̂h,d ← xh,d.
23 end
24 end
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Figure 1. Iterative Regional Decomposition

In Algorithm 1, a sequence of instances of Problem (5) is solved, which are smaller
in size than Problem (3), but still contain the most accurate dwelling options for the
households in Hmax. By Line 20 of Algorithm 1, households that are not assigned
in the iteration in which they are in Hmax will never be assigned to a dwelling. If
this situation occurs or not, obviously depends on the given instance.

In addition, in Line 6 of Algorithm 1 it can still be the case that the respective
MILP (5) is too large to be solved in a reasonable amount of time or with a
reasonable amount of available memory. In particular, in present-day municipalities,
the number of small-sized households and dwellings is significantly larger than the
number of large ones. For this reason, in later iterations of the algorithm, the
sets Hmax and Dmax tend to have a large number of elements, which may lead to
instances of Problem (5) that still cannot be solved in practice. Hence, in the next
section, we present another decomposition method to compute feasible points for
Problem (5) in such cases.

3.2. Regional Decomposition. Large-scale MILPs with a grid structure can
often be tackled using decomposition strategies based on the decomposition of
the considered geographical region; see, e.g., Noor-E-Alam (2013, Section 5.4). In
our case, we exploit sub-regions consisting of disjoint sets of grid cells and the
sub-problems are then generated according to the information corresponding to each
sub-region. Following this idea, we present a regional decomposition strategy to
compute a feasible solution for Problem (5) if a direct solution is impossible.

The key idea is to halve the geographical region iteratively until each obtained
sub-region contains a sufficiently small amount of dwellings; see Figure 1. Afterward,
the households in Hmax are assigned to these sub-regions so that the average weight
between each household and the dwellings contained in the assigned sub-region is
maximized. This is realized by solving an auxiliary integer linear problem that we
describe in the following.

Let us denote the sub-regions created as non-empty, disjoint sub-
sets D1

max, . . . , D
n
max of Dmax such that

⋃
i=1,...,nD

i
max = Dmax. Now, each

possible assignment of a household h to a sub-region Di
max is represented by the

variable yh,Di
max
∈ {0, 1} for h ∈ Hmax and i ∈ {1, . . . , n}, having the interpretation

yh,Di
max

=

{
1, if h is assigned to Di

max,

0, otherwise.

Given a household h and a sub-region Di
max, the weight χh,Di

max
∈ [0, 1] of the

possible assignment is expressed by the arithmetic mean of the values wh,d for the
dwellings located in Di

max, i.e.,

χh,Di
max

=
1

|Di
max|

∑
d∈Di

max

wh,d.
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To ensure that each household is assigned to exactly one sub-region, we add the
constraints

n∑
i=1

yh,Di
max

= 1, h ∈ Hmax.

Finally, to guarantee that the household distribution occurs proportionally to the
number of dwellings in each sub-region, we use the constraints∑

h∈Hmax

yh,Di
max
≤ BDi

max
, i = 1, . . . , n,

with

BDi
max

=

⌈
|Di

max| · |Hmax|
|Dmax|

⌉
.

The integer linear problem is then given by

max
y

∑
h∈Hmax

n∑
i=1

χh,Di
max

yh,Di
max

(6a)

s.t.
n∑
i=1

yh,Di
max

= 1, h ∈ Hmax, (6b)∑
h∈Hmax

yh,Di
max
≤ BDi

max
, i = 1, . . . n, (6c)

yh,Di
max
∈ {0, 1}, h ∈ Hmax, i = 1, . . . n. (6d)

After solving Problem (6), Hmax can be decomposed into H1
max, . . . ,H

n
max with

Hi
max = {h ∈ Hmax : χh,Di

max
= 1} for i ∈ {1, . . . , n}. Let us define the edge set

Eimax = {{h, d} ∈ E : h ∈ Hi
max, d ∈ Di

max}, which consists of the possible assign-
ments of households in Hi

max to dwellings in Di
max. The allocation of households to

dwellings in every sub-region is then finally computed by solving

max
x

∑
{h,d}∈Ei

max

wh,d xh,d (7a)

s.t.
∑

d:{h,d}∈Ei
max

xh,d ≤ 1, h ∈ Hi
max, (7b)

∑
h:{h,d}∈Ei

max

xh,d ≤ 1, d ∈ Di
max, (7c)

∑
{h,d}∈Ei

max

sd,k xh,d ≤ Bhhd
k , k ∈ Khhd, (7d)

∑
{h,d}∈Ei

max

ph sd,k xh,d ≤ Bper
k , k ∈ Kper, (7e)

xh,d ∈ {0, 1}, {h, d} ∈ Eimax, d ∈ DK , (7f)

0 ≤ xh,d ≤ 1, {h, d} ∈ Eimax, d ∈ D \DK . (7g)

We now embed the sketched procedure in the iterative method given by Algo-
rithm 2. An iteration of the algorithm begins by decomposing the region until all
the sub-regions D1

max, . . . , D
n
max are sufficiently small; see Line 3 of Algorithm 2.

Then, Problem (6) is solved so that the households are distributed among these
sub-regions. For each i ∈ {1, . . . , n} Problem (7) is solved, thereby assigning the
households to the dwellings in each sub-region Di

max. To guarantee a good quality
of the feasible point, a parameter α ∈ [0, 1] is set so that an assignment {h, d} is
only included in the final output if wh,d ≥ α holds; see Lines 8 and 9. Afterward,
the sets of households and dwellings are updated to be considered in subsequent
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iterations (Line 10) and the side constraint data is updated for the next iterations
as well; see Lines 12–18.

The procedure described above may terminate although feasible assignments are
still available at the very end of the while-loop. After the while-loop, the number of
remaining dwellings is sufficiently small and Problem (5) is solved with an exact
method on the remaining households and dwellings.

