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Abstract

This paper develops an adaptive Proximal Alternating Direction Method of Multipliers (P-ADMM)
for solving linearly-constrained, weakly convex, composite optimization problems. This method is adap-
tive to all problem parameters, including smoothness and weak convexity constants. It is assumed that
the smooth component of the objective is weakly convex and possibly nonseparable, while the non-smooth
component is convex and block-separable. The proposed method is tolerant to the inexact solution of its
block proximal subproblem so it does not require that the non-smooth component has easily computable
block proximal maps. Each iteration of our adaptive P-ADMM consists of two steps: (1) the sequential
solution of each block proximal subproblem, and (2) adaptive tests to decide whether to perform a full
Lagrange multiplier and/or penalty parameter update(s). Without any rank assumptions on the con-
straint matrices, it is shown that the adaptive P-ADMM obtains an approximate first-order stationary
point of the constrained problem in a number of iterations that matches the state-of-the-art complexity
for the class of P-ADMMs. The two proof-of-concept numerical experiments that conclude the paper
suggest our adaptive P-ADMM enjoys significant computational benefits.

Keywords: proximal ADMM, nonseparable, nonconvex composite optimization, iteration complexity, aug-
mented Lagrangian function

1 Introduction

This paper develops an adaptive Proximal Alternating Direction Method of Multipliers, called A-ADMM,
for solving the linearly-constrained, smooth, weakly convex, composite optimization problem

ϕ∗ = min
y∈Rn

{
ϕ(y) := f(y) +

B∑
t=1

ht(yt) :

B∑
t=1

Atyt = b

}
, (1)

where n = n1 + . . . + nB , y = (y1, . . . , yB) ∈ Rn1 × · · · × RnB , b ∈ Rl, f : Rn → R is a real-valued
differentiable function which is m-weakly convex, and ht : Rnt → (−∞,∞] is a proper, closed, convex
function which isMh-Lipschitz continuous on its compact domain, for every t ∈ {1, . . . , B}. To ease notation,
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let A(·) :=
∑B
t=1At(·) and h(·) :=

∑B
t=1 ht(·). The goal in this paper is to find a (ρ, η)-stationary solution

of (1), i.e., a quadruple (x̄, p̄, v̄, ε̄) ∈ (domh)× Rl × Im(A∗)× R+ satisfying

v̄ ∈ ∇f(x̄) + ∂ε̄h(x̄) +A∗p̄,
√
∥v̄∥2 + ε̄ ≤ ρ, ∥Ax̄− b∥ ≤ η, (2)

where (ρ, η) ∈ R2
++ is a given tolerance pair.

A popular primal-dual algorithmic framework for solving problem (1) that takes advantage of its block
structure is the Proximal Alternating Direction Method of Multipliers (P-ADMM), which is based on the
dampened augmented Lagrangian function,

Lθc(y; p) := ϕ(y) + (1− θ) ⟨p,Ay − b⟩+ c

2
∥Ay − b∥2 , (3)

where θ ∈ (0, 1) is a dampening parameter and c > 0 is a penalty parameter. Given (ỹk−1, q̃k−1, ck−1),
P-ADMM finds the next triple (ỹk, q̃k, ck) as follows. Starting from ỹk−1, it first performs a few cyclic block
updates via an inexact proximal point method, with a fixed B-tuple (λ1, · · · , λB) of block prox stepsizes,
applied to the augmented Lagrangian function Lθck−1

(· ; q̃k−1) to obtain ỹk. Next, it performs a standard dual

update to obtain q̃k. Finally, it possibly increases the penalty parameter. More formally, letting z0 = ỹk−1

and |Ik| be a positive integer, it recursively computes the sequence {zi}|Ik|
i=1 as follows: given zi−1, it computes

zi by sequentially solving the subproblems

zit ≈ argmin ut∈Rnt

{
λtLθck−1

(zi<t, ut, z
i−1
>t ; q̃k−1) +

1

2
∥ut − zi−1

t ∥2
}
, t = 1, . . . , B. (4)

It then sets ỹk = z|Ik|, performs a Lagrange multiplier update according to

q̃k = (1− θ)q̃k−1 + χck
(
Aỹk − b

)
, (5)

where χ is a positive under-relaxation parameter, and chooses a scalar ck ≥ ck−1 as the next penalty
parameter. The rationale for denoting the number of cyclic updates, prior to a dual update, as |Ik| will
become clear in Section 3.2.

In the recent publication [25], the authors proposed a version of P-ADMM for solving (1), which assumes
that |Ik| = 1, λ1 = · · · = λB , and (χ, θ) ∈ (0, 1]2 satisfy

2χB(2− θ)(1− θ) ≤ θ2. (6)

One of the main contributions of [25] is that its convergence guarantees do not require the last block con-
dition, Im(AB) ⊇ {b} ∪ Im(A1) ∪ . . . ∪ Im(AB−1) and hB ≡ 0, that hinders many instances of P-ADMM,
see [7, 16, 44, 49]. However, the main drawbacks of the P-ADMM of [25] include: (i) the strong assump-
tion (6) on (χ, θ); (ii) subproblem (4) must be solved exactly; (iii) the stepsize parameter λ is conservative
and requires the knowledge of f ’s weak convexity parameter; (iv) it (conservatively) updates the Lagrange
multiplier after each primal update cycle (i.e. |Ik| = 1); (v) its iteration-complexity has a high dependence
on the number of blocks B, namely, O(B8). Paper [25] also presents computational results comparing its
P-ADMM with a more practical variant where (θ, χ), instead of satisfying (6), it is set to (0, 1). Intriguingly,
this (θ, χ) = (0, 1) regime substantially outperforms the theoretical regime of (6) in the provided computa-
tional experiments. No convergence analysis for the (θ, χ) = (0, 1) regime is forwarded in [25]. Thus, [25]
leaves open the tantalizing question of whether the convergence of P-ADMM with (θ, χ) = (0, 1) can be
theoretically secured.

