
Interdiction of minimum spanning trees and other matroid bases

Noah Weninger and Ricardo Fukasawa
Department of Combinatorics & Optimization, University of Waterloo, Canada

{nweninger,rfukasawa}@uwaterloo.ca

July 16, 2024

Abstract

In the minimum spanning tree (MST) interdiction problem, we are given a graph G = (V,E) with edge
weights, and want to find some X ⊆ E satisfying a knapsack constraint such that the MST weight in (V,E \X)
is maximized. Since MSTs of G are the minimum weight bases in the graphic matroid of G, this problem is a
special case of matroid interdiction on a matroid M = (E, I), in which the objective is instead to maximize the
minimum weight of a basis of M which is disjoint from X. By reduction from 0-1 knapsack, matroid interdiction
is NP-complete, even for uniform matroids.

We develop a new exact algorithm to solve the matroid interdiction problem. One of the key components
of our algorithm is a dynamic programming upper bound which only requires that a simpler discrete derivative
problem can be calculated/approximated for the given matroid. Our exact algorithm then uses this bound within
a custom branch-and-bound algorithm.

For different matroids, we show how this discrete derivative can be calculated/approximated. In particular, for
partition matroids, this yields a pseudopolynomial time algorithm. For graphic matroids, an approximation can
be obtained by solving a sequence of minimum cut problems, which we apply to the MST interdiction problem.
The running time of our algorithm is asymptotically faster than the best known MST interdiction algorithm,
up to polylog factors. Furthermore, our algorithm achieves state-of-the-art computational performance: we
solved all available instances from the literature, and in many cases reduced the best running time from hours
to seconds.

1 Introduction

In an interdiction problem, we seek to solve some combinatorial optimization problem on a discrete structure, but
there is an adversary that can interdict (i.e., destroy) some parts of the structure before the optimization problem is
solved [26]. The adversary aims to make the optimal solution value of the optimization problem as bad as possible.
Typically, for each part of the structure that is interdicted, the adversary has to pay a price, and they have a limited
budget (i.e., they are restricted by a knapsack constraint).

Interdiction has been studied since the 1950s, and was originally motivated by military applications, but is
now seen to be widely applicable. For instance, the minimum s-t cut problem can be seen as the problem of
interdicting s-t connectivity in a graph by deleting edges; this now-ubiquitous problem originated in a 1955 US
Air Force secret report with the objective of disrupting the Soviet railway system [24]. Another commonly studied
interdiction problem is shortest s-t path interdiction, in which the adversary tries to increase the shortest s-t path
length in a graph as much as possible by deleting edges [13]. Although the discrete structure is often a graph, other
examples exist, such as knapsack interdiction [31], in which the adversary deletes items from a knapsack, or matroid
interdiction, the focus of this paper.

In recent years, interdiction problems have typically been interpreted as bilevel integer programming (BIP)
problems, which can be viewed as a generalization of integer programming (IP) to two-round two-player games.
In a BIP, there are two IPs, called the upper level and lower level, between which some variables are shared. An
optimal solution to a BIP problem can be seen as the optimal first-player strategy in a two player game. In this
game, the first player, called the leader, chooses a point X in the upper level feasible region. The second player,
called the follower, then picks an optimal solution Y for the lower level IP, for which feasibility and optimality may
depend on the choice of X. In the most general form, the feasibility of X can also depend on the choice of Y . The
game then ends and the objective function is calculated as a linear function of X and Y . The goal is for the leader
to pick an X which maximizes (or minimizes) this objective function. The terms leader and follower are borrowed
from the theory of Stackelberg games [28].

1

The advantage of viewing interdiction problems as BIPs is that a significant amount of work has been written on
general purpose algorithms for solving BIPs [16]. However, a key challenge in this approach is that most BIPs are
Σp

2-hard and hence cannot be modelled as IPs without using an exponential number of constraints and/or variables.
So, typically these algorithms reduce BIP to the problem of solving a series of IPs—exponentially many in the
worst case. However, while these general purpose methods can solve small problem instances of most interdiction
problems, current solvers are typically very poor at identifying and exploiting the (abundant) structure present in
interdiction problems. As such, performance improvements of many orders of magnitude are typically seen when
switching from general purpose BIP algorithms to problem-specific interdiction algorithms. This is in contrast to
many classical combinatorial optimization problems, where general purpose IP solvers are often very competitive.

Matroid interdiction is only NP-hard (as opposed to Σp
2-hard), but there is a lack of algorithms for solving it

which are fast in practice. The objective of this work is to further progress our understanding of the structure
present in interdiction problems by the development of problem-specific algorithms for matroid interdiction. We
hope that these insights can later be integrated into general purpose BIP solvers.

1.1 Problem statement

We assume the reader already has basic familiarity with matroids; the below definitions serve primarily to stan-
dardize notation. For a relevant introduction to matroids, see Chapter 8 in [7]. A matroid M = (E, I) consists of
a set E, called the ground set, and I, a family of subsets of E, called the independent sets. If J ∈ I, we say J is
independent. For M to be a matroid, we must have:

1. ∅ ∈ I,

2. for all A ∈ I and B ⊆ A, B ∈ I (i.e., I is downwards closed), and

3. if A and B are maximal independent subsets of a set J ⊆ E, then |A| = |B|.

We call maximal sets in I bases. We work in the oracle model: we assume we have a function which, given a
set J ⊆ E, answers whether J ∈ I in a single unit of time. Due to these properties, a minimum (respectively
maximum) weight basis can be found using a greedy algorithm which adds elements in order of non-decreasing
(non-increasing) weight whenever doing so retains independence [7]. For any A ⊆ E, we define the rank of A to be
r(A) := max{|B| : B ⊆ A,B ∈ I}. Note that B is a basis if and only if r(B) = r(E).

In the paper we refer explicitly to three types of matroids: uniform, partition, and graphic. The independent sets
I of a uniform matroid on a ground set E are defined by I = {S ⊆ E : |S| ≤ k} for some given k. Partition matroids
generalize uniform matroids: they are defined by a partition E1 ∪E2 ∪ · · · ∪Eℓ = E and integers k1, k2, . . . , kℓ; the
independent sets are I = {S ⊆ E : |S∩Ei| ≤ ki ∀i ∈ {1, . . . , ℓ}}. The direct sum of two matroids M1 = (E1, I1) and
M2 = (E2, I2) where E1∩E2 = ∅ is a matroid M = (E, I) where E = E1∪E2 and I = {S : S∩E1 ∈ I1 and S∩E2 ∈
I2}. All uniform matroids are partition matroids, but unlike uniform matroids, the class of partition matroids is
closed under direct sum. Given an undirected graph G = (V,E), the graphic matroid M = (E, I) defined on G has
I = {S ⊆ E : S is acyclic}. Throughout the paper, we assume that G is connected. So, the bases of the graphic
matroid are the maximal acyclic subsets of edges of G, i.e., they are spanning trees.

Let M = (E, I) be a matroid and let m = |E|. We assume throughout the paper that E = {1, 2, . . . ,m}. An
instance of the matroid interdiction problem is defined by M , a weight vector w ∈ Zm, a cost vector c ∈ Zm

≥0,
and a capacity C ∈ Z≥0. Let B = {A ⊆ E : r(A) = r(E)} be the set of bases of M . For convenience, we write
x(S) =

∑
i∈S xi for a vector x and set S. The matroid interdiction problem can then be stated as follows.

OPT = max
X∈U

min
Y ∈L(X)

w(Y) (MI)

where U = {X ⊆ E : c(X) ≤ C} , (upper level)

and L(X) = {Y ⊆ E \X : Y ∈ B} . (lower level)

We often say that the upper-level variables X are selected by a decision maker called the leader, and the lower-level
variables Y are selected by another decision maker called the follower. We call this the max-min variant of the
problem; the min-max variant swaps both max for min and min for max in the objective function. If we are
concerned with exact solutions, the choice of working with the max-min variant is arbitrary because negating the
weights switches between the two variants:

argmax{min{w(Y) : y ∈ L(X)} : X ∈ U} = − argmin{max{−w(Y) : Y ∈ L(X)} : X ∈ U}. (1.1)

2

It is easily seen that we may assume w ≥ 1 by adding a sufficiently large constant to all weights, and we may assume
c ≥ 1 because any element e with ce = 0 can be deleted without affecting the optimal solution.

As is typical in bilevel programming, we say that a solution (X,Y) is feasible if X ∈ U and Y ∈ argmin{w(Y) :
Y ∈ L(X)}, that is, to have bilevel feasibility Y must be optimal for the lower-level problem. Since the minimum
weight basis of a matroid can be found in polynomial time by the greedy algorithm, feasibility can be verified in
polynomial time, and hence the matroid interdiction decision problem is in NP.

We adopt some standard terminology from matroid theory: a matroid which cannot be written as a direct
sum of two nonempty matroids is called connected, and a maximal connected submatroid of a matroid is called a
component of that matroid. So, if C1 and C2 are components of a matroid M , I1 is independent in C1 and I2 is
independent in C2, then I1 ∪ I2 is independent in M . Throughout the paper, we assume that

if i and j are elements in the same component of a matroid and i < j, then wi ≤ wj . (A1)

While there may be multiple minimum weight bases of a matroid, given that E = {1, . . . ,m}, there is always a
unique lexicographically smallest basis, and if (A1) is satisfied, then by the greedy algorithm the lexicographically
smallest basis is of minimum weight. We assume that the ordering of matroid elements satisfies (A1) throughout
the paper. Given a matroid M = (E, I), let Bmin

M (X) be the lexicographically smallest basis B ⊆ E \X of M . This
function is only defined for those X where there exists a basis B ⊆ E \X. We may omit the subscript M when it
is implied by the context.

Given the lexicographically smallest basis B of a matroid M and an element e ∈ B, we say that the replacement
element for e (if one exists) is the element e′ such that {e′} = B′ \ B where B′ is the lexicographically smallest
basis of M \ {e}. Note that the replacement element can be found by the greedy algorithm.

A closely related problem to matroid interdiction is the minimum cost matroid blocker problem, which can be
formulated as follows.

min
X⊆E

c(X)

s.t.

[
min

Y ∈L(X)
w(Y)

]
≥ R

Here, R is a given constant which can be though of as the target weight. It is easy to see that these two problems are
polynomial-time equivalent by performing binary search on C or R. We focus on the matroid interdiction problem
for the majority of the paper, but in Section 3.3 we show that our algorithm can easily be adapted to directly solve
the minimum cost blocker problem without incurring the run time overhead of binary search.

1.2 Prior work

The simplest and earliest-studied special case of matroid interdiction is the most vital MST edge problem, which
was introduced by Hsu et al in 1991 [12]. In this variant we wish to find a single edge e which maximizes the MST
weight of G \ {e}. This is the special case of matroid interdiction where M is graphic, ce = 1 for all e ∈ E, and
C = 1. A long line of work led to a recent algorithm which solves this problem in time O(m logm+n), or O(m+n)
if the edges are assumed to already be sorted by weight [2]. A few works have studied variants of the most vital
matroid element problem: one paper performs sensitivity analysis on minimum weight matroid bases [18], another
studies the variant where the leader can increase the weights of the matroid elements by paying a cost per unit of
weight increased [8], and a very recent paper concerns parametric matroid interdiction [10].

A natural generalization of this is the k-most vital MST edges problem, in which M is graphic, ce = 1 for
all e ∈ E and C = k for some constant k. NP-hardness of the k-most vital edges problem was shown in [9] by
reduction from minimum k-cut. Later, this hardness result was extended to show NP-hardness for the variant of
the problem where vertices are interdicted instead of edges [4]. The same paper also includes various approximation
algorithms and inapproximability results. Since the problem is only NP-hard when k is part of the input, an interest
developed in algorithms which run in polynomial time for fixed k [25]. After a series of papers, a running time of
O(nk logα((k− 1)(n+1), n)) was achieved [3,17]. Most recently, new mixed integer programming formulations and
branch-and-bound algorithms were proposed for the k-most vital MST edges problem which have good performance
in computational tests for small k (i.e., k ≤ 5 on instances with hundreds of vertices) [3]. We compare our results
to this paper in Section 4.

The first paper to study MST interdiction (then called the most vital edges in the MST problem) in full gener-
ality presents a simple branch-and-bound algorithm [19]. To the best of our knowledge, this algorithm was never

3

evaluated computationally. A later paper also established an O(log n)-approximation algorithm [9]. This was sub-
sequently improved to a 14-approximation [32], and eventually a 4-approximation [20]. The paper which shows a
4-approximation also proves the surprising result that the maximum spanning tree interdiction problem cannot be
approximated to any constant factor under the small set expansion hypothesis. However, a 2-pseudo-approximation
(a polytime algorithm that either returns a 2-approximate solution or a solution that exceeds the budget by a factor
of 2) is known for min-max matroid interdiction, and hence for maximum spanning tree interdiction [6]. In fact,
this pseudo-approximation even works for more general case of interdicting the maximum independent set weight,
rather than just the maximum basis weight, as well as for a wide variety of other interdiction problems.

In 2024, Luis Salazar-Zendeja published their PhD thesis on MST interdiction, which proposes and computation-
ally evaluates a variety of MIP-based approaches [23]. The computational results are not compared to prior works,
but the largest instances considered (in terms of number of vertices/edges and capacity) are smaller than those
studied in previous papers, and the running times are of the same order of magnitude. Important contributions of
the thesis include the application of classical but previously unexplored techniques including branch-and-price and
Bender’s decomposition, and the generalization of all results to the partial interdiction variant of the problem, in
which the leader can only slightly increase the weight of MST edges rather than block them entirely.

The MST edge blocker problem is the focus of [30], which studies various integer programming formulations for
the problem and evaluates their performance computationally. We compare our results to this paper in Section 4.
A follow-up paper generalizes the theoretical aspects of this work to greedoids, among other problems [29].

A number of closely related problems have been studied. One is the rank reduction problem, where we wish
to find a minimum cardinality subset of the elements of a matroid whose deletion reduces the rank by at least k
[14]. Although many parallels can be drawn between the known hardness results for rank reduction and matroid
interdiction, we are not aware of any work which connects them explicitly. Another recent paper studies the
interdiction problem where both the upper and lower level feasible regions are given by the independent sets of
partition matroids over a common ground set [15]. Finally, our recent work [31] on knapsack interdiction also uses
branch-and-bound with bounds computed via dynamic programming, and achieves state-of-the-art computational
results. The success of those techniques motivated our approach in this work.