In a given iteration of the while-loop, it is possible that many available assign-
ments {h, d} do not satisfy wh,d ≥ α, which leads to only a few assignments being
accepted to the final output. This can lead to many iterations and, in some cases,
can even avoid the termination of the algorithm. Therefore, a parameter Amin ∈ N
is used to check if the amount of accepted assignments is sufficiently large; see
Lines 23–32. If it is not, α is decreased by a fixed parameter β ∈ (0, 1] for the next
iteration. Moreover, a parameter γ ∈ [0, 1] is used so that, if α ≤ γ, then both α
and Amin are set to zero. By doing so, a larger number of accepted assignments is
guaranteed, which increases the objective value. Moreover, in an iteration for which
α and Amin are equal to zero, the algorithm terminates if the number of dwellings
is still larger than D̄ and no new assignment is made. The theoretical properties
guaranteed by the algorithm are discussed in detail in the next section.

In the remainder of this paper, the version of Algorithm 1 that additionally uses
Algorithm 2 for solving Problem (5) in Line 6 will be referred to as the decomposition
approach.

3.3. Theoretical Properties of the Decomposition Approach. We now for-
mally define the concept of maximality w.r.t. the side constraints (2d) and (2e).

Definition 1. Given an MWM problem with side constraints in a bipartite graph
G = (V,E), a feasible matching M is said to be side-constraint-maximal (SCM) if
for any assignment {h, d} ∈ E \M , the set M ′ = M ∪ {{h, d}} is infeasible.

Lines 23–32 of Algorithm 2 are key to ensure that the algorithm returns a
SCM matching for Problem (5). We first show this property for Algorithm 2, see
Theorem 2, before we then prove it for Problem (2), see Theorem 3.

Theorem 2. The output of Algorithm 2 is an SCM matching for Problem (5).

Proof. We start with proving that Algorithm 2 terminates after a finite number
of while-loop iterations. Let us assume the opposite. Then, since the sets Hmax

and Dmax are finite, there is an iteration r such that for every later iteration no
new assignments are made, i.e., A = 0 holds. Thus, for some iteration t with
r ≤ t ≤ r + d(α0 − γ)/βe it holds

αt = α0 −
⌈
α0 − γ
β

⌉
β, (8)

where αt is the value computed for α in Line 27 (in iteration t) and α0 is its initial
value. However, observe that

α0 −
⌈
α0 − γ
β

⌉
β ≤ α0 −

α0 − γ
β

β = γ,

holds. Then, from (8) we get αt ≤ γ and, thus, the parameters α and Amin are set
to 0 after Line 28. Therefore, in iteration t+ 1 the conditions in Lines 23 and 24
are satisfied and we stop, which contradicts our assumption.

Next, we prove that the output of Algorithm 2 is an SCM matching. Again, let
us suppose it is not. Definition 1 then leads to the existence of {h0, d0} ∈ Emax \M
such that M ′ = M ∪ {{h0, d0}} is a feasible matching. In particular, this implies
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Algorithm 2: Regional Decomposition
Input: Problem (5), D̄, Amin ∈ N, α, γ ∈ [0, 1], β ∈ (0, 1].
Output: A feasible point x̂ for Problem (5).

1 Set x̂h,d ← 0.

2 while |Dmax| > D̄ and |Hmax| > 0 do
3 Decompose Dmax into D1

max, . . . , D
n
max so that |Di

max| ≤ D̄ holds for all
i = 1, . . . , n.

4 Decompose Hmax into H1
max, . . . ,H

n
max by solving Problem (6).

5 Set A← 0.

6 for i = 1, . . . , n do
7 Solve Problem (7) and let xi denote the optimal solution.
8 Set Ĥi

max ← {h ∈ Hi
max : xih,d = 1, wh,d ≥ α for some d ∈ Di

max}.
9 Set D̂i

max ← {d ∈ Di
max : xih,d = 1, wh,d ≥ α for some h ∈ Hi

max}.
10 Set Hmax ← Hmax \ Ĥi

max and Dmax ← Dmax \ D̂i
max.

11 Set A← A+ |Ĥi
max|.

12 for d in D̂i
max do

13 Set hd ← h ∈ Ĥi
max so that xih,d = 1 and kd ← k ∈ K so that

sd,k = 1.
14 if kd ∈ Khhd then
15 Set Bhhd

kd
← Bhhd

kd
− 1.

16 end
17 if kd ∈ Kper then
18 Set Bper

kd
← Bper

kd
− phd

.
19 end
20 Set x̂hd,d ← 1.

21 end
22 end
23 if A ≤ Amin then
24 if α = 0 and Amin = 0 then
25 Stop.
26 else
27 Set α← α− β.
28 if α ≤ γ then
29 Set α← 0 and Amin ← 0.
30 end
31 end
32 end
33 end
34 if |Hmax|, |Dmax| > 0 then
35 Solve Problem (5) and let x denote the optimal solution.
36 for h in Hmax do
37 if ∃d ∈ Dmax with xh,d = 1 then
38 Set x̂h,d ← 1.
39 end
40 end
41 end
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{h0, d0} /∈M , which leads to h0 ∈ Hmax and d0 ∈ Dmax at the end of Algorithm 2.
Hence, the optimal solution x computed for Problem (5) in Line 35 satisfies

xh0,d = 0, d ∈ Dmax, and xh,d0 = 0, h ∈ Hmax.

Let us define a solution x̂ as

x̂h,d =

{
1, if h = h0 and d = d0,

xh,d, otherwise.

Since M ′ is a feasible matching, x̂ is feasible for Problem (5) and∑
{h,d}∈Emax

wh,d x̂h,d =
∑

{h,d}∈Emax

wh,d xh,d + wh0,d0 ,

which contradicts that x is an optimal solution. This concludes the proof. �

Theorem 3. If Algorithm 2 is used to compute a feasible point for the instances of
Problem (5), the output of Algorithm 1 is an SCM matching for Problem (2).