Contributions: This work partially addresses the convergence analysis issue raised above by studying a
completely parameter-free P-ADMM, with (θ, χ) = (0, 1) and |Ik| adaptively chosen, called A-ADMM.
Rather than making the conservative determination that |Ik| = 1, the studied adaptive method ensures the
dual updates are committed as frequently as possible. It is shown that A-ADMM finds a (ρ, η)-stationary
solution in O(Bmax{ρ−3, η−3}) iterations. A-ADMM also exhibits the following additional features:

• Similar to the P-ADMM of [25], its complexity is established without assuming that the last block
condition holds;
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• Compared to the O(B8 max{ρ−3, η−3}) iteration-complexity of the P-ADMM of [25], the one for
A-ADMM vastly improves the dependence on B;

• A-ADMM uses an adaptive scheme that aggressively computes variable block prox stepsizes, instead
of fixed ones that require knowledge of the weak convexity parameters m1, . . . ,mB (e.g., the choice
λ1 = . . . = λB ∈ (0, 1/(2m)) where m := max{m1, . . . ,mB} made by the P-ADMM of [25]). In
contrast to the P-ADMM of [25], A-ADMM may generate various λt’s which are larger than 1/mt

(as observed in our computational results), and hence which do not guarantee convexity of (4).

• A-ADMM is also adaptive to Lipschitz parameters;

• In contrast to the P-ADMM in [25], A-ADMM allows the block proximal subproblems (4) to be either
exactly or inexactly solved.

Related Works: ADMM methods with B = 1 are well-known to be equivalent to augmented Lagrangian
methods. Several references have studied augmented Lagrangian and proximal augmented Lagrangian meth-
ods in the convex (see e.g., [1, 2, 29, 30, 31, 32, 38, 39, 46]) and nonconvex (see e.g. [4, 5, 17, 21, 24, 26, 27,
33, 43, 47, 48, 50]) settings. Moreover, ADMMs and proximal ADMMs in the convex setting have also been
broadly studied in the literature (see e.g. [4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 37, 40, 41]). So from now on, we
just discuss P-ADMM variants where f is nonconvex and B > 1.

A discussion of the existent literature on non-convex P-ADMM is best framed by dividing it into two
different corpora: those papers that assume the last block condition and those that do not. Under the
last block condition, the iteration-complexity established is O(ε−2), where ε := min{ρ, η}. Specifically,
[7, 16, 44, 45] introduce P-ADMM approaches assuming B = 2, while [22, 23, 34, 35] present (possibly
linearized) P-ADMMs assuming B ≥ 2. A first step towards removing the last block condition was made
by [23] which proposes an ADMM-type method applied to a penalty reformulation of (1) that artificially
satisfies the last block condition. This method possesses an O(ε−6) iteration-complexity bound.

On the other hand, development of ADMM-type methods directly applicable to (1) is considerably more
challenging and only a few works addressing this topic have surfaced. In addition to [23], earlier contributions
to this topic were obtained in [20, 43, 49]. More specifically, [20, 49] develop a novel small stepsize ADMM-
type method without establishing its complexity. Finally, [43] considers an interesting but unorthodox
negative stepsize for its Lagrange multiplier update, that sets it outside the ADMM paradigm, and thus
justifies its qualified moniker, “scaled dual descent ADMM”.

1.1 Organization

In this subsection, we outline this article’s structure. This section’s lone remaining subsection, Subsec-
tion 1.2, briefly lays out the basic definitions and notation used throughout. Section 2 introduces a notion
of an inexact solution of A-ADMM’s foundational block proximal subproblem (4) along with efficient sub-
routines designed to find said solutions. Section 3 presents this article’s centerpiece algorithm, A-ADMM,
and its main subprocedure and “static” version, S-ADMM, along with the main theorems governing their
iteration-complexity (Theorem 3.3 and 3.1). Section 4 undertakes the long proof of the S-ADMM complexity
theorem and presents all of the supporting technical lemmas. Section 5 presents proof-of-concept numerical
experiments that display the superb efficiency of A-ADMM for two different problem classes. Section 6
gives some concluding remarks that suggest further research directions.

1.2 Notation and Basic Definitions

This subsection lists the elementary notation deployed throughout the paper. We let R+ and R++ denote
the set of non-negative and positive real numbers, respectively. We shall assume that the n-dimensional
Euclidean space, Rn, is equipped with an inner product, ⟨·, ·⟩. The associated induced norm will be written
as ∥ · ∥. Given ν ∈ Rn, we let

max(ν) := max
1≤t≤n

{νt} and min(ν) = min
1≤t≤n

{νt}. (7)
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When the Euclidean space of interest has the block structure Rn1 × · · · × RnB , we will often consider, for
x = (x1, . . . , xB) ∈ Rn1 × · · · × RnB , the aggregated quantities

x<t := (x1, . . . , xt−1), x>t := (xt+1, . . . , xB), x≤t := (x<t, xt), x≥t := (xt, x>t). (8)

For a given closed, convex set Z ⊂ Rn, we let ∂Z designate its boundary. The distance of a point z ∈ Rn to
Z, measured in terms of ∥ · ∥, is denoted dist(z, Z). The indicator function of Z, δZ , is defined by δZ(z) = 0
if z ∈ Z, and δZ(z) = +∞ otherwise.

The set of points where a function h : Rn → (−∞,∞] is finite-valued, domh := {x ∈ Rn : h(x) < +∞}, is
called its domain. We say that h is called proper if it is finite-valued at some point x ∈ Rn, i.e. if domh ̸= ∅.
We call g ∈ Rn an ϵ-subgradient of a proper function h : Rn → (−∞,∞] at x ∈ domh, with ϵ ≥ 0, if

h(z) ≥ h(x) + ⟨g, z − x⟩ − ε

holds for all z ∈ Rn. The set of all ϵ-subgradients of h at x, ∂ϵh(·), is called the ϵ-subdifferential of h.
When ϵ = 0, the ϵ-subdifferential recovers the classical subdifferential, ∂h(·) := ∂0h(·). If ψ is a real-valued
function that is differentiable at z̄ ∈ Rn, then its affine approximation ℓψ(·, z̄) at z̄ is the function defined,
for arbitrary z ∈ Rn, by the rule z 7→ ψ(z̄)+⟨∇ψ(z̄), z− z̄⟩. The smallest positive singular value of a nonzero
linear operator Q : Rn → Rl is denoted ν+Q and its operator norm is ∥Q∥ := sup{∥Q(w)∥ : ∥w∥ = 1}.

