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Abstract

We study quadratic programs with m ball constraints, and the strength of a lifted convex
relaxation for it recently proposed by Burer (2024). Burer shows this relaxation is exact when
m = 2. For general m, Burer (2024) provides numerical evidence that this lifted relaxation
is tighter than the Kronecker product based Reformulation Linearization Technique (RLT) in-
equalities introduced by Anstreicher (2017), and conjectures that this must be theoretically true
as well. In this note, we provide an affirmative answer to this question and formally prove that
this lifted relaxation indeed implies the Kronecker inequalities. Our proof is based on a decom-
position of non-rank-one extreme rays of the lifted relaxation for each pair of ball constraints.
Burer (2024) also numerically observes that for this lifted relaxation, an RLT-based inequality
proposed by Zhen et al. (2021) is redundant, and conjectures this to be theoretically true as
well. We also provide a formal proof that Zhen et al. (2021) inequalities are redundant for this
lifted relaxation. In addition, we establish that Burer’s lifted relaxation is a particular case of
the moment-sum-of-squares hierarchy.

1 Introduction

In this note, we study a specific class of quadratically constrained quadratic programs (QCQPs)
with a general quadratic objective and m ≥ 2 ball constraints:

min
x∈Rn

{q(x) : x ∈ S} , where S :=
{
x ∈ Rn : ∥x− ci∥2 ≤ ri, ∀i ∈ [m]

}
. (1)

Here, [m] := {1, . . . ,m}, and ci ∈ Rn and ri ∈ R for all i ∈ [m], and ∥ · ∥2 stands for the Euclidean
norm. We assume S ̸= ∅.

QCQP has a long history in the optimization community, dating back to 1990s. For fixed m,
QCQPs with domain S given by the intersection of m ball constraints can be solved within desired
accuracy in polynomial time [4]. However, no exact convex relaxation is known for all m.

A closely related direction is to study the conical hull of lifted quadratic set of S given by

D := cone{(xx⊤, x) : x ∈ S} ⊆ Sn+ ⊕ Rn, (2)

where cone{X} denotes the conical hull of the set X (i.e., set of all nonnegative combinations of
the vectors from X ), Sn is the space of n × n symmetric matrices and Sn+ is the cone of positive
semidefinite matrices in Sn.

Clearly any (possibly non-convex) quadratic objective over S can be equivalently written as a
linear objective over D. Thus, whenever D admits an explicit and concise description, problem (1)
can be efficiently solved.
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The set D immediately brings to our attention the well known Shor semidefinite programming
(SDP) relaxation [14], which is computationally efficient but in general only a relaxation. Shor
SDP relaxation has been studied a lot in the literature and several efforts have been made to
tighten it (see [3, 7, 5] and other references therein). One of the latest such effort is the Kronecker
product based Reformulation Linearization Technique (RLT) inequalities proposed by Anstreicher
[1], which are applicable when S is defined by second-order cone (SOC) constraints. When S is
defined by SOC constraints, Zhen et al. [17] propose another RLT-based inequality that aims to
strengthen the Shor relaxation.

There has been much work [15, 8, 16] on studying exact or tight description of D for certain
classes of S. Recently, when S is given by the intersection of two ball constraints, Kelly et al.
[10] gave an exact disjunctive SDP reformulation. Inspired by this result, for arbitrary number
of ball constraints, Burer [6] proposed a lifted convex relaxation which involves only one more
additional variable for lifting, and showed that although it is not an exact relaxation for general
m > 2, its admits a very good numerical performance in terms of both relaxation quality and
efficiency of computation. In [6], it was conjectured that this lifted relaxation is provably tighter
than the Kronecker RLT inequalities and Zhen et al.’s RLT inequalities are redundant for this lifted
relaxation. We answer these two conjectures affirmatively. In particular, in Theorem 1, by proving
a decomposition theorem (see Theorem 4) for the non-rank-one extreme rays of the lifted relaxation
proposed in [6] and studying the properties of both rank-one and non-rank-one extreme rays, we
show that Kronecker RLT inequalities are redundant for the projection of this lifted relaxation. In
Theorem 6 we show that Zhen et al. RLT inequalities are implied by this lifted relaxation as well.
Finally, we close by giving a new interpretation of Burer’s lifted relaxation using the techniques
from moment-sum-of-squares (moment-SOS) hierarchy.

2 Burer’s lifted convex relaxation

Burer [6] proposes a lifted convex relaxation of D in the space Sn+2, where recall S is defined by
m ball constraints

S :=
{
x ∈ Rn : ∥x− ci∥2 ≤ ri, ∀i ∈ [m]

}
,

and
D := cone{(xx⊤, x) : x ∈ S}.

We denote the second-order (SOC) cone (also known as Lorentz cone) in Rn+2 by

Ln+2 :=
{
x ∈ Rn+2 : ∥(x1, . . . , xn+1)∥2 ≤ xn+2

}
,

and denoting I as the n× n identity matrix, we define

Q :=

−2I 0 0
0 0 1
0 1 0

 , P :=

2I 0 0
0 1 −1
0 1 1

 , di :=

 2ci

−1
r2i − ∥ci∥22

 , ∀i ∈ [m].

Then Burer’s lifted relaxation1 is the intersection of the convex set given by

Cm :=
{
Z ∈ Sn+2

+ : ⟨Q,Z⟩ = 0, PZdi ∈ Ln+2, ∀i ∈ [m], (di)⊤Zdj ≥ 0, ∀i, j ∈ [m]
}

(3)

with
{
Z ∈ Sn+2 : Zn+2,n+2 = 1

}
. The way this formulation was derived in [6] is by introducing a

new variable t modeling ∥x∥22 and the homogenization variable x0, and then applying linear-RLT

1Upon conjugation by a permutation matrix
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inequalities (i.e., (di)⊤Zdj ≥ 0, ∀i, j ∈ [m]) and SOC-RLT inequalities (i.e., PZdi ∈ Ln+2, ∀i ∈ [m])
to the set D̃ := cone{ww⊤ : w ∈ S̃}, where

S̃ :=
{
w = (x, t, x0) ∈ Rn+2 : x0 = 1, ∥x∥22 = tx0,

〈
di, w

〉
≥ 0, ∀i ∈ [m]

}
.

Clearly, S is the projection of S̃ onto the first n coordinates, i.e., S = Projx(S̃). Moreover, as

conv(S) = conv
(
Projx(S̃)

)
= Projx

(
conv(S̃)

)
,

(where conv(S) stands for the convex hull of set S) we may thus focus on obtaining conv(S̃) or a
relaxation for it.

3 Domination of Kronecker RLT inequalities

In order to project Cm back to the space of D, we define the following linear maps of Z ∈ Sn+2

πX(Z) :=

Z11 . . . Z1n
...

. . .
...

Zn1 . . . Znn

 ∈ Sn, πx(Z) :=

Z1,n+2
...

Zn,n+2

 ∈ Rn,

and denote π(Z) := (πX(Z), πx(Z)) ∈ Sn ⊕ Rn.
Although D ⊊ π(Cm) for any m ≥ 2, Burer [6] shows that for the case m = 2 the relaxation (3)

can be slightly modified to become exact, i.e., setting ⟨Q,Z⟩ ≥ 0 and (d1)⊤Zd2 = 0 and keeping
everything else the same. Indeed, when m = 2 this modification is justified and leads to a valid
convex relaxation that is shown to be exact in [6]. However, this modification does not generalize
to m ≥ 3.

For m ≥ 3, Burer [6] numerically compares the strength of (3) against a lifted SDP formulation
strengthened by the Kronecker RLT inequalities proposed in [1]. The idea for the Kronecker
inequalities is as follows: each ball constraint ∥x− ci∥2 ≤ ri is equivalent to

A(x− ci, ri) :=


ri x1 − ci1

. . .
...

ri xn − cin
x1 − ci1 . . . xn − cin ri

 ⪰ 0.

Recall also that for any two positive semidefinite matrices Ai ∈ Sn1 and Aj ∈ Sn2 , we always have
their Kronecker product Ai ⊗ Aj is positive semidefinite as well. Thus, if a point x ∈ Rn satisfies
two ball constraints ∥x− ci∥2 ≤ ri and ∥x− cj∥2 ≤ rj , then the Kronecker product A(x− ci, ri)⊗
A(x − cj , rj) is positive semidefinite as well. Note that the entries in A(x − ci, ri) ⊗ A(x − cj , rj)
are quadratic functions of x and as such they can be expressed as linear functions of the rank-one

matrix

(
x
1

)(
x⊤ 1

)
. In order to obtain the Kronecker inequalities, we simply replace the quadratic

terms xkxl in A(x − ci, ri) ⊗ A(x − cj , rj) by Xkl and x2k by Xkk. Let Kij denote the resulting

linear map from Sn ⊕ Rn to S(n+1)2 of the matrix variable X and the vector x (see [1] for formal
entry-wise definition of Kij). Hence, we arrive at the conclusion that any (X,x) ∈ D must satisfy

Kij(X,x) ⪰ 0, ∀i, j ∈ [m]. (4)

The numerical study in [6] indicates that the lifted relaxation (3) is stronger than the Kronecker
inequalities (4), and as a result [6] conjectures that this must be true theoretically as well. In this
note we resolve this conjecture and show that this is indeed the case.
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Theorem 1. For any m ≥ 2 and for all Z ∈ Cm, we have Kij(πX(Z), πx(Z)) ⪰ 0 for all i, j ∈ [m].

Indeed, we prove a slightly stronger form of Theorem 1. Note that for all i, j ∈ [m] where i ̸= j,
by defining

C{i,j} :=
{
Z ∈ Sn+2

+ : ⟨Q,Z⟩ = 0, PZdi ∈ Ln+2, PZdj ∈ Ln+2, (di)⊤Zdj ≥ 0
}
,

we observe that Cm =
⋂

i∈[m]

⋂
j<i

C{i,j}. In the view of this, in fact, we will prove the following stronger

claim:

Theorem 2. For any m ≥ 2 and i, j ∈ [m] where i ̸= j we have the relation

Z ∈ C{i,j} =⇒ Kij(πX(Z), πx(Z)) ⪰ 0.

Clearly, Theorem 1 is a corollary of Theorem 2. Thus, from now on we focus on the case of
m = 2, (i, j) = (1, 2), and consider the set

C2 =
{
Z ⪰ 0 : ⟨Q,Z⟩ = 0, PZdi ∈ Ln+2, ∀i ∈ [2], (d1)⊤Zd2 ≥ 0

}
. (5)

We start with some preliminaries that relate to properties of extreme rays of C2 that are spanned
by rank-one matrices in Section 3.1. The key ingredient of proving Theorem 2 is a decomposition
of non-rank-one extreme rays of C2, which we present in Section 3.2. We believe this result is
of separate interest in order to further understand the geometry of relaxation (3). Finally, in
Section 3.3 we give the proof of Theorem 2.

3.1 Preliminaries

We start with the following simple fact on the relationship between matrices P,Q and the second-
order cone. Given a set X , we let bd(X ) denote its boundary.

Fact 1. For any w ∈ Rn+2, the relation w⊤Qw ≥ 0 holds if and only if Pw ∈ Ln+2 ∪ (−Ln+2).
Moreover, w⊤Qw = 0 holds if and only if Pw ∈

(
bd(Ln+2) ∪ bd(−Ln+2)

)
.

Proof. Write w⊤ = (x⊤, t, x0). Then, w⊤Qw ≥ 0 if and only if tx0 ≥ ∥x∥22 which is equivalent to
4∥x∥22 + (t− x20) ≤ (t+ x0)

2. Thus, w⊤Qw ≥ 0 if and only if

Pw =

 2x
t− x0
t+ x0

 ∈ Ln+2 ∪ (−Ln+2).

Similarly, w⊤Qw = 0 holds if and only if 4∥x∥22 + (t − x20) = (t + x0)
2, which holds if and only if

Pw ∈
(
bd(Ln+2) ∪ bd(−Ln+2)

)
.

We characterize rank-one extreme rays of Cm (recall from (3)) for any m ≥ 2.

Proposition 1. Let m ≥ 2 and w⊤ := (x⊤, t, x0) be such that ww⊤ spans an extreme ray of Cm.
Then, ∥x∥22 = tx0 and x0 ̸= 0. Moreover, if x0 > 0, then w⊤di ≥ 0, ∀i ∈ [m].

Proof. As Z = ww⊤ spans an extreme ray of Cm, w ̸= 0.
〈
Q,ww⊤〉 = 0 implies ∥x∥22 = tx0. Assume

for contradiction that x0 = 0. Then, x = 0 and w⊤ = α(0⊤, 1, 0) for some α ∈ R. Since din+1 = −1
for all i ∈ [m], we have (Pww⊤di)⊤ = −α2(0⊤, 1, 1). Thus, the constraint Pww⊤di ∈ Ln+2 implies
α = 0, and so w = 0 which is a contradiction. Hence, we conclude x0 ̸= 0.

Since
〈
Q,ww⊤〉 = 0, from Fact 1 we deduce Pw ∈ Ln+2 ∩ (−Ln+2). After choosing x0 > 0

we have Pw ∈ Ln+2. Since P is invertible and w ̸= 0 we have Pw ̸= 0. Hence, the constraint
Pw(w⊤di) = PZdi ∈ Ln+2 implies w⊤di ≥ 0 for all i ∈ [m].
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In particular, Proposition 1 states that if Z̄ = ww⊤ (i.e., rank(Z̄) = 1) spans an extreme ray of
Cm, then by properly scaling w so that wn+2 = 1 we observe that w ∈ S̃. Then, by the origin of
the Kronecker inequalities we deduce that Kij(πX(Z̄), πx(Z̄)) ⪰ 0 holds for all i, j ∈ [m].

3.2 Decomposition of non-rank-one extreme rays of C2
Burer [6] considers the following slightly modified version of C2:

C̃2 :=
{
Z ⪰ 0 : ⟨Q,Z⟩ ≥ 0, PZdi ∈ Ln+2, ∀i ∈ [2], (d1)⊤Zd2 = 0

}
. (6)

Recall that a closed convex cone contained inside a PSD cone is called rank one generated
(ROG) if all of its extreme rays are generated by rank one matrices. See [9] and [2] for properties
of ROG cones.

We restate the following results from [6] on the following cones being ROG.

Theorem 3 (restatement of [6, Theorem 1]). C̃2 is ROG.

Proposition 2 (restatement of [6, Lemma 3]). For any d ∈ Rn+2, the set

C1 :=
{
Z ⪰ 0 : ⟨Q,Z⟩ ≥ 0, PZd ∈ Ln+2

}
is ROG.

We also need the following straightforward lemma on the faces of ROG cones.

Lemma 1 (part of Lemma 3 in [2]). Let K be an ROG cone, and ⟨α, ξ⟩ ≤ β be a valid inequality
for K. Then, K ∩ {ξ : ⟨α, ξ⟩ = β} is ROG.

Proof. Let ξ∗ span an extreme ray of K∩{ξ : ⟨α, ξ⟩ = β}. Since ξ∗ ∈ K and K is ROG, ξ∗ admits a
representation in terms of conic combination of rank one matrices inK, i.e., ξ∗ =

∑
ℓ∈[r]w

ℓ(wℓ)⊤ for

some r and wℓ(wℓ)⊤ ∈ K. Since ⟨α, ξ⟩ ≤ β is a valid inequality for K and ξ∗ ∈ K∩{ξ : ⟨α, ξ⟩ = β},
all these rank-one matrices wℓ(wℓ)⊤ for all ℓ ∈ [r] must also satisfy ⟨α, ξ⟩ ≤ β at equality. Hence,
K ∩ {ξ : ⟨α, ξ⟩ = β} is ROG.

Although C2 is not ROG, we have the following characterization of its non-rank-one extreme
rays.

Theorem 4. Let Z̄ span an extreme ray of C2. If r = rank(Z̄) > 1, then there exists x1, . . . , xr ∈
Rn, α1, . . . , αr > 0, such that

Z̄ =

r∑
i=1

αi

 xi

∥xi∥22
1

 xi

∥xi∥22
1

⊤

,

where ∥x1 − c1∥2 < r1, ∥x1 − c2∥2 < r2, ∥xi − c1∥2 = r1 for all 2 ≤ i ≤ r, and PZ̄d2 ∈ bd(Ln+2).

Proof. Based on Theorem 3 and Lemma 1, the setZ ⪰ 0 :
⟨Q,Z⟩ = 0,
PZdi ∈ Ln+2, ∀i ∈ [2],
(d1)⊤Zd2 = 0


is ROG. Since Z̄ has rank r > 1 we must have (d1)⊤Z̄d2 > 0. In addition, as

〈
Q, Z̄

〉
= 0, by

Lemma 1 we also have PZ̄di ∈ bd(Ln+2) for i ∈ [2].
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Note that by Proposition 2 for each i ∈ [2] the sets{
Z ⪰ 0 : ⟨Q,Z⟩ = 0, PZdi ∈ Ln+2

}
are ROG. Thus, we can write Z̄ =

∑r
i=1 αiw

i(wi)⊤, where for each i ∈ [r], αi > 0 and wi satisfies
wi ̸= 0,

〈
Q,wi(wi)⊤

〉
= 0, P (wi(wi)⊤)d1 ∈ Ln+2. For any i ∈ [r], let (wi)⊤ = ((xi)⊤, ti, yi).

Replacing wi by −wi if necessary, we may assume yi ≥ 0. Also, the constraint
〈
Q,wi(wi)⊤

〉
= 0

implies tiyi = ∥xi∥22. We argue that yi ̸= 0, since otherwise we have xi = 0, (wi)⊤ = (0, β, 0) for

some β ̸= 0, and then as din+1 = −1 we have Pwi(wi)⊤d1 = −β2

01
1

 which violates Pwi(wi)⊤d1 ∈

Ln+2. Thus, yi > 0. Upon rescaling αi and wi we may assume yi = 1 and hence ti = ∥xi∥22. Thus,
we deduce that each i ∈ [r] the vector wi is of the form

wi =

 xi

∥xi∥22
1

 , and Pwi ∈ Ln+2.

As Pwi((wi)⊤d1) ∈ Ln+2 and Ln+2 is a pointed convex cone, we also get
〈
d1, wi

〉
≥ 0.

Now note that PZ̄d1 =
∑r

i=1 αi

〈
d1, wi

〉
Pwi, while we also know PZ̄d1 ∈ bd(Ln+2) and Pwi ∈

Ln+2 and
〈
d1, wi

〉
≥ 0 for all i ∈ [r]. Then, since Ln+2 is a strictly convex cone (i.e., the boundary

does not contain any polyhedron of dimension at least two) and αi > 0 for all i ∈ [r], we deduce
that exactly one of the terms

〈
d1, wi

〉
is positive and the rest are zero. Without loss of generality

by rearranging the indices of wi’s, we conclude that
〈
d1, w1

〉
> 0 and

〈
d1, wi

〉
= 0 for all 2 ≤ i ≤ r.

This implies ∥x1 − c1∥2 < r1 and ∥xi − c1∥2 = r1 for all 2 ≤ i ≤ r. Then,

0 < (d1)⊤Z̄d2 =

r∑
i=1

〈
d1, wi

〉 〈
wi, d2

〉
=
〈
d1, w1

〉 〈
w1, d2

〉
.

Hence,
〈
w1, d2

〉
> 0, i.e., ∥x1 − c2∥2 < r2.

3.3 Proof of Theorem 2

Recall the linear map Kij from (4). Since we are considering the case m = 2, we denote the map
as K.

Let us now define K more formally for our proof. For convenience, we denote the arrow matrices
as Ai(x) := A(x − ci, ri), i ∈ [2]. Let Xj denote the j-th column of X, and let Hj(X,x) be the
matrix obtained from (xj − c2j )A1(x) by replacing xjx terms by Xj , i.e.,

Hj(X,x) :=

[
(xj − c2j )r1I Xj − xjc

1 − c2jx+ c2jc
1

(Xj − xjc
1 − c2jx+ c2jc

1)⊤ (xj − c2j )r1

]
.

Thus, the Kronecker RLT constraint derived from the two ball constraints ∥x− ci∥2 ≤ ri, i ∈ [2]
can be written as

K(X,x) =


r2A1(x) H1(X,x)

. . .
...

r2A1(x) Hn(X,x)
H1(X,x) . . . Hn(X,x) r2A1(x)

 ⪰ 0.

Note that both Ai(x) and Hj(X,x) are affine maps of (X,x), and thus K(X,x) is an affine map
of (X,x) as well and so we arrive at the following result.
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Lemma 2. For any x1, . . . , xr ∈ Rn and α1, . . . , αr ∈ R, we have

K

(
r∑

i=1

αixix
⊤
i ,

r∑
i=1

αixi

)
=

r∑
i=1

αi (A2(x)⊗A1(x)) .

Based on the characterization of rank-one and non-rank-one extreme rays of C2 given in Propo-
sition 1 and Theorem 4, we conclude that to finish the proof of Theorem 2, it suffices to prove the
following result.

Theorem 5. Let Z̄ span an extreme ray of C2 and suppose r := rank(Z̄) > 1. Define X̄ :=
πX(Z̄), x̄ := πx(Z̄). Then, K(X̄, x̄) ⪰ 0.

The proof of Theorem 5 is mostly algebraic. We will use the following lemma to simplify our
computations.

Lemma 3. For any V ∈ R(n+1)2 we use the notation

V⊤ :=
(
(v1)⊤, b1, . . . , (v

n+1)⊤, bn+1

)
,

where vj ∈ Rn, bj ∈ R for all j ∈ [n + 1]. For any x ∈ Rn such that either ∥x − c1∥2 = r1 or
∥x− c1∥2 < r1 and ∥x− c2∥2 < r2, we have

V⊤ (A2(x)⊗A1(x))V ≥ 1

r1r2

(
r22 − ∥x− c2∥22

) ∥∥r1vn+1 + bn+1(x− c1)
∥∥2
2
.

We defer the proof of this lemma to appendix.

Proof of Theorem 5. Based on Theorem 4, we can write

Z̄ =
r∑

i=1

αi

 xi

∥xi∥22
1

 xi

∥xi∥22
1

⊤

,

where αi > 0 for all i ∈ [r], ∥x1 − c1∥2 < r1, ∥x1 − c2∥2 < r2, ∥xi − c1∥2 = r1 for all 2 ≤ i ≤ r, and
PZ̄d2 ∈ bd(Ln+2).

In order to complete the proof, we will show that V⊤K(X̄, x̄)V ≥ 0 holds for any V ∈ R(n+1)2 .
Let us write V ∈ R(n+1)2 as V⊤ =

(
(v1)⊤, b1, . . . , (v

n+1)⊤, bn+1

)
, where vj ∈ Rn, bj ∈ R for all

j ∈ [n+ 1]. Then, by Lemmas 2 and 3, it suffices to prove that for any i ∈ [r] we have

1

r1r2

r∑
i=1

αi

(
r22 − ∥xi − c2∥22

) ∥∥r1vn+1 + bn+1(x
i − c1)

∥∥2
2
≥ 0.

Let us define ηi := r22 − ∥xi − c2∥22 for all i ∈ [r]. Thus, we need to show

1

r1r2

r∑
i=1

αiηi
∥∥r1vn+1 + bn+1(x

i − c1)
∥∥2
2
≥ 0. (7)
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Note that for all i ∈ [r] we have

P

 xi

∥xi∥22
1

 xi

∥xi∥22
1

⊤

d2 =

2I 0 0
0 1 −1
0 1 1

 xi

∥xi∥22
1

 xi

∥xi∥22
1

⊤  2c2

−1
r22 − ∥c2∥22


=

 2xi

∥xi∥22 − 1
∥xi∥22 + 1

(2(c2)⊤xi − ∥xi∥22 + r22 − ∥c2∥22
)

=
(
r22 − ∥xi − c2∥22

) 2xi

∥xi∥22 − 1
∥xi∥22 + 1

 = ηi

 2xi

∥xi∥22 − 1
∥xi∥22 + 1

 .

Hence,

PZ̄d2 =

r∑
i=1

αiηi

 2xi

∥xi∥22 − 1
∥xi∥22 + 1

 =

 2
∑r

i=1 αiηix
i(∑r

i=1 αiηi∥xi∥22
)
− (
∑r

i=1 αiηi)(∑r
i=1 αiηi∥xi∥22

)
+ (
∑r

i=1 αiηi)

 .

Thus, using PZ̄d2 ∈ Ln+2 we deduce that

r∑
i=1

αiηi +

r∑
i=1

αiηi∥xi∥22 =
r∑

i=1

(
αiηi

(
∥xi∥22 + 1

))
≥ 0, (8)

and

(
r∑

i=1

αiηi

)(
r∑

i=1

αiηi∥xi∥22

)
≥

∥∥∥∥∥
r∑

i=1

αiηix
i

∥∥∥∥∥
2

2

. (9)

Therefore, we must have
∑r

i=1 αiηi ≥ 0 and
∑r

i=1 αiηi∥xi∥22 ≥ 0 since by (8) the sum of these terms
is nonnegative and by (9) their product is nonnegative.

We define and examine the following (n+ 1)× (n+ 1) matrix

M :=

[
(
∑r

i=1 αiηi) I
∑r

i=1 αiηix
i∑r

i=1 αiηi(x
i)⊤

∑r
i=1 αiηi∥xi∥22

]
.

We claim that M ⪰ 0 as a result of (8) and (9). First, consider the case when at least one of the
terms

∑r
i=1 αiηi and

∑r
i=1 αiηi∥xi∥22 is equal to zero. Then, by (9), we deduce that

∑r
i=1 αiηix

i = 0
and from (8) we conclude that the other term must be nonnegative and so M ⪰ 0 holds in this
case. Now, consider the case when both

∑r
i=1 αiηi and

∑r
i=1 αiηi∥xi∥22 are nonzero. Since both

terms are always nonnegative, in this case they both must be positive. Then, both of the diagonal
block matrices in M are positive definite, and by Schur Complement Lemma M ⪰ 0 if and only if

r∑
i=1

αiηi∥xi∥22 −

(
r∑

i=1

αiηi

)−1( r∑
i=1

αiηix
i

)⊤

I

(
r∑

i=1

αiηix
i

)
︸ ︷︷ ︸

=∥∑r
i=1 αiηixi∥2

2

≥ 0.

By recalling that
∑r

i=1 αiηi > 0 and rearranging the above inequality, we observe that it is precisely
the same as (9). Thus, we conclude that M ⪰ 0 holds in this case as well.

Now, as M ⪰ 0, for any v ∈ Rn we have

0 ≤
[
v
1

]⊤
M

[
v
1

]
=

r∑
i=1

αiηi∥v + xi∥22. (10)
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Finally, note that whenever bn+1 ̸= 0 we have ∥r1vn+1 + bn+1(x
i − c1)∥22 = b2n+1∥ r1vn+1

bn+1
− c1 + xi∥22,

hence (10) implies the desired relation of (7). The case when bn+1 = 0 follows from continuity
letting bn+1 → 0. This completes the proof.

3.4 Domination of Zhen et al RLT inequalities

In this section we examine an inequality proposed by Zhen et al. in [17] to strengthen the Shor SDP
relaxation of the sets of form S. Once again, in the numerical study of [6], it was identified that
this inequality is redundant for Cm, and it was conjectured in [6] that this must be theoretically
true as well.

The main idea of Zhen et al. [17]’s inequality is as follows. Recall that given two vectors u ∈ Rk

and v ∈ Rℓ, we have ∥uv⊤∥m2 = ∥u∥2∥v∥2, where ∥ · ∥m2 denotes the matrix 2-norm. Then, given
any two SOC constraints ∥x− ci∥2 ≤ ri and ∥x− cj∥2 ≤ rj with i ̸= j, we have

∥xx⊤ − x(cj)⊤ − cix⊤ + ci(cj)⊤∥m2 = ∥(x− ci)(x− cj)⊤∥m2

= ∥x− ci∥2∥x− cj∥2 ≤ rirj .

Now, by defining a matrix variable X to capture xx⊤, this inequality can be linearized in the lifted
space as

∥X − x(cj)⊤ − cix⊤ + ci(cj)⊤∥m2 ≤ rirj (11)

⇐⇒
[

r2i In X − x(cj)⊤ − cix⊤ + ci(cj)⊤

X − cjx⊤ − x(ci)⊤ + cj(ci)⊤ r2j In

]
︸ ︷︷ ︸

:=Zi,j(X,x)

⪰ 0.

Note that this inequality (11), i.e., Zi,j(X,x) ⪰ 0, is linear in terms of the vector variable x and the
matrix variable X. Thus, Zhen et al. suggest to add the inequality Zi,j(X,x) ⪰ 0 for all i, j ∈ [m]
to strengthen the Shor SDP relaxation of the set S.

We next show that the inequality (11) follows from adding linear- and SOC-RLT inequalities
to the standard Shor relaxation. Thus, the inequalities (11) are redundant for the lifted relaxation
Cm.

Theorem 6. For any m ≥ 2 and i, j ∈ [m] where i ̸= j we have the relation{
Z ∈ C{i,j}, Zn+2,n+2 = 1

}
=⇒ Zij(πX(Z), πx(Z)) ⪰ 0.

Proof. Consider any Z ∈ C{i,j} satisfying Zn+2,n+2 = 1. To simplify our notation, let us set
X := πX(Z) and x := πx(Z). Thus, by the definition of Z, observe that

Z =

 X Zt,x x
Z⊤
t,x Zt,t t

x⊤ t 1


Now since Z ⪰ 0, we deduce

[
X x
x⊤ 1

]
⪰ 0, which by Schur Complement Lemma implies that

X − xx⊤ ⪰ 0.
Using the definitions of Q and Z, we observe that

QZ =

−2I 0 0
0 0 1
0 1 0

 X Zt,x x
Z⊤
t,x Zt,t t

x⊤ t 1

 =

−2X −2Zt,x −2x
x⊤ t 1
Z⊤
t,x Zt,t t

 .
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Then, as ⟨Q,Z⟩ = tr(QZ) = 0, we deduce that 0 = −2 tr(X) + t+ t, i.e., t = tr(X).
Moreover, by definition of P and di, we have

PZdi =

2I 0 0
0 1 −1
0 1 1

 X Zt,x x
Z⊤
t,x Zt,t t

x⊤ t 1

 di

=

 2X 2Zt,x 2x
Z⊤
t,x − x⊤ Zt,t − t t− 1

Z⊤
t,x + x⊤ Zt,t + t t+ 1

 2ci

−1
r2i − ∥ci∥22


=

 4Xci − 2Zt,x + 2(r2i − ∥ci∥22)x
2(Zt,x − x)⊤ci − (Zt,t − t) + (t− 1)(r2i − ∥ci∥22)
2(Zt,x + x)⊤ci − (Zt,t + t) + (t+ 1)(r2i − ∥ci∥22)


=

4Xci − 4xx⊤ci − 2Zt,x + 2tx+ 2δix
2Z⊤

t,xc
i − Zt,t + t(r2i − ∥ci∥22)− δi

2Z⊤
t,xc

i − Zt,t + t(r2i − ∥ci∥22) + δi

 =

ξi + 2δix
βi − δi
βi + δi


where in the last two equations we used the definitions δi := 2x⊤ci − t+ r2i −∥ci∥22, βi := 2Z⊤

t,xc
i −

Zt,t + t(r2i − ∥ci∥22) and ξi := 4Xci − 4xx⊤ci − 2Zt,x + 2tx. Since PZdi ∈ Ln+2, we must thus have
βi + δi ≥ 0 and

∥ξi + 2δix∥22 + (βi − δi)
2 ≤ (βi + δi)

2 ⇐⇒ ∥ξi + 2δix∥22 ≤ 4βiδi.

Because we have both βi+δi ≥ 0 and βiδi ≥ 0, we conclude that both βi and δi must be nonnegative.
Note that δi ≥ 0 is equivalent to

0 ≤ δi = −t+ 2x⊤ci + r2i − ∥ci∥22 = − tr(X) + 2x⊤ci + r2i − ∥ci∥22.

Thus, we arrive at
tr(X − x(ci)⊤ − cix⊤ + ci(ci)⊤) ≤ r2i . (12)

In fact, (12) can be obtained in much simpler way by noting that squaring both sides of ∥x−ci∥2 ≤ ri
results in (x − ci)⊤(x − ci) = x⊤x − (ci)⊤x − x⊤ci + (ci)⊤ci ≤ r2i and then writing the nonlinear
term x⊤x as tr(X) in the lifted space. Typically (12) is added to the Shor SDP relaxation as the
most basic constraint to capture the underlying quadratic. We just showed that it is implied by
SOC-RLT constraint and X ⪰ xx⊤ requirement.

Moreover, from 0 ⪯ (X − xx⊤) + (x− ci)(x− ci)⊤ = X − x(ci)⊤ − cix⊤ + ci(ci)⊤ and (12) we
deduce that

X − x(ci)⊤ − cix⊤ + ci(ci)⊤ ⪯ r2i In. (13)

In addition, we always have

0 ⪯
[
x− ci

x− cj

] [
x− ci

x− cj

]⊤
=

[
xx⊤ − x(ci)⊤ − cix⊤ + ci(ci)⊤ xx⊤ − x(cj)⊤ − cix⊤ + ci(cj)⊤

xx⊤ − x(ci)⊤ − cjx⊤ + cj(ci)⊤ xx⊤ − x(cj)⊤ − cjx⊤ + cj(cj)⊤

]
.

As xx⊤ ⪯ X and 0 ⪯
[
1 1
1 1

]
and Kronecker product of two PSD matrices is PSD as well, we also

have

0 ⪯
[
1 1
1 1

]
⊗ (X − xx⊤) =

[
X − xx⊤ X − xx⊤

X − xx⊤ X − xx⊤

]
.
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Thus, summing up these two inequalities, we conclude that

0 ⪯
[
X − x(ci)⊤ − cix⊤ + ci(ci)⊤ X − x(cj)⊤ − cix⊤ + ci(cj)⊤

X − x(ci)⊤ − cjx⊤ + cj(ci)⊤ X − x(cj)⊤ − cjx⊤ + cj(cj)⊤

]
. (14)

Note that the diagonal blocks in the matrix in (14) are of form X − x(ci)⊤ − cix⊤ + ci(ci)⊤, and
by (13) these block matrices are dominated in the PSD sense by r2i In. Therefore, we conclude that
inequality (11) is satisfied whenever Z ∈ C{i,j} and Zn+2,n+2 = 1.

4 The moment-SOS viewpoint

Here we describe another way to derive Cm as a particular case of moment-SOS hierarchy.
The moment-SOS hierarchy, introduced by Lasserre [11] and Parrilo [13], is a well known and

studied systematic way of obtaining semidefinite relaxations of increasing tightness and size. See
also [12] for a comprehensive introduction.

Here we briefly describe the idea for the moment hierarchy. For a ground set Ŝ := {x : gi(x) ≥
0, i ∈ [k]} defined by k polynomial inequalities gi(x) ≥ 0, i ∈ [k], the variable in the moment
hierarchy is a linear functional on some finite dimensional subspace of polynomials, usually poly-
nomials up to a fixed degree 2d. Computationally, this linear functional is encoded by the so-called
pseudomoments, which are the values of this linear functional on a basis of the subspace of polyno-
mials, usually chosen to be the monomial basis. These pseudomoments on Ŝ are required to share
certain properties of true moments on Ŝ, which send f to

∫
f dµ for some nonnegative measure

µ on Ŝ. Namely, the pseudoments of provably nonnegative polynomials should be nonnegative,
which include global sum-of-squares, product of constraint gi with sum-of-squares (Putinar type),
and product of the constraints gigj with possibly other constraints or sum-of-squares (Schmüdgen
type). The pseudomoments can be conveniently arranged into the form of a pseudomoment matrix,
whose rows and columns are indexed by polynomials f1, . . . , fN , and the (fi, fj) entry of the matrix
is the pseudomoment of fifj .

Going back to our setting, the constraints gi(x) ≥ 0 are the ball constraints r2i − ∥x− ci∥22 ≥ 0.
The moment matrix will have size (n + 2) × (n + 2), indexed by monomials of degree at most 1,
plus one more term ∥x∥22 =

∑
i x

2
i . Same as the usual moment hierarchy, the (fi, fj) entry of the

pseudomoment matrix models the pseudoment M(fifj). Specifically, we write our matrix variable
Z as:

Z =


M(x21) . . . M(x1xn) M(x1

∑
i x

2
i ) M(x1)

...
. . .

...
...

...
M(x1xn) . . . M(x2n) M(xn

∑
i x

2
i ) M(xn)

M(x1
∑

i x
2
i ) . . . M(xn

∑
i x

2
i ) M((

∑
i x

2
i )

2) M(
∑

i x
2
i )

M(x1) . . . M(xn) M(
∑

i x
2
i ) M(1)


Now we derive constraints on Z as a pseudomoment matrix as follows:

1. Z ⪰ 0, as M(σ2) ≥ 0 for all σ that is a linear combination of 1, x1, . . . , xn,
∑

i x
2
i ;

2. ⟨Q,Z⟩ = 0, as by linearity
∑

iM(x2i ) = M(
∑

x2i );

3. (di)⊤Zdj ≥ 0 for all i, j ∈ [m], as M(gi(x)gj(x)) ≥ 0;

4. PZdi ∈ Ln+2 follows from that M(gi(x)σ
2) ≥ 0 for σ of the form axj + b, a, b ∈ R, j ∈ [m].

This is equivalent to

[
M(x2jgi(x)) M(xjgi(x))

M(xjgi(x)) M(gi(x))

]
⪰ 0 for all j ∈ [m], which then implies
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P


M(x1gi(x))

...
M(xngi(x))

M(gi(x)
∑

j x
2
j )

M(gi(x))

 ∈ Ln+2,

and this is exactly PZdi ∈ Ln+2.

Thus we have arrived at Burer’s lifted formulation in [6] using moment hierarchy. This also
shows that the lifted formulation is implied by the full second-level moment hierarchy.

5 Conclusion and further remarks

In this paper, we show that Burer’s lifted convex relaxation for S is provably tighter than the
Kronecker RLT inequalities as well as Zhen et al.’s RLT inequalities. From a more theoretical
perspective, we show that Burer’s lifted relaxation can be interpreted as a particular case of moment-
SOS hierarchy (to be more precise, a relaxation of the second-level of moment-SOS hierarchy). The
first-level of the moment-SOS hierarchy is known to be the same as the Shor relaxation. While the
usual setup of moment hierarchy is known to be computationally inefficient even for the second
level, Burer’s lifted convex relaxation increases the matrix size by only one compared to the first
level hierarchy, and yet seemingly retains most of the strength of the second-level hierarchy, as
suggested by results of this paper and [6]. In general, it will be interesting to study the relationship
between various RLT type inequalities and the moment-SOS hierarchy.
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A Proof of Lemma 3

For any i, j ∈ [n+ 1] we have[
vi

bi

]⊤
A1(x)

[
vj

bj

]
= r1

〈
vi, vj

〉
+ bi

〈
vj , x− c1

〉
+ bj

〈
vi, x− c1

〉
+ r1bibj

=
1

r1

(〈
r1v

i + bi(x− c1), r1v
j + bj(x− c1)

〉
+ bibj(r

2
1 − ∥x− c1∥22)

)
.
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If ∥x− c1∥2 = r1, then we have

V⊤ (A2(x)⊗A1(x))V

= r2

n+1∑
i=1

[
vi

bi

]⊤
A1(x)

[
vi

bi

]
+ 2

n∑
i=1

(xi − c2i )

[
vi

bi

]⊤
A1(x)

[
vn+1

bn+1

]

=
1

r1r2

n+1∑
i=1

r22∥r1vi + bi(x− c1)∥22

+
2

r1r2

n∑
i=1

r2(xi − c2i )
〈
r1v

i + bi(x− c1), r1v
n+1 + bn+1(x− c1)

〉
=

1

r1r2
(r22 − ∥x− c2∥22)∥r1vn+1 + bn+1(x− c1)∥22

+
1

r1r2

n∑
i=1

∥r2(r1vi + bi(x− c1)) + (xi − c2i )(r1v
n+1 + bn+1(x− c1))∥22

≥ 1

r1r2
(r22 − ∥x− c2∥22)∥r1vn+1 + bn+1(x− c1)∥22,

which proves the desired statement. The proof for the case ∥x− c1∥ < r1 and ∥x− c2∥ < r2 is
very similar, where we in addition need to take care of the difference terms bibj(r

2
1 −∥x− c1∥22). In

this case we have

V⊤ (A2(x)⊗A1(x))V

=
1

r1r2
(r22 − ∥x− c2∥22)∥r1vn+1 + bn+1(x− c1)∥22

+
1

r1r2

n∑
i=1

∥r2(r1vi + bi(x− c1)) + (xi − c2i )(r1v
n+1 + bn+1(x− c1))∥22

+
r21 − ∥x− c1∥22

r1

(
n+1∑
i=1

r2b
2
i + 2

n∑
i=1

(xi − c2i )bibn+1

)
.

We have r21 − ∥x− c1∥22 > 0, and

n+1∑
i=1

r2b
2
i + 2

n∑
i=1

(xi − c2i )bibn+1

=
1

r2

((
r22 − ∥x− c2∥22

)
b2n+1 +

n∑
i=1

(
r2bi + (xi − c2i )bn+1

)2)
> 0.

Hence, the result follows.
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