
Complexity results and active-set identification of a
derivative-free method for bound-constrained problems

Andrea Brilli∗, Andrea Cristofari†, Giampaolo Liuzzi∗, Stefano Lucidi∗

∗Department of Computer, Control and Management Engineering
Sapienza University of Rome, Italy
Via Ariosto, 25, 00185 Rome, Italy

E-mail: brilli@diag.uniroma1.it, liuzzi@diag.uniroma1.it, lucidi@diag.uniroma1.it

†Department of Civil Engineering and Computer Science Engineering
University of Rome “Tor Vergata”

Via del Politecnico, 1, 00133 Rome, Italy
E-mail: andrea.cristofari@uniroma2.it

Abstract. In this paper, we analyze a derivative-free line search method designed for bound-
constrained problems. Our analysis demonstrates that this method exhibits a worst-case complexity
comparable to other derivative-free methods for unconstrained and linearly constrained problems. In
particular, when minimizing a function with n variables, we prove that at most O (nε−2) iterations
are needed to drive a criticality measure below a predefined threshold ε, requiring at most O (n2ε−2)
function evaluations. We also show that the total number of iterations where the criticality measure
is not below ε is upper bounded by O (n2ε−2). Moreover, we investigate the method capability to
identify active constraints at the final solutions. We show that, after a finite number of iterations, all
the active constraints satisfying the strict complementarity condition are correctly identified.

Keywords. Worst-case complexity. Active-set identification. Derivative-free methods.

MSC2000 subject classifications. 90C56. 90C30. 90C26.

1 Introduction

Let us consider the following nonlinear bound-constrained optimization problem:

min f(x)

li ≤ xi ≤ ui, i = 1, . . . , n,
(1)

where li, ui ∈ R ∪ {±∞}, li < ui, i = 1, . . . , n.
We restrict ourselves to considering problem (1) when function values are given by a time consum-

ing black-box oracle. Hence, the analytical expression of f is not available and first-order information
cannot be explicitly used nor approximated within a reasonable amount of time. In such a context,
derivative-free methods [2, 12, 25] are usually employed to solve the problem.

In the literature, several derivative-free methods have been proposed to solve problem (1) (even
with more general constraints). In particular, we can distinguish among model-based methods [9, 12,
18, 20, 22, 33], where the objective function is sampled in a neighborhood of the current point to build
an appropriate model to be minimized, direct-search methods [1, 19, 23, 24, 26], where the objective
function is sampled in a neighborhood of the current point in order to find descent, and line search
methods [28, 30], where directions are explored by allowing the stepsize to dinamically expand.

1

mailto:brilli@diag.uniroma1.it, liuzzi@diag.uniroma1.it, lucidi@diag.uniroma1.it
mailto:andrea.cristofari@uniroma2.it

Complexity and identification of a DF method

For model-based and direct-search methods applied to problems with linear constraints (thus
including (1)), a worst-case analysis can be found in [19, 22], providing upper bounds on the maximum
number of iterations and function evaluations needed to drive a criticality measure below a prespecified
threshold. In particular, in [19], it is shown that at most O (nε−2) iterations and O (n2ε−2) function
evaluations are needed, for a (deterministic) direct-search method, to produce the first point with a
criticality measure below ε > 0, matching the same complexity for the unconstrained case [16, 34].
In [22], similar bounds of O (k2

Dε
−2) iterations and O (nk2

Dε
−2) function evaluations are obtained,

matching the same complexity for the unconstrained case [17], with kD being a problem dimension-
dependent constant which define a fully linear model.

In the current paper, we analyze a line search method to solve problem (1). The algorithm under
analysis is a modification of the one proposed in [29], equipped with a line search technique described
in [7]. In particular, for any considered direction (i.e., a vector of the canonical basis), the line search
technique first checks for a sufficient decrease in the objective function using a giving stepsize. Then,
if such a decrease is obtained, an extrapolation (or expansion) phase starts, where increasingly larger
values of the stespize are tried until some conditions are met. This approach allows us to obtain
complexity and identification results that extend those existing in the literature for direct-search [19]
and model-based [22] methods. In particular, let us summarize the main contributions of this paper
below.

• The first contribution of the current paper is providing a worst-case analysis for the proposed
line search method, which yields to the same bounds for direct search [19], that is, O (nε−2)
iterations andO (n2ε−2) function evaluations to produce the first point with a criticality measure
below ε > 0. Additionally, for the proposed algorithm, we are able to bound the total number of
iterations where the criticality measure is not below ε, thus going beyond the complexity results
for direct-search methods given in [19].

• The second contribution of the current paper is to show finite identification of the active con-
straints for the proposed line search method. Such a property is usually desirable for an opti-
mization algorithm due to, among other things, the possibility of saving function evaluations if
one recognizes the surfaces where a stationary points lies. Furthermore, in several applications,
we might be interested only in the identification of the surface containing an optimal solution
(or its support). In the literature, finite active-set identification was established for smooth opti-
mization algorithms and proximal methods (see, e.g., [3, 5, 8, 21, 35]), also providing complexity
bounds in some cases [6, 13, 32]. In a derivative-free setting, parameter-dependent estimates
were used in [18, 27, 30], allowing for finite identification of active constraints if certain conditions
hold. Moreover, finite identification results have been shown in [14] for a method using an inner
approximation approach to minimize a function over the convex hull of a given set of vectors,
meaning that, in finite time, the algorithm is able to identify, under appropriate assumptions,
the vectors with zero weight in the convex combination representing the final solution.

Here, we show that the proposed algorithm correctly identifies the active constraints satis-
fying the strict complementarity condition in a finite number of iterations, without using any
parameter-dependent estimate. Namely, this feature is just an intrinsic property of the proposed
algorithm. Such a result is obtained by using some tools from the analysis of derivative-based
methods [13, 32]. More specifically, we define a measure which represents the minimum strict
complementarity among the active constraints, thereby providing a neighborhood of the limit
points where the active-set identification holds. Let us remark that also this identification
result is obtained thanks to the extrapolation techninque used in the line search procedure,
which allows the stepsize to expand until we hit the border of the feasible set when we are in a
neighborood of a stationary point.

2

A. Brilli, A. Cristofari, G. Liuzzi, S. Lucidi

1.1 Notations

Given l, u ∈ Rn, we denote [l, u] = {x ∈ Rn : li ≤ xi ≤ ui, i = 1, . . . , n} the feasible set of problem
(1). If A = {a1, . . . , ap} ⊂ Rn is a (finite) set of vectors, we denote

cone(A) =

{
x ∈ Rn : x =

p∑
i=1

βiai, βi ≥ 0, i = 1, . . . , p

}
.

Given v ∈ Rn and a set S ⊆ Rn, we denote by vS the projection of v onto S. Given β ∈ R, we indicate
the sign of β by sign(β), that is, sign(β) is −1 if β < 0, 0 if β = 0 and 1 if β > 0. Finally, ‖v‖ denotes
the `2-norm of vector v.

The paper is organized as follows. In Section 2, we define a line search algorithm for the solution
of problem (1). Section 3 is devoted to the analysis of the asymptotic convergence of the proposed
algorithm, followed by the derivation of worst-case complexity bounds. In Section 4, we show finite
active-set identification of the proposed algorithm. Finally, in Section 5, we draw some conclusions.

2 The algorithm

This section is concerned with the definition of a line search algorithm to solve problem (1). The
proposed method, denoted as Algorithm 1, is a slightly modified version of the one proposed in [28]
and uses some ideas from the one proposed in [7] for unconstrained problems.

At each iteration k, starting from the current iterate xk, the algorithm sets y1
k = xk and explores

the coordinate directions ±ei, i = 1, . . . , n, using stepsizes νik = max{α̃ik, c∆k}, where

∆k = max
i=1,...,n

{α̃ik},

and the quantities α̃ik, i = 1, . . . , n, are tentative stepsizes updated throughout the iterations. Then,
the scheme produces actual stepsizes αik to compute intermediate points yi+1

k = yik + αikd
i
k, with

dik ∈ {±ei}, i = 1, . . . , n. In particular, for any yik, if yik + νikd
i
k is infeasible (i.e., yik is too close to a

bound) or does not provide a sufficient decrease in the objective function, then we set αik = 0 (i.e.,
yi+1
k = yik). Otherwise, a sufficient decrease in the objective function is achieved by moving along dik

with a feasible stepsize αik determined by a line search procedure which will be described later. Then,
we set xk+1 = yn+1

k and prepare for the next iteration k + 1.
As a final note regarding our proposed scheme, we refer to k as a successful iteration if xk+1 6= xk,

indicating that at least one positive stepsize αik, i = 1, . . . , n, has been computed. Conversely, we
refer to k as an unsuccessful iteration if xk+1 = xk, that is, if αik = 0 for all i = 1, . . . , n. Depending
on whether an iteration k is successful or not, we use specific rules to update the tentative stepsizes
for the next iteration k + 1. In more detail, for a successful iteration k, each α̃ik+1 is set to αik if the
latter is positive, whereas α̃ik+1 is set to νik otherwise. For an unsuccessful iteration k, each α̃ik+1 is
set to θνik, with θ ∈ (0, 1).