Proof. Since Algorithm 2 terminates after finitely many iterations, the same applies
to Algorithm 1. Let M be the matching obtained by Algorithm 1. Its SCM
property is again shown by contradiction. Let us assume that M is not an SCM
matching. Then, there exists {h0, d0} ∈ E \M such that M ′ = M ∪ {{h0, d0}} is
a feasible matching for Problem (2). As explained at the beginning of Section 3.1,
given any h ∈ H and d ∈ D, if {h, d} ∈ E then ph ≤ cd holds, which implies
ph0 ≤ cd0 . Consequently, this possible assignment is considered in Problem (5) for
some iteration of Algorithm 1. In this iteration, the matching obtained in Line 6
does not satisfy the SCM property and, thus, it is not optimal for Problem (5), which
can be shown in the same way as in the last proof. Thus, this matching is obtained
by Algorithm 2, which contradicts Theorem 2 and the proof is complete. �

Note that the latter theorem holds true if Algorithm 2 is replaced by any other
method that computes an SCM matching for Problem (5).

4. A Lagrangian-Relaxation-Based Approximation Method

Problem (2) is an MWM problem with side constraints (2d) and (2e). Without
the latter, mainly due to the total unimodularity property, there would be many
attractive solution strategies such as LP-based (Schrijver 1986, Chapter 19) or graph-
based techniques, like the Hungarian algorithm and the Edmonds–Karp algorithm
(Munkres 1957; Edmonds and Karp 1972).

In this section, we first present a Lagrangian-relaxation-based (LR-based) refor-
mulation of Problem (2) and then prove that this reformulation can be written in
the form (1) for any vector of Lagrange multipliers. However, we do not solve the
min-max problem associated to the Lagrangian relaxation since this is too costly for
the size of the considered problems. Instead, we derive an iterative method for only
adjusting the multipliers without explicitly considering the dual problem. In every
iteration of this method, a problem of the form (1) is considered. In particular,
this means that these problems are still as large as the original one, which is why
we resort to approximation algorithms to tackle these problems. Finally, we prove
that the approximation guarantee for these sub-problems yields an approximation
guarantee for the overall problem.
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4.1. A Lagrangian-Relaxation-Based Reformulation. Let λ ∈ R|Khhd|+|Kper|

be the vector of multipliers λhhd
k for all k ∈ Khhd and λper

k for all k ∈ Kper. With
this notational convention, we consider the formulation

max
x

fλ(x) (9a)

s.t.
∑

d:{h,d}∈E

xh,d ≤ 1, h ∈ H, (9b)

∑
h:{h,d}∈E

xh,d ≤ 1, d ∈ D, (9c)

xh,d ∈ {0, 1}, {h, d} ∈ E, (9d)

where fλ : {0, 1}|E| → R is a function defined by

fλ(x) =
∑

{h,d}∈E

wh,d xh,d −
∑

k∈Khhd

λhhd
k

 ∑
{h,d}∈E

sd,k xh,d −Bhhd
k


−

∑
k∈Kper

λper
k

 ∑
{h,d}∈E

ph sd,k xh,d −Bper
k


with λhhd

k , λper
k ≥ 0. In this problem, λ is of crucial importance. If the values of λ

are close to zero, the optimal solution xλ to Problem (9) can easily violate the
side constraints of Problem (2). If these values are too large, xλ tends to satisfy
these constraints strictly, which generates a considerable difference between both
objective functions. Therefore, our iterative approach is designed to find solutions
with a good objective value for Problem (2) for λ-values not being too large but
still guaranteeing feasibility of the computed points.

Before we discuss the mentioned iterative procedure, we first show that Prob-
lem (9) can be written in the form of an MWM (1).

Lemma 1. Let λhhd
k ≥ 0 for all k ∈ Khhd and λper

k ≥ 0 for all k ∈ Kper be given.
Then, Problem (9) is equivalent to

max
x

∑
{h,d}∈E

χh,d xh,d (10a)

s.t.
∑

d:{h,d}∈E

xh,d ≤ 1, h ∈ H, (10b)

∑
h:{h,d}∈E

xh,d ≤ 1, d ∈ D, (10c)

xh,d ∈ {0, 1}, {h, d} ∈ E, (10d)

with

χh,d =


wh,d, if sd,k = 1 for k /∈ Khhd ∪Kper,

wh,d − λhhd
k , if sd,k = 1 for k ∈ Khhd \Kper,

wh,d − λper
k ph, if sd,k = 1 for k ∈ Kper \Khhd,

wh,d − λhhd
k − λper

k ph, if sd,k = 1 for k ∈ Khhd ∩Kper.

Proof. The function fλ in Problem (9) can be written as

fλ(x) =
∑

{h,d}∈E

wh,d xh,d −
∑

k∈Khhd

∑
{h,d}∈E

λhhd
k sd,k xh,d +

∑
k∈Khhd

λhhd
k Bhhd

k

−
∑

k∈Kper

∑
{h,d}∈E

λper
k ph sd,k xh,d +

∑
k∈Kper

λper
k Bper

k .
(11)
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Since each dwelling is contained in exactly one grid cell, by the definition of sd,k we
can write ∑

{h,d}∈E

∑
k∈Khhd

λhhd
k sd,k xh,d =:

∑
{h,d}∈E

ωhhd
d xh,d (12)

and ∑
{h,d}∈E

∑
k∈Kper

λper
k ph sd,k xh,d =:

∑
{h,d}∈E

ωper
d xh,d, (13)

with

ωhhd
d =

{
λhhd
k , if sd,k = 1 for k ∈ Khhd,

0, otherwise,
and

ωper
d =

{
λper
k ph, if sd,k = 1 for k ∈ Kper,

0, otherwise.
Substituting (12) and (13) in (11) leads to

fλ(x) =
∑

{h,d}∈E

wh,dxh,d −
∑

{h,d}∈E

ωhhd
d xh,d −

∑
{h,d}∈E

ωper
d xh,d

+
∑

k∈Khhd

λhhd
k Bhhd

k +
∑

k∈Kper

λper
k Bper

k .
(14)