1.3 Our contributions

In Section 2, we introduce a new framework for computing upper bounds for interdiction problems. We apply
this framework to exactly solve the partition matroid interdiction problem, and derive an upper bound for MST
interdiction. In Section 3 we present an exact branch-and-bound algorithm for solving matroid interdiction utilizing
the bounds derived in the previous section. We prove that even without the upper bounds, this algorithm matches
(up to polylog factors) or improves upon the best known asymptotic running time of an enumerative algorithm
for MST interdiction with unit costs. Furthermore, our algorithm is more general as it applies to any matroid
interdiction problem. We also introduce a strong heuristic lower bound to initialize the branch-and-bound search. In
Section 4 we compare an implementation of our algorithm in computational tests to previously published algorithms.
We find that our algorithm is significantly faster than previous approaches, often by a few orders of magnitude.
We also generate some new problem instances, which we use to investigate what qualities make an instance hard to
solve, and how the various features of our solver contribute to its performance. Finally, in Section 5 we investigate
the problem variant in which the leader can force elements to be included in every basis, rather than excluded.

2 Upper bounds

In this section, we describe a general framework for upper bounding interdiction problems with knapsack-like upper
level feasibility sets. The key idea is to reduce the interdiction problem to a type of knapsack problem where the item
profits bound the change in the lower level objective function when a given element is interdicted. We demonstrate
that for many matroids, when the lower level problem is to find the minimum basis weight, this discrete-derivative-
like problem is easier to solve than the full interdiction problem and yields good bounds or even exact solutions
when integrated with dynamic programming (DP). This way of computing upper bounds also is ideally suited for
use in a branch-and-bound scheme, because the bound can be precomputed for every branch-and-bound node and
accessed in O(1) time. Our exact branch-and-bound algorithm for matroid interdiction which uses these bounds is
described in Section 3.

We assume for now that the set of feasible interdictions is U = {X ⊆ E : c(X) ≤ C}, as described in Section 1,
although later we argue that this can be relaxed somewhat. From this point until the start of Section 2.1, the only
assumption that we make about L(X) is that if Y ∈ L(X), then Y ⊆ E \X. Let F (X) = min{w(Y) : Y ∈ L(X)}

4

be the optimal solution to the follower’s problem induced by a given interdiction set X ∈ U , or ∞ if the follower’s
problem is infeasible for the given X. The value we desire to upper bound is OPT = max{F (X) : X ∈ U}.

For a set X ⊆ Z, let X≤k be the set {j ∈ X : j ≤ k}, and similarly for X≥k, X<k, etc. Given any X̂ ∈ U and

i ∈ E, we can express max{F (X) : X ∈ U , X<i = X̂} as F (X̂) + max{F (X) − F (X̂) : X ∈ U , X<i = X̂}. In this
section, we show that this view offers a clear advantage: upper bounds on max{F (X)− F (X̂) : X ∈ U , X<i = X̂}
can be computed for all i ∈ E and X̂ ∈ U as the entries of a DP table. Moreover, this structure will be exploited
in our branch-and-bound algorithm (presented in Section 3), in which branch-and-bound nodes are identified by X̂
and i.

Before we present our DP algorithm, we comment that we formalize only the essential aspects that are needed
for such description, for the sake of generality. In particular, we choose to be informal regarding some of the desired
aspects, using terms like ‘small enough’ or ‘large enough’, since these are guiding principles that need to be made
concrete depending on the specific lower level problem.

The dynamic program will be over a set of possible states T and requires mapping each X ∈ U to some state
s ∈ T by a function ϕ(X). The goal is for |T | to be small enough that we can use s ∈ T to index the DP table
(without using too much memory), but large enough that ϕ(X̂) captures enough information about some X̂ ∈ U
to be able to compute a good bound for max{F (X)− F (X̂) : X ∈ U : X<i = X̂}. We also define a function π(i, s)
which describes how a state s ∈ T transitions to a new state if element i is interdicted when in state s. We formalize
this property below as Psucc.

Finally, we need a function δ(i, r, s) which upper bounds how much the follower’s objective can increase by if
element i is interdicted with r knapsack capacity remaining when in state s. We formalize this property below as
Pbound. The assumption that this function can be computed faster than solving the entire interdiction problem is
key to our approach. We devote most of the second half of this section to defining a suitable δ for various matroids.

Formally, these functions have the following signatures:

ϕ : U → T

π : E × T → T

δ : E × {0, 1, . . . , C} × T → Z

These will be defined precisely later, depending on the specifics of the follower’s problem. We now formally define
the two conditions that these functions should satisfy to be able to apply our results. In the below definitions, U
and T are implicit based on the definitions of the given functions. Condition Pbound(δ, ϕ, π) is satisfied if and only
if for all i ∈ E, r ∈ {0, 1, . . . , C} and s ∈ T ,

ci ≤ r =⇒ δ(i, r, s) ≥ max

{
F (X<i ∪ {i})− F (X<i)
s.t. X ∈ U , c(X<i) = C − r, ϕ(X<i) = s

}
.

This condition is the most important since it ultimately defines what the upper bound is. The other conditions
and functions are defined to make sure that DP transitions from one state to another are consistent and can be
computed for all possible states. The next condition, Psucc(ϕ, π), is satisfied if and only if for all X such that
X ∪ {i} ∈ U ,

ϕ(X<i ∪ {i}) = π(i, ϕ(X<i)).

This condition intuitively says that transitioning from the state ϕ(X<i) by interdicting i should lead us to the state
ϕ(X<i ∪ {i}). We now define a dynamic program f : {1, . . . ,m+ 1} × {0, . . . , C} × T → Z.

f(i, r, s) =

0 if i > m,

f(i+ 1, r, s) if i ≤ m and ci > r,

max

{
f(i+ 1, r, s),

f(i+ 1, r − ci, π(i, s)) + δ(i, r, s)

}
otherwise.

Note that this is a generalization of the standard Bellman recursion for 0-1 knapsack (e.g., see Section 2.3 of [21]);
the only difference is that we keep track of additional state s, which is managed by the update function π, and
that the item profit values δ(i, r, s) are a function of both i, r, and s, as opposed to only i. For example, suppose
we wish to solve a knapsack problem with costs ci, capacity C and profits pi. Then we can simply define T = {ϵ},
ϕ(X) = ϵ, π(i, ϵ) = ϵ, and δ(i, r, ϵ) = pi (where ϵ is just a null element used to ensure T is nonempty); then f(1, C, ϵ)
will solve the knapsack problem.

5

The following theorem formalizes the above intuition using this definition. It follows immediately that OPT ≤
f(1, C, ϕ(∅)) + F (∅) by applying the theorem with i = 1 and X̂ = ∅. To simplify notation in the next two proofs
we define Φ(X) = (C − c(X), ϕ(X)) and Π(i, (r, s)) = (r − ci, π(i, s)). The intuition for this is that the remaining
knapsack capacity r = C − c(X) and the state s = ϕ(X) can both be treated as parts of a larger state Φ(X) with
transition function Π. Then, it is easy to see that for all X such that X ∪ {i} ∈ U ,

Φ(X<i ∪ {i}) = Π(i,Φ(X<i)).

Some slight abuse of notation aside, this is equivalent to saying that Psucc(Φ,Π) holds, assuming that Psucc(ϕ, π)
does. By doing this, we do not need to individually reason about both r and s in the proof, and can instead treat
them as a unit (r, s). To simplify notation we also interchangeably use f(i, r, s) and f(i, (r, s)), and similarly for δ
and π.

Theorem 2.1. Given an upper-level feasible set U , state set T , and functions δ, ϕ, and π satisfying Pbound(δ, ϕ, π)
and Psucc(ϕ, π), we have that for all i ∈ E and X̂ ∈ U ,

f(i,Φ(X̂<i)) ≥ max{F (X)− F (X<i) : X ∈ U , X<i = X̂<i}.

Proof. We prove by induction on i from m+ 1 to 1 that for all r ∈ {0, 1, . . . , C} and s ∈ T ,

f(i, r, s) ≥ max
{
F (X)− F (X<i) : X ∈ U , Φ(X<i) = (r, s)

}
. (2.1)

Since X<i = X̂<i implies Φ(X<i) = Φ(X̂<i), this proves the theorem statement by taking (r, s) = Φ(X̂<i):

(2.1) ≥ max
{
F (X)− F (X<i) : X ∈ U , X<i = X̂<i

}
.

For the base case of the induction, suppose that i = m + 1. Since E \X = E \X<m+1 for any X ⊆ E, we have
F (X) = F (X<i) and hence f(i, r, s) = 0 satisfies Eq. (2.1). Now assume 1 ≤ i ≤ m and that Eq. (2.1) holds for
i+ 1 with arbitrary r ∈ {0, . . . , C} and s ∈ T . First suppose that ci > r. Then, applying the induction hypothesis
(Eq. (2.1)),

f(i, r, s) = f(i+ 1, r, s) ≥ max
{
F (X)− F (X<i+1) : X ∈ U , Φ(X<i+1) = (r, s)

}
Since ci > r we have that i /∈ X for any X ∈ U with C − c(X<i) = r. Therefore, for any such X, X<i+1 = X<i, so
we have Φ(X<i+1) = (r, s). Hence, the result follows. Now assume ci ≤ r. We claim that

f(i+ 1,Π(i, r, s)) + δ(i, r, s) ≥ max
{
F (X)− F (X<i)) : i ∈ X ∈ U , Φ(X<i) = (r, s)

}
. (2.2)

To see this, first observe that by the induction hypothesis and Pbound(δ, ϕ, π),

f(i+ 1,Π(i, r, s)) + δ(i, r, s)

≥max
{
F (X)− F (X<i+1) : X ∈ U , Φ(X<i+1) = Π(i, r, s)

}
(2.3)

+max
{
F (X<i ∪ {i})− F (X<i) : X ∈ U , Φ(X<i) = (r, s)

}
. (2.4)

Now, by taking the intersection of the feasible sets X in Eqs. (2.3) and (2.4) and adding the objectives, we get that

(2.3) + (2.4) ≥max

{
F (X)− F (X<i+1) + F (X<i ∪ {i})− F (X<i)
s.t. X ∈ U , Φ(X<i+1) = Π(i, r, s), Φ(X<i) = (r, s)

}
. (2.5)

If X ∈ U and i ∈ X, then since Psucc(Φ,Π) holds we have Φ(X<i+1) = Π(i,Φ(X<i)). Hence,

(2.5) ≥max
{
F (X)− F (X<i) : i ∈ X ∈ U ,Φ(X<i) = (r, s)

}
. (2.6)

This proves the claim. We now complete the inductive step. The following is immediate from the induction
hypothesis and Eq. (2.2).

f(i, r, s) = max{f(i+ 1, r, s), f(i+ 1,Π(i, r, s)) + δ(i, r, s)}

≥ max

{
max

{
F (X)− F (X<i+1) : X ∈ U , Φ(X<i+1) = (r, s)

}
,

max
{
F (X)− F (X<i) : i ∈ X ∈ U , Φ(X<i) = (r, s)

} }
. (2.7)

6

Now, by restricting X in the first inner max of Eq. (2.7) to exclude i, we get

(2.7) ≥ max

{
max

{
F (X)− F (X<i) : i /∈ X ∈ U , Φ(X<i) = (r, s)

}
,

max
{
F (X)− F (X<i) : i ∈ X ∈ U , Φ(X<i) = (r, s)

} }
. (2.8)

Finally, we can merge the two inner max terms into a single term by noticing that the first considers all X with
i /∈ X and the second considers all X with i ∈ X, but they are otherwise identical.

(2.8) = max
{
F (X)− F (X<i) : X ∈ U , Φ(X<i) = (r, s)

}
.

This proves Eq. (2.1), as desired.

We will use this theorem in Section 3 to compute upper bounds for our branch-and-bound scheme. A natural
question to ask is how loose/tight this upper bound can be. The next theorem gives some answer to that question
by showing that if we have additive approximation bound of α for δ, there we have an additive approximation bound
of mα for f . We formalize the notion of having an additive approximation bound of α for δ with the condition
Papprox(δ, ϕ, π, α), which is satisfied if and only if for all X ∈ U and i ∈ E,

ci ≤ C − c(X<i) =⇒ δ(i, C − c(X<i), ϕ(X<i))) ≤ α+ F (X<i ∪ {i})− F (X<i).

Theorem 2.2. Suppose we have an upper-level feasible set U , state set T , and functions δ, ϕ, and π. Assume that
Psucc(ϕ, π) is satisfied, and that there exists some α ≥ 0 such that Papprox(δ, ϕ, π, α) is satisfied. Then, for all i ∈ E

and X̂ ∈ U ,

f(i,Φ(X̂<i)) ≤ (m− i+ 1)α+max{F (X)− F (X<i) : X ∈ U , Φ(X<i) = Φ(X̂<i)}.

Proof. To prove the theorem, we define a new function fX in which the outcome of the max operation in f is
decided by a special parameter X (rather than actually choosing the maximum).

fX(i, r, s) =

0 if i > m

fX(i+ 1, r, s) if i ≤ m and i /∈ X

fX(i+ 1,Π(i, r, s)) + δ(i, r, s) if i ≤ m and i ∈ X

Let X̂ ∈ U and i ∈ E. By recursively expanding out the definition of f , we can see that

f(i,Φ(X̂<i)) =

k∑
j=1

δ(xj , rj , sj)

for some k and some sequences x1, . . . , xk ∈ E and (r1, s1), . . . , (rk, sk) ∈ {0, . . . , C} × T with i ≤ x1 < · · · < xk

and (r1, s1) = Φ(X̂<i). There may be multiple valid choices of these sequences. We may assume that for all
j ∈ {1, . . . , k},

f(xj + 1, rj , sj) ̸= f(xj + 1,Π(xj , rj , sj)) + δ(xj , rj , sj)

because if not, there is an alternative choice for the sequences which exclude xj and (rj , sj), respectively. Let

X = X̂<i ∪ {x1, . . . , xk}. Then, by definition we have that f(xj , rj , sj) = fX(xj , rj , sj) for all j ∈ {1, . . . , k}.
Intuitively, X encodes the ‘decisions’ made in f(i,Π(X̂<i)).

Note that since (r1, s1) = Φ(X̂<i) = Φ(X<i), by Psucc(Φ,Π), (r2, s2) = Π(x1,Φ(X<x1)) = Φ(X<x2) and
inductively for all ℓ,

(rℓ+1, sℓ+1) = Π(xℓ,Φ(X<xℓ
)) = Φ(X<xℓ+1

). (2.9)

We claim that X ∈ U . If not, then by Eq. (2.9) and the fact that X̂ ∈ U , there is some j such that cxj
>

C − c(X<xj) = rj . However,

xj ∈ X =⇒ fX(xj , rj , sj) = fX(xj + 1,Π(xj , sj)) + δ(xj , rj , sj), and

cxj
> rj =⇒ f(xj , rj , sj) = f(xj + 1, rj , sj).