2 Methods and Concepts for the Inexact Solution of (4)

This section introduces a notion of an inexact stationary point for the block proximal subproblem (4) along
with two different efficient methods for discovering such points. These methods permit the application of
our main algorithm, A-ADMM, even when (4) is not exactly solvable. In Subsection 2.1, we introduce
our inexact solution concept, Definition 2.1, for (4). Subsection 2.2 introduces a general method for finding
said inexact solutions to (4), while Subsection 2.3 presents accelerated schemes for solving strongly convex
or convex versions of (4). It also discusses how these schemes are used to tentatively solve weakly convex
versions of (4).

2.1 An Inexact Solution Concept for (4)

This subsection introduces our notion (Definition 2.1) of an inexact solution of the block proximal subproblem
(4). To cleanly frame this solution concept, observe that (4) can be cast in the form

ψ∗ = min{ψ(z) := ψs(z) + ψn(z) : z ∈ Rn}, (9)

where

ψs(·) = λtL̂c(yi<t, ·, yi−1
>t ; q̃k−1) +

1

2
∥ · −ỹk−1

t ∥2, ψn(·) = λtht(·), (10)

and L̂c(· ; q̃k−1) is the smooth part of (3) with (θ, χ) = (0, 1), defined as

L̂c(y; q̃k−1) := f(y) +
〈
q̃k−1, Ay − b

〉
+
c

2
∥Ay − b∥2 . (11)

The assumptions introduced in Section 3 regarding problem (1) will ensure that the above functional pair
(ψs, ψn) satisfies the following conditions:

(B1) ψn : Rn → (−∞,+∞] is a proper, closed, convex function with compact domain;

(B2) function ψs : Rn → R is differentiable and there exists M > 0 such that

∥∇ψs(z)−∇ψs(z̃)∥ ≤M∥z − z̃∥ ∀ z, z̃ ∈ Rn.

Hence, we assume that conditions (B1) and (B2) are valid throughout our discussion in this preliminary
section.

With the technical setup now established, we are able to forward our inexact stationary point concept
for (9), and hence for (4).
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Definition 2.1 For a given z0 ∈ domψn and parameter triple (τ1, τ2, ϑ) ∈ R3
+, a triple (z̄, r̄, ϵ̄) ∈ Rn×Rn×

R+ satisfying

r̄ ∈ ∇ψs(z̄) + ∂ε̄ψn(z̄) (12)

∥r̄∥2 + 2ε̄ ≤ τ1∥z0 − z̄∥2 + τ2[ψ(z
0)− ψ(z̄)] + ϑ2 (13)

is called a (τ1, τ2, ϑ; z
0)-stationary solution of (9). If ϑ = 0, then (z̄, r̄, ϵ̄) is simply referred to as a (τ1, τ2; z

0)-
stationary solution of (9).

We now make some remarks about Definition 2.1. First, A-ADMM uses only (τ1, τ2; z
0)-stationary points,

i.e., it always assumes that ϑ = 0. Second, if (τ1, τ2, ϑ) = (0, 0, 0), then (13) implies that (r̄, ε̄) = (0, 0) and
(12) then implies that z̄ is an exact stationary point of (9). Thus, if the triple (z̄, r̄, ε̄) is a (τ1, τ2, ϑ; z

0)-
stationary solution of (9), then z̄ can be viewed as an approximate stationary solution of (9) where the
residual pair (r̄, ε̄) is bounded according to (13) (instead of being zero as in the exact case). Third, if z̄
is an exact stationary point of (9), then the triple (z̄, 0, 0) is a (τ1, 0, ϑ; z

0)-stationary point of (9) for any
(τ1, ϑ) ∈ R2

+. Fourth, if z̄ is a stationary point of (9) such that ψ(z0)− ψ(z̄) ≥ 0, then the triple (z̄, 0, 0) is
a (τ1, τ2, ϑ; z

0)-stationary point of (9) for any (τ1, τ2, ϑ) ∈ R3
+. Hence, if z0 is a stationary point of (9), then

the triple (z0, 0, 0) is a (τ1, τ2, ϑ; z
0)-stationary point of (9) for any (τ1, τ2, ϑ) ∈ R3

+.

2.2 Composite Gradient Method

This subsection describes a variant of the composite gradient method, referred to as S-CGM, and its iteration-
complexity, for finding a (τ1, τ2, ϑ; z

0)-stationary point of (9) regardless of whether or not the objective
function ψ is convex. In fact, this method finds somewhat higher quality inexact stationary points where
τ1 = 0. Specifically, it obtains a pair (z̄, v̄) satisfying

v̄ ∈ ∇ψs(z̄) + ∂ψn(z̄) and ∥v̄∥2 ≤ σ[ψ(z̃0)− ψ(z̄)] + ϑ2, (14)

which implies that it is (0, σ, ϑ; z0)-stationary solution of (9). The S-CGM method is detailed below.

Algorithm 1 S-CGM

Input: z̃0 ∈ domψn, σ > 0, ϑ ≥ 0, M > 0.
Output: (z̄, v̄) satisfying (14)
1: for j = 1, 2, . . . do
2: Compute (z̃j , ṽj) such that:

z̃j ∈ argmin z∈Rn

{
ℓψs

(z, z̃j−1) + ψn(z) +
M

2
∥z − z̃j−1∥2

}
(15)

ṽj :=M(z̃j−1 − z̃j) +∇ψs(z̃j)−∇ψs(z̃j−1). (16)

3: if ∥ṽj∥2 ≤ σ[ψ(z̃0)− ψ(z̃j)] + ϑ2 then (z̄, v̄) = (z̃j , ṽj)

The following result, whose proof is given in Appendix B, describes the iteration-complexity of S-CGM.

Proposition 2.2 S-CGM stops in at most

K̄ :=

1 if ϑ2 + ∥ṽ1∥2 = 0

1 +

⌈
8M + σ

σ
ln

(
16M [ψ(z̃0)− ψ∗]

ϑ2 + ∥ṽ1∥2

)⌉
if ϑ2 + ∥ṽ1∥2 > 0

(17)

iterations and its output (z̄, v̄) satisfies (14).