Since the last two terms in (14) are constant, they can be omitted and we obtain

max
x

∑
{h,d}∈E

(wh,d − ωhhd
d − ωper

d )xh,d

s.t.
∑

d:{h,d}∈E

xh,d ≤ 1, h ∈ H,

∑
h:{h,d}∈E

xh,d ≤ 1, d ∈ D,

xh,d ∈ {0, 1}, {h, d} ∈ E,
from which the result follows. �

4.2. Approximation Guarantees. Although the structure of Model (10) is simpler
than the one of Problem (2), the number of variables is still the same and this
still renders the application of exact methods generally impossible. As a remedy,
approximation algorithms can be used to obtain a feasible matching (Drake and
Hougardy 2003; Preis 1999). These methods usually have a faster running time and
additionally guarantee a certain quality of the obtained points. In our setup, the
latter guarantee is of the form ∑

e∈Ma

we ≥ η
∑
e∈M∗

we, (15)

where M∗ is the maximum weight matching and Ma is the matching computed by
the approximation algorithm with η ∈ (0, 1] being the guaranteed approximation
factor.

Before we move on, let us briefly comment on the fact that Problem (10) might
have objective function coefficients χh,d that are non-positive. Obviously, these edges
will never appear in any optimal solution. Hence, from now on, for a given vector of
multipliers λ we always consider Problem (10) on the graph G(λ) = (H ∪D,E(λ))
with E(λ) = E \ {{h, d} ∈ E : χh,d ≤ 0}. We further assume that E(λ) 6= ∅ always
holds. The coefficients χh,d are functions of λ so that the notation makes sense.
Moreover, the restriction to this sub-graph also implies that all optimal solutions to
Problem (10) have positive objective function values.
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We now prove that the application of an approximation algorithm to the instances
of Problem (10) implies an approximation guarantee similar to (15) for the original
Problem (2).

Theorem 4. Let λ > 0 be given and fixed and consider Problem (10) on the
graph G(λ). Moreover, let x̃λ,a ∈ {0, 1}|E(λ)| be the point computed by an approxi-
mation algorithm with approximation factor η ∈ (0, 1] for Problem (10) and define
xλ,a ∈ {0, 1}|E| by extending x̃λ,a with zeros for all edges e ∈ E \ E(λ). Then,∑

{h,d}∈E

wh,d x
∗
h,d −

∑
{h,d}∈E

wh,d x
λ,a
h,d

≤ (1− η)
∑

{h,d}∈E

wh,d x
∗
h,d −

∑
k∈Khhd

λhhd
k

 ∑
{h,d}∈E

sd,k x
λ,a
h,d −B

hhd
k


−

∑
k∈Kper

λper
k

 ∑
{h,d}∈E

ph sd,k x
λ,a
h,d −B

per
k


holds, where x∗ is an optimal solution of Problem (2).

Proof. Let x̃λ,∗ be an optimal solution of Problem (10) on the graph G(λ) and define
xλ,∗ by extending x̃λ,∗ with zeros for all edges e ∈ E \ E(λ). The approximation
guarantee of the approximation method yields∑

{h,d}∈E χh,d x
λ,a
h,d∑

{h,d}∈E χh,d x
λ,∗
h,d

=

∑
{h,d}∈E(λ) χh,d x̃

λ,a
h,d∑

{h,d}∈E(λ) χh,d x̃
λ,∗
h,d

≥ η. (16)

Note that optimal solutions always have positive objective function values and,
hence, the expression in (16) is well-defined. We now define

B :=
∑

k∈Khhd

λhhd
k Bhhd

k +
∑

k∈Kper

λper
k Bper

k

and we obtain
fλ(x) =

∑
{h,d}∈E

χh,d xh,d +B.

Moreover, it holds

fλ(xλ,a)

fλ(xλ,∗)
=

∑
{h,d}∈E χh,d x

λ,a
h,d +B∑

{h,d}∈E χh,d x
λ,∗
h,d +B

≥
∑
{h,d}∈E χh,d x

λ,a
h,d∑

{h,d}∈E χh,d x
λ,∗
h,d

≥ η. (17)

By Lemma 1, xλ,∗ is also an optimal solution to (9) and since x∗ is feasible for this
problem, we obtain ∑

{h,d}∈E

wh,d x
∗
h,d ≤ fλ(x∗) ≤ fλ(xλ,∗),

which, in turn, implies
fλ(xλ,a)∑

{h,d}∈E wh,d x
∗
h,d

≥ fλ(xλ,a)

fλ(xλ,∗)
. (18)

Thus, by (17) and (18) we have

fλ(xλ,a)∑
{h,d}∈E wh,dx

∗
h,d

≥ η.
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Using the definition of fλ again, we finally obtain∑
{h,d}∈E

wh,d x
λ,a
h,d

≥ η
∑

{h,d}∈E

wh,d x
∗
h,d +

∑
k∈Khhd

λhhd
k

 ∑
{h,d}∈E

sd,k x
λ,a
h,d −B

hhd
k


+

∑
k∈Kper

λper
k

 ∑
{h,d}∈E

ph sd,k x
λ,a
h,d −B

per
k

 ,

from which the result follows. �

Algorithm 3: An LR-Based Iterative Approximation Algorithm

Input: Problem (2), an initial vector multipliers λ ∈ (0, 1]|K
hhd|+|Kper|, and

an update factor ζ > 1.
Output: An approximate solution x̂ to Problem (2).

1 Initialize Violation ← True.
2 while Violation = True do
3 Set Violation ← False.
4 Approximately solve Problem (10) on the graph G(λ) for the current λ

and let x̃λ,a ∈ {0, 1}|E(λ)| denote the approximate solution that we
extend to xλ,a ∈ {0, 1}|E| by inserting zeros for all edges e ∈ E \ E(λ).

5 for k in Khhd do
6 if

∑
{h,d}∈E sd,kx

λ
h,d > Bhhd

k then
7 Update λhhd

k ← ζλhhd
k and set Violation ← True.

8 end
9 end

10 for k in Kper do
11 if

∑
{h,d}∈E phsd,kx

λ
h,d > Bper

k then
12 Update λper

k ← ζλper
k and set Violation ← True.