Given a feasible point x, the exploration of the ith coordinate direction ei is performed by a line
search procedure outlined in Algorithm 2. First, we check if the given stepsize ν is feasible along
±ei, that is, if one between x + νei and x − νei is feasible. If this is not the case, then we quit the
line search returning a zero step length to indicate a failure. Otherwise, we try to determine if one
between ei and −ei is a “good” descent direction, that is, if a sufficient decrease in the objective
function can be obtained by using a feasible stepsize. If neither ei nor −ei qualifies as a suitable
descent direction, then the line search procedure terminates, returning a zero step length to indicate
a failure. Conversely, if a sufficient decrease of f is obtained, then an extrapolation (or expansion)
phase starts (i.e., lines 12–15), where we try to increase the stepsize to the maximum extent while
preserving feasibility and guaranteeing the sufficient decrease condition. Specifically, the while loop

3

Complexity and identification of a DF method

Algorithm 1 Derivative-free line search algorithm

1: given x0 ∈ [l, u], θ ∈ (0, 1), δ ∈ (0, 1), γ > 0, c ∈ (0, 1], α̃i0 > 0, i = 1, . . . , n
2: for k = 0, 1, . . . do
3: set ∆k = maxi=1,...,n{α̃ik}
4: set y1

k = xk
5: for i = 1, . . . , n do
6: set νik = max{α̃ik, c∆k}
7: compute dik and αik by the line search(yik, i, γ, δ, ν

i
k)

8: set yi+1
k = yik + αikd

i
k

9: end for
10: set xk+1 = yn+1

k

11: if xk+1 6= xk then

12: set α̃ik+1 =

{
αik if αik > 0

νik otherwise
i = 1, . . . , n

13: else
14: set α̃ik+1 = θνik, i = 1, . . . , n
15: end if
16: end for

keeps expanding the stepsize as long as the most recently accepted point remains strictly within the
bounds (i.e., α < αmax) and the new tentative point is sufficiently better than the last accepted one
(i.e., f(x+ ηd) ≤ f(x+ αd)− γ(η − α)2).

Algorithm 2 line search(x,i,γ,δ,ν)

1: if ν > max{ui − xi, xi − `i} then return d = ei, α = 0
2: end if
3: set ᾱ = ν
4: if ᾱ ≤ xi − li and f(x− ᾱei) ≤ f(x)− γᾱ2 then
5: set d = −ei, αmax = xi − li and go to line 12
6: end if
7: if ᾱ ≤ ui − xi and f(x+ ᾱei) ≤ f(x)− γᾱ2 then
8: set d = ei, αmax = ui − xi and go to line 12
9: else

10: return d and α = 0
11: end if
12: set α = ᾱ and η = min{α/δ, αmax}
13: while

(
α < αmax and f(x+ ηd) ≤ f(x+ αd)− γ(η − α)2

)
do

14: set α = η and η = min{α/δ, αmax}
15: end while
16: return d and α

3 Convergence and worst-case complexity

This section is devoted to the theoretical analysis of Algorithm 1.

4

A. Brilli, A. Cristofari, G. Liuzzi, S. Lucidi

3.1 Assumptions and preliminary results

Throughout the paper, the following assumptions will be always considered satisfied, even if not
explicitly invoked.

Assumption 1. The objective function f : Rn → R is continuously differentiable with a Lipschitz
continuous gradient ∇f with constant L > 0 over [l, u], i.e.,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ ∀x, y ∈ [l, u].

Moreover, f is bounded from below over [l, u], i.e., a constant fmin ∈ R exists such that

fmin ≤ f(x) ∀x ∈ [l, u].

Assumption 2. A constant Mg ≥ 0 exists such that

‖∇f(x)‖ ≤Mg

for all x ∈ [l, u].

Under Assumption 1, we can also provide the following definition of coordinate-wise Lipschitz
constants.

Definition 1. The coordinate-wise Lipschitz constants Li > 0, i = 1, . . . , n, of ∇f are such that, for
all x ∈ [l, u],

|∇if(x+ sei)−∇if(x)| ≤ Li|s| ∀s ∈ R : x+ sei ∈ [l, u], i = 1, . . . , n.

Moreover,
Lmax = max

i=1,...,n
Li. (2)

Now, given x ∈ [l, u], let us introduce the following criticality measure:

χ(x) = max
x+d∈[l,u]
‖d‖≤1

−∇f(x)>d.

The above measure has been successfully used in the analysis of some direct search methods for linearly
constrained problems [19, 23, 24]. It can be interpreted as the progress on a first-order model in a
ball centered at x with unit ray subject to feasibility constraints [11, 24], thus generalizing ‖∇f(x)‖
from the unconstrained setting. Originally proposed in [10] for more general constraints and further
analyzed in [11], χ(x) is continuous, non-negative and such that χ(x) = 0 if and only if x is a KKT
point. So, we can define a stationary point as follows.

Definition 2. A point x∗ ∈ [l, u] is said to be a stationary point of problem (1) if χ(x∗) = 0.

Next, given ε ≥ 0, we define the set of ε-active constraints at x ∈ [l, u] as

Il(x, ε) = {i : xi ≤ li + ε},
Iu(x, ε) = {i : xi ≥ ui − ε}.

Namely, Il(x, ε) and Iu(x, ε) denote the sets of lower and upper bound constraints, respectively, that
are nearly active at x with a tolerance ε. Accordingly, let us define N(x, ε) as the ε-normal cone
generated by the ε-active constraints, that is,

N(x, ε) = cone
(
{−ei, i ∈ Il(x, ε)} ∪ {ei, i ∈ Iu(x, ε)} ∪ {0}

)
,

5

Complexity and identification of a DF method

while the ε-tangent cone T (x, ε) is the polar of N(x, ε), that is,

T (x, ε) = N(x, ε)◦ = {d ∈ Rn : d>v ≤ 0, ∀ v ∈ N(x, ε)}.

The use of ε-normal and ε-tangent cones is a well known tool in the analysis of direct search methods
applied to linearly constrained problems [19, 23, 24]. Essentially, the set x+T (x, ε) is an approximation
of the feasible region near a feasible point x, that is, moving from x along any direction in T (x, ε)
with a stepsize less than or equal to ε ensures that all constraints stay satisfied.

In our case, considering the structure of the feasible set of problem (1), it is straightforward to
verify that a set of generators for T (x, ε) is given by

GT (x,ε) = {−ei, i 6∈ Il(x, ε)} ∪ {ei, i 6∈ Iu(x, ε)} ∪ {0}, (3)

that is, T (x, ε) = cone (GT (x,ε)).
The following two propositions from [24] show how χ(xk) can be upper bounded by using of the

projection of −∇f(xk) onto T (xk, ε) and N(xk, ε).

Proposition 1 ([23, Proposition 8.2]). If x ∈ [l, u], then for all ε ≥ 0 we have that

χ(x) ≤ ‖(−∇f(x))T (x,ε)‖+ ε
√
n‖(−∇f(x))N(x,ε)‖.

Proposition 2 ([23, Proposition 8.1]). Given ε ≥ 0, let GT (x,ε) be defined as in (3). If (−∇f(x))T (x,ε) 6=
0, then there exists d ∈ GT (x,ε) such that

1√
n
‖(−∇f(x))T (x,ε)‖ ≤ −∇f(x)>d.

In the convergence analysis of Algorithm 1, Propositions 1–2 will allow us to relate χ(xk) with
∆k+1 for every iteration k (see Theorem 2 below). In particular, this will be obtained by applying
the above results with ε = ∆k and using the following relation between ∆k and ∆k+1.

Lemma 1. Let {∆k} be the sequence of maximum tentative stepsizes produced by Algorithm 1. Then,
for all k we have

∆k+1

{
≥ ∆k if xk+1 6= xk

= θ∆k if xk+1 = xk.