We now make some comments about S-CGM. First, if σ = 0, then it is well-known that the iteration-
complexity of S-CGM is O(Mϑ−2) (see for example [3, Theorem 10.15]). On the other hand, if σ is positive,
then the above result shows that the iteration-complexity of S-CGM is O(M ln(ϑ−2)).
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2.3 Accelerated Composite Gradient Methods in the Convex Setting

This subsection briefly surveys accelerated composite gradient methods from [18] and [42] for finding (τ1, 0; z
0)-

stationary solutions of (9) when ψ is µ-strongly convex for some µ ≥ 0 (with the convention that ψ is convex
for µ = 0). Assuming the conditions (B1) and (B2) hold, then [18] shows that an accelerated composite
gradient (ACG) method variant finds a (τ1, 0; z

0)-stationary solution of (9), namely a triple (z̄, v̄, ε̄) satisfying

v̄ ∈ ∇ψs(z̄) + ∂ε̄ψn(z̄) and ∥v̄∥2 + 2ε̄ ≤ τ1∥z0 − z̄∥2,

in at most

O
(⌈

min

{√
M(M + 1)⌈τ−1

1 ⌉, 1 +
(
1 +

√
M/µ

)
max{log

[
M(M + 1)⌈τ−1

1 ⌉
]
, 1}
}⌉)

iterations. Moreover, [42] describes an ACG variant that, in at most

O
(√

M/µmax{log(M), 1}
)

iterations, either finds a (τ1, 0 ; z
0)-stationary solution of (9) with ε̄ = 0, i.e., of the form (z̄, v̄, 0), or concludes

that ψs is not µ-strongly convex. This method is an adaptive ACG scheme (referred to as Adap-ACG) that
searches for a stepsize λt until a (τ1, 0 ; z

0)-stationary solution of (9), with (ψs, ψn) given by (10), is found.
This scheme repeatedly calls Adapt-ACG with λt halved each time. Under the assumption that ψs is mt-
weakly convex for every t ∈ {1, . . . , B}, this scheme stops after a finite number of calls to Adap-ACG because
ψs given by (10) is strongly convex for any λt < 1/mt.

3 An Adaptive P-ADMM

This section presents this paper’s main algorithm, A-ADMM, for solving (1). Subsection 3.1 details a few
mild technical assumptions imposed on (1). Subsection 3.2 develops a “static” version of A-ADMM, called
S-ADMM, that maintains a constant penalty parameter throughout its execution. This “static” version is
the main subprocedure for A-ADMM. That subsection also presents the main complexity theorem (Theorem
3.1) for S-ADMM, but the proof is deferred to Section 4. Finally, Subsection 3.3 describes A-ADMM and
establishes its iteration-complexity (Theorem 3.3)

3.1 Problem Assumptions

This subsection describes a series of mild assumptions on this paper’s main problem of interest (1). We shall
assume that f, h : Rn → (−∞,∞], A : Rn → Rl, and b ∈ Rl, satisfy the following conditions:

(A1) for every t ∈ {1, . . . , B}, ht : Rnt → (−∞,∞] is proper, closed, and convex withHt := domht compact;

(A2) A is a nonzero linear operator and F := {x ∈ H : Ax = b} ≠ ∅, where H := H1 × · · · × HB ;

(A3) f is block m-weakly convex for m = (m1, . . . ,mB) ∈ RB++, that is, for every t ∈ {1, . . . , B},

f(x<t, ·, x>t) + δHt(·) +
mt

2
∥ · ∥2 is convex for all x ∈ H;

(A4) f is differentiable on H and, for every t ∈ {1, . . . , B − 1}, there exists Lt ≥ 0 such that

∥∇xtf(x<t, xt, x̃>t)−∇xtf(x<t, xt, x>t)∥ ≤ Lt∥x̃>t − x>t∥ ∀ x, x̃ ∈ H; (18)

(A5) for some Mh ≥ 0, h(·) is Mh-Lipschitz continuous on H;

(A6) there exists z̄ ∈ F such that d̄ := dist(z̄, ∂H) > 0.
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Note that since H is compact, it follows from (A1) and (A2) that the scalars

Dh := sup
z∈H
∥z − z̄∥, ∇f := sup

u∈H
∥∇f(u)∥, ϕ := inf

u∈H
ϕ(u), ϕ := sup

u∈H
ϕ(u) (19)

are bounded. Furthermore, throughout this paper, we let

∥A∥2† :=

B∑
t=1

∥At∥2, (20)

3.2 S-ADMM: A “Static” Version of A-ADMM

This subsection presents S-ADMM, a static version of our A-ADMM, and its main complexity result
(Theorem 3.1). The qualifier “static” is attached because this variant keeps the penalty parameter constant
throughout its course. The proof of Theorem 3.1 is the focus of Section 4. We start by elaborating S-ADMM.

Algorithm 2 S-ADMM

Universal Input: C > 0, ρ > 0, α > 0, σ1 ≤ 1/8, σ2 > 0 and σ1 + σ2/2 ≥ 0
Input: (x, p, γ, c) ∈ H × Rl × RB++ × R++

Output: (x+, p+, γ+, v+, ε+)
1: y0 = ỹ0 = x, q̃0 = p, T̃0 = 0, λ0 = γ, k = 1
2: for i← 1, 2, . . . do
3: for t← 1, 2, . . . , B do
4: λt = λi−1

t

5: set (ψs, ψn) as in (10) and

τ1 =
(
σ1 +

σ2
2

) λt
1 + 2λt

, τ2 =
σ2λt

1 + 2λt
, z0 = yi−1

t ,

and find a (τ1, τ2; z
0)-stationary solution (yt, rt, εt) of (9) (see Definition 2.1)

6: if (λt, yt, rt) does not satisfy

(1 + σ2)(∆Lc)it(yt) ≥
1

4λt
∥yt − yi−1

t ∥2 + c

4
∥At(yt − yi−1

t )∥2

then
7: λt = λt/2 and go to line 5.
8: else
9: (λit, y

i
t, r

i
t, ε

i
t) = (λt, yt, rt, εt)

10: for t← 1, 2, . . . , B do
11: (∆f)it ← ∇ytf(yi<t, yit, yi>t)−∇ytf(yi<t, yit, yi−1

>t )

12: vit ← (∆f)it +
rit
λi
t
+ cA∗

t

∑B
s=t+1As(y

i
s − yi−1

s )− 1
λi
t
(yit − yi−1

t )

13: vi = (vi1, . . . , v
i
B), y

i = (yi1, . . . , y
i
B), λ

i = (λi1, . . . , λ
i
B), δi := (εi1/λ

i
1) + . . .+ (εiB/λ

i
B)