13 end
14 end
15 end
16 Set x̂← xλ,a.

4.3. The Iterative Method. The iterative method based on Lagrangian relax-
ations of the problem and their approximate solutions is given in Algorithm 3. In the
light of this iterative method, the inequality provided by Theorem 4 is particularly
interesting for our application. If xλ,a is an approximate solution to Problem (10)
in the last iteration of the method, the number of households and persons allocated
in the grid cells in Khhd and Kper tend to be close to their upper bounds Bhhd

k

and Bper
k . This implies that the values

∑
k∈Khhd

λhhd
k

 ∑
{h,d}∈E

sd,k x
λ,a
h,d −B

hhd
k

 ,
∑

k∈Kper

λper
k

 ∑
{h,d}∈E

ph sd,k x
λ,a
h,d −B

per
k


are small in comparison to the optimal objective value of Problem (2). By ignoring
these small terms in the inequality of the theorem, we see that we obtain the same
approximation guarantee η as in the original approximation method (15).
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Let us close this section with a final remark. Obviously, there are many different
approximation algorithms that one could choose to approximately solve the MWM
problem in every iteration of Algorithm 3. For our implementation, we use the path-
growing algorithm (Drake and Hougardy 2003) due to three reasons. First, the time
complexity of this algorithm is O(|E|), which is, to the best of our knowledge, the
best available for MWM problems. Second, it has a good approximation guarantee of
η = 1/2, which is, e.g., the same as for Greedy-type methods. Third, it is possible to
warm-start the path-growing algorithm in every iteration based on the approximate
solution obtained in the iteration before. Since the details depend on specific aspects
of the path-growing algorithm and since using the latter is not at the core of the
contribution of this paper, we omit the details.

A matching obtained from the path-growing algorithm does not need to be
maximal in the corresponding graph. Therefore, in each iteration of Algorithm 3,
we incorporated a post-processing step that guarantees that we obtain a maximal
matching w.r.t. Problem (10). In this post-processing step, each household that
is not assigned by the path-growing algorithm is processed and the corresponding
available edge with the largest weight is used for the assignment. This enhances
the objective value in each iteration of the method. However, it does not guarantee
that the output of the overall method is an SCM matching for Problem (2).

5. Computational Study

Section 5.1 and 5.2 contain the details of the real-world and the synthetic data
sets used in the computational study, as well as the details about the construction
of the side constraints. In Section 5.3, a description of the hardware and software
setup is given. Finally, we discuss the results in Section 5.4 and 5.5.

The focus of the computational study is on the comparison between the decomposi-
tion approach presented in Section 3, the Lagrangian-relaxation-based approximation
method (LRBAM) as discussed in Section 4, and the direct application of a MILP
solver. The performance of each method is evaluated by considering its run time, its
memory usage, and the quality of the obtained points. Further discussions concern
how the characteristics of the instances affect the performance of each method.

5.1. Real-World Data Sets. The real-world data used in the study represent the
city of Trier, in the federal state of Rhineland-Palatinate, Germany, with 103 100
inhabitants and 20 701 residential buildings according to the Census 2011. The
dwelling data set is developed by Reiter (2021, Chapter 4) as an extension to a
building data set (Weymeirsch et al. 2024). In this data set, each of the 52 709
dwellings contains information on its capacity, i.e., the maximum number of people
that can properly live in it, along with the precise geo-coordinates (X,Y ) of its
location, which implies its assignment to a specific grid cell of the region.

The household data set used in this study has been synthetically generated from
the Census 2011 data as part of the MikroSim project.1 For this paper, we focus on
a subset of the data associated with the city of Trier, comprising 49 109 households.
The central information of this data set concerns the size of each household, i.e.,
the number of persons in the household. Therefore, as explained at the beginning
of Section 3.1, given a household h ∈ H and a dwelling d ∈ D, the edge {h, d} only
exists if ph ≤ cd. Similarly to Reiter (2021, Chapter 6), the weight of each edge is
computed as

wh,d =
1

1 + cd − ph
. (19)

1https://mikrosim.uni-trier.de/de/

https://mikrosim.uni-trier.de/de/
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To improve memory resource usage in numerical experiments, we do not consider
edges {h, d} such that wh,d < 0.2. This data set is called Trier in what follows.

To evaluate the effect of the data set sizes in the treatment of the HAP by
the proposed methods, we carry out further numerical experiments based on two
additional subsets of the Trier data set: one with 14 752 households and 15 839
dwellings, and another one containing 24 600 households and 26 428 dwellings. These
data sets are called Trier_30 and Trier_50, respectively, since they correspond to
approximately 30 % and 50 % of the Trier data set. For each of the three real-world
data sets, two different instances of the HAP are analyzed: one with the side
constraints (2d) and (2e), and the other one without these constraints. In those
instances that include the constraints, the sets Khhd and Kper comprise the five
grid cells with the highest number of residential dwellings and the five grid cells
with the largest total dwelling capacities, respectively. The corresponding upper
bounds for such constraints are set to

Bhhd
k =

0.8 ·
∑

d∈D:cd 6=0

sd,k

 (20)

and

Bper
k =

⌈
0.8 ·

∑
d∈D

cdsd,k

⌉
. (21)

5.2. Instances of Synthetic Data Sets. Since statistical information on house-
holds and dwellings is used to define the corresponding edge weights, a larger
variability of the given statistical information in the data sets implies a larger vari-
ability of the possible weight values. To analyze how this affects the final solution
and the performance of the proposed methods, we generate further synthetic data
sets using Gaussian Mixture Models. The approach used here is inspired by the one
by Reiter (2021, Chapter 5) but differs in two relevant aspects. The first one is the
insertion of new types of statistical information in the data sets. The second one
is the creation of a workplace data set and an address data set as an intermediate
step, which allows the geographical distribution of the household and dwelling data
sets to resemble the one observed in urban regions. We do not go into the details
here but refer to Appendix A. With the synthetically generated data sets, we then
consider all instances obtained from each possible combination of a synthetically
generated household and the synthetically generated dwelling data set. For each
one, an instance of the HAP is defined considering Khhd as the n grid cells with
the largest number of residential dwellings and Kper as the n grid cells with the
largest total dwelling capacities for n ∈ {0, 3, 5, 10, 20}. For each instance, the values
Bhhd
k and Bper

k are defined by the expressions (20) and (21) for all k ∈ Khhd and
k ∈ Kper, respectively.

5.3. Software and Hardware Setup. We compare three different methods:
(1) The decomposition approach with the parameters of Algorithm 2 set to

D̄ = 4000, Amin = 100, α = 0.7, β = 0.2, and γ = 0.3.
(2) The LRBAM with λhhd

k = 0.1 for all k ∈ Khhd, λper
k = 0.06 for all k ∈ Kper,

and ζ = 1.1.
(3) The direct application of Gurobi (version 10.0.3) to Problem (3).

All of the above methods are implemented in Python 3.6.8. The solver Gurobi
is also used in Lines 7 and 35 of Algorithm 2, and in Line 6 of Algorithm 1 (if
this is applicable, otherwise Algorithm 2 is used in Line 6 of Algorithm 1). The
maps shown in this work are built using QGIS 3.28.11 (QGIS Development Team
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Figure 2. Run time (in minutes; y-axis) vs. number of households
(x-axis). Left: Khhd and Kper with 5 grid cells each. Right: Khhd

and Kper with 10 grid cells each.

2024). In particular, for the real-world data sets, a base map by OpenStreetMap
(OpenStreetMap contributors 2017) is used.

Given the significant difference in computational resource requirements between
the experiments for the synthetic data sets and for the real-world data sets, distinct
computational settings are selected for each scenario. For the synthetic data sets,
all the computations are executed on an Intel XEON SP 6126 at 2.6GHz using a
maximum 24 cores and 360 GB RAM. For the real-world data sets, we use an AMD
EPYC 9754 at 2.25GHz using a maximum of 32 cores. Here, for the decomposition
approach and the LRBAM we use 500 GB RAM, while we use 700 GB RAM when
we directly apply Gurobi. We always set a time limit of 48 h.

5.4. Numerical Results for the Synthetic Data Sets.

5.4.1. Run Time. If one fixes the number of dwellings in the synthetic data sets,
the resulting instances usually get harder to solve when the number of households
is increased, which can be seen in Figure 2. It can be observed that Gurobi is
significantly slower than the two methods and its run time is much more impacted
by the number of households. This could have been expected for two reasons. First,
Gurobi is designed to find an optimal solution, whereas both proposed approaches
focus on “only” finding good feasible points. Second, unlike the other methods,
Gurobi must consider all the variables of the problem simultaneously, making it more
sensitive to the increase in the number of households.

Figure 2 also shows that there is an increase in run time of the methods if
more side constraints are considered. In particular, there is a much larger increase
for the run time of Gurobi than for the two other methods when the number of
grid cells in Khhd and Kper raises from 5 (left plot) to 10 (right plot). Moreover,
Figure 3 also shows that the run time increases in dependence on the number of side
constraints—although Gurobi has a less monotonic behavior w.r.t. this parameter.
Hence, although the inclusion of side constraints raises the complexity of the problem,
in some cases more of these constraints seem to be beneficial for Gurobi. The latter
can be seen when the number of grid cells in Khhd and Kper increases from 0 to 3,
with a reduction of 12.58 min, and from 10 to 20, with a reduction of 57.6 min in
run time. Figure 3 additionally indicates that the increase in the number of side
constraints implies an increase in the LRBAM run time because a larger number
of iterations is needed. Finally, the decomposition approach does not seem to be
severely impacted by these parameters and is the fastest method.
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Figure 3. Run time (in minutes) vs. number of grid cells in Khhd

and Kper. Left: 12 000 households. Right: 14 000 households.

Figure 4. Memory usage (in GB RAM) vs. number of households.
Left: Khhd and Kper with 5 grid cells each. Right: Khhd and Kper

with 10 grid cells each.

5.4.2. Memory Usage. As already mentioned, the size of the considered MILP
models is huge, leading to enormous memory requirements for Gurobi. Note that
while Gurobi is not used in LRBAM, it is used in the decomposition approach,
where the size of the Gurobi models is controlled in Line 3 of Algorithm 2. The
most memory-consuming step of the two newly proposed methods is storing of the
wh,d-values for all {h, d} ∈ E, while for the direct application of Gurobi, the required
memory is much larger. Moreover, the memory requirement of Gurobi also increases
for larger number of households. This is confirmed by Figure 4.

A similar trend can also be observed w.r.t. the number of side constraints (2d)
and (2e) in an instance, as shown in Figure 5. The increase in the number of these
constraints affects the effort needed by the solving process of Gurobi, and thus tends
to increase its memory usage.

5.4.3. Quality of the Final Point. In all our numerical experiments, the two newly
proposed methods obtain objective values that are very close to the optimal one.
This is shown in Figure 6, which shows the particular cases in which Khhd and Kper

contain 5 (left plot) and 10 (right plot) grid cells each. Specifically, it can also be
seen that even in the hardest instances, where the difference between the number of
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Figure 5. Memory usage (in GB RAM) vs. number of grid cells in
Khhd and Kper. Left: 12 000 households. Right: 14 000 households.

Figure 6. Objective value vs. number of households. Left: Khhd

and Kper with 5 grid cells each. Right: Khhd and Kper with 10
grid cells each.

dwellings and the number of households is relatively small, only a slight increase
occurs in the difference between each objective value.

In all the computed allocations, most of the addresses have an average weight
of assignments between 0.8 and 1, which highlights the geographical quality of the
allocations obtained. This is shown in Figure 7 and 8 for specific instances. In
particular, Figure 7 shows that the number of addresses with an average weight
between 0 and 0.2 is strictly related to the difference between the number of dwellings
and the number of households in the data set.