7

This contradicts f(xj , rj , sj) = fX(xj , rj , sj) given our earlier observation that we may assume f(xj + 1, rj , sj) ̸=
f(xj + 1,Π(xj , rj , sj)) + δ(xj , rj , sj). Therefore, X ∈ U . We can now finish the proof.

fX(i,Φ(X̂<i)) =

k∑
j=1

δ(xj , rj , sj) (by the definition of fX)

=

k∑
j=1

δ(xj ,Φ(X<xj
)) (by Eq. (2.9))

≤ kα+

k∑
j=1

F (X<xj ∪ {xj})− F (X<xj) (by Papprox(δ, ϕ, π, α))

= kα+

k∑
j=1

F (X<xj+1)− F (X<xj
) (by the definition of X)

= kα+ F (X<xk+1)− F (X<x1) (since the sum telescopes)

= kα+ F (X)− F (X<i) (by the definition of X)

≤ (m− i+ 1)α+max{F (X ′)− F (X ′
<i) : X

′ ∈ U , Φ(X̂<i) = Φ(X ′
<i)}

(since X ∈ U , X̂<i = X<i, and k ≤ m− i+ 1.)

We remark that while this guarantee may appear to be quite poor in the worst case (losing an additive factor of
m), the strength of this approach is that it computes bounds for many subproblems, using only the amount of time
required to compute δ(i, r, s) for each subproblem. These subproblem bounds can be precomputed and efficiently
accessed by our branch-and-bound scheme. Furthermore, for graphic matroids, our upper bounds are typically
very strong in practice, outperforming other methods such as the LP relaxation of the extended formulation [3,30]
or Lagrangian relaxation [20]. For partition matroids, our upper bound actually solves the interdiction problem
exactly (i.e., we can take α = 0 in Theorem 2.2).

The techniques in this section can be generalized considerably beyond the given setting of matroid interdiction.
We already noted that L(X) does not necessarily need to be the set of bases of a matroid which exclude elements in
X; it suffices that an appropriate function δ can be computed. However, U does not need to be {X ⊆ E : c(X) ≤ C}
either; the only important quality that U should have is that it should be possible to keep track of whether a set
is feasible under additions of elements to the set using a ‘small’ amount of state (we want it to be ‘small’ so that
memory usage is reasonable). In the above, we used the variable r to do this. As an example generalization, if
U = {X ⊆ E : c1(X) ≤ C1, c2(X) ≤ C2}, then we could use variables r1 ∈ {0, . . . , C1} and r2 ∈ {0, . . . , C2} to
keep track of feasibility. The proofs require only trivial modifications.

2.1 Uniform matroids

We start with perhaps the easiest nontrivial case: uniform matroids. Recall that the independent sets of a uniform
matroid over E are defined by {S ⊆ E : |S| ≤ k} for some given k. Intuitively, to determine the replacement
element when an element e is interdicted in a uniform matroid, we only need to know the number of elements before
e which were interdicted, because independence of a set S depends only on |S|. The rest of this section is spent
formalizing this intuition and developing an exact algorithm for uniform matroid interdiction.

We now define a set T and the functions δ, π, and ϕ, as discussed in the previous subsection. Let T =
{0, 1, . . . ,m}. We define π : E × T → T and ϕ : U → T as follows:

π(i, n) = n+ 1,

ϕ(X) = |X|.

Here, the state T keeps track of the number of interdicted elements, in line with our intuition. It is trivial to
see that Psucc(ϕ, π) is satisfied. The proof of the following theorem leads to our definition of δ and the proof of
Pbound(δ, ϕ, π).

Theorem 2.3. Suppose that M is uniform. Then there exists a function δ(i, r, n) satisfying Papprox(δ, ϕ, π, 0) with
equality, i.e., for all X ∈ U , r ∈ {0, . . . , C} and i ∈ E,

ci ≤ C − c(X<i) =⇒ δ(i, C − c(X<i), ϕ(X<i))) = F (X<i ∪ {i})− F (X<i)).

8

Proof. Consider some X ⊆ {1, . . . , i − 1} such that X ∪ {i} ∈ U and ϕ(X) = n. We want to determine F (X ∪
{i}) − F (X). Let B = Bmin(X) be the lexicographically smallest basis of E \ X. As discussed in Section 1, the
lexicographically smallest basis is always of minimum weight, given our item ordering assumption.

If i /∈ B, then F (X ∪ {i}) = F (X) because B is also the lexicographically smallest basis of E \ (X ∪ {i}).
Otherwise, if i ∈ B, then there are two cases. If there is no j > i with j /∈ B, then F (X ∪{i})−F (X) =∞ because
there is no element that can replace element i in B. Otherwise, if such a j exists, then the minimum such element
j replaces element i, so F (X ∪ {i})− F (X) = wj − wi.

We claim that these conditions can be tested for only by knowing i, k and n (recall n = |X|). Observe that
B, the lexicographically smallest basis of E \ X, is defined by B = {j ∈ E : j /∈ X, j ≤ k + n} because uniform
matroids are connected so, by (A1), the elements are sorted by weight. Let j = k + n+ 1. There are three cases.

1. If j ≤ i, then i /∈ B because i ≥ j = k + n+ 1. So, we take δ(i, r, n) = 0.

2. If i < j ≤ |E|, then i ∈ B because i /∈ X and i < j = k+ n+ 1. We have j ∈ E \B by definition, and for any
i < j′ < j we know j′ ∈ B. So B \ {i} ∪ {j} is the lexicographically smallest basis of E \ (X ∪ {i}). Hence,
we take δ(i, r, n) = wj − wi.

3. If j > |E|, then again i ∈ B, but there is no j′ > i with j′ ∈ E \ B. So, there is no element that can replace
i, and hence we take δ(i, r, n) =∞.

To summarize, δ(i, r, n) is defined as follows. Note that it does not actually depend on r.

δ(i, r, n) =

0 if k + n < i,

wk+n+1 − wi if i ≤ k + n < |E|,
∞ if |E| ≤ k + n.

Property Pbound(δ, ϕ, π) follows easily from this. Let i ∈ E and s ∈ T . If there exists some X ∈ U such that
C − c(X<i) = r and ϕ(X<i) = s, then by Theorem 2.3 we have

ci ≤ r =⇒ δ(i, r, s) = F (X<i ∪ {i})− F (X<i)

= max

{
F (X ′

<i ∪ {i})− F (X ′
<i)

s.t. X ′ ∈ U , C − c(X<i) = r, ϕ(X ′
<i) = s

}
.

Otherwise, if no such X exists, then the max in Pbound(δ, ϕ, π) is taken over the empty set, so the condition is
vacuously satisfied.

Since uniform matroids are so simple, we can further show that with δ defined as above, F (∅) + f(1, C, ϕ(∅)) is
not just an upper bound, but actually solves the matroid interdiction problem exactly.

Corollary 2.4. For uniform M , we have

F (∅) + f(1, ϕ(∅)) = max{F (X) : X ∈ U} = OPT .

The proof follows immediately from Theorems 2.1 to 2.3. The following is then also immediate from the
observation that δ can be computed in O(1) time and |T | = O(m), so the DP table for f has size O(m2C).

Corollary 2.5. Uniform matroid interdiction can be solved in time O(m2C).

Finally, to complement this, we prove that the decision problem version of uniform matroid interdiction is NP-
complete, and hence no better running time than pseudopolynomial is possible unless P = NP. We define this
decision problem as follows: given an instance of uniform matroid interdiction and an integer t, determine if there
is a feasible solution to the uniform matroid interdiction problem of value at least t.

Theorem 2.6. The uniform matroid interdiction decision problem is weakly NP-complete.

Proof. The problem is easily seen to be in NP, because determining feasibility requires only checking whether the
knapsack constraint is satisfied and determining the minimum basis weight in a uniform matroid.

Given a knapsack instance with n items, costs a, budget C and profits p, we define a uniform matroidM = (E, I)
where E = {1, 2, . . . , 2n}, I = {S ⊆ E : |S| ≤ n}, and we define weights and interdiction costs as follows. Let pmax

be the largest item profit from p. For e ∈ {1, . . . , n}, set we = pmax − pe and ce = ae. For e ∈ {n + 1, . . . , 2n} set
we = pmax and ce = C +1. The uniform matroid interdiction instance has the same capacity C as the knapsack. It

9

is easily seen that interdicting any element e ∈ {1, . . . , n} costs ae and causes the minimum basis weight to increase
by pe, because the replacement element is always after element n. No elements after n can be interdicted, because
they have interdiction cost greater than C. This is exactly the same change to profit and cost which are seen when
adding e to the knapsack. So, a set X is an optimal solution for the knapsack problem if and only if X is an optimal
solution to the corresponding uniform matroid interdiction problem.

In Section 2.2, we extend these results to partition matroids, which are the direct sum of uniform matroids.

2.2 Direct sums of matroids

In this section, we show how to derive an upper bound for the interdiction problem on a matroid M = (E, I) which
is the direct sum of two matroids (or more, by induction) for which we have upper bounds. Furthermore, any
additive approximation bound for the matroids being summed is preserved. The most immediate consequence of
this result is a pseudopolynomial time algorithm for solving the partition matroid interdiction problem. This result
is fairly easy to intuitively understand, but a rigorous proof ends up being quite technical due to the desire to keep
the number of DP states small.

Let m = |E|, and let M1 = (E, I1) and M2 = (E, I2) be matroids. We assume without loss of generality that
there exists some p such that if J ∈ I1 then J ⊆ {1, . . . , p} and if J ∈ I2 then J ⊆ {p + 1, . . . ,m}, i.e., that the
matroids are disjoint. We assume that M is represented as follows:

E = {1, . . . ,m},
I = {J : J ∩ {1, . . . , p} ∈ I1 and J ∩ {p+ 1, . . . ,m} ∈ I2}.

We assume that the subsets {1, . . . , p} and {p + 1, . . . ,m} of E are individually sorted as necessary for the con-
structions on the individual matroids. For example, if M1 and M2 are both uniform or graphic, then we would have
w1 ≤ w2 ≤ · · · ≤ wp and wp+1 ≤ wp+2 ≤ · · · ≤ wm. Notice that this satisfies our element ordering assumption (A1)
since there are no two elements i ∈ {1, . . . , p} and j ∈ {p+ 1, . . . ,m} which are in the same component of M . Let
FM (X) be the minimum w-weight of a basis B of E \X in M , or ∞ if no such basis exists.

Suppose that Ti, ϕi, πi and δi, correspond to Mi for i ∈ {1, 2} and that they satisfy Pbound(δi, ϕi, πi) and
Psucc(ϕi, πi). In this section we make the additional assumption that for all S ⊆ {1, . . . , p},

ϕ2(S) = ϕ2(∅). (2.10)

This is a natural assumption to make because elements 1 through p are not contained in any independent set of
M2, and hence should be irrelevant to ϕ2. This assumption arises because we represent the matroids as having the
same ground set, which simplifies the main proof. Let T = T1 ⊔T2 (the disjoint union of T1 and T2). We define the
functions ϕ, π, and δ as follows.

ϕ(X) =

{
ϕ1(X) if X ⊆ {1, . . . , p}
ϕ2(X) otherwise

π(i, s) =

π1(i, s) if i ≤ p

π2(i, ϕ2(∅)) if i > p and s ∈ T1

π2(i, s) if i > p and s ∈ T2

δ(i, r, s) =

δ1(i, r, s) if i ≤ p

δ2(i, r, ϕ2(∅)) if i > p and s ∈ T1

δ2(i, r, s) if i > p and s ∈ T2

We remark that while these functions may appear to be asymmetrical, the desired properties hold independent of
which matroid is chosen as M1 or M2. The asymmetry is necessary to handle the fact that in the recursive definition
of f , a state s can only transition upon an item being interdicted. So, when we transition from processing elements
of M1 to elements of M2, we may still have a state corresponding to M1 if the boundary element is not interdicted,
and hence we need to transition to a state from M2 at the earliest point that an element from M2 is interdicted.
This construction can be simplified if we allow state transitions in f when items are not interdicted, but it comes
at the cost of heavier notation in the rest of the paper. The following establishes that this works as intended.

Theorem 2.7. If T , ϕ, π, and δ are defined as above, then Pbound(δ, ϕ, π) and Psucc(ϕ, π) are satisfied. Fur-
thermore, if there exists some α ≥ 0 such that Papprox(δ1, ϕ1, π1, α) and Papprox(δ2, ϕ2, π2, α) are satisfied, then
Papprox(δ, ϕ, π, α) is satisfied.

10

1 Let δ(i, r) be defined as a table;
2 for i = 1, . . . ,m do
3 for r = 0, . . . , C do δ(i, r)←∞;
4 if there exists a replacement element k for i in M \ {1, . . . , i− 1} then
5 for r = 0, . . . , C do δ(i, r)← wk − wi;

6 E′ ← ∅, c′ ← 0;
7 for j = 1, . . . , i− 1 do
8 E′ ← E′ ∪ {j};
9 c′j ← cj ;

10 Let u and v be the endpoints of edge i;
11 x← MinCut(E’,c’,u,v);
12 for r = max{0, C − x+ 1}, . . . , C do δ(i, r)← 0;
13 for j = i+ 1, . . . ,m do
14 E′ ← E′ ∪ {j};
15 c′j ←∞;

16 x← MinCut(E’,c’,u,v);
17 for r = max{0, C − x+ 1}, . . . , C do δ(i, r)← min{δ(i, r), wj − wi};
18 if x > C then break;

Algorithm 1: Algorithm to compute δ(i, r) for all i and r, when M is graphic.

The proof is technical and not very interesting, so we defer it to Appendix A. Since partition matroids are the
direct sum of uniform matroids, we can then establish the following.

Corollary 2.8. The partition matroid interdiction problem can be solved in time O(km2C) = O(m3C), where k is
the number of disjoint uniform matroids that need to be summed to construct the partition matroid.

Proof. Applying our method to construct a state set T for a partition matroid yields T = {0, . . . , C} × (T1 ⊔ T2 ⊔
· · · ⊔ Tk) where the Ti correspond to uniform matroids. Any element in the set T1 ⊔ · · · ⊔ Tk can be addressed by
using a number in the set {1, . . . , k} to indicate which Tj the element is in, along with a number from {1, . . . ,m} to
represent the element itself in Tj . So, considering the i parameter of f , which is in {1, . . . ,m}, and the r parameter,
which is in {0, . . . , C}, the total number of DP states of f is O(km2C), and clearly each can be computed in constant
time.