14: Ti = Lc(ỹk−1; q̃k−1)− Lc(yi; q̃k−1) + T̃k−1

15: if ∥vi∥2 + δi ≤ C2 and i ≥ (kαTi)/ρ
2 then

16: (ỹk, ṽk, ε̃k) = (yi, vi, δi), and q̃
k = q̃k−1 + c(Aỹk − b)

17: T̃k = Ti, λ̃k = λi, i+k = i
18: if ∥ṽk∥2 + ε̃k ≤ ρ2 then
19: (x+, p+, γ+, v+, ε+) = (ỹk, q̃k, λ̃k, ṽk, ε̃k)
20: return (x+, p+, γ+, v+, ε+)
21: else
22: k ← k + 1
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Let us now clarify several of the steps of S-ADMM. The index i is an iteration count for S-ADMM,
whose iterations are referred to as S-ADMM iterations throughout the paper. The t-th pass of the loop
consisting of lines 3 to 9 approximately solves the t-th augmented Lagrangian subproblem (4) with a tentative
prox stepsize λt and then tests whether the descent condition of line 6 holds. If it holds, then λt is accepted
as the prox stepsize for the t-th block in iteration i (line 9); otherwise, λt is halved and the above steps are
repeated with the updated λt (line 5). The index k counts the number of times that S-ADMM updates the
Lagrange multiplier. The set of S-ADMM iterations after the (k − 1)-th update and up to and including
the k-th update, denoted Ik, is called the k-th epoch. We enumerate each Ik as

Ik := {i−k , . . . , i
+
k }, where i−k := i+k−1 + 1. (21)

The beginning and the end of an epoch are determined by lines 15 to 22. If the test in line 15 is passed at
iteration i, then the Lagrange multiplier is updated. Provided S-ADMM does not terminate due to line 18,
a new epoch begins. Line 18 tests whether the residual vector pair (ṽk, ε̃k), computed in line 16, satisfies
the first inequality in (2) that defines a (ρ, η)-stationary solution. If so, then S-ADMM terminates (see line
19); otherwise, k is updated to k + 1 and a new epoch commences. It is shown in Lemma 4.10 below that
every epoch Ik terminates, and hence that the last index i+k in (21) is well-defined.

We now make several remarks about S-ADMM. First, it is shown in Lemma 4.4 below that if the stepsize
λt in (4) satisfies λt < 1/mt, then the test in line 6 is satisfied. Since λt is halved every time the test fails,
this remark ensures that the loop in lines 5 to 9 ends. Second, it is shown in Lemma 4.5 that the iterate
yi = (yi1, . . . , y

i
B), the residual vector vi = (vi1, . . . , v

i
B) and δi := (εi1/λ

i
1) + . . . + (εiB/λ

i
B) computed in

lines 10 to 13 satisfy the stationary inclusion vi ∈ ∇f(yi) + ∂δih(y
i) + Im(A∗). Hence, upon termination of

S-ADMM, its output satisfies the first two conditions in (2) but not necessarily the last one. Third, if the
(fixed) penalty parameter c is sufficiently large, then Theorem 3.1(c) below shows that the final output of
S-ADMM also satisfies the last condition in (2), and hence is a (ρ, η)-stationary solution of (1).

It is not difficult to check that S-ADMM fits within the P-ADMM framework described in the intro-
duction. First, fixing k ≥ 0, the cyclic, inexact solution of the block proximal subproblem (4) is manifested
in S-ADMM in lines 3 to 9. The damped augmented Lagrangian in this setting takes (θ, χ) = (0, 1). The

sequence {zj}|Ik|
j=1 is related to the sequence {yj}i

+
k

j=i−k
by the rule zj = yi

−
k +j−1 for 1 ≤ j ≤ i+k − i

−
k + 1. By

extension, |Ik| = i+k − i
−
k +1 in accordance with (21). Second, the dual update of P-ADMM, (5), manifests

in S-ADMM in line 16.
Before stating the main result of this subsection, we define some constants that are used to express its

complexity bounds. Given a triple (Q̄, γ̄, c) ∈ R++ × RB++ × R++, σ1 ∈ (0, 1/8], σ2 > 0, let

L := (L1, . . . , Lt), Γ̄ := ϕ− ϕ+
(Q̄+ 3κp)

2

2c
, κp :=

2Dh(Mh + C +∇f ) + C2

d̄ν+A

χ̄ := 2(1 + σ2)
[
1 + 12∥L∥2 max(γ̄) + 12(4max(m) + max(γ̄−1)) + 2σ1

]
+ σ2,

(22)

where Lt,Mh and d̄ are as in (A4), (A5) and (A6), respectively, C is part of the universal input for S-ADMM,
max(m), max(γ̄−1) are as in (7), (Dh,∇f , ϕ, ϕ) is as in (19), and ν+A is the smallest positive singular value
of the nonzero linear operator A.

Furthermore, define

Λ0 := 8κ2p(1 + σ2)B∥A∥2†

[
(1 + σ2)B∥A∥2†

2α
+ 2Γ̄

]
, Λ1 :=

( χ̄
α
+ 1
)(

1 +
χ̄Γ̄

C2

)
(23)

Λ2 := (1 + σ2)B∥A∥2†
[( χ̄
α
+ 1
) 1

C2
+

(
1 +

χ̄Γ̄

C2

)
1

α

]
, Λ3 :=

(1 + σ2)
2B2∥A∥4†Γ̄
αC2

Λ4 := 8κ2p(1 + σ2)B∥A∥2†
(
χ̄

α
+

3

2

)
+

8ακ2p
c

(
χ̄2

2α2
+

3χ̄

2α
+ 1

)
+ 2αΓ̄

( χ̄
α
+ 1
)
,

where ∥A∥2† is as in (20), (χ̄, Γ̄, κp) is as in (22) and α ∈ R++.
The remainder of this subsection presents and discusses one of the main results of this paper, the iteration-

complexity of S-ADMM. Its proof is the sole focus of Section 4.
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Theorem 3.1 (S-ADMM Complexity) Let the tolerance pair (ρ, η) ∈ R2
++, and the triple (Q̄, γ̄, c) ∈