5.5. Numerical Results for Real-World Data Sets. The instances correspond-
ing to the real-world data sets have significantly more variables than those associated
with the synthetic data sets. As a result, the increase in the size of the bipartite
graph implies an important change in the run time of the LRBAM, as shown in
Table 1 and 2. Without side constraints, where the LRBAM terminates in one
iteration, it is slower than the decomposition approach but considerably faster than
Gurobi for all instances. However, the inclusion of side constraints implies that more
iterations are needed in the LRBAM to find a feasible point. Thus, the need to deal
with a very large graph in every iteration increases its run time, which makes it
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Figure 7. Average weight per address in the allocation computed
by Gurobi for Khhd and Kper with 10 grid cells each. The grid cells
shown in the plot actually correspond to the grid cells of the model.
Left: 12 000 households. Right: 14 000 households.

Figure 8. Average weight per address considering 14 000 house-
holds for Khhd and Kper containing 10 grid cells each. The grid
cells shown in the plot actually correspond to the grid cells of the
model. Left: Allocation of the decomposition approach. Right:
Allocation of LRBAM.
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Gurobi LRBAM Decomposition

Trier_30 56.35 13.85 7.89
Trier_50 167.20 38.80 16.17
Trier – 189.51 43.64

Table 1. Run time (in minutes) of the methods for instances
without side constraints for each of the real-world data sets.

Gurobi LRBAM Decomposition

Trier_30 37.91 94.18 8.79
Trier_50 109.32 292.06 17.33
Trier – 1410.28 45.01

Table 2. Run time (in minutes) of the methods for instances with
side constraints for each of the real-world data sets.

Gurobi LRBAM Decomposition

Trier_30 120.00 11.41 18.70
Trier_50 363.54 38.68 49.95
Trier – 189.33 180.51

Table 3. Memory usage (in GB RAM) for instances of the HAP
with side constraints for each of the real-world data sets.

the slowest method. In the meanwhile, the decomposition approach is not strongly
affected by this factor, being the fastest approach in both situations.

An important advantage of the proposed methods in relation to Gurobi is the
memory usage. As shown in Table 3, the memory needed by both proposed
approaches is similar for all instances and significantly smaller than the memory
usage of Gurobi. In particular, Gurobi is unable to solve the Trier data set instance
with the available 700 GB RAM.

Although the proposed methods do not guarantee to find an optimal solution,
Table 4 shows that the final objective value is very close to the optimal one. Let us
define the relative gap between the objective value of the optimal solution x∗ and
the objective value of the point x obtained by one of the proposed methods as∑

{h,d}∈E wh,d x
∗
h,d −

∑
{h,d}∈E wh,d xh,d∑

{h,d}∈E wh,d x
∗
h,d

.

For the Trier_50 data set, which corresponds to the biggest instances that Gurobi
solves with 700 GB RAM, the relative difference between the optimal objective
value found by Gurobi and the objective value obtained by the LRBAM and the
decomposition approach are 0.15 % and 0.01 %, respectively. This suggests that the
proposed methods obtain near-optimal (if not optimal) solutions. In particular, for
all instances the objective value found by the decomposition approach is slightly
higher than the one of the LRBAM.

Taking a closer look at the computed allocations, Figure 9 shows a pronounced
symmetry in the frequency of the points outside the diagonal of the plot. The
figure depicts a balanced number of households assigned with a higher weight by
either of the methods compared. This explains the similarity in the total objective
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Gurobi LRBAM Decomposition

Trier_30 14 381.24 14 358.02 14 380.52
Trier_50 24 059.12 24 021.52 24 056.81
Trier – 47 982.38 48 053.51

Table 4. Objective value obtained by each method for instances
of the HAP with side constraints for each of the real-world data
sets.

Figure 9. Distribution of households of Trier_50 colored by fre-
quency considering its assignment weight by Gurobi (y-axis) and
by each of the proposed methods (x-axis) for instances with side
constraints. Left: decomposition approach. Right: LRBAM.

values observed in Table 4 while part of the allocation differs between the methods.
Moreover, Figure 9 also shows that more than 75 % of the households in Trier_50
are assigned with weight equal to 1 by Gurobi and by each proposed method. This is
expected, since the computation of the weights wh,d by expression (19) depends only
on two measures (ph and cd). In particular, since the assignments with a weight
equal to 1 represent the case where ph = cd, this implies a trend where most of the
addresses have an occupancy gap near 0. Figure 10 shows this trend also for those
instances of the Trier data set which Gurobi cannot solve. These results emphasize
the quality of the allocation made by the proposed methods from a demographic
perspective because all constraints are respected and the still available living space
is small.

6. Conclusion

We consider the household assignment problem as it occurs in the geo-referencing
step of microsimulation models. For realistically sized instances, this problem cannot
be solved to global optimality by today’s most advanced commercial solvers due
to its enormous memory and run time requirements. Therefore, we introduce two
algorithms designed to derive approximate solutions. One is a Lagrangian-relaxation-
based method in which an approximation algorithm is used in each iteration. The
other one is a decomposition approach in which a feasible point of good quality
is obtained by solving smaller sub-problems. We also derive theoretical results
regarding the quality of the computed points for both methods.

To evaluate the performance of our methods, we generate synthetic data sets and,
additionally, consider real-world datasets for the city of Trier in Germany. For all
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Figure 10. Difference between overall capacity and number of
persons assigned in each address of the Trier data set for the HAP
instance with side constraints. Left: decomposition approach al-
location. Right: LRBAM allocation. Both images use maps by
OpenStreetMap contributors (2017).

instances, both proposed approaches are less memory-consuming than the direct
application of an MILP solver such as Gurobi. This aspect is even more important
when considering larger areas such as, e.g., Berlin instead of Trier. Moreover,
the approximate solutions obtained have objective values that are almost optimal.
Concerning run times, for the synthetic data sets, both presented methods are
faster than Gurobi, while for the real-world data sets, the decomposition approach
clearly outperforms the other approaches. Furthermore, for the complete real-world
data sets, the allocations obtained by the proposed approaches show a realistic
demographic distribution.

Finally, the algorithmic ideas developed in this paper can also be applied to other
matching-type problems with additional side constraints.
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Appendix A. Generation of Synthetic Data Sets

Originally, Gaussian mixture models (GMMs) are used to define a probability
distribution as weighted sums of N Gaussian distributions. The probability density
function of a GMM is defined as

g(x) =

N∑
r=1

θrf(x |µr,Σr)

where f : Rm → R is the probability density function of the Gaussian distribution
and θr ∈ [0, 1] is the probability of that a given data point x belongs to the
distribution given by the mean µr = (µr1, . . . , µ

r
m) and the covariance matrix

Σr =

σ
r
11 . . . σr1m
...

. . .
...

σrm1 . . . σrmm

 with σrij = Cov(Xr
i , X

r
j ).

The following steps generically describe the construction of a data set using GMM.
Step 1: Define the size of the data set and the number N of Gaussian distributions.

For each r ∈ {1, . . . , N}, set the probability θr, the mean vector µr, the
vector of standard deviations σr, and the correlation matrix ρ

r
11 . . . ρr1m
...

. . .
...

ρrm1 . . . ρrmm

 .
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Step 2: Compute the covariance matrix

Σr =


(σr1)2 σr1σ

r
2ρ
r
12 . . . σr1σ

r
mρ

r
1m

σr2σ
r
1ρ
r
21 (σr2)2 . . . σr2σ

r
mρ

r
2m

...
...

. . .
...

σrmσ
r
1ρ
r
m1 σrmσ

r
2ρ
r
m2 . . . (σrm)2


for all r ∈ {1, . . . , N}.

Step 3: Generate a value u from the uniform distribution U(0, 1) and select an
index ξ as

ξ =



1, if 0 ≤ u ≤ θ1,
2, if θ1 < u ≤ θ1 + θ2,

...
r, if

∑r−1
i=1 θi < u ≤

∑r
i=1 θi,

...
N, if

∑N−1
i=1 θi < u ≤ 1.

Step 4: Sample a data point x from the normal distribution with mean vector µξ
and covariance matrix Σξ.

Step 5: Repeat the steps 3–5 until the amount of data set units is reached.
In our strategy, each Gaussian distribution r of the GMM is seen as an urban

sub-region so that the parameters µr and Σr are used to define characteristics of
the workplaces and addresses generated for this sub-region.

A GMM is used to create a workplace data set where each unit contains informa-
tion about its coordinates (X,Y ) and the number of main providers of the household
that it contains. Afterward, this data set is extended to a household data set so
that from each workplace it is generated the number of households corresponding to
its number of household main providers. By doing so, each household h obtains the
location coordinates of the main provider’s workplace (X,Y )h ∈ R2. In this process,
the assignment of size ph ∈ N and monthly income ιh ∈ R+ to the households
follows a Gaussian distribution with parameters defined by the urban sub-region of
the GMM that originated its main provider’s workplace. For this work, a GMM
with 4 sub-regions is used to create household data sets containing a number of
units equal to 10 000, 12 000, 14 000, and 14 500.

The dwelling data set is created with a similar process. Initially, an address data
set is created using a GMM such that each unit is equipped with its coordinates (X,Y )
and its number of dwellings. In the following, this data set is extended to a dwelling
data set so that from each address it is generated the number of dwellings that it
contains. This step defines the spatial coordinates (X,Y )d ∈ R2 of each dwelling d.
Finally, the values related to cost γd ∈ R+ and capacity in terms of number of
persons cd ∈ N for each dwelling are defined by a Gaussian distribution with
parameters depending on the urban sub-region of the GMM that originated its
address. A dwelling data set with 15 000 units is created considering a GMM with 4
sub-regions. For this data set, a grid structure is built such that each cell has side
lengths equal to 100.

Remember that the set of edges E only represents possible assignments. Hence,
for a household h ∈ H and a dwelling d ∈ D, an edge {h, d} only exists if ph ≤ cd
and γd ≤ ιh holds. The weight wh,d ∈ (0, 1] then reflects the compatibility between
h and d for each aspect of the available statistical information. The first aspect to
consider is the relation between the size of the household ph and the capacity of the
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dwelling cd. This measure is defined as

wper
h,d :=

(
δper
max − (cd − ph)

δper
max − δper

min

)2

with

δper
max := max{cd − ph : {h, d} ∈ E} and δper

min := min{cd − ph : {h, d} ∈ E}.
We square the quotient to increase the impact of one unit of variation. The second
aspect considered is the comparison between the monthly cost γd and the household’s
income ιh. By considering the data provided by Statistisches Bundesamt (2024), we
assume that households tend to use approximately 30 % of their income for monthly
dwelling expenses. Therefore, compatibility in this case will be measured using the
expression

winc
h,d :=

δinc
max − |0.3ιh − γd|
δinc
max − δinc

min

with

δinc
max := max{|0.3ιh − γd| : {h, d} ∈ E},
δinc
min := min{|0.3ιh − γd| : {h, d} ∈ E}.

Finally, the distance between the dwelling location (X,Y )d and the location of the
household main provider’s workplace (X,Y )h is considered via

wdist
h,d :=

δdist
max − ‖(X,Y )d − (X,Y )h‖

δdist
max − δdist

min

with

δdist
max := max{‖(X,Y )d − (X,Y )h‖ : {h, d} ∈ E},
δdist
min := min{‖(X,Y )d − (X,Y )h‖ : {h, d} ∈ E}.

The overall measure wh,d is then given by

wh,d := τperw
per
h,d + τincw

inc
h,d + τdistw

dist
h,d

where τper, τinc, τdist ∈ [0, 1] satisfy τper + τinc + τdist = 1. In our computations,
we consider τper = 0.4, τinc = 0.4, and τdist = 0.2. In analogy to the real-world
instances, we do not consider edges {h, d} such that wh,d < 0.15.
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