2.3 Graphic matroids

In this section, we describe our upper bound for the case when M is graphic. This case is also known as the MST
interdiction problem (e.g., see [20,30]), or the most vital edges in the MST problem (e.g., see [19]).

We follow again the framework laid out in Section 2, wherein we must define a set T and functions δ, π, and ϕ.
For now we define T = {ϵ} (i.e., an arbitrary 1-element set) as no additional state is needed to get a good bound;
later we will show how to extend T to get stronger bounds. So, we can simply define π(i, ϵ) = ϵ and ϕ(X) = ϵ. It
is trivial to verify the desired conditions hold. To simplify notation, we simply write δ(i, r) to mean δ(i, r, ϵ).

It remains to define a function δ satisfying Pbound(δ, ϕ, π). However, we will not actually use the condition that
ϕ(X<i) ≥ r from the definition of Pbound, so our function δ will actually satisfy the following stronger condition:

δ(i, r) ≥ max {F (X<i ∪ {i})− F (X<i) : X ∈ U , ϕ(X<i) ≤ r} . (2.11)

Algorithm 1 computes the value of δ(i, r) for all values of i and r. In the algorithm, MinCut(E, c, u, v) computes
the minimum u-v cut in the subgraph of G with edges E and edge weights c.

Theorem 2.9. The values of δ(i, r) after running Algorithm 1 satisfy Eq. (2.11).

Proof. Notice that each iteration i of the outer loop can be computed independently of the other iterations. So,
fix i arbitrarily. If there exists a replacement element k for i in M \ {1, . . . , i − 1}, then on Line 5, the algorithm
sets δ(i, r) to wk − wi for every i and r, This satisfies the desired inequality because it effectively assumes X = E,
which does not necessarily satisfy X ∈ U and ϕ(X<i) ≤ r, but certainly upper bounds F (X<i ∪ {i})− F (X<i). In
fact, this simple bound for δ(i, r) works with any matroid, not just graphic matroids.

11

Figure 1: Comb instance with k ‘teeth’. The unlabelled edges have we = 0 and ce =∞; all other edges are labelled
with (we, ce). The capacity C is 2k − 1.

Consider the case where the algorithm sets δ(i, r) = 0 on Line 12. Notice that we set δ(i, r) = 0 precisely
when C − r < MinCut(E’,c’,u,v). In order for i to be an edge in the lexicographically smallest spanning tree, we
must cut u and v in (V,E′); otherwise, an earlier edge could replace i in the lexicographically smallest spanning
tree. So, if C − r < MinCut(E’,c’,u,v), then there is no X for which i is an edge in the lexicographically smallest
spanning tree of E \X, and hence there will be no gain from interdicting i. That is, F (X ∪ {i})−F (X) = 0 for all
X ⊆ {1, . . . , i− 1} with c(X) ≤ C − r. Therefore, the condition is satisfied.

We now show that the assignment to δ(i, r) on Line 17 is correct. LetX ⊆ {1, . . . , 1−i} be such that c(X) ≤ C−r.
Consider the lexicographically smallest spanning tree T of G\X. If edge i is not in T , then F (X ∪{i})−F (X) = 0,
and since wj ≥ wi, we set δ(i, r) ≥ 0 and the condition is satisfied.

So, we may assume i is in T . Fix r, let j be the earliest iteration where we set δ(i, r) = wj −wi on Line 17, and
let E′ and c′ be as they are when Line 17 executes on iteration j. Since we set δ(i, r) = wj −wi, there is no u-v cut
of cost at most C − r in the graph (V,E′) with edge costs c′. However, in order for us to have i ∈ T , X must be a
u-v cut in (V,E′ ∩ {1, . . . , i− 1}); otherwise i could be replaced in T with another edge e′ from the cut with e′ < i,
yielding an lexicographically smaller spanning tree. However, since c(X) ≤ C − r and every u-v cut in (V,E′) has
cost greater than C − r, in particular X is not a u-v cut in (V,E′). So, some edge e ∈ {i+ 1, . . . , j} crosses the
cut defined by X. Therefore, adding e to T \ {i} produces a spanning tree, and F (X ∪ {i})− F (X) ≤ wj − wi as
desired.

2.3.1 Worst-case performance

We have now established how to compute some upper bounds for graphic matroid interdiction, but the above
algorithm and proof gives little intuition about how strong the bounds are. In this section we define a family
of instances for which f(1, ϕ(∅)) = Θ(m)OPT. Although this result is negative—for example, the Lagrangian
upper bound is known to be at most 2 ·OPT [20]—we argue in Section 4 that the poor worst-case performance is
outweighed by other attractive features of this bound in the context of a branch-and-bound scheme.

The intuition is as follows. For each k ≥ 1 and M ≥ 1, we define a comb instance I(k,M). Each comb instance
can be divided into k sections, called teeth, which act like independent subproblems, in the following sense: the
choice of which edges to include in the spanning tree from any one of the k sections has no impact on which edges
can be added in any of the other sections. In each tooth, there is a high-cost edge and a low-cost edge which must
both be interdicted to significantly increase the MST weight. However, in the upper bound computation, after the
leader pays for a single high-cost edge from one of the teeth, it can then significantly increase the MST weight in
every tooth by interdicting only the low-cost edge, because there is no way to distinguish which tooth the interdicted
high-cost edge is from. The instances I(k,M) are formally described in Fig. 1.

Proposition 2.10. The optimal solution to the MST interdiction problem on a comb instance I(k,M) has weight
M + 1.

Proof. Notice that of the edges with non-infinite interdiction cost, they all either have cost 1 or cost k − 1, and
there is one of each in each tooth. Furthermore, in each tooth, it is necessary to interdict the edge of cost k − 1 to
gain any advantage from interdicting the edge of cost 1, because otherwise the cost 1 edge will not be in the MST.
Since the capacity is 2k− 1, we can interdict at most two of the edges of cost k− 1. If we interdict one of them, say

12

in the first tooth, then we can additionally interdict the edge of cost 1 in that tooth which will increase the MST
weight from 0 to M . This leaves k − 1 capacity remaining, with which we can interdict the k − 1 cost edge in one
more tooth, which increases the MST weight to M + 1.

Proposition 2.11. The value of the upper bound f(1, C)+F (∅) on a comb instance I(k,M) is at least k(M−1)+1 =
Θ(m) ·OPT.

Proof. Recall that edges are sorted by increasing weight; hence, all of the weight 0 edges come first, followed by the
weight 1 edges, and then the weight M edges. Notice that the MST of a comb instance has weight 0 because the
subgraph with weight 0 edges is a spanning tree.

Suppose that in the DP we first interdict some edge i with cost k − 1. This causes the MST weight to increase
by 1 (since the edge of weight 1 in that tooth must now be used), and hence δ(i, C) ≥ 1. We claim that interdicting
this one edge allows us to interdict every edge of cost 1, while gaining an upper bound weight of at least M − 1
from each edge, despite the fact weight from interdicting these edges does not contribute any actual weight. This
plan costs k − 1 + k = 2k − 1 = C, and produces an upper bound of f(1, C) + F (∅) = 1 + k(M − 1) + 0 as desired.

To show that the claim holds, it suffices to show that for every edge j of cost 1 and weight 1 and for every
1 ≤ r ≤ C − (k − 1), we have δ(j, r) ≥ M − 1. Let j′ be the edge of cost k − 1 on the same tooth as j. We define
X = {j′}. Then

∑
k∈X ck = k − 1 ≤ C − r. Observe that F (X ∪ {j}) = M and F (X) = 1. This completes the

proof.

It is easy to see that the maximum spanning tree of a comb instance has weight kM (this corresponds to
including the edge of weight M in the spanning tree from each of the k teeth). So, Proposition 2.11 shows that the
upper bound is nearly returning the maximum spanning tree weight and hence the analysis is reasonably tight.

It is interesting to note that the same proof would work even if δ satisfied Pbound(δ, ϕ, π) with equality. So, the
reason why the bound is poor is because our state space T is not large enough. The existence of a pseudopolynomial
sized T for which the upper bound has worst-case performance of o(m)OPT is an open question. While the worst-
case performance may appear to be quite poor, our computational experiments in Section 4 suggest that the average
case is significantly better.

2.4 Strengthening

The strength of our upper bounds depend upon the set T and the ability to exploit T to get strong bounds on the
discrete derivative problem. In this section we present a generic way to strengthen the bounds, which comes at an
exponential cost in running time and memory usage, but has the practical advantage that it allows us to compute
stronger bounds for hard instances, which significantly improves solver performance.

The idea explored in this section is to extend T to store complete information about whether the first p elements
of the matroid were interdicted, for some small p. Evidently, if p = m, then this extended T would completely
describe the interdiction set X, and hence the interdiction problem could be solved exactly just by the upper bound.
But, this requires |T | = Ω(2p), so we have to choose p to be small in order for the DP table to be of a practical size.

Given the set T and functions ϕ, π, and δ defined for a matroid M , we define Tp, ϕp, and πp for all p ∈
{0, 1, . . . ,m} as follows:

Tp = T × {X ∩ {1, 2, . . . , p} : X ∈ U}

πp(i, (s,X)) =

{
(π(i, s), X ∪ {i}) if i ≤ p

(π(i, s), X) otherwise

ϕp(X) = (ϕ(X), X ∩ {1, 2, . . . , p})

The function δp(i, r, (s,X)) is a bit less straightforward to define. In essence, we want to delete all elements of X
from the matroid, and for all j /∈ X with j ≤ p, forbid j from being interdicted. In Algorithm 1, this amounts to
modifying the loop on Line 7 to skip over elements j ≤ p such that j ∈ X while subtracting their capacity from
C, and setting elements j ≤ p such that j /∈ X to have infinite cost c′j . Other matroids must be handled on a
case-by-case basis depending on the definition of δ.

We then define fp(i, r, (s,X)) to be the same as f(i, r, s), but using the functions ϕp, πp, and δp. It is easy to
see that for all i, r, and s, we have f0(i, r, (s, ∅)) = f(i, r, s), and

fp(i, C − c(X<i), (ϕ(X<i), X≤p)) ≤ f(i, C − c(X<i), ϕ(X<i))

for p ≥ 0 and X ∈ U . However, fp is still a valid upper bound by Theorem 2.1, as desired.

13

1 function LowerBound()

2 X ← ∅;
3 Let Y be a minimum weight basis of M \X;
4 while true do
5 b← −∞; f ← ⊥;
6 for e ∈ Y such that ce ≤ C − c(X) do
7 Let r0, r1, . . . , rs be the replacement chain for e in Y ;

8 v ← max
{
(wri − we)/

∑i
j=0 crj : i = 1, 2, . . . s

}
;

9 if b < v then b← v; f ← e;

10 if f = ⊥ then break;
11 X ← X ∪ {f};
12 Y ← Y \ {f} ∪ {R(Y, f)};
13 return (X,Y)

Algorithm 2: Greedy lower bound.

3 Exact algorithms

In this section, we describe a branch-and-bound algorithm for exactly solving the matroid interdiction problem.
The performance of our algorithm crucially depends on the upper bounds derived in Section 2. We also use a
heuristic greedy lower bound to improve computational performance further.

3.1 Greedy lower bound

We use a simple greedy heuristic to find an initial feasible solution (i.e., lower bound) to seed the branch-and-bound
algorithm with. Although this heuristic does not have any performance guarantee, we find that for MST interdiction,
it improves performance in practice as it is able to find good solutions faster than is possible by branching alone.
In fact, the solution returned by the heuristic has an average optimality gap of 1.48% over the entire data set. A
full performance analysis can be found in Section 4.2.

The basic idea behind the heuristic is to repeatedly select an element to interdict which maximizes the ratio of
basis weight increase to interdiction cost. To formalize this, suppose we start with some feasible solution (X,Y).
For e ∈ Y let R(Y, e) be the replacement element for e if e is interdicted from Y . We could select the element e ∈ Y
to interdict (i.e., add to X) which maximizes (wR(e) − we)/ce (we call this quantity the efficiency). X and Y are
then updated accordingly and this process repeated until there is no item which can be added to X without going
over capacity.

This idea is not completely new; a similar algorithm appeared previously for the case where all costs are 1 [3].
However, we modify the element selection slightly based on analyzing some cases where we noticed poor performance.
The fundamental issue with this algorithm is that it may be necessary to interdict some element(s) with low efficiency
in order to have the opportunity to interdict an element with large efficiency. So, by always choosing the item with
the highest immediate benefit, we are in some sense behaving too greedily and could potentially miss out on the
largest efficiency gains.

To address this issue, we modify the selection rule to look ahead along replacement chains. We define the
replacement chain for an element e ∈ Y as the sequence r0, r1, . . . rs where r0 = e and ri = R(Y ∪{r0, . . . , ri−1}, ri−1)
for i ≥ 1. The sequence ends when there is not enough capacity to interdict the next element that would have been
be added, i.e., s is the smallest index such that c(X ∪{r0, . . . , rs, rs+1}) > C. The replacement chain for an element
e ∈ Y can be computed using the independence oracle in polynomial time with a single scan through the elements,
because we know that r0 < r1 < · · · < rs due to our element ordering assumption.

We utilize the replacement chains as follows. In each step of the heuristic, instead of selecting the element e ∈ Y
which maximizes (wR(e) − we)/max{1, ce}, we instead select the element e ∈ Y which maximizes

max
{
(wri − we)/

∑i
j=0 crj : i = 1, 2, . . . s

}
.

The full algorithm is described in Algorithm 2. It is easy to see that the output is a feasible solution because
edges are only added to X when they fit within the capacity, and we maintain that Y is a minimum weight basis of
M \X at each iteration. To integrate this heuristic into our branch and bound scheme, we compute LowerBound()
at the beginning of the search, and use it as the initial lower bound.

14

Figure 2: Worst-case instance for the greedy lower bound. Each edge e is labelled with (we, ce), and C = 2.

In Fig. 2 we show a family of instances parameterized by an integer M for which the heuristic returns an
arbitrarily bad solution (with approximation ratio Θ(M)). Specifically, the greedy lower bound only interdicts the
edge labelled (1, 2)—yielding an MST of weight 4—but the optimal solution is to interdict both edges labelled (0, 1),
which increases the MST weight to M +2. There are countless possible variations of this heuristic and surely better
variants to be found. However, we found this algorithm to be remarkably effective in practice—it often finds the
optimal solution—so we did not attempt to improve it further in this work. Discussion regarding the strength of
the heuristic in practice can be found in Section 4.2.