R++ × RB++ × R++ be given. Assume that the input (x, p, γ, c) ∈ H × A(Rn) × RB++ × R++ of S-ADMM
satisfies

c∥Ax− b∥ ≤ Q̄, ∥p∥ ≤ κp, c ≥ c, (24)

min

{
1

2m
, γ̄

}
≤ γ ≤ γ̄, (25)

where κp and max(m) are as in (22) and (7), respectively. Then, the S-ADMM method with input (x, p, γ, c)
satisfies the following statements:

(a) the total number of iterations performed by S-ADMM is bounded by

Λ(c, ρ) := Λ0
c

ρ2
+ Λ1 + Λ2c+ Λ3c

2 + Λ4
1

ρ2
, (26)

where Λ0, Λ1, Λ2, Λ3, and Λ4 are as in (23);

(b) it outputs (x+, p+, γ+, v+, ε+) satisfying the inclusion

v+ ∈ ∇f(x+) + ∂ε+h(x
+) +A∗p+ (27)

and the following bounds

c∥Ax+ − b∥ ≤ 2κp, ∥p+∥ ≤ κp, ∥v+∥2 + ε+ ≤ ρ2, (28)

min

{
1

2mt
, γ̄t

}
≤ γ+t ≤ γ̄t ∀t ∈ {1, . . . , B}; (29)

(c) if c ≥ 2κp/η, then the output triple (x+, p+, v+) of S-ADMM is a (ρ, η)-stationary solution of (1) as
in (2).

We now make several comments about Theorem 3.1. First, this result will be used in the next subsection
to analyze the iteration-complexity of this paper’s main algorithm, A-ADMM, which repeatedly invokes
S-ADMM using a warm-start scheme, i.e. if c is the penalty parameter and (x+, p+, γ+) is the output of
the current S-ADMM call, then the input of the next S-ADMM call is (x+, p+, γ+, 2c).

Second, in the above setting, the quantities (Q̄, γ̄, c) should be viewed as uniform (upper or lower) bounds
on the quantities (c∥Ax− b∥, γ, c) associated with the input (x, p, γ, c) of all S-ADMM calls. Moreover, the
iteration-complexity bounds of Theorem 3.1 are expressed in terms of (Q̄, γ̄, c) instead of its counterpart
(c∥Ax− b∥, γ, c).

Third, it is shown in Lemma 4.5 and Lemma 4.11 below that every quadruple (ỹk, q̃k, ṽk, ε̃k) satisfies the
stationary inclusion ṽk ∈ ∇f(ỹk) + ∂hε̃k(ỹ

k) + A∗q̃k and the feasibility condition c∥Aỹk − b∥ ≤ 2κp. The
assertion in Theorem 3.1(b) that S-ADMM outputs a quadruple (x+, p+, v+, ε+) satisfying the inclusion
(27) and the feasibility bound (28) follow from this fact and lines 11 and 12 of S-ADMM. Moreover, S-
ADMM stops whenever it finds a quadruple (x+, p+, v+, ε+) = (ỹk, q̃k, ṽk, ε̃k) satisfying ∥ṽk∥2 + ε̃k ≤ ρ2,
but not necessarily the condition that ∥Aỹk − b∥ ≤ η. However, if c is sufficiently large, i.e., it satisfies the
condition in Theorem 3.1(c), then the latter condition would also hold because c∥Aỹk − b∥ ≤ 2κp for every
k, in which case (ỹk, q̃k, ṽk, ε̃k) would be the desired (ρ, η)-stationary solution of (1).

Fourth, we now formally argue how Theorem 3.1 implies that a single S-ADMM call finds a (ρ, η)-
stationary solution of (1) in at mostO(η−1ρ−2+ρ−2+η−1+η−2) iterations (assuming that all other quantities
in (23) are O(1)) under the following assumptions: i) the initial iterate x ∈ H satisfies ∥Ax− b∥ = O(√η);
ii) the constant κp as in (22), which is generally not computable, and the weak convexity parameters m as
in assumption (A3), are known. Indeed, choose the quantities Q̄, c, c, p, γ̄ and γ in Theorem 3.1 as

Q̄ =
2κp∥Ax− b∥

η
, c = c =

2κp
η
, p = 0, γ̄ = γ =

1

2m
(30)

and observe that Γ̄ as in (22) satisfies Γ̄ = O(1 + ∥Ax− b∥2/η) = O(1), and hence all the Λ′
is as in (23) are

also O(1). Since the quantities in (30) satisfy the assumptions of Theorem 3.1, it follows from its statement

9



(c), the latter observation, and the fact that c = O(η−1), that the iteration-complexity of S-ADMM is
O(η−1ρ−2 + ρ−2 + η−1 + η−2), and hence O(ϵ−3) where ϵ := min{ρ, η}.

The next subsection shows that A-ADMM, up to a logarithmic term, has the same complexity as in
the fourth remark above, but now without assuming the knowledge of κp nor that x+ is near feasible. To
obtain such complexity, A-ADMM invokes S-ADMM iteratively and doubles the penalty parameter until
a (ρ, η)-stationary solution of (1) is obtained.

3.3 A-ADMM: Description & Complexity

This subsection describes this paper’s focal algorithm, A-ADMM, and establishes its accompanying main
complexity result (Theorem 3.3). A-ADMM repeatedly calls S-ADMM as a subroutine, each time with the
penalty parameter double the one used in the previous call. A-ADMM is formally stated below.

Algorithm 3 A-ADMM

Universal Input: C > 0, pair (ρ, η) ∈ R2
++, α > 0, σ1 ≤ 1/8, σ2 > 0 and σ1 + σ2/2 ≥ 0

Input: (x0, p0, γ0, c0) ∈ H ×A(Rn)× RB++ × R++

Output: (x̂, p̂, γ̂, v̂, ε̂)

1: for ℓ← 1, 2, . . . do

2: (xℓ, pℓ, γℓ, vℓ, εℓ) = S-ADMM(xℓ−1, pℓ−1, γℓ−1, cℓ−1)

3: if ∥Axℓ − b∥ ≤ η then

4: (x̂, p̂, γ̂, v̂, ε̂) = (xℓ, pℓ, γℓ, vℓ, εℓ)

5: return (x̂, p̂, γ̂, v̂, ε̂)

6: else

7: cℓ = 2cℓ−1

We now make some remarks about A-ADMM. First, the initial penalty parameter c0 can be chosen to be
any positive scalar. Second, the initial Lagrange multiplier p0 is required to be in A(Rn), e.g., it can be set
to zero. Third, it uses a “warm-start” strategy for calling S-ADMM, i.e., after the first call to S-ADMM,
the input of any S-ADMM call is the output of the previous S-ADMM call. Fourth, Lemma 3.2 below
and Theorem 3.1(b) imply that each S-ADMM call in line 2 of A-ADMM generates a triple (xℓ, pℓ, vℓ)
satisfying the first two conditions in (2). Finally, A-ADMM stops if the test in line 3 is satisfied; if the test
fails, then S-ADMM is called again with cℓ set to 2cℓ−1 = 2ℓc0.