Therefore, ∆k ≤ ∆k+1/θ for all k.

Proof. First, let us consider the case where xk+1 6= xk (i.e., k is a successful iteration). In this case,
the algorithm sets α̃ik+1 = αik if αik > 0 and α̃ik+1 = νik if αik = 0. Since, from the line search
procedure, αik ≥ νik for all i = 1, . . . , n, we can write

α̃ik+1 ≥ νik ≥ α̃ik, i = 1, . . . , n,

where the last inequality follows from the definition of νik. Then, using the definition of ∆k, we get
∆k+1 ≥ ∆k.

Now, let us consider the case where xk+1 = xk (i.e., k is an unsuccessful iteration). In this case,
the algorithm sets α̃ik+1 = θνik = θmax{α̃ik, c∆k}. Namely, for all i = 1, . . . , n, we have that

α̃ik+1 =

{
θα̃ik if α̃ik ≥ c∆k,

θc∆k if α̃ik < c∆k.
(4)

From the definition of ∆k and the fact that c ∈ (0, 1], it follows that α̃ik+1 ≤ θ∆k for all i = 1, . . . , n,
implying that

∆k+1 = max
i=1,...,n

α̃ik+1 ≤ θ∆k. (5)

6

A. Brilli, A. Cristofari, G. Liuzzi, S. Lucidi

Now, let ı̄ ∈ {1, . . . , n} be such that α̃ı̄k = ∆k. Since c ∈ (0, 1], we have α̃ı̄k ≥ c∆k and then,
recalling (4), we get α̃ı̄k+1 = θα̃ı̄k = θ∆k. It follows from (5) that

∆k+1 = α̃ı̄k+1 = θ∆k.

3.2 Global convergence

In the following proposition, we show that Algorithm 1 and Algorithm 2 are well defined, i.e., Algo-
rithm 2 cannot cycle so that Algorithm 1 produces infinite sequences of points and stepsizes.

Proposition 3. Algorithm 1 is well defined, i.e., it produces infinite sequences {xk}, {αik}, {α̃ik},
i = 1, . . . , n.

Proof. To prove that Algorithm 1 is well defined, we have to show that the line search procedure
cannot infinitely cycle over steps 13–15 in the while loop. Let us suppose, by contradiction, that the
while loop does not terminate, i.e., we always have α < αmax. At the j-th iteration of the while loop,
we have

α =
ᾱ

δj

with δ < 1. If αmax is finite, then we have α > αmax, for j sufficiently large, which is a contradiction.
Otherwise, if αmax = +∞, then, for every j we have

f(x+ ηd) ≤ f(x+ αd)− γ(η − α)2, (6)

with η = α/δ = ᾱ/δj+1. Now, for j sufficiently large, (6) contradicts Assumption 1, i.e., that f is
bounded from below on the feasible set.

In the following, we present some results concerning the global convergence of Algorithm 1 to
stationary points. More specifically, by extending some results from [7, 28], we establish a relationship
between ∇f(xk), with specific directions d, and the largest tentative step length at ∆k+1. As to be
shown, the bound depends, besides on the problem dimension n, on the Lipschitz constant L and the
algorithm parameters γ, θ and δ.

From now on, let us denote

Tk := T (xk,∆k) and Gk := G(xk,∆k), (7)

where Gk is the set of generators of Tk and is defined as in (3).

Theorem 1. Let {xk} be the sequence produced by Algorithm 1. Then, for all k and for all d ∈ Gk,
we have that

−∇f(xk)>d ≤


(
γ + L

δ
+ L
√
n

)
∆k+1 if xk+1 6= xk,(

γ + Lmax

θ

)
∆k+1 if xk+1 = xk.

(8)

Proof. First, consider an iteration k such that xk+1 6= xk (i.e., a successful iteration). The following
cases can occur, recalling that the analysis is limited to considering directions ±ei, i = 1, . . . , n,
belonging to Gk.

7

Complexity and identification of a DF method

(1a) ei ∈ Gk, yi+1
k = li and yik = li. Then, αik = 0 and α̃ik+1 = νik. From the instructions of the line

search procedure, we have that

f(yik + α̃ik+1ei) > f(yik)− γ(α̃ik+1)2.

By the mean value theorem, we have

f(yik + α̃ik+1ei)− f(yik) = α̃ik+1∇if(ξik),

where ξik = yik + tikα̃
i
k+1ei and tik ∈ (0, 1). Then,

−∇if(ξik) < γα̃ik+1.

It follows that

−∇if(ξik) +∇if(xk)−∇if(xk) < γα̃ik+1

and we can write

−∇if(xk) < γα̃ik+1 − (∇if(xk)−∇if(ξik))

≤ γα̃ik+1 + L‖xk − ξik‖
≤ γα̃ik+1 + L‖xk − yik‖+ L‖yik − ξik‖.

(9)

Moreover, since tik ∈ (0, 1), we have tikα̃
i
k+1 ≤ α̃ik+1. Then,

‖yik − ξik‖ ≤ α̃ik+1.

Hence, since αik+1 ≤ α̃ik+1 ≤ ∆k+1 for all i = 1, . . . , n, and taking into account that yik =

xk +
∑i−1
j=1 α

j
kd
j
k, so that ‖xk − yik‖ ≤

√
n∆k+1, we get

(−∇f(xk))>ei < γα̃ik+1 + L‖xk − yik‖+ Lα̃ik+1 ≤
(
γ + L+ L

√
n
)

∆k+1. (10)

(1b) yi+1
k = li and yik > li. Then, α̃ik+1 = αik > 0 and −ei ∈ Gk. From the instructions of the line

search procedure, there exists βik ∈ {0, δα̃ik+1} such that

f(yik − α̃ik+1ei) ≤ f(yik − βikei)− γ(α̃ik+1 − βik)2 ≤ f(yik − βikei).

By the mean value theorem, we have

f(yik − α̃ik+1ei)− f(yik − βikei) = −(α̃ik+1 − βik)∇if(ξik),

where ξik = yik − βikei + tik(βik − α̃ik+1)ei and tik ∈ (0, 1). Then,

−∇if(ξik) ≤ 0.

Moreover, from the definition of βik and the fact that tik ∈ (0, 1), we have (1−tik)βik ≤ (1−tik)α̃ik+1.
Then,

‖yik − ξik‖ = (1− tik)βik + tikα̃
i
k+1 ≤ α̃ik+1.

Hence, by similar reasonings as in case (1a), we obtain

(−∇f(xk))>(−ei) ≤
(
L+ L

√
n
)

∆k+1. (11)

8

A. Brilli, A. Cristofari, G. Liuzzi, S. Lucidi

(2a) −ei ∈ Gk, yi+1
k = ui and yik = ui. Then, αik = 0 and α̃ik+1 = νik. Reasoning as in case (1a),

with minor differences, we get

(−∇f(xk))>(−ei) ≤
(
γ + L+ L

√
n
)

∆k+1. (12)

(2b) yi+1
k = ui and yik < ui. Then, α̃ik+1 = αik > 0 and ei ∈ Gk. Reasoning as in case (1b), with

minor differences, we get

(−∇f(xk))>ei ≤
(
L+ L

√
n
)

∆k+1. (13)

(3a) {±ei} ∩ Gk 6= ∅, li < yi+1
k < ui and yik = yi+1

k . Then, αik = 0 and α̃ik+1 = νik. From the
instructions of the line search procedure, we have that

f(yik + α̃ik+1ei) > f(yik)− γ(α̃ik+1)2 if ei ∈ Gk,
f(yik − α̃ik+1ei) > f(yik)− γ(α̃ik+1)2 if − ei ∈ Gk.

By the mean value theorem, we have

f(yik + α̃ik+1ei)− f(yik) = ∇if(ξik)α̃ik+1 if ei ∈ Gk,
f(yik − α̃ik+1ei)− f(yik) = −∇if(ξ̄ik)α̃ik+1 if − ei ∈ Gk.

where ξik = yik + tikα̃
i
k+1ei and ξ̄ik = yik − t̄ikα̃ik+1ei, with tik, t̄

i
k ∈ (0, 1). Then,

−∇if(ξik) < γα̃ik+1 if ei ∈ Gk,
∇if(ξ̄ik) < γα̃ik+1 if − ei ∈ Gk.

and, recalling that tik, t̄
i
k ∈ (0, 1), we also have

‖yik − ξik‖ = tikα̃
i
k+1 ≤ α̃ik+1 if ei ∈ Gk,

‖yik − ξ̄ik‖ = tikα̃
i
k+1 ≤ α̃ik+1 if − ei ∈ Gk.

Hence, reasoning as in case (1a) (i.e., using (9) for ei and applying minor changes to (9), with
ξik replaced by ξ̄ik, for −ei), we obtain

−∇f(xk)>ei ≤
(
γ + L+ L

√
n
)

∆k+1 if ei ∈ Gk,
−∇f(xk)>(−ei) ≤

(
γ + L+ L

√
n
)

∆k+1 if − ei ∈ Gk.
(14)

(3b) li < yi+1
k < ui and yik 6= yi+1

k . Then, αik > 0, α̃ik+1 = αik and dik ∈ Gk. Let us assume that

dik = −ei, i.e., yi+1
k = yik − α̃ik+1ei (the proof for the case dik = ei is identical, except for minor

changes). Then, from the instructions of the line search procedure, there exist βik and β̄ik such
that βik ∈ {0, δα̃ik+1}, α̃ik+1 < β̄ik ≤ α̃ik+1/δ and

f(yik − α̃ik+1ei) ≤ f(yik − βikei)− γ(α̃ik+1 − βik)2 ≤ f(yik − βikei),

f
(
yik − β̄ikei

)
> f(yik − α̃ik+1ei)− γ

(
β̄ik − α̃ik+1

)2
.

By the mean value theorem, we have

f(yik − α̃ik+1ei)− f(yik − βikei) = −(α̃ik+1 − βik)∇if(ξik),

f
(
yik − β̄ikei

)
− f(yik − α̃ik+1ei) = −(β̄ik − α̃ik+1)∇if(ξ̄ik),

9

Complexity and identification of a DF method

where ξik = yik−βikei−tik(α̃ik+1−βik)ei and ξ̄ik = yik−α̃ik+1ei− t̄ik(β̄ik−α̃ik+1)ei, with tik, t̄
i
k ∈ (0, 1).

Then,

−∇if(ξik) ≤ 0,

∇if(ξ̄ik) < γ(β̄ik − α̃ik+1).

Moreover, from the definition of β̄ik, it follows that 0 ≤ β̄ik − α̃ik+1 ≤ (1/δ − 1)α̃ik+1 ≤ α̃ik+1/δ,
where we have used the fact that δ ∈ (0, 1). Then,

−∇if(ξik) ≤ 0,

∇if(ξ̄ik) < γ

(
1− δ
δ

)
α̃ik+1 ≤ γ

α̃ik+1

δ
,

and, recalling that tik, t̄
i
k ∈ (0, 1), we also have

‖yik − ξik‖ = βik + tik(α̃ik+1 − βik) ≤ α̃ik+1 ≤
α̃ik+1

δ
,

‖yik − ξ̄ik‖ = α̃ik+1 + tik(β̄ik − α̃ik+1) ≤ β̄ik ≤
α̃ik+1

δ
.

Hence, reasoning as in the previous case, we obtain

−∇f(xk)>(−ei) = ∇if(xk) ≤
(
γ + L

δ
+ L
√
n

)
∆k+1,

−∇f(xk)>ei = −∇if(xk) ≤
(
γ + L

δ
+ L
√
n

)
∆k+1.

(15)

Hence, from (10), (11), (12), (13), (14) and (15), we conclude that

−∇f(xk)>d ≤
(
γ + L

δ
+ L
√
n

)
∆k+1 ∀d ∈ Gk.

Now, let us analyze an iteration k such that xk+1 = xk (i.e., an unsuccessful iteration). In such
a case, only cases (1a), (2a) and (3a) can occur, although we have to consider that yik = xk and
α̃ik+1 = θνik. Hence, replacing L with Li, we have that the following relations hold:

−∇f(xk)>ei ≤
γ + Lmax

θ
∆k+1 if ei ∈ Gk,

−∇f(xk)>(−ei) ≤
γ + Lmax

θ
∆k+1 if − ei ∈ Gk.

As above, we finally conclude

−∇f(xk)>d ≤ γ + Lmax

θ
∆k+1 ∀d ∈ Gk.

Remark 1. The result expressed in Theorem 1 strongly relies on the extrapolation phase of the
line search procedure (i.e., lines 12–15 of Algorithm 2). In particular, since we quit the expansion
with a failure in the objective decrease when we do not hit the border of the feasible set, then we
are able to upper bound χ(xk) for all iterations, including the successful ones. This represents a
relevant difference over direct-search [19] methods, where χ(xk) is usually upper bounded only for the
unsuccessful iterations. Moreover, this property will allow us to give a complexity bound on the total
number of iterations where χ(xk) is above a prespecified threshold (see Theorem 5 below).

10

A. Brilli, A. Cristofari, G. Liuzzi, S. Lucidi

Combining Proposition 2 and Theorem 1, it is now straightforward to relate χ(xk) with ∆k+1, as
stated in the following result.

Theorem 2. Let {xk} be the sequence of points produced by Algorithm 1. Then,

χ(xk) ≤


√
n

(
γ + L

δ
+ L
√
n+

Mg

θ

)
∆k+1 if xk+1 6= xk,

√
n

(
γ + Lmax +Mg

θ

)
∆k+1 if xk+1 = xk.

Proof. Using Proposition 1 with ε = ∆k and Lemma 1, we obtain

χ(xk) ≤ ‖(−∇f(xk))Tk‖+
∆k+1

θ

√
nMg,

where we have used the fact that ‖(−∇f(xk))N(xk,ε)‖ ≤ ‖∇f(xk)‖ ≤ Mg, where the last inequality
follows from Assumption 2. So, using Proposition 2, it follows that there exists a direction d ∈ Gk
such that

χ(xk) ≤
√
n

(
−∇f(xk)>d+

∆k+1

θ

)
Mg.

The desired result hence follows from Theorem 1.

In order to get convergence to stationary points and provide worst-case complexity bounds for the
proposed algorithm, for each iteration k let us define

Φk = f(xk) +
1

2
c2γ∆2

k. (16)

Recalling Assumption 1, note that

Φk ≥ fmin ∀k ≥ 0. (17)

Now, in the next theorem, we bound the difference Φk − Φk−1 for each iteration k.

Theorem 3. Let {xk} be the sequence produced by Algorithm 1. Then,

Φk − Φk−1 ≤ −c1∆2
k ∀k ≥ 1, (18)

with

c1 = γmin

{(
1− c2

2

)
,
c2

2
,

1

2
c2
(

1− θ2

θ2

)}
> 0, (19)

where c and θ are defined in Algorithm 1.

Proof. For each iteration k ≥ 1, consider the iteration k − 1. The following cases can occur.

• xk 6= xk−1 (i.e., k−1 is a successful iteration) and ∆k = ∆k−1. Hence, there exists a coordinate
ı̄ such that we have moved from xk−1 along ±eı̄ and we have

αı̄k−1 ≥ ν ı̄k−1 = max
{
α̃ı̄k−1, c∆k−1

}
≥ c∆k−1 = c∆k.

Then, from the line search procedure, we can write

f(xk) ≤ f(xk−1)− γc2∆2
k.

11

Complexity and identification of a DF method

Hence, we have

Φk − Φk−1 = f(xk)− f(xk−1) +
1

2
c2γ

(
∆2
k −∆2

k−1

)
≤ −γc2∆2

k +
1

2
c2γ

(
∆2
k −∆2

k−1

)
≤ −γc2∆2

k +
1

2
c2γ∆2

k

= −γ c
2

2
∆2
k.

(20)

• xk 6= xk−1 (i.e., k−1 is a successful iteration) and ∆k > ∆k−1. Hence, there exists a coordinate
ı̄ such that

αı̄k−1 = ∆k.

Then, from the line search procedure, we can write

f(xk) ≤ f(xk−1)− γ∆2
k.

Hence, we have

Φk − Φk−1 = f(xk)− f(xk−1) +
1

2
c2γ

(
∆2
k −∆2

k−1

)
≤ −γ∆2

k +
1

2
c2γ

(
∆2
k −∆2

k−1

)
≤ −γ∆2

k +
1

2
c2γ∆2

k

= −γ
(

1− c2

2

)
∆2
k.

(21)

• xk = xk−1 (i.e., k − 1 is an unsuccessful iteration). Hence, for all i ∈ {1, . . . , n} we have either

α̃ik = θα̃ik−1 ≤ θ∆k−1

or

α̃ik = θc∆k−1 ≤ θ∆k−1

since c ∈ (0, 1]. Hence, by Lemma 1, we have

∆k = θ∆k−1.

Then,

Φk − Φk−1 = f(xk)− f(xk−1) +
1

2
c2γ

(
∆2
k −∆2

k−1

)
≤ 1

2
c2γ

(
∆2
k −

1

θ2
∆2
k

)
= −1

2
c2γ

(
1− θ2

θ2

)
∆2
k.

(22)

Finally, we get (18) by combining (20), (21) and (22), where c1 > 0 since c ∈ (0, 1].

12

A. Brilli, A. Cristofari, G. Liuzzi, S. Lucidi

Using the above result, we can easily show the convergence to zero of the sequences of tentative
and actual stepsizes produced by the algorithm, i.e., {α̃ik}, {αik}, i = 1, . . . , n, respectively, together
with the convergence to zero of the sequence of maximum tentantive stepsizes {∆k}.

Proposition 4. Let {α̃ik}, {αik}, i = 1, . . . , n, and {∆k} be the sequences produced by Algorithm 1.
We have that

lim
k→∞

α̃ik = 0, i = 1, . . . , n; (23)

lim
k→∞

αik = 0, i = 1, . . . , n; (24)

lim
k→∞

∆k = 0. (25)

Proof. From (17) and (18), we get (25). Then, using the definition of ∆k given in Algorithm 1,
also (23) holds. Since, for all k ≥ 1 and for all i = 1, . . . , n, from the instructions of the algorithm
either αik−1 = 0 or αik−1 = α̃ik, then (24) follows from (23).

Using Theorem 2 and Proposition 4, it is now possible to prove the convergence of the algorithm
to stationary points.

Theorem 4. Let {xk} be the sequence of points produced by Algorithm 1. Then,

• lim
k→∞

χ(xk) = 0, i.e., every limit point of {xk} is stationary,

• lim
k→∞

‖xk+1 − xk‖ = 0.

Proof. From Theorem 2 and (25) in Proposition 4, taking the limit for k →∞ it follows that χ(xk)→
0, that is, every limit point of {xk} is stationary. Finally, since xk+1−xk =

∑n
i=1 α

i
kd
i
k, using (24) in

Proposition 4 we also have that ‖xk+1 − xk‖ → 0.

3.3 Worst-case complexity

This section is devoted to analyze the worst-case complexity of Algorithm 1. In particular,

(i) we give an upper bound of O (n2ε−2) on the total number of iterations where χ(xk) is not below
a prespecified threshold ε;

(ii) we give an upper bound of O (nε−2) on the number of iterations required to generate the first
point xk where χ(xk) is below a prespecified tolerance ε;

(iii) we give an upper bound of O (n2ε−2) on the number of function evaluations required to generate
the first point xk where χ(xk) is below a prespecified tolerance ε.

We start by providing an upper bound of O (n2ε−2) on the total number of iterations where
χ(xk) ≥ ε, with a given ε > 0.

Theorem 5. Let {xk} be the sequence of points produced by the algorithm. Given any ε > 0, let

Kε = {k : χ(xk) ≥ ε}.

Then, |Kε| ≤ O (n2ε−2). In particular,

|Kε| ≤
⌊
c22(Φ0 − fmin)

c1
ε−2

⌋
,

where c1 is defined as in Theorem 3 and

c2 =
√
nmax

{
γ + L

δ
+ L
√
n+

Mg

θ
,
γ + Lmax +Mg

θ

}
.

13

Complexity and identification of a DF method

Proof. From Theorem 3, it follows that the sequence {Φk} is monotonically non-increasing. Further-
more, for all k ≥ 1, we can write

Φk − Φ0 ≤ −c1
k∑
j=1

∆2
j = −c1

k∑
j=0

∆2
j+1. (26)

Since the sequence {Φk} is bounded from below, there exists Φ∗ such that

lim
k→∞

Φk = Φ∗ ≥ fmin,

with fmin defined as in (17). Taking the limit for k →∞ in (26) we obtain

Φ0 − fmin ≥ Φ0 − Φ∗ ≥ c1
∞∑
k=0

∆2
k+1 ≥ c1

∑
k∈Kε

∆2
k+1.

Therefore, using the definition of Kε and Theorem 2, we get

Φ0 − fmin ≥ c1
∑
k∈Kε

∆2
k+1 ≥ |Kε|c1

ε2

c22
.

Thus, the desired result is obtained.

As appears from the proof of Theorem 5, the above result relies on Theorem 2 which, in turn,
uses Theorem 8. The latter, as pointed out in Remark 1, strongly relies on the extrapolation phase of
the line search procedure (i.e., lines 12–15 of Algorithm 2), which allows us to bound χ(xk) at both
successful and unsuccessful iterations.

In the following theorem, we give an upper bound ofO (nε−2) on the maximum number of iterations
required to produce a point xk such that χ(xk) is below a given threshold ε > 0. This bound aligns
with established findings for direct-search [19] and model-based [22] methods.

Theorem 6. Let {xk} be the sequence of points produced by Algorithm 1. Given any ε > 0, let jε ≥ 1
be the first iteration such that χ(xjε) < ε, that is, χ(xk) ≥ ε for all k ∈ {0, . . . , jε − 1}.

Then, jε ≤ O (nε−2). In particular,

jε ≤
⌊
nc23(Φ0 − fmin)

c1
ε−2

⌋
,

where c1 is given by (19) and

c3 =
γ + Lmax +Mg

θ
. (27)

Proof. Let Φk the function defined in (16). We can write

Φjε − Φ0 =

jε−1∑
k=0

(Φk+1 − Φk)

and, using Theorem 3, we have that

Φjε − Φ0 ≤ −c1
jε−1∑
k=0

∆2
k+1.

14

A. Brilli, A. Cristofari, G. Liuzzi, S. Lucidi

Recalling (17) and the fact that Φk ≥ f(xk) for k ≥ 0, we get

fmin − Φ0 ≤ Φjε − Φ0 ≤ −c1
jε−1∑
k=0

∆2
k+1. (28)

Now, we can partition the set of iteration indices {0, . . . , jε − 1} into Sjε and Ujε such that

k ∈ Sjε ⇔ xk 6= xk−1, k ∈ Ujε ⇔ xk = xk−1, Sjε ∪ Ujε = {0, . . . , jε − 1},

that is, Sjε and Ujε contain the successful and unsuccessful iterations up to jε − 1, respectively. So,
from (28), we can write

Φ0 − fmin ≥ c1
∑
k∈Sjε

∆2
k+1 + c1

∑
k∈Ujε

∆2
k+1. (29)

For all k ∈ Sjε , let us define the index m(k) as follows:

• if Ujε ∩ {0, . . . , k − 1} 6= ∅, then m(k) in the largest index of Ujε ∩ {0, . . . , k − 1};

• otherwise, m(k) = −1.

Note that, by definition, m(k) is the last unsuccessful iteration before iteration k, i.e., all the iterations
from m(k)+1 to k are successful iterations. Lemma 1 guarantees that ∆k+1 ≥ ∆m(k)+1 for all k ∈ Sjε .
Using (29), we obtain

Φ0 − fmin ≥ c1
∑
k∈Sjε

∆2
m(k)+1 + c1

∑
k∈Ujε

∆2
k+1.

From Theorem 2, we have that ∆m(k)+1 ≥ χ(xm(k))/(
√
nc3) for all k ∈ Sjε and ∆k+1 ≥ χ(xk)/(

√
nc2)

for all k ∈ Ujε . Since χ(xk) ≥ ε for all k ∈ {0, . . . , jε − 1}, with Sjε ∪ Ujε = {0, . . . , jε − 1}, we get

Φ0 − fmin ≥ jε
c1
nc23

ε2.

Thus, the desired result is obtained.

The last complexity result we give is about the maximum number of function evaluations required
to produce a point xk such that χ(xk) is less than or equal to a given threshold ε > 0. Using arguments
from the related literature [7, 34], we obtain an upper bound of O (n2ε−2), which still aligns with
established findings for direct-search [19] and model-based [22] methods

Theorem 7. Let {xk} be the sequence of points produced by Algorithm 1. Given any ε > 0, let jε ≥ 1
be the first iteration such that χ(xjε) < ε, that is, χ(xk) ≥ ε for all k ∈ {0, . . . , jε − 1}.

Denoting by Nfjε the number of function evaluations required by Algorithm 1 up to iteration jε,
then Nfjε ≤ O (n2ε−2). In particular,

Nfjε ≤ 2n

⌊
nc23(Φ0 − fmin)

c1
ε−2

⌋
+

⌊
nc23(f0 − fmin)

γc2
δ2

(1− δ)2
ε−2

⌋
,

where c1 and c3 are given in (19) and (27), respectively.

Proof. First, let us partition the set of iteration indices {0, . . . , jε − 1} into Sjε and Ujε such that

k ∈ Sjε ⇔ xk 6= xk−1, k ∈ Ujε ⇔ xk = xk−1, Sjε ∪ Ujε = {0, . . . , jε − 1},

that is, Sjε and Ujε contain the successful and unsuccessful iterations up to jε − 1, respectively.

15

Complexity and identification of a DF method

When the algorithm evaluates a new point, the latter can either succeed to decrease the objective
function or fail to do so. Let us then define NfSjε as the total number of function evaluations related
to points which succeed to decrease the objective function up to iteration jε. Note that, at each
iteration, the maximum number of function evaluations related to points which fail to decrease the
objective function is 2n (and it can be equal to 2n only when Tk = Rn). So, we can write

Nfjε ≤ 2njε +NfSjε ≤ 2n

⌊
nc23(Φ0 − fmin)

c1
ε−2

⌋
+NfSjε , (30)

where the last inequality follows from Theorem 6. Now, let us consider any iteration k < jε and any
index i ∈ {1, . . . , n} such that the line search succeeds to produce a decrease in the objective function.
For each α used in the extrapolation phase of the line search, we have that

f(yik + αdik)− f(yik + (α/δ)dik) ≥ γ

(
1− δ
δ

)2

α2 ≥ γ

(
1− δ
δ

)2

c2∆2
k. (31)

Let us define the index m(k) as follows:

• if Ujε ∩ {0, . . . , k − 1} 6= ∅, then m(k) is the largest index of Ujε ∩ {0, . . . , k − 1};

• otherwise, m(k) = 0.

Note that, by definition, m(k) is the last unsuccessful iteration before iteration k, i.e., all the iterations
from m(k) + 1 to k are successful iterations. Lemma 1 guarantees that ∆k ≥ ∆m(k)+1 for all k ∈ Sjε .
Hence, from (31), it follows that

f(yik + αdik)− f(yik + (α/δ)dik) ≥ γ

(
1− δ
δ

)2

α2 ≥ γ

(
1− δ
δ

)2

c2∆2
m(k)+1.

From Theorem 2, we have that ∆m(k)+1 ≥ χ(xm(k))/(
√
nc3). Since χ(xk) ≥ ε for all k ∈ {0, . . . , jε−1},

we can write

f(yik + αdik)− f(yik + (α/δ)dik) ≥ γ

(
1− δ
δ

)2

c2
ε2

nc23
.

Then, recalling Assumption 1 and summing up the above relation over all function evaluations pro-
ducing an objective decrease, we obtain

f0 − fmin ≥ NfSjεγ

(
1− δ
δ

)2

c2
ε2

nc23
,

that is,

NfSjε ≤
⌊
nc23(f0 − fmin)

γc2
δ2

(1− δ)2
ε−2

⌋
.

The desired results hence follows from (30).

4 Finite active-set identification

In this section, we show that Algorithm 1 identifies the components of the final solution lying on the
lower or the upper bounds (the so called active set) in a finite number of iterations.

First, let us give an equivalent definition of stationarity for problem (1), which will be useful in
our analysis.

16

A. Brilli, A. Cristofari, G. Liuzzi, S. Lucidi

Definition 3. A point x∗ ∈ [l, u] is a stationary point of problem (1) (i.e., χ(x∗) = 0) if and only if,
for all i ∈ {1, . . . , n}, we have that

∇if(x∗)


≥ 0 if x∗i = li,

= 0 if li < x∗i < ui,

≤ 0 if x∗i = ui.

Now, let us recall the definition of strict complementarity and non-degenerate solutions.

Definition 4. Given a stationary point x∗ of problem (1), we say that a component x∗i satisfies the
strict complementarity condition if x∗i ∈ {li, ui} and ∇if(x∗) 6= 0. If the strict complementarity
condition is satisfied by all components x∗i , we say that x∗ is non-degenerate.

In particular, we define Z (x∗) as the active set for a stationary point x∗, that is, the index set for
the active components of x∗. We also define Z +(x∗) as the index set for those components satisfying
the strict complementarity condition. Namely,

Z (x∗) = {i : x∗i = li} ∪ {i : x∗i = ui} and Z +(x∗) = Z (x∗) ∩ {i : ∇if(x∗) 6= 0}.

Furthermore, for any stationary point x∗ such that Z +(x∗) 6= ∅, let us define

ζ(x∗) = min
i∈Z +(x∗)

|∇if(x∗)|. (32)

We see that ζ(x∗) is a measure of the minimum amount of strict complementarity among the variable
in Z +(x∗). This quantity will be used to define a neighborhood of x∗ where the active components
are correctly identified, following a similar approach as in [13, 32].

Before diving into the main theorem of this section, we need some preliminary results following
from the Lipschitz continuity of ∇f . Recalling Defintion 1, using standard arguments (see, e.g., [31])
one can prove that, for all x ∈ [l, u], we have

|f(x+ sei)− f(x)− s∇if(x)| ≤ Li
2
s2 ∀s ∈ R : x+ sei ∈ [l, u], i = 1, . . . , n.

Hence, for all x ∈ [l, u], we have

f(x+ sei) ≤ f(x) + s∇if(x) +
Li
2
s2 ∀s ∈ R : x+ sei ∈ [l, u], i = 1, . . . , n, (33)

f(x+ sei) ≥ f(x) + s∇if(x)− Li
2
s2 ∀s ∈ R : x+ sei ∈ [l, u], i = 1, . . . , n. (34)

The two following results provide bounds for the objective function when exploring any coordinate
direction.

Proposition 5. Given x ∈ [l, u], γ ≥ 0 and i ∈ {1, . . . , n}, then

f(x− s sign(∇if(x))ei) ≤ f(x)− γs2

for all 0 ≤ s ≤ 2
|∇if(x)|
Li + 2γ

such that x− s sign(∇if(x))ei ∈ [l, u].

Proof. From (33), we can write

f(x+ sei) ≤ f(x) + s

(
∇if(x) +

Li
2
s

)
∀s ∈ R : x+ sei ∈ [l, u].

17

Complexity and identification of a DF method

The right-hand side of the above inequality is less than or equal to f(x)− γs2 if

s

(
∇if(x) +

Li
2
s

)
≤ −γs2.

If ∇if(x) 6= 0, solving with respect to s we obtain

−2∇if(x)

Li + 2γ
≤ s ≤ 0 if ∇if(x) > 0,

0 ≤ s ≤ −2∇if(x)

Li + 2γ
if ∇if(x) < 0,

leading to the desired result.

Proposition 6. Given x ∈ [l, u] and i ∈ {1, . . . , n}, then

f(x+ s sign(∇if(x))ei) ≥ f(x)

for all 0 ≤ s ≤ 2|∇if(x)|
Li

such that x+ s sign(∇if(x))ei ∈ [l, u].

Proof. From (34), we can write

f(x+ sei) ≥ f(x) + s

(
∇if(x)− Li

2
s

)
∀s ∈ R : x+ sei ∈ [l, u].

The right-hand side of the above inequality is greater than or equal to f(x) if

s

(
∇if(x)− Li

2
s

)
≥ 0.

If ∇if(x) 6= 0, solving with respect to s we obtain

0 ≤ s ≤ 2∇if(x)

Li
if ∇if(x) > 0,

2∇if(x)

Li
≤ s ≤ 0 if ∇if(x) < 0,

leading to the desired result.

The next proposition shows that, when νik is sufficiently small at a given iteration, Algorithm 1
cannot move along an ascent direction.

Proposition 7. Consider an iteration k of Algorithm 1. If νik ≤ 2|∇if(yik)|/Li for an index i ∈
{1, . . . , n}, then

αik > 0 ⇒ dik = − sign(∇if(yik))ei.

Proof. Using Proposition 6, for all α ≤ νik and γ > 0 we have

f(yik + α sign(∇if(yik))ei) ≥ f(yik) > f(yik)− γα2.

That is the line search in Algorithm 2 fails when using the direction sign(∇if(yik))ei with any stepsize
0 < α ≤ νik. So, if the line search returns αik > 0, necessarily dik = − sign(∇if(yik))ei.

Now, we are ready to state the main result of this section, establishing finite active-set idenfitication
of Algorithm 1.

18

A. Brilli, A. Cristofari, G. Liuzzi, S. Lucidi

Theorem 8. Let {xk} be the sequence of points produced by Algorithm 1 and let x∗ be a limit point
of {xk}, i.e., there exists an infinite subsequence {xk}K → x∗. Then,

(i) lim
k→∞, k∈K

xk+1 = x∗;

(ii) an iteration k̄ ∈ K exists such that, for all k ≥ k̄, k ∈ K, we have that (xk+1)i = x∗i for all
i ∈ Z +(x∗).

Proof. Since y1
k = xk and yi+1

k = xk +
∑i
j=1 α

j
kd
j
k, from Proposition 4 and the fact that ‖dik‖ = 1,

i = 1, . . . , n+ 1, we have

lim
k→∞
k∈K

yik = lim
k→∞
k∈K

xk = x∗, i = 1, . . . , n+ 1. (35)

Since xk+1 = yn+1
k , then point (i) follows.

To show point (ii), assume that Z +(x∗) 6= ∅. Let k̄ ∈ K be the first iteration such that the two
following relations hold for all k ≥ k̄, k ∈ K:

‖yik − x∗‖ ≤ min

{
1

L
,

2

2L+ Lmax + 2γ

}
ζ(x∗), i = 1, . . . , n, (36a)

‖yik − x∗‖+
Lmax

2L
max

j=1,...,n
α̃jk ≤

ζ(x∗)

L
, i = 1, . . . , n. (36b)

Note that (35) and Proposition 4 imply the existence of k̄ ∈ K such that (36) holds for all k ≥ k̄,
k ∈ K.

Consider an index i ∈ Z +(x∗) and an iteration k ≥ k̄, k ∈ K. To prove that (xk+1)i = x∗i ,
we have to show that (yi+1

k)i = x∗i since, from the instructions of the algorithm, (xk+1)i = (yi+1
k)i.

Without loss of generality, assume that x∗i = li (the proof for the case x∗i = ui is identical, except for
minor changes). So, we have to show that

(yi+1
k)i = li. (37)

Preliminarily, we want to prove that

|zi − li| ≤
2∇if(z)

Li + 2γ
∀z such that ‖z − x∗‖ ≤ ‖yik − x∗‖, (38)

νik ≤
2∇if(yik)

Li
. (39)

According to Definitions 3 and 4, we have that ∇if(x∗) > 0 and, from the definition of ζ(x∗) given
in (32), it follows that

0 < ζ(x∗) ≤ ∇if(x∗). (40)

Consider any z ∈ Rn such that ‖z − x∗‖ ≤ ‖yik − x∗‖. Using the Lipschitz continuity of ∇f , we have

∇if(x∗)−∇if(z) ≤ ‖∇f(z)−∇f(x∗)‖ ≤ L‖z − x∗‖. (41)

Moreover, from (36a) we can write

‖z − x∗‖ ≤ ‖yik − x∗‖ ≤
2ζ(x∗)

2L+ Lmax + 2γ
.

Multiplying the first and last terms above by (2L+ Lmax + 2γ)/(Lmax + 2γ), we have(2L

Lmax + 2γ
+ 1
)
‖z − x∗‖ ≤ 2ζ(x∗)

Lmax + 2γ
,

19

Complexity and identification of a DF method

that is,

‖z − x∗‖ ≤
(
ζ(x∗)− L‖z − x∗‖

) 2

Lmax + 2γ
. (42)

Since, from (40) and (41), we have

ζ(x∗) ≤ ∇if(z) + L‖z − x∗‖, (43)

then, using (42), we obtain

‖z − x∗‖ ≤ 2∇if(z)

Lmax + 2γ
.

Taking into account that Li ≤ Lmax and recalling that x∗i = li, it follows that (38) holds. To
prove (39), from (36b) and the definition of νik we can write

νik ≤ max
j=1,...,n

α̃jk ≤
(
ζ(x∗)− L‖yik − x∗‖

) 2

Lmax
.

Using (43) with z = yik and the fact that Li ≤ Lmax, we thus get (39).
In view of (39) and Proposition 7, it follows that

dik = −ei, (44)

that is, yi+1
k = yik − αikei. Using z = yik in (38), we also have

αmax = |(yik)i − li| ≤
2∇if(yik)

Li + 2γ
, (45)

where αmax is the largest feasible stepsize along the direction dik at yik. So, if αmax = 0, then αik = 0
and, using (44), we have (yi+1

k)i = (yik)i = li, thus proving (37). If αmax > 0, using Proposition 5,
(44) and (45), it follows that a sufficient decrease of f along dik is obtained with the first stepsize ᾱ
used in the line search, that is, the condition at line 4 of Algorithm 2 is satisfied. Now, consider the
extrapolation phase in the line search procedure, that is, lines 12–15 of Algorithm 2. Recalling (44),
each stepsize η = min{α/δ, αmax} is such that α ≤ η ≤ (yik)i − li, that is,

0 ≤ η − α ≤ (yik + αdik)i − li.

So, from (44) and the fact that x∗i = li, it follows that ‖yik + αdik − x∗‖ ≤ ‖yik − x∗‖. So, we can
apply (38) with z = yik + αdik and then we obtain

0 ≤ η − α ≤ (yik + αdik)i − li ≤
2∇if(yik + αdik)

Li + 2γ

for every stepsize η used in the extrapolation. Then, using Proposition 5 with x = yik+αdik, s = η−α
and dik as in (44), it follows that

f(yik + ηdik) ≤ f(yik + αdik)− γ(η − α)2.

Namely, a sufficient decrease of f is obtained with all stepsizes used in the extrapolation and we quit
when we get the largest feasible stepsize, meaning that (yi+1

k)i will be at the lower bound li and thus
proving (37).

Note that Theorem 8 establishes finite identification for any limit point of {xk}, thus not requiring
the convergence of the whole sequence. Note also, in the proof of Theorem 8, the crucial role played
by the extrapolation in the line search procedure. Loosely speaking, when we are sufficiently close to

20

A. Brilli, A. Cristofari, G. Liuzzi, S. Lucidi

a stationary point, expanding the stepsize allows us to hit the lower or the upper bound, provided
the strict complementarity condition holds. This guarantees to identify all the variables satisfying the
strict complementarity after a finite number of iterations.

Now, let us point out a useful property for the limit points of {xk}. To this aim, let us define X?

as the set of all limit points of {xk}, i.e.,

X? := {x : ∃K ⊆ N such that lim
k→∞,k∈K

xk = x}.

The following result roughly states that, if for all x ∈ X? there does not exists i such that xi violates
the strict complementarity, then either all xi lie on the same bound or they all are strictly feasible.

Proposition 8. Let {xk} be the sequence of points produced by Algorithm 1 and consider an index
i ∈ {1, . . . , n}. Assume that there is no x ∈ X? such that i ∈ Z (x) \Z +(x). Then,

• if there exists x∗ ∈ X? such that i ∈ Z +(x?), we have that xi = x∗i for all x ∈ X?;

• otherwise, xi ∈ (li, ui) for all x ∈ X?.

Proof. We limit ourselves to show only the first point since the second one can be obtained as a logical
consequence. From Theorem 4 and recalling Ostrowski’s theorem [4], the set X? of limit points of
the sequence {xk} is a connected set. Now, let us consider any two points in X?, say x̄ ∈ X? and
ȳ ∈ X?, such that x̄ 6= ȳ, and ȳi ∈ {li, ui}. Since X? is connected, there exists a continuous function
ρ : [a, b]→ Rn such that ρ(a) = x̄, ρ(b) = ȳ and ρ(t) ∈ X?, i.e., ρ(t) is stationary, for all t ∈ [a, b]. Let
us assume, without loss of generality, that ȳi = li (the proof for the case ȳi = ui is identical, except for
minor changes). By contradiction, now assume that x̄i > li. Since ρ(a)i = x̄i > li and ρ(b)i = ȳi = li,
then there exists t̄ ∈ (a, b] such that ρ(t)i > li for all t ∈ [a, t̄) and ρ(t̄)i = li. Furthermore, by
the stationarity conditions given in Definition 3, we have that ∇if(ρ(t)) = 0 for all t ∈ [a, t̄) and
∇if(ρ(t̄)) > 0, where the last inequality follows from the stated hypothesis. Then, by continuity of
∇f , a scalar t̂ ∈ (a, t̄) must exist such that ∇if(ρ(t)) > 0 for all t ∈ (t̂, t̄]. This is a contradiction
since ∇if(ρ(t)) = 0 for all t ∈ (t̂, t̄).

Applying the above proposition for all indices i ∈ {1, . . . , n}, the following result immediately
follows, enforcing the finite active-set identification property established in Theorem 8 when all the
limit points of {xk} are non-degenerate.

Corollary 1. Let {xk} be the sequence of points produced by Algorithm 1 and assume that every
x ∈ X? is non-degenerate. Then, for any pair x′, x′′ ∈ X?, we have Z (x′) = Z (x′′) and x′i = x′′i for
all i ∈ Z (x′).

5 Conclusions

In this paper, we have analyzed a derivative-free line search method for bound-constrained problems
where the objective function has a Lipschitz continuous gradient. For this algorithm, we have first
provided complexity results. In more detail, given a prespecified threshold ε > 0, we have shown that
the criticality measure χ(xk) (which vanishes at stationary points) falls below ε after at most O (nε−2)
iterations, requiring at most O (n2ε−2) function evaluations. These bounds match those obtained for
(deterministic) direct-search [19] and model-based [22] methods. Additionally, we have established
an upper bound of O (n2ε−2) on the total number of iterations where χ(xk) ≥ ε. The latter result is
obtained thanks to the extrapolation strategy used in the proposed line search, allowing us to upper
bound χ(xk) on both successful and unsuccessful iterations.

In the last part of the paper, we have considered the active-set identification property of the
proposed method, i.e., the capability to detect the variables lying at the lower or the upper bound in

21

Complexity and identification of a DF method

the final solutions. In this respect, we have shown that, in a finite number of iterations, the algorithm
identifies the active constraints satisfying the strict complementarity condition. Also this property
is obtained by exploiting the extrapolation used in the proposed line search, allowing the stepsize to
expand, when we are in a neighborhood of a stationary point, until we hit the boundary of the feasible
set.

Finally, some topics for future research can be envisaged. In particular, under convexity assump-
tions, the worst-case complexity of the algorithm might be tightened, in order to match the results
given in [15], and a bound on the maximum number of iterations required to identify the active
constraints might be given. We wish to report more results in future works.

References

[1] C. Audet and J. E. Dennis Jr. Mesh Adaptive Direct Search Algorithms for Constrained Opti-
mization. SIAM J. Optim., 17(1):188–217, 2006.

[2] C. Audet and W. L. Hare. Derivative-free and blackbox optimization. Springer Ser. Oper. Res.
Financ. Eng. Springer, Cham, 2017.

[3] D. P. Bertsekas. On the Goldstein-Levitin-Polyak gradient projection method. IEEE Trans.
Automat. Control, 21(2):174–184, 1976.

[4] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Massachusetts, 2016.
[5] I. M. Bomze, F. Rinaldi, and S. R. Bulò. First-order methods for the impatient: Support

identification in finite time with convergent Frank–Wolfe variants. SIAM J. Optim., 29(3):2211–
2226, 2019.

[6] I. M. Bomze, F. Rinaldi, and D. Zeffiro. Active set complexity of the away-step Frank-Wolfe
algorithm. SIAM J. Optim., 30(3):2470–2500, 2020.

[7] A. Brilli, M. Kimiaiei, G. Liuzzi, and S. Lucidi. Worst case complexity bounds for linesearch-type
derivative-free algorithms. arXiv preprint arXiv:2302.05274, 2023.

[8] J. V. Burke and J. J. Moré. On the identification of active constraints. SIAM J. Numer. Anal.,
25(5):1197–1211, 1988.

[9] P. Conejo, E. W. Karas, L. G. Pedroso, A. A. Ribeiro, and M. Sachine. Global convergence of
trust-region algorithms for convex constrained minimization without derivatives. Appl. Math.
and Comput., 220:324–330, 2013.

[10] A. R. Conn, N. Gould, A. Sartenaer, and P. L. Toint. Convergence Properties of an Augmented
Lagrangian Algorithm for Optimization with a Combination of General Equality and Linear
Constraints. SIAM J. Optim., 6(3):674–703, 1996.

[11] A. R. Conn, N. I. Gould, and P. L. Toint. Trust-Region Methods. SIAM, 2000.
[12] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to derivative-free optimization.

SIAM, 2009.
[13] A. Cristofari. Active-set identification with complexity guarantees of an almost cyclic 2-coordinate

descent method with Armijo line search. SIAM J. Optim., 32(2):739–764, 2022.
[14] A. Cristofari and F. Rinaldi. A derivative-free method for structured optimization problems.

SIAM J. Optim., 31(2):1079–1107, 2021.
[15] M. Dodangeh and L. N. Vicente. Worst case complexity of direct search under convexity. Math.

Program., 155(1-2):307–332, 2016.
[16] M. Dodangeh, L. N. Vicente, and Z. Zhang. On the optimal order of worst case complexity of

direct search. Optim. Lett., 10:699–708, 2016.
[17] R. Garmanjani, D. Júdice, and L. N. Vicente. Trust-Region Methods Without Using Derivatives:

Worst Case Complexity and the NonSmooth Case. SIAM J. Optim., 26(4):1987–2011, 2016.
[18] S. Gratton, P. L. Toint, and A. Tröltzsch. An active-set trust-region method for derivative-free

nonlinear bound-constrained optimization. Optim. Methods Softw., 26(4-5):873–894, 2011.

22

A. Brilli, A. Cristofari, G. Liuzzi, S. Lucidi

[19] S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang. Direct search based on probabilistic
feasible descent for bound and linearly constrained problems. Comput. Optim. Appl., 72:525–
559, 2019.

[20] E. A. Gumma, M. Hashim, and M. M. Ali. A derivative-free algorithm for linearly constrained
optimization problems. Comput. Optim. Appl., 57(3):599–621, 2014.

[21] W. L. Hare and A. S. Lewis. Identifying active constraints via partial smoothness and prox-
regularity. J. Convex Anal., 11(2):251–266, 2004.

[22] M. Hough and L. Roberts. Model-Based Derivative-Free Methods for Convex-Constrained Opti-
mization. SIAM J. Optim., 32(4):2552–2579, 2022.

[23] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct search: New perspectives on
some classical and modern methods. SIAM Rev., 45(3):385–482, 2003.

[24] T. G. Kolda, R. M. Lewis, and V. Torczon. Stationarity results for generating set search for
linearly constrained optimization. SIAM J. Optim., 17(4):943–968, 2007.

[25] J. Larson, M. Menickelly, and S. M. Wild. Derivative-free optimization methods. Acta Numer.,
28:287–404, 2019.

[26] R. M. Lewis and V. Torczon. Pattern Search Algorithms for Bound Constrained Minimization.
SIAM J. Optim., 9(4):1082–1099, 1999.

[27] R. M. Lewis and V. Torczon. Active set identification for linearly constrained minimization
without explicit derivatives. SIAM J. Optim., 20(3):1378–1405, 2010.

[28] S. Lucidi and M. Sciandrone. A derivative-free algorithm for bound constrained optimization.
Comput. Optim. Appl., 21(2):119–142, 2002.

[29] S. Lucidi and M. Sciandrone. On the global convergence of derivative-free methods for uncon-
strained optimization. SIAM J. Optim., 13(1):97–116, 2002.

[30] S. Lucidi, M. Sciandrone, and P. Tseng. Objective-derivative-free methods for constrained opti-
mization. Math. Program., 92:37–59, 2002.

[31] Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013.

[32] J. Nutini, M. Schmidt, and W. L. Hare. “Active-set complexity” of proximal gradient: How long
does it take to find the sparsity pattern? Optim. Lett., 13:645–655, 2019.

[33] M. J. Powell. On fast trust region methods for quadratic models with linear constraints. Math.
Program. Comput., 7:237–267, 2015.

[34] L. N. Vicente. Worst case complexity of direct search. EURO J. Comput. Optim., 1(1-2):143–153,
2013.

[35] S. J. Wright. Identifiable surfaces in constrained optimization. SIAM J. Control Optim., 31(4):
1063–1079, 1993.

23

	Introduction
	Notations

	The algorithm
	Convergence and worst-case complexity
	Assumptions and preliminary results
	Global convergence
	Worst-case complexity

	Finite active-set identification
	Conclusions