3.2 Branch-and-bound algorithm

Our branch-and-bound algorithm for solving matroid interdiction exactly is now straightforward to describe, given
the upper and lower bounds from previous sections. Throughout this section we assume elements are ordered
according to (A1). In essence, we recursively enumerate feasible solutions by branching on whether e ∈ X (i.e.,
whether e is interdicted) for e = 1, . . . ,m. At each step, an optimal Y ∈ L(X) is maintained by the use of a
dynamic data structure. Since the elements are sorted by non-decreasing weight within each component, when an
element is interdicted from Y it is always replaced by a later element. So, we do not need to branch on every
element: branching on the next element which is also in Y suffices. The algorithm is formalized in Algorithm 3
and correctness is proved in Theorem 3.1. With branching alone our algorithm is asymptotically faster than the
worst-case running time of previous enumerative algorithms up to polylog factors; this is formalized in Theorem 3.2.
However, the biggest improvement in our algorithm over previous algorithms is the pruning we can accomplish using
the upper bounds from Section 2.

The BranchAndBound function recursively enumerates solutions. It has one parameter i, and refers to global
variables d, X∗ and Y ∗. The parameter i is the number of basis elements that have been skipped (i.e., not
interdicted). When i = r(E), there are no more basis elements to interdict. The global variable d is an instance of
DynamicInterdiction, a dynamic data structure which keeps track of the optimal lower-level solution as elements
are added and removed from the interdiction set, and the variables X∗ and Y ∗ hold the current best known
incumbent solution. Given an instance d of the DynamicInterdiction structure, the following variables and
operations are available:

• d.X is the current set of interdicted elements. Initially this is ∅.

• d.Y is the lexicographically smallest basis of M \ d.X.

• d.e returns the current element being considered for interdiction. Initially, this is the first (smallest weight)
element of d.Y .

• d.Skip() advances d.e to point to the next element of d.Y following d.e.

• d.UnSkip() undoes a Skip() operation. It is only valid to call this if the last (non-undo) operation was a
Skip() operation.

15

1 In a background thread, compute the upper bound fp(1, C, ϕ(∅), ∅) with a progressively increasing number
of prefix bits p = 0, 1, . . . until the memory usage limit is reached;

2 X∗, Y ∗ ← LowerBound();
3 d← DynamicInterdiction.Init();
4 function BranchAndBound(i)
5 if w(d.Y) > w(Y ∗) then X∗, Y ∗ ← (d.X, d.Y);
6 if i = r(E) or d.e > m or min{ce : e ≥ d.e} > C − c(d.X) then return;
7 if some upper bound has finished computation then
8 Let p = max{p : computation of fp has finished};
9 if fp(d.e, C − c(d.X), d.X ∩ {1, . . . , p}) + w(d.Y) ≤ w(Y ∗) then return;

10 if cd.e ≤ C − c(d.X) then
11 if d.Interdict() = false then output error;
12 BranchAndBound(i);
13 d.UnInterdict();

14 d.Skip();
15 BranchAndBound(i+ 1);
16 d.UnSkip();

17 BranchAndBound(0);
18 output (X∗, Y ∗);

Algorithm 3: Branch and bound algorithm to exactly solve matroid interdiction.

• d.Interdict() adds d.e to d.X, and replaces d.e in d.Y with the replacement element for d.e (given the
current d.X). If no such replacement element exists, the function should return false. It then advances d.e to
point to the smallest element of d.Y after the original d.e (note that this next element is not necessarily the
replacement element for the original d.e).

• d.UnInterdict() undoes an Interdict() operation. It is only valid to call this if the last (non-undo) operation
was an Interdict() operation.

We will describe the actual implementation of this data structure that we use later; for now it is enough to
know that the operations satisfy this description. We now prove the two main results of this section. Theorem 3.1
establishes correctness of the algorithm, and Theorem 3.2 establishes a worst-case running time bound.

Theorem 3.1. Algorithm 3 correctly solves the matroid interdiction problem.

Proof. Before BranchAndBound(0) is called, X∗ and Y ∗ are initialized to a feasible solution by the LowerBound()

function. We show that the algorithm maintains the invariant that (X∗, Y ∗) is feasible, and for every feasible
solution, the algorithm either enumerates it or proves that it is no better than the current best known solution
(X∗, Y ∗). It follows that the algorithm always outputs an optimal solution.

Assuming the correct implementations of the operations on the DynamicInterdiction structure, it is easy to
see that an element is only interdicted (added to d.X) if there is enough capacity to do so, and it is maintained that
d.Y is the lexicographically smallest basis of M \ d.X. So, (d.X, d.Y) is always a feasible solution. Since (X∗, Y ∗)
is only ever updated to hold the value of (d.X, d.Y), (X∗, Y ∗) also remains feasible at every step of the algorithm.

Now, fix some X ∈ U , and observe that if Y = Bmin(X), then for any X ′ such that X ⊆ X ′ ⊆ E \ Y , we
also have Y = Bmin(X ′). So, since c ≥ 0, it suffices to show that the algorithm enumerates all X ′ such that
Bmin(X ′) ̸= Bmin(X) for every X ⊂ X ′. We call such X ′ undominated.

For now, assume that no upper bound has been computed, so that the bound test on Line 9 does not prune any
nodes. We also assume that the leader is unable to reduce the rank of the matroid for any X ∈ U , that is, Bmin(X)
always exists. We first show that with these assumptions, the algorithm enumerates all feasible undominated sets.
After establishing this, we prove that the bound test only prunes a node when enumerating it could not lead to an
improvement in the incumbent solution (X∗, Y ∗), and that if the leader is able to reduce the matroid rank, this
situation is detected.

Suppose X ′ = {x1, x2, . . . , xq} is undominated, where x1 < x2 < · · · < xq. We claim that X ′
p := {x1, x2, . . . , xp}

is also undominated for all p ∈ {0, 1, . . . , q}. Assume for the sake of contradiction that X ′ is undominated but
X ′

q−1 = X ′ \ {xq} is not. So, there is some f ∈ X ′ \ {xq} such that Bmin(X ′ \ {xq, f}) = Bmin(X ′ \ {xq}). This
implies that f is not in the lexicographically smallest basis B of M \ (X ′ \ {xq}) (otherwise, interdicting it would

16

cause the basis to change). But, if xq is interdicted from B, it will be replaced with an element after xq because
the elements are sorted by weight within each component. In particular, xq cannot be replaced with f . So, f is
also not in the lexicographically smallest basis of M \X ′, but this implies that Bmin(M \X ′) = Bmin(M \ (X ′ \ f)),
contradicting that X ′ is undominated.

Assume that X ′ ∈ U . We claim that the algorithm enumerates X ′; that is, there is some point where
BranchAndBound is called when d.X = X ′. We show by induction on p that each X ′

p is enumerated. Clearly,
X ′

0 = ∅ is enumerated, because ∅ is the initial value of d.X. Now suppose p ≥ 1 and that X ′
p−1 is enumerated.

Consider the values of d and i when X ′
p−1 is enumerated; if it is enumerated multiple times then break the tie by

choosing i as small as possible. So, d.X = X ′
p−1, d.Y is the lexicographically smallest basis of M \ X ′

p−1, and,
because we chose i as small as possible, d.e is the smallest element of d.Y which comes after xp−1. Since X ′

p is

undominated, Bmin(X ′
p) ̸= Bmin(X ′

p−1). So, xp must be in d.Y ; otherwise, d.Y would also be the lexicographically
smallest basis of M \ X ′

p, contradicting that it is undominated. Hence, d.e ≤ xp. If d.e = xp, then we are done,
because the algorithm will enumerate X ′

p via the recursive call on Line 12. Therefore, if we don’t already have
d.e = xp then there is a sequence of recursive calls on Line 15 that advance d.e to point to xp, at which point the
recursive call on Line 12 will enumerate X ′

p.
So, without the bound test on Line 9, the algorithm would have enumerated every undominated X ′ ∈ U . It

remains to show that if some X ′ is pruned by the bound test, it could not have led to an improved solution (X∗, Y ∗).
Suppose that for some X∗, Y ∗, d.X, d.Y , and d.e we have fp(d.e, C − c(d.X), d.X ∩ {1, . . . , p}) +w(d.Y) ≤ w(Y ∗).
Recall that fp(d.e, C− c(d.X), d.X ∩{1, . . . , p}) is an upper bound on how much the minimum basis weight w(d.Y)
can increase by adding edges from {d.e, d.e + 1, . . . ,m} to d.X. So, if the bound test prunes this node, then no
child of this node can have minimum basis weight larger than Y ∗, as desired.

Finally, we claim that if there is some X ∈ U such that there is no basis using elements in E \ X, then
the algorithm correctly detects this case and outputs an error. First, notice that if there is such an X, we may
assume it is minimal with this property, and hence undominated. Then, deleting the largest element from X
yields an undominated set X ′, so by the same argument used earlier, X ′ is enumerated by the algorithm. When
Interdict() is invoked during the recursive call where X ′ is enumerated, it will return false because there is no
replacement edge for d.e (otherwise, Bmin(X) would exist). So, the algorithm will raise an error.

Theorem 3.2. Assume that the elements of M are already sorted according to (A1). Then the worst-case running
time of BranchAndBound(0) in Algorithm 3 is

O

((
r(E) + k

min{r(E), k}

)
·D

)
+ I

where k = max{|X| : X ∈ U}, D is the time required for each operation of the dynamic data structure, and I is the
time required to initialize the dynamic data structure.

Proof. We claim that the total number of leaves in the recursion tree is at most t(r(E), k) where t(0, j) = t(i, 0) = 1,
and t(i, j) = t(i− 1, j) + t(i, j − 1) for i, j ≥ 1. To see this, consider the following.

• The i parameter of BranchAndBound is incremented whenever we recurse on Line 15, and when i = r(E), the
recursion terminates.

• Since k = max{|X| : X ∈ U}, the algorithm can recurse at most k times on Line 12 before we are guaranteed
that min{ce : e ≥ d.e} > C−c(d.X), and the recursion terminates in this case. We assume that min{ce : e ≥ f}
is precomputed for all f ∈ E, so that this test takes O(1) time.

So, we can think of the recursive call on Line 15 as decrementing the i parameter of t(i, j), and the recursive call
on Line 12 as decrementing the j parameter. Hence, the total number of leaves is at most t(r(E), k).

Now, we show that t(i, j) =
(

i+j
min{i,j}

)
. If i = 0 or j = 0, this is clearly the case. So, suppose i, j ≥ 1. Then, by

induction,

t(i, j) = t(i− 1, j) + t(i, j − 1) =

(
i+ j − 1

min{i− 1, j}

)
+

(
i+ j − 1

min{i, j − 1}

)
=

(
i+ j

min{i, j}

)
,

where the last equality follows by splitting into cases depending on whether i or j is larger and applying the
recurrence relation for binomial coefficients. Since the number of nodes in a binary tree is at most 2 times the
number of leaves, the total number of recursive calls is also O(t(i, j)). Each call takes O(D) time (ignoring time
taken in child nodes), so the total running time is as desired.

17

In the case of MST interdiction, by using the best-known decremental dynamic MST data structure (i.e., only
supporting edge deletion operations) of Holm et al [11], we can get (amortized) D = O(log2 n), with initialization
time I = O(m log2 n). We remark that the time required to sort the matroid elements and initialize the data
structure will typically be dominated by the other terms. It may not be immediately obvious why it suffices to use
a decremental dynamic MST data structure. The reason for this is that we only need to be able to support edge
deletions and undo operations. The undo operation can easily be implemented to run in the same time as the edge
deletion operation by keeping track of all changes made to the data structure during the edge deletion operations.

For the special case of MST interdiction when all interdiction costs are 1, the previous best known running
time for an enumerative algorithm is O(nk logα((k − 1)(n + 1), n)) [3,17]. By applying standard bounds on bi-
nomial coefficients to the result of Theorem 3.2, we find that for MST interdiction our algorithm runs in time
O(min{(2en/k)k, (2ek/n)n} ·D)+ I. If we treat n and k as variables, this is asymptotically faster than the previous
best algorithm up to polylog factors. Furthermore, our algorithm can handle arbitrary interdiction costs and gen-
eralizes to arbitrary matroids. Our algorithm also prunes many nodes using the upper bounds, and since accessing
the upper bound table takes O(1) time, it does so without any increase in the asymptotic running time. Further
improvements in algorithms for the decremental dynamic MST problem would immediately yield improvements to
our algorithm as well.

The dynamic data structure we use is described formally in Algorithm 4. Correctness is easy to see: it is just an
adaptation of Kruskal’s algorithm. While our dynamic data structure needs D = O(m) and I = O(m), and hence
is theoretically slower than the data structure of Holm et al, we found it to have excellent performance in practice,
while also being considerably simpler. This follows a common theme in the literature on dynamic MST in which
simple algorithms are repeatedly found to have better computational performance than complex algorithms with
good theoretical guarantees, for typical graphs [1,5,22].

Unlike other dynamic MST data structures, Algorithm 4 should be easy to adapt for other matroids: only the
union-find structure needs to be replaced with a different mechanism for testing whether a set is independent in the
given matroid. As a starting point towards such an adaptation, it is easy to modify the data structure to work for
any matroid given an independence oracle. First, we remove all references to uf from Skip, UnSkip, and Interdict.
Then, to find the replacement edge for e in the Interdict function, we find the lexicographically smallest basis of
E \X, remove e from it, and query the independence oracle for each edge after e to see if it can be added to the
basis. Depending on the specifics of the matroid, it may be possible to improve this algorithm further.

3.3 Adaptation for the minimum cost blocker problem

Recall that in the minimum cost blocker problem, the objective is to minimize the cost required to increase the
minimum basis weight to at least R. In the introduction, we mentioned that this problem is polynomial-time
equivalent to the matroid interdiction problem by performing binary search on C or R. In this section, we show that
our branch-and-bound scheme can in fact be modified to directly solve the minimum cost blocker problem without
incurring the overhead of performing binary search. In Section 4, we compare the new algorithm (Algorithm 5)
against Algorithm 3 with binary search over C in computational experiments, and find that Algorithm 5 is faster,
as expected.

Since minimum cost blocker instances do not have a C value, for the purposes of adapting the algorithm, in the
graphic matroid case we define C = MinCut − 1 where MinCut is the global minimum cut of G with edge costs c.
The motivation for this is that MinCut−1 is always an upper bound on C in the MST interdiction problem (setting
it any larger would allow the leader to cut the graph). For general matroids the trivial bound C = c(E) can be
used. Algorithm 5 describes the modified branch-and-bound algorithm. We omit a full proof of correctness because
the proof is largely the same as the proof of Theorem 3.1. However, a few observations are in order.

In the edge blocker problem, a minimum c-cost set X∗ which intersects every basis is always a trivial solution,
because it causes the minimum basis weight to increase to infinity. So, we start with such an X∗ as an initial
incumbent solution. For graphic matroids this X∗ is just a global minimum cut, but it may be NP-hard to find X∗

for general matroids, which we discuss later in Section 3.4. We then enumerate all undominated X (adopting the
term undominated from the proof of Theorem 3.1) which could potentially lead to an improved incumbent solution
(X∗, Y ∗). Notice that for (X,Y) to be an improved incumbent solution, w(Y) must reach the target weight R, and
the cost of X must be at most the cost of X∗. Furthermore, no child node of a node with weight at least R can
have lesser cost, so we can prune any such node. Similarly, no child of a node with cost at least c(X∗) can have
lesser cost, and since we assume all costs are at least 1, it cannot have higher weight without also having higher
cost, so we can prune it.

The bound test fp(d.e, c(X
∗)−c(d.X), d,X∩{1, . . . , p})+w(d.Y) < R works correctly because in order to reach

an improved incumbent solution, we must use at most c(X∗) − c(d.X) additional capacity, and we must reach a

18

1 structure DynamicInterdiction

2 function Init()

3 X ← ∅;
4 Y ← lexicographically smallest basis of M ;
5 e← element of Y with the smallest index;
6 uf ← empty union-find structure on n elements;
7 bst← empty self-balancing binary search tree;
8 stack ← empty stack;

9 function Skip()

10 uf.Union(e.s, e.t); /* Union the endpoints of edge e */

11 e← bst.Next(e); /* Move to the next element in bst after e */

12 function UnSkip()

13 e← bst.Prev(e); /* Move to the element in bst before e */

14 uf.Undo(); /* Undo the most recent Union operation */

15 function Interdict()

16 if e = m then return false;
17 for f = e+ 1, . . . ,m do /* Find the replacement edge for e */

18 if f ∈ Y then uf.Union(f.s, f.t);
19 else if uf.Find(f.s) ̸= uf.Find(f.t) then break;
20 if f = m then f ← ⊥;
21 Undo all Union operations from the above loop;
22 if f = ⊥ then return false;
23 X ← X ∪ {e};
24 Y ← Y \ {e} ∪ {f};
25 bst.Insert(f);
26 e← bst.Erase(e); /* Erase e from bst, then replace e with the next element after the

location where e was in bst */

27 stack.Push((e, f));
28 return true;

29 function UnInterdict()

30 e′, f ← stack.Pop();
31 X ← X \ {e′};
32 Y ← Y ∪ {e′} \ {f};
33 bst.Erase(f);
34 e← bst.Insert(e′); /* Insert e′ into bst, then set e to e′ */

Algorithm 4: Dynamic interdiction data structure, specialized for MST interdiction.

19

1 In a background thread, compute the upper bound fp(1, r, ϕ(∅), ∅) for all r = 0, 1, . . . , C with a
progressively increasing number of prefix bits p = 0, 1, . . . until the memory usage limit is reached;

2 Let X∗ be a minimum c-cost set which intersects every basis of M and let Y ∗ = ⊥;
3 d← DynamicInterdiction.Init();
4 function BranchAndBound(i)
5 if w(d.Y) ≥ R and c(d.X) ≤ c(X∗) then X∗, Y ∗ ← (d.X, d.Y);
6 if i = r(E) or d.e > m or w(d.Y) ≥ R or c(d.X) ≥ c(X∗) then return;
7 if some upper bound has finished computation then
8 Let p = max{p : computation of fp has finished};
9 if fp(d.e, c(X

∗)− c(d.X), d.X ∩ {1, . . . , p}) + w(d.Y) < R then return;

10 if d.Interdict() then
11 BranchAndBound(i);
12 d.UnInterdict();

13 d.Skip();
14 BranchAndBound(i+ 1);
15 d.UnSkip();

16 BranchAndBound(0);
17 output (X∗, Y ∗);
Algorithm 5: Modification of the branch and bound algorithm for solving the minimum cost blocker problem.

solution of value at least R. The background computation of the upper bound differs from the interdiction case
in that we compute fp(1, r, ∅) for all r = 0, 1, . . . , C. This is necessary because the algorithm calls fp(e, c(X

∗) −
c(d.X), d.X ∩ {1, . . . , p}), and c(X∗)− c(d.X) is not necessarily equal to C − c(X) for any X ∈ U .

Finally, instead of interdicting the element d.e whenever there is capacity to do so (as in the interdiction problem),
we instead interdict whenever a replacement element for d.e exists (i.e., when d.Interdict() returns true). This
ensures that we enumerate all possible undominated solutions.

3.4 Preprocessing

In this section, we discuss two preprocessing steps: one which can simplify or even solve some matroid interdiction
instances, and one which can speed up computation of the upper bound at the expense of bound quality. The
former preprocessing step has been used previously in the case of MST interdiction [20,32]. Here, we generalize
the ideas to arbitrary matroids, and describe how to perform the preprocessing in polynomial time for graphic and
partition matroids.

To begin, observe that if there is some X ∈ U such that r(E \X) < r(E), then L(X) = ∅, so the optimal value
of (MI) is ∞. Our branch-and-bound algorithm signals an error if this case is detected. We would instead like to
have a way of detecting this case as a preprocessing step. The problem of finding such an X is equivalent to the
problem of finding a minimum cost set X which intersects every basis, known as a cocircuit. If we have such a set X
which intersects every basis and c(X) ≤ C, then X ∈ U and r(E \X) < r(E). For graphic and partition matroids,
there are polynomial time algorithms that can find a minimum cost cocircuit, which we discuss below. However,
this is NP-hard even for binary matroids (see [27], which shows NP-hardness for the equivalent problem of finding
the minimum distance of a binary linear code). So, in general we cannot do this preprocessing in polynomial time
unless P = NP.

For graphic matroids, we can easily find a minimum cost cocircuit in polynomial time: such a set is simply
a global minimum cut in the graph. Now we consider partition matroids. Suppose that the partition matroid
M = (E, I) is represented by I = {J ⊆ E : |J ∩ Si| ≤ ki ∀i} for some disjoint sets Si and integers ki. Then,
a cocircuit is any set X which has |X ∩ Si| > |Si| − ki for some i, because any basis B has |B ∩ Si| = ki, so
|X ∩ Si| + |B ∩ Si| > |Si| and hence X ∩ B ̸= ∅. Since ce ≥ 1 ∀e ∈ E, any minimum cost cocircuit must only
intersect a single set Si, and hence we can find such a cocircuit by using a greedy algorithm to find the cheapest i
and X such that |X ∩ Si| = |Si| − ki + 1.

An extension of this idea can be used to simplify some problem instances, as observed in prior works [20,32].
Let w′

1, w
′
2, . . . , w

′
ℓ be the distinct weights from w, and assume w′

1 < w′
2 < · · · < w′

ℓ. For all i, let E≤i = {e ∈ E :
we ≤ w′

i}. Let k be the smallest index such that r(E≤k \X) = r(E) for all X ∈ U . Then, we claim that for any
X ∈ U , Bmin(X ∩ E≤k−1) = Bmin(X). The following lemma is a trivial generalization of Lemma 2.2 from [20],
which concerns only graphic matroids. The proof is almost identical, but we include it for completeness. To derive

20

it from the original proof, just substitute r(E) − r(S) + 1 for every occurrence of σ(S), where S is an arbitrary
subset of E (here, σ(S) is just the number of connected components of the graph (V, S)).

Lemma 3.3. For convenience, define w′
0 := 0. If X ∈ U , then

min{w(Y) : Y ∈ L(X)} =
k−1∑
i=0

(w′
i+1 − w′

i)(r(E)− r(E≤i \X)).

Proof. Consider running the greedy algorithm to obtain a minimum weight basis of M \X. For every 1 ≤ j ≤ ℓ, the
greedy algorithm includes r(E≤j \X)−r(E≤j−1\X) elements of weight w′

j . Note that r(E≤j \X)−r(E≤j−1\X) = 0
for j > k because the rank of both sets is r(E) by the definition of k. Now, we have

min{w(Y) : Y ∈ L(X)} =
ℓ∑

j=1

w′
j(r(E≤j \X)− r(E≤j−1 \X)) =

k∑
j=1

w′
j(r(E≤j \X)− r(E≤j−1 \X))

=

j−1∑
i=0

(w′
i+1 − w′

i)

k∑
j=1

(r(E≤j \X)− r(E≤j−1 \X))

=
k−1∑
i=0

(w′
i+1 − w′

i)

k∑
j=i+1

(r(E≤j \X)− r(E≤j−1 \X))

=

k−1∑
i=0

(w′
i+1 − w′

i)(r(E≤k \X)− r(E≤i \X)) =

k−1∑
i=0

(w′
i+1 − w′

i)(r(E)− r(E≤i \X)).

As a consequence, it suffices to consider only interdiction sets X such that X ⊆ E≤k−1, because the objective
value of the lower level problem has no dependence on whether elements in E≥k are interdicted. In other words, if
we define

m̄ = max{e : e ∈ E≤k−1},

then we can assume every e ∈ X has e ≤ m̄. Furthermore, we can delete all elements of weight larger than w′
k,

because there is always a (minimum weight) basis using only elements in E≤k \ X. For matroids where we can
efficiently find a minimum cost cocircuit, we compute m̄ by performing binary search to find the smallest i such that
minimum cost of a cocircuit in E≤i is greater than C. Algorithm 3 can be modified to benefit from this observation
by replacing the condition d.e > m with d.e > m̄ on Line 6. Algorithm 5 can be modified similarly (using the
assumption that C = MinCut− 1 for the purposes of computing m̄).

We now discuss the second preprocessing step. Memory usage requirements can be an issue for computing the
upper bound f (as described in Section 2), especially if C is large. To address this we describe a way to round the
costs and capacities used in the upper bound computation while ensuring that it remains an upper bound. This
reduces the memory and time required at the expense of the quality of the bounds. When C is particularly large,
performing this rounding step can be beneficial to the overall running time.

The way we accomplish this is as follows. We pick some constant K, replace all interdiction costs ce by ⌊ce/K⌋,
and replace the capacity C by ⌈C/K⌉. Since we round down the costs and round up the capacity, all feasible upper-
level solutions remain feasible, but some new upper-level solutions may become feasible which were not previously.
The result is a relaxation of the original feasible region, and since we are dealing with a maximization problem, this
produces an upper bound. In practice, we only perform this rounding on a group of instances from the literature
where the costs are on the order of 108, and hence it would be completely impractical to use the DP algorithm
without rounding. The details can be found in Section 4.1.

4 Computational results

We evaluated our algorithm computationally for the MST interdiction problem and the minimum cost MST edge
blocker problem. We compare our results to two previous papers which also published computational results.
Overall, our algorithm performs exceedingly well compared to past algorithms. For many instances, we improved
the best run time from hours to seconds. This was enough to solve all previously unsolved instances from the
literature.

We implemented our algorithm in C++, compiled it using the Clang 17 compiler, and tested it on an Intel Gold
6148 Skylake CPU @ 2.4 GHz. Our solver was limited to use at most 32 GB of RAM. Our code and instances are

21

open source and are available at https://github.com/nwoeanhinnogaehr/mstisolver. The correctness of our
implementation was verified by comparing the output against algorithms such as the MIP extended formulation
[3,30] or a basic brute-force algorithm whenever it was possible for these slower algorithms to solve the instances.

This section is divided into two parts. In the first, we compare the performance of our algorithms to previously
published algorithms. The second examines in detail how various solver features and instance parameters affect the
performance of our algorithms.

4.1 Comparison with prior works

We compare our algorithm directly to two previous works: the (mixed) integer programming formulations for the
minimum cost MST edge blocker problem by Wei, Walteros, and Pajouh [30], and the branch-and-bound algorithms
for the special case of MST interdiction where all interdiction costs are 1 by Bazgan, Toubaline, and Vanderpooten
[3]. As the original implementations were not available, the comparison is made directly to the running times
reported in the original papers. Despite this, we believe the gap in performance is significant enough to rule out
the possibility of the improvements coming from compute speed or implementation quality alone. Note that with
default settings, our solver uses two threads: one for branch-and-bound, and one for computing upper bounds, so
the CPU time is roughly double the wall-clock time. The reason why we compute upper bounds on a separate
thread is that it is difficult to determine ahead of time how difficult an instance is and thus how strong of an
upper bound we should invest in computing. By doing it in parallel, we ensure that strong bounds are eventually
computed for hard instances and that time is not wasted on strong bounds for easy instances. In Section 4.2, we
show that using two threads in this way does not offer any significant advantage over periodically switching between
branch-and-bound search and upper bound computation on a single thread, and hence it is fair to compare our
algorithm to other serial algorithms. Since it is unclear if the previous papers used a parallelized implementation
or whether they measured CPU time or wall-clock time, we report all running times as CPU time to ensure as fair
a comparison as possible.

The minimum cost MST edge blocker tests performed by Wei, Walteros, and Pajouh were run on a 12-core Intel
Xeon E5-2620 v3 CPU at 2.4GHz with 128 GB of RAM, using C++ and Gurobi 8 [30]. We tested our algorithm on
the instances available for download in the online supplementary material for the paper. For these instances, the
authors used a parameter γ ∈ {0.05, 0.3, 0.7, 0.95} to set the value of R as a function of the minimum and maximum
spanning tree weight. Specifically, they set R = (w−w)γ+w where w is the maximum spanning tree weight and w
is the minimum spanning tree weight. In our tables we only report results for γ = 0.05, because we found that for
γ ∈ {0.3, 0.7, 0.95}, the optimal solution for all instances is for the leader to use a minimum cut. Our algorithm is
able to very quickly handle this trivial case, solving all such instances in just a few milliseconds. The instances are
grouped by number of vertices n and approximate number of edges m̃. Exactly how m̃ is determined is described in
the original paper [30]. We remark that the instances available in the supplementary material do not exactly match
what is described in the paper. Specifically, the data appears to include 20 instances for each value of n and m̃, but
the paper only references 12. We tested all 20, as we found no indication of which subset of these instances were
originally tested. We also adjusted the weights and costs of the downloaded instances to fall in the range [20, 80],
as reported in the paper. In any case, this adjustment had no measurable impact on performance.

Since these instances have weights and costs specified with 6 digits of decimal precision but our implementation
only supports integer weights and costs, we scaled up all values by 106 so that they became integers. However,
costs of this magnitude are not suitable for use with our pseudopolynomial time DP bounds, so to handle this we
rounded the costs and capacities used in the DP bound as described in Section 3.4, with K = 105. This reduced
the costs to integers less than 1000, which are of an appropriate magnitude for the DP algorithm. We emphasize
that this does not affect the accuracy of the solution output because only the bounds are weakened; the costs and
capacity used in the branching part of the algorithm are not rounded.

We report our results on these instances in Table 1. In this table, each row corresponds to the instances with a
specific value of n and m̃. Under the headings ‘BnB’ and ‘BS-BnB’ we report the average CPU time in seconds for
Algorithm 5 and binary search over the value of C in Algorithm 3, respectively. Both of our algorithms solved all
instances to optimality. Under the heading ‘Best from [30]’ we include the best result from any algorithm described
in the paper by Wei, Walteros, and Pajouh. The original data can be found in Table 2 of their paper. The ‘Time’
column is the best average running time in seconds for any of the three algorithms EXT, CST-1, or CES (or 7200
seconds if the time-out is reached), and the ‘Opt%’ column is the best percentage of instances solved to optimality.
Excluded from the table are the real-world instances, for which the optimal solution to all instances is the minimum
cut. The real-world instances are solved within a few seconds by our algorithms, which is slower than the time
reported in [30]; the reason is that determining m̄ for these instances is slow because the graphs are very large. If
computation of m̄ is disabled, they are solved almost instantly.

22

https://github.com/nwoeanhinnogaehr/mstisolver

BnB BS-BnB Best from [30]

n m̃ Time Time Time Opt%

40 78 0.004 0.018 0.04 100
40 118 0.008 0.047 0.26 100

80 160 0.014 0.082 0.49 100
80 240 0.063 0.433 1,943.23 75
80 305 0.147 0.547 1,469.49 83

160 318 0.051 0.115 97.28 100
160 476 0.115 0.308 3,829.95 48
160 624 0.206 0.903 6,066.43 20

200 398 0.075 0.136 280.76 100
200 596 0.176 0.226 3,757.74 48
200 784 0.327 0.761 7,200 0

Table 1: Optimality percentage and average running times
for instances by Wei, Walteros, and Pajouh [30]. Our algo-
rithms (BNB and BS-BnB) solved all instances to optimality.

BnB Best from [3]

n C Time Time

20 3 0.004 0
20 5 0.012 0.032
20 7 0.036 0.38
20 9 0.127 3.047

25 3 0.005 0
25 5 0.019 0.089
25 7 0.071 1.617
25 8 0.214 3.566

30 3 0.007 0
30 5 0.02 0.231
30 7 0.143 3.553

50 3 0.029 0.026
50 5 0.102 1.856
50 7 1.924 81.707

75 3 0.055 0.096
75 5 0.245 10.459
75 7 9.062 650.008

100 3 0.108 0.21
100 5 0.576 49.895
100 7 21.512 2,016.41

200 5 8.057 572.557

300 5 57.512 1,793.46

400 5 117.556 7,265.85

Table 2: Average running times for instances by
Bazgan, Toubaline, and Vanderpooten [3]. Both
approaches solved all instances to optimality.

The MST interdiction tests by Bazgan, Toubaline, and Vanderpooten were performed on a 3.4GHz processor
with 3 GB of RAM, using the C programming language [3]. The exact instances they used were not available for
download, but the method used to generate the instances was described precisely, so we were able to recreate the
data set (up to the choice of random values). Specifically, all graphs are complete graphs on n vertices, the weights
are integers chosen uniformly at random in the range [0, 100], and all interdiction costs are 1. For each choice of n
and interdiction budget C, the original paper generated 10 instances. To reduce any bias from the random choice
of weights on the average running time we instead generated 100 instances for each choice of parameters.

We report our results on these instances in Table 2. In this table, each row corresponds to the instances with
a specific value of n and C. The columns under the heading ‘BnB’ describe the results for Algorithm 3. Under
the ‘Best from [3]’ heading, we include the best result reported from the original paper, across each of their four
algorithms. The original data for these columns can be found in Table 2 of their paper. The meaning of the
individual columns is the same as in Table 1. Note that our algorithm solved all instances to optimality, as did the
best algorithm from the original paper.

In both Tables 1 and 2, our branch and bound algorithms can clearly be seen to offer a substantial improvement
in running time over all previous mixed integer programming and branch and bound algorithms.

4.2 Detailed performance evaluation

While the previous section has established the competitive performance of our algorithm, the instances which
appeared in the literature do not test some important cases. For example, all of the minimum cost MST edge
blocker instances are relatively sparse, and all of the MST interdiction instances are complete graphs with unit
costs and a very small interdiction budget. In this section we test some newly generated instances to better
understand how the performance of our algorithm depends on various qualities of an instance. We also perform a
feature knockout test to determine which algorithm features are most important for good performance.

We chose to focus on generating MST interdiction instances which are small (in terms of n and m) but which
take a long time to solve using current solvers. In fact, many of these new instances with only 20 vertices take
significantly longer to solve than instances from the literature with 400 vertices. The 1024 new instances were
generated as follows. For each choice of n ∈ {10, 15, 20, 25}, γ ∈ {0.25, 0.5, 0.75, 1}, d ∈ {0.5, 0.66, 0.83, 1}, cmax ∈

23

{1, 100, 1000, 10000}, and wmax ∈ {2, 100, 10000, 1000000}, we generated one instance. The instance has n vertices,
m = ⌊d

(
n
2

)
⌋ edges (chosen uniformly at random), integer costs c uniformly distributed in [1, cmax], integer weights

w uniformly distributed in [1, wmax] and capacity ⌊γ(M − 1)⌋ where M is the cost of the global minimum cut for
costs c. Note that M − 1 is the largest nontrivial capacity, as any larger would produce an instance in which the
leader is able to cut the graph.

In Table 3, we report the results for these new instances. The rows of the table are split into five sections, each
with four rows; in each section the instances are grouped based on the value of one of the five instance parameters
n, γ, d, cmax, or wmax. That is, each section reports results for all instances, but instances are aggregated differently
in different sections.

The first four data columns, ‘Opt%’, ‘Time’, ‘MaxTime’ indicate the percentage of instances solved to optimality,
average CPU time, and maximum CPU time, respectively. All instances were tested with a 1 hour (3600 second)
CPU time limit. For instances where the limit is reached, the time limit is used in place of the running time. The
next four columns describe the quality of bounds: ‘LB’ and ‘MaxLB’ are the average and maximum percent gap
between the greedy lower bound and the optimal solution, and ‘UB’ and ‘MaxUB’ are the average and maximum
percent gap between the (strengthened) upper bound and the optimal solution. The gap percentage is computed
as 100 · |z∗ − z|/z∗ where z is the approximate solution weight (lower or upper bound) and z∗ is the optimal
solution weight. The ‘UBTime’ column reports the average number of seconds required to compute the upper
bound f(1, C, ϕ(∅)). For any p, the time required to compute fp(1, C, ϕ(∅), ∅) can be accurately estimated by
multiplying this value by 2p. Only instances which were solved to optimality are included in the average for the
last four columns.

The results indicate that the number of vertices n is the best predictor of instance difficulty: while instances
with n = 10 are all solved within 20 milliseconds, around 7% of the instances with n = 25 could not be solved
within 1 hour. However, to be hard an instance must have high density d and high capacity factor γ. This matches
the behaviour seen in instances from the literature. The instances in Table 1 are solved very quickly, and the graphs
are very sparse (i.e., d is small). On the other hand, if γ is small, as is the case in Table 2, instances are still largely
tractable as well. The parameters cmax and wmax have less impact on the performance. Instances with smaller cmax

are typically solved faster because the DP table is smaller and can be computed more quickly. On the other hand,
instances with smaller wmax are somewhat harder, but only by a small factor; we are not sure why this is the case.
We remark that the number of branch-and-bound nodes is often on the order of 109 for the hardest instances. This
is expected since our algorithm only needs O(m) time per node.

Surprisingly, we found that across all instances, the greedy lower bound is 1.48% from optimal on average, and is
never worse than 17.82% from optimal. These statistics hold for instances from the literature as well. In Section 3.1
we saw that the worst case can be arbitrarily bad even for a graph on four vertices, but evidently the performance
on random graphs is much better. Therefore, this greedy algorithm alone could serve as a very strong heuristic in
applications where an exact algorithm is not needed.

As for the strengthened DP upper bounds, they have an average optimality gap of 14.76% at the root node, and
are never worse than 68.24%. The parameter which has the largest correlation with the time required to compute
the bounds is cmax, because the running time is directly a function of it. The running time also depends on m,
but as the magnitude of m is much smaller, it has less of an impact. While there is no clear connection between n
and the bound strength, all other parameters do appear to be correlated with the bound strength. In Section 2.3.1
we showed an example with an optimality gap linear in n, but evidently this case is not commonly seen in random
graphs. This offers some indication as to why the branch-and-bound algorithm performs so well: although it is
possible for the upper bounds to be weak, the bounds are used across a large number of subproblems. Due to the
good average-case performance, it appears to be quite challenging to construct an instance where the bounds are
consistently weak for all subproblems. The hardest instances we currently know of have d = 1, γ = 1, and very
large cmax. However, these instances are still far from the theoretical worst case.

We now examine the impact of different solver features on performance in a knockout test. The features
considered in the test are: (1) the DP upper bound, (2) the strengthened DP upper bound, (3) the greedy lower
bound, and (4) the computation of branch-and-bound search and upper bounds in parallel. For these tests we again
used a 3600 CPU second time limit. The results are summarized in Table 4. As usual, the ‘Opt%’ column is the
percentage of instances solved to optimality, and the ‘Time’ column is the average CPU time in seconds. Instances
which reached the time limit are counted as having taken 3600 seconds. The aggregation of instances into sections
is the same as in Table 3.

It can easily been seen from the table that disabling the upper bound entirely or disabling the strengthened
upper bound causes a clear reduction in performance, especially on more difficult instances. This is true even
considering that without the upper bound test, our branch-and-bound implementation is able to enumerate nodes

24

n Opt% Time MaxTime LB MaxLB UB MaxUB UBTime

10 100 0 0.02 1.11 16 9.09 44.75 0.0003
15 100 0.13 10.04 1.61 15.88 16.78 68.24 0.0116
20 99.61 70.31 3,600 1.52 17.25 16.75 54.96 0.0388
25 92.97 380.99 3,600 1.67 17.82 16.4 45.95 0.0666

γ

0.25 100 0.01 0.32 0.84 10 4.94 25.71 0.0038
0.5 100 4.49 266.43 1.28 15.88 13.14 45.76 0.0275
0.75 98.44 116.25 3,600 1.36 17.25 18.05 60.27 0.0469
1.0 94.14 330.69 3,600 2.47 17.82 20.97 68.24 0.0554

d

0.5 100 0.12 8.7 0.91 15.92 9.3 43.48 0.0138
0.66 100 5.67 381.7 1.11 14.15 13.57 45.95 0.0291
0.83 99.22 77.84 3,600 1.78 17.25 16.82 46.01 0.045
1.0 93.36 367.82 3,600 2.15 17.82 20.03 68.24 0.0523

cmax

1 98.83 69.47 3,600 1.34 17.82 9.35 29.92 0.0018
100 98.83 106.2 3,600 1.52 16 15.38 45.76 0.0029
1000 97.66 129.98 3,600 1.58 17.25 19.36 60.27 0.0183
10000 97.27 145.79 3,600 1.45 11.4 24.59 68.24 0.2227

wmax

2 96.48 177.85 3,600 0.63 10 8.88 31.25 0.0179
100 98.44 116.14 3,600 1.78 15.92 17.67 68.24 0.0301
10000 99.22 68.68 3,600 1.86 17.82 18.79 54.96 0.0593
1000000 98.44 88.77 3,600 1.61 14.15 19.37 60.27 0.0508

Table 3: Aggregated statistics for new instances.

All features No UB Weak UB No LB Single thread

n Opt% Time Opt% Time Opt% Time Opt% Time Opt% Time

10 100 0 100 0 100 0 100 0 100 0
15 100 0.13 100 0.24 100 0.1 100 0.13 100 0.15
20 99.61 70.31 97.66 166.93 99.61 77.06 100 68.09 100 74.86
25 92.97 380.99 84.31 680.48 88.67 515.15 92.58 383.81 91.8 352.55

γ

0.25 100 0.01 100 0.01 100 0.01 100 0.01 100 0.01
0.5 100 4.49 100 12.63 100 6.64 100 4.54 100 4.63
0.75 98.44 116.25 93.75 260.86 96.88 167.94 98.05 118.12 97.66 104.67
1.0 94.14 330.69 88.24 573.75 91.41 417.74 94.53 329.36 94.14 318.27

d

0.5 100 0.12 100 0.28 100 0.07 100 0.11 100 0.11
0.66 100 5.67 100 24.75 100 6.77 100 5.55 100 5.69
0.83 99.22 77.84 96.09 219.21 97.66 130.56 99.22 79.26 98.44 79
1.0 93.36 367.82 85.88 603.11 90.63 454.93 93.36 367.12 93.36 342.77

cmax

1 98.83 69.47 94.14 234.28 98.05 90.65 98.83 69.7 98.83 72.22
100 98.83 106.2 95.7 215.68 97.27 165.89 98.83 107.26 98.05 99.83
1000 97.66 129.98 96.09 200.52 96.88 168.02 97.27 131.08 97.27 120.84
10000 97.27 145.79 96.08 195.27 96.09 167.76 97.66 144 97.66 134.69

wmax

2 96.48 177.85 96.47 178.72 96.48 171.28 96.48 177.75 96.88 174.61
100 98.44 116.14 94.92 231.17 96.48 155.69 98.44 116.67 97.66 112.21
10000 99.22 68.68 94.92 226.93 97.27 133.75 99.22 68.83 99.22 60.93
1000000 98.44 88.77 95.7 208.89 98.05 131.6 98.44 88.79 98.05 79.82

Table 4: Knockout test.

25

about two times faster. On the other hand, disabling the greedy lower bound has no clear impact on the optimality
percentage and the running time. This may be surprising considering how we found in Table 3 that the greedy
lower bound has exceptionally good performance. The lack of any significant impact on the exact algorithm suggests
that typically the branch-and-bound scheme very quickly finds solutions of quality comparable to the greedy lower
bound.

For the single-threaded variant of the solver (feature column ‘Single thread’), the implementation specifically
does the following. A timer is set initially to expire after 0.01 seconds. We then repeat the following until the
problem is solved. First, branch-and-bound search begins. When the timer expires, it is reset and the solver
switches to performing upper bound computation. When the timer expires again, the upper bound computation is
interrupted, the length of the timer is doubled, and the process repeats (i.e., branch-and-bound resumes, but with
double the amount of time on the timer). This method of alternating between search and bounds ensures easy
instances are solved quickly by branching (without spending a lot of time on unnecessary bound computations)
but for hard instances we spend sufficient time on improving the bounds. As can be seen from the table, this
change to the solver only has a minimal impact on the performance and hence it is fair to compare our (technically
multi-threaded) algorithm to other single-threaded algorithms, especially considering the wide gaps in performance
seen in Section 4.1.

5 The matroid inclusion-interdiction problem

Typically, interdiction problems consider an adversary who is excluding some structure from being used in the
solution to the lower level problem. However, besides being motivated by applications, the choice of excluding
rather then including is perhaps arbitrary. In this section we consider this dual problem in which the leader forces
certain elements to be included in the follower’s basis, and show that the two problems are connected through
matroid duality.

Let M = (E, I) be a matroid and let M∗ = (E, I∗) be its dual. Let B be the set of bases of M , and let B∗ be
the set of bases of M∗. Let w ∈ ZE . By the definition of the dual matroid, we know that Y ∈ B∗ if and only if
E \ Y ∈ B. This immediately yields the following.

Proposition 5.1.

max{min{w(Y) : Y ∈ B∗, Y ⊆ E \X} : X ∈ U} (5.1)

= w(E)−min{max{w(Y) : Y ∈ B, X ⊆ Y } : X ∈ U}. (5.2)

This proposition connects these two types of interdiction problems on matroids: (5.1), in which the leader can
force elements to be excluded from a basis, and (5.2), in which in which the leader can force elements to be included
in a basis. We will call this inclusion variant of the problem the matroid inclusion-interdiction problem.

Since our exact algorithms do not require non-negative weights, Proposition 5.1 implies that we can solve the
matroid inclusion-interdiction problem on a matroid M whenever we can solve the matroid interdiction problem on
the dual of M . The same holds for the minimum cost blocker variants. The following is now immediate from the
fact that both partition matroids and graphic matroids from planar graphs are self-dual.

Corollary 5.2. There is a pseudopolynomial time algorithm for the partition matroid inclusion-interdiction problem.

Corollary 5.3. Algorithm 3 (with bounds computed by Algorithm 1) can be used to solve the planar graphic matroid
inclusion-interdiction problem.

We do not know how to apply our techniques from Section 2 to get bounds when M is the bond matroid of
a non-planar graph, so it remains open to derive good bounds for matroid inclusion-interdiction on non-planar
graphic matroids or in even more general settings.

6 Conclusion

We have presented new combinatorial algorithms and theoretical results for matroid interdiction and related prob-
lems. In the special case of MST interdiction, our algorithms achieve state-of-the-art computational performance,
improving on the previous best results by a few orders of magnitude.

There are a number of interesting directions for future work. It is natural to consider the generalization of
these methods to the min-max problem where the follower wants to find a maximum weight independent set (as

26

opposed to a maximum weight basis, as has been the focus of this paper); this would provide a connection with the
rank reduction problem [14]. We hope that our bound framework will be applied to other matroids (some obvious
next targets are laminar matroids, bond matroids, transversal matroids, and gammoids), and to other interdiction
problems more broadly.

Acknowledgements

This research was enabled in part by computational resources provided by Calcul Québec (https://calculquebec.
ca) and the Digital Research Alliance of Canada (https://alliancecan.ca).

References

[1] Amato G, Cattaneo G, Italiano GF (1997) Experimental analysis of dynamic minimum spanning tree algo-
rithms. In: SODA, Citeseer, vol 97, pp 314–323

[2] Bader DA, Burkhardt P (2019) A simple and efficient algorithm for finding minimum spanning tree replacement
edges. arXiv preprint arXiv:190803473

[3] Bazgan C, Toubaline S, Vanderpooten D (2012) Efficient determination of the k most vital edges for the
minimum spanning tree problem. Computers & Operations Research 39(11):2888–2898

[4] Bazgan C, Toubaline S, Vanderpooten D (2013) Critical edges/nodes for the minimum spanning tree problem:
complexity and approximation. Journal of Combinatorial Optimization 26:178–189

[5] Cattaneo G, Faruolo P, Petrillo UF, Italiano GF (2010) Maintaining dynamic minimum spanning trees: An
experimental study. Discrete Applied Mathematics 158(5):404–425

[6] Chestnut SR, Zenklusen R (2017) Interdicting structured combinatorial optimization problems with {0,1}-
objectives. Mathematics of Operations Research 42(1):144–166

[7] Cook WJ, Cunningham WH, Pulleyblank WR, Schrijver A (1998) Combinatorial optimization. John Wiley
and Sons, New York

[8] Frederickson GN, Solis-Oba R (1998) Algorithms for measuring perturbability in matroid optimization. Com-
binatorica 18:503–518

[9] Frederickson GN, Solis-Oba R (1999) Increasing the weight of minimum spanning trees. Journal of Algorithms
33(2):244–266

[10] Hausbrandt N, Bachtler O, Ruzika S, Sch äfer LE (2024) Parametric matroid interdiction. Discrete Optimization
51:100823

[11] Holm J, De Lichtenberg K, Thorup M (2001) Poly-logarithmic deterministic fully-dynamic algorithms for
connectivity, minimum spanning tree, 2-edge, and biconnectivity. Journal of the ACM (JACM) 48(4):723–760

[12] Hsu LH, Jan RH, Lee YC, Hung CN, Chern MS, et al. (1991) Finding the most vital edge with respect to
minimum spanning tree in weighted graphs. Information Processing Letters 39(5):277–281

[13] Israeli E, Wood RK (2002) Shortest-path network interdiction. Networks: An International Journal 40(2):97–
111

[14] Joret G, Vetta A (2015) Reducing the rank of a matroid. Discrete Mathematics and Theoretical Computer
Science 17(2):143–156

[15] Ketkov SS, Prokopyev OA (2024) On a class of interdiction problems with partition matroids: complexity and
polynomial-time algorithms. arXiv preprint arXiv:240112010

[16] Kleinert T, Labbé M, Ljubić I, Schmidt M (2021) A survey on mixed-integer programming techniques in bilevel
optimization. EURO Journal on Computational Optimization 9:100007

27

https://calculquebec.ca
https://calculquebec.ca
https://alliancecan.ca

[17] Liang W (2001) Finding the k most vital edges with respect to minimum spanning trees for fixed k. Discrete
Applied Mathematics 113(2-3):319–327

[18] Libura M (1991) Sensitivity analysis for minimum weight base of a matroid. Control and Cybernetics 20(3):7–24

[19] Lin KC, Chern MS (1993) The most vital edges in the minimum spanning tree problem. Information Processing
Letters 45(1):25–31

[20] Linhares A, Swamy C (2017) Improved algorithms for MST and metric-TSP interdiction. arXiv preprint
arXiv:170600034

[21] Pisinger D, Toth P (1998) Knapsack problems. Handbook of Combinatorial Optimization: Volume 1–3 pp
299–428

[22] Ribeiro CC, Toso RF (2007) Experimental analysis of algorithms for updating minimum spanning trees on
graphs subject to changes on edge weights. In: Experimental Algorithms: 6th International Workshop, WEA
2007, Rome, Italy, June 6-8, 2007. Proceedings 6, Springer, pp 393–405

[23] Salazar-Zendeja L (2022) Models and algorithms for the minimum spanning tree interdiction problem. PhD
thesis, Centrale Lille Institut

[24] Schrijver A (2002) On the history of the transportation and maximum flow problems. Mathematical program-
ming 91:437–445

[25] Shen H (1999) Finding the k most vital edges with respect to minimum spanning tree. Acta Informatica
36:405–424

[26] Smith JC, Song Y (2020) A survey of network interdiction models and algorithms. European Journal of
Operational Research 283(3):797–811

[27] Vardy A (1997) The intractability of computing the minimum distance of a code. IEEE Transactions on
Information Theory 43(6):1757–1766

[28] Von Stackelberg H (1952) The theory of the market economy. Oxford University Press, England

[29] Wei N, Walteros JL (2022) Integer programming methods for solving binary interdiction games. European
Journal of Operational Research 302(2):456–469

[30] Wei N, Walteros JL, Pajouh FM (2021) Integer programming formulations for minimum spanning tree inter-
diction. INFORMS Journal on Computing 33(4):1461–1480

[31] Weninger N, Fukasawa R (2023) A fast combinatorial algorithm for the bilevel knapsack problem with inter-
diction constraints. In: International Conference on Integer Programming and Combinatorial Optimization,
Springer, pp 438–452

[32] Zenklusen R (2015) An O(1)-approximation for minimum spanning tree interdiction. In: IEEE 56th Annual
Symposium on Foundations of Computer Science, IEEE, pp 709–728

A Proof of Theorem 2.7

Proof. First we show that Pbound(δ, ϕ, π) is satisfied. Let r ∈ {0, . . . , C}, s ∈ T and i ∈ E such that ci ≤ r. We
claim that for all X ∈ U ,

i ≤ p =⇒ FM1
(X<i ∪ {i})− FM1

(X<i) = FM (X<i ∪ {i})− FM (X<i), (A.1)

i > p =⇒ FM2
(X<i ∪ {i})− FM2

(X<i) = FM (X<i ∪ {i})− FM (X<i). (A.2)

To see this, observe that for any X ′ ⊆ E, FM (X ′) = FM1(X
′)+FM2(X

′) because the independent sets ofM1 andM2

are disjoint. Now, considering what elements can be independent in each matroid, if i ≤ p, then FM2
(X<i ∪ {i}) =

FM2
(∅) = FM2

(X<i) and if i > p then FM1
(X<i ∪ {i}) = FM1

(X ∩ {1, . . . , p}) = FM1
(X<i), establishing the claim.

28

Now we establish Pbound(δ, ϕ, π). If i ≤ p, then

δ(i, r, s) = δ1(i, r, s)

≥ max{FM (X<i ∪ {i})− FM (X<i) : X ∈ U , C − c(X<i) = r, ϕ1(X<i) = s}
(by Pbound(δ1, ϕ1, π1) and Eq. (A.1))

= max{FM (X<i ∪ {i})− FM (X<i) : X ∈ U , C − c(X<i) = r, ϕ(X<i) = s}.
(because i ≤ p implies ϕ(X<i) = ϕ1(X<i))

So, assume i > p. If s ∈ T2 then

δ(i, r, s) = δ2(i, r, s)

≥ max{FM (X<i ∪ {i})− FM (X<i) : X ∈ U , C − c(X<i) = r, ϕ2(X<i) = s}
(by Pbound(δ2, ϕ2, π2) and Eq. (A.2))

≥ max{FM (X<i ∪ {i})− FM (X<i) : X ∈ U , C − c(X<i) = r, ϕ(X<i) = s}

where the last inequality follows because if X ∈ U satisfies ϕ(X<i) = s, then since s ∈ T2, we know ϕ(X<i) =
ϕ2(X<i). Finally, if i > p and s ∈ T1, then

δ(i, r, s) = δ2(i, r, ϕ2(∅))
≥ max{FM (X<i ∪ {i})− FM (X<i) : X ∈ U , C − c(X<i) = r, ϕ2(X<i) = ϕ2(∅)}

(by Pbound(δ2, ϕ2, π2) and Eq. (A.2))

≥ max{FM (X<i ∪ {i})− FM (X<i) : X ∈ U , C − c(X<i) = r, ϕ(X<i) = s}

where the last inequality follows because if X ∈ U satisfies ϕ(X<i) = s, then since s ∈ T1, we have that X ⊆
{1, . . . , p}. Hence, ϕ2(∅) = ϕ2(X<i) by Eq. (2.10).

Now we show that Psucc(ϕ, π) holds. We consider four cases:

1. If X<i ⊆ {1, . . . , p} and i ≤ p: since Psucc(ϕ1, π1) holds,

ϕ(X<i ∪ {i}) = ϕ1(X<i ∪ {i}) = π1(i, ϕ1(X<i)) = π(i, ϕ(X<i)).

2. If X<i ⊆ {1, . . . , p} and i > p: by Psucc(ϕ2, π2) and Eq. (2.10),

ϕ(X<i ∪ {i}) = ϕ2(X<i ∪ {i}) = π2(i, ϕ2(X<i)) = π2(i, ϕ2(∅)) = π(i, ϕ(X<i)).

3. If X<i ̸⊆ {1, . . . , p} and i ≤ p: this is impossible, as X<i ̸⊆ {1, . . . , p} implies i > p.

4. If X<i ̸⊆ {1, . . . , p} and i > p: since Psucc(ϕ2, π2) holds,

ϕ(X<i ∪ {i}) = ϕ2(X<i ∪ {i}) = π2(i, ϕ2(X<i)) = π(i, ϕ(X<i)).

Finally, we show that if there exists some α ≥ 0 such that Papprox(δj , ϕj , πj , α) is satisfied for both j = 1 and
j = 2, then Papprox(δ, ϕ, π, α) is satisfied. Let X ⊆ U , i ∈ E. If i ≤ p, then by Papprox(δ1, ϕ1, π1, α) and Eq. (A.1),

δ(i, C − c(X<i), ϕ(X<i)) = δ1(i, C − c(X<i), ϕ(X<i))

≤ α+ FM (X<i ∪ {i})− FM (X<i).

So, assume i > p. Then, if X ̸⊆ {1, . . . , p}, then by Papprox(δ2, ϕ2, π2, α) and Eq. (A.2),

δ(i, C − c(X<i), ϕ(X<i)) = δ2(i, C − c(X<i), ϕ(X<i))

≤ α+ FM (X<i ∪ {i})− FM (X<i).

Otherwise, if X ⊆ {1, . . . , p}, then by Eq. (2.10), Papprox(δ2, ϕ2, π2, α) and Eq. (A.2),

δ(i, C − c(X<i), ϕ(X<i)) = δ2(i, C − c(X<i), ϕ2(∅))
= δ2(i, C − c(X<i), ϕ2(X<i))

≤ α+ FM (X<i ∪ {i})− FM (X<i).

29

	Introduction
	Problem statement
	Prior work
	Our contributions

	Upper bounds
	Uniform matroids
	Direct sums of matroids
	Graphic matroids
	Worst-case performance

	Strengthening

	Exact algorithms
	Greedy lower bound
	Branch-and-bound algorithm
	Adaptation for the minimum cost blocker problem
	Preprocessing

	Computational results
	Comparison with prior works
	Detailed performance evaluation

	The matroid inclusion-interdiction problem
	Conclusion
	Proof of Theorem 2.7