The next result guarantees that all of the hypotheses used in the iteration-complexity theorem for S-
ADMM (Theorem 3.1) hold each time A-ADMM calls S-ADMM.

Lemma 3.2 Assume that p0 = 0 and define

Q̄ := max{4κp, c0∥Ax0 − b∥}, γ̄ = γ0, c = c0 (31)

where κp is as in (22). If A-ADMM performs the ℓ-th iteration, then

cℓ−1∥Axℓ−1 − b∥ ≤ Q̄, ∥pℓ−1∥ ≤ κp, ∥vℓ∥2 + εℓ ≤ ρ2,

min

{
1

2max(m)
, γ̄t

}
≤ γℓ−1

t ≤ γ̄t, ∀t ∈ {1, . . . , B},
(32)

where max(m) is as in (7). Moreover, the number of S-ADMM iterations performed in the ℓ-th call in
line 2 is bounded by Λ(cℓ−1, ρ).

Proof : First, note that all inequalities in (32) hold trivially with ℓ = 1, except the third one. This is due
to the assumption p0 = 0 and the definitions of κp and Q̄ as in (22) and (31), respectively. Second, it
follows from the logic of A-ADMM that cℓ/2 = cℓ−1 ≥ c0 = c. This observation and Theorem 3.1(b) with
(x, p, γ, c) = (xℓ−1, pℓ−1, γℓ−1, cℓ−1) imply that if all inequalities in (32), except the third one, hold for ℓ,
then all the inequalities in (32) hold for ℓ + 1. These two observations and a simple induction argument
show that the first conclusion of the lemma holds. The second one follows from (32) and Theorem 3.1(a)
with (x, p, γ, c) = (xℓ−1, pℓ−1, γℓ−1, cℓ−1).

10



Theorem 3.3 (A-ADMM Complexity) The following statements about A-ADMM hold:

(a) it obtains a (ρ, η)-stationary solution of (1) in no more than log2
[
Q̄/(cη)

]
+ 2 calls to S-ADMM;

(b) the total number of S-ADMM iterations performed by it is no more than(
Λ0

ρ2
+ Λ2

)
4Q̄

η
+

(
Λ1 +

Λ4

ρ2

)[
log2

(
Q̄

cη

)
+ 2

]
+ 16Λ3

Q̄2

η2
,

where (Q̄, c) and (Λ0,Λ1,Λ2,Λ3,Λ4) are the constants that appears in (31) and (23), respectively.

Proof : (a) Assume for the sake of contradiction that A-ADMM generates an iteration index ℓ̂ such that

ℓ̂− 2 > log2
[
Q̄/(cη)

]
, and hence satisfying

cℓ̂−2 = c2ℓ̂−2 > c2log2[Q̄/(cη)] =
Q̄

η
.

Combining Lemma 3.2, with ℓ = ℓ̂−2, and Theorem 3.1(a) and (c), with (x, p, γ, c) = (xℓ̂−2, pℓ̂−2, γ ℓ̂−2, cℓ̂−2),

we conclude that the output (xℓ̂−1, pℓ̂−1, vℓ̂−1, γ ℓ̂−1) of the call to S-ADMM in the (ℓ̂ − 1)-th iteration of

A-ADMM is a (ρ, η) stationary solution of (1), and hence satisfies ∥Axℓ̂−1− b∥ ≤ η. This yields the desired
contradiction since the method should have terminated in the (ℓ̂ − 1)-th iteration in view of the stopping
criterion in its line 3.

(b) It follows from Lemma 3.2 that the number of S-ADMM iterations is bounded by Λ(cℓ̃−1, ρ), where ℓ̃

is the last iteration performed by it. Then, we conclude from the previous item (a) that ℓ̃ ≤ log2[Q̄/(cη)]+2.
As a consequence, we can deduce that

2ℓ̃ ≤ 4Q̄

cη
. (33)

Hence, these conclusions imply that the overall number of iterations performed by S-ADMM is bounded by

ℓ̃∑
ℓ=1

Λ(cℓ−1, ρ)
(26)
=

ℓ̃∑
ℓ=1

(
Λ0
cℓ−1

ρ2
+ Λ1 + Λ2cℓ−1 + Λ3c

2
ℓ−1 + Λ4

1

ρ2

)

= Λ1ℓ̃+
cΛ0

ρ2

ℓ̃∑
ℓ=1

2ℓ−1 +
Λ4

ρ2
ℓ̃+ Λ2c

ℓ̃∑
ℓ=1

2ℓ−1 + Λ3c
2

ℓ̃∑
ℓ=1

22(ℓ−1)

=

(
Λ1 +

Λ4

ρ2

)
ℓ̃+

(
cΛ0

ρ2
+ Λ2c

)
(2ℓ̃ − 1) +

Λ3c
2(4ℓ̃ − 1)

3

(33)
<

(
Λ1 +

Λ4

ρ2

)[
log2

(
Q̄

cη

)
+ 2

]
+

(
Λ0

ρ2
+ Λ2

)
4Q̄

η
+ 16Λ3

Q̄2

η2
.

We now make some comments about Theorem 3.3. First, it follows from Theorem 3.3(a) that A-ADMM
ends with a (ρ, η)-stationary solution of (1) by calling S-ADMM no more than O(log2(η−1)) times. Second,
Theorem 3.3(b) implies that the complexity of A-ADMM, in terms of the tolerances only, is

O(ρ−2 + ρ−2η−1 + η−2).

Third, if ϵ := min{ρ, η} then the iteration-complexity of A-ADMM is O(ϵ−3).

4 The Proof of S-ADMM’s Complexity Theorem (Theorem 3.1)

The goal of this section is proving the theorem governing the iteration-complexity of S-ADMM (Theorem
3.1). Our approach is comprised of three main steps. First, Subsection 4.1 bounds the number of epochs,
I1, I2, . . .. Second, Subsection 4.2 derives a uniform bound on the size of each of the epochs. Third and
finally, Subsection 4.3 synthesizes the results of the previous two steps to prove Theorem 3.1.
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4.1 Step 1: Bounding the Number of Epochs

The goal of this subsection is to bound the total number of epochs I1, I2, . . . generated by S-ADMM. Before
presenting the main result of this subsection, we state and prove some preliminary technical results. The
first one summarizes some straightforward facts about S-ADMM.

Lemma 4.1 The following statements about an epoch Ik generated by S-ADMM hold:

(a) if Ik ends, then ṽk = vi
+
k , ỹk = yi

+
k , ε̃k = δi+k

and T̃k = Ti+k
; moreover,

∥ṽk∥2 + ε̃k ≤ C2 and i+k ≥
kα

ρ2
T̃k; (34)

(b) if i < j are indices lying in Ik ∪ {i+k−1}, then Tj − Ti = Lc(yi; q̃k−1)− Lc(yj ; q̃k−1).

Proof : (a) Recalling from (21) that i+k is the last index of Ik, the identities ṽk = vi
+
k , ỹk = yi

+
k , ε̃k = δi+k

and T̃k = Ti+k
immediately follow from lines 16 and 17 of S-ADMM. Thus, the inequalities in (34) readily

result from the tests in line 15 with i = i+k , and the aforementioned identities.
(b) We first note that if i = i+k−1 then the previous item of this lemma, applied with k − 1 replacing

k, implies that T̃k−1 = Ti+k−1
and ỹk−1 = yi

+
k−1 . Hence, the conclusion follows from the definition of Ti in

line 14 of S-ADMM with i = j. Now, if i < j are indices lying in Ik, then the statement is also a direct
consequence of the definition of Ti and Tj as in line 14 of S-ADMM.

The following result describes the properties of the iterate (yt, rt, εt) obtained in line 5 of S-ADMM
using the data of subproblem (9).

Lemma 4.2 Every triple (yt, rt, εt) generated in line 5 of S-ADMM satisfies

rt ∈ ∇
[
λtL̂c(yi<t, ·, yi−1

>t ; q̃k−1) +
1

2
∥ · −yi−1

t ∥2
]
(yt) + ∂εt(λtht)(yt), (35)

(λ−1
t + 2)∥rt∥2 + 2εt ≤ σ1∥yt − yi−1

t ∥2 + λtσ2(∆Lc)it(yt), (36)

where L̂c(· ; q̃k−1) is as in (11) and

(∆Lc)it(·) := Lc(yi<t, yi−1
t , yi−1

>t ; q̃k−1)− Lc(yi<t, ·, yi−1
>t ; q̃k−1). (37)

Proof : We first prove (35). It follows from line 5 of S-ADMM that (yt, rt, εt) is a (τ1, τ2, 0; z
0)-stationary

solution of (9) with (ψs, ψn) given by (10). Hence, in view of Definition 2.1 and the definition of (τ1, τ2, z
0)

in line 5 of S-ADMM, we conclude that (35) holds and

∥rt∥2 + 2εt
(13)

≤
(
σ1 +

σ2
2

) λt
1 + 2λt

∥yt − yi−1
t ∥2 + σ2λt

1 + 2λt
[(ψs + ψn)(y

i−1
t )− (ψs + ψn)(yt)]

=
σ1λt

1 + 2λt
∥yt − yi−1

t ∥2 + σ2λt
1 + 2λt

λt(∆Lc)it(yt),

where the equality is due to the fact that (10) and (37) imply that

(ψs + ψn)(y
i−1
t )− (ψs + ψn)(yt) = λt(∆Lc)it(yt)−

1

2
∥yt − yi−1

t ∥2.

The next result shows that the loop consisting of lines 5 to 9 of S-ADMM ends and describes a property
of its output.
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Lemma 4.3 Let i ∈ Ik, t ∈ {1, . . . , B}, and the triple (λt, yt, rt) be obtained from lines 4 and 5 of S-
ADMM. If λt lies in the interval (0, 1/mt), then (λt, yt, rt) satisfies

(1 + σ2)(∆Lc)it(yt) ≥
1

4λt
∥yt − yi−1

t ∥2 + c

4
∥At(yt − yi−1

t )∥2 + ∥rt∥
2

λ2t
, (38)

where σ2 > 0 is part of the input for S-ADMM and (∆Lc)it(yt) is as in (37).

Proof : Let i ∈ Ik, t ∈ {1, . . . , B}, and λt ∈ (0, 1/mt) be given. We first claim that, for every ut ∈ Ht, the
quadruple (λt, yt, rt, εt) obtained in lines 4 and 5 of S-ADMM satisfies

Lc(yi<t, ut, yi−1
>t ; q̃k−1)− Lc(yi<t, yt, yi−1

>t ; q̃k−1) +
1

2λt
∥ut − yi−1

t ∥2

≥ 1

2λt
∥yt − yi−1

t ∥2 + c

4
∥At(ut − yt)∥2 −

1

λt
(∥rt∥∥yt − ut∥+ 2εt) . (39)

Since λt ∈ (0, 1/mt), the matrix Bt := (1− λtmt)I + λtcA
∗
tAt satisfies Bt ≻ 0, and hence defines the norm

∥ · ∥Bt
whose square satisfies

∥ · ∥2Bt
:= ⟨ · , Bt(·) ⟩ ≥ λtc∥At(·)∥2. (40)

Moreover, using assumption (A3), we can easily see that the function

λtLc(yi<t, ·, yi−1
>t ; q̃k−1) +

1

2
∥ · −yi−1

t ∥2 − ⟨rt, ut⟩

is 1-strongly convex with respect to this norm. Using that the triple (yt, rt, εt) satisfies

rt ∈ ∂εt
(
λtL̂c(yi<t, ·, yi−1

>t ; q̃k−1) +
1

2
∥ · −yi−1

t ∥2 + λtht(·)
)
(yt),

due to (35), we can apply Lemma A.4 with (ξ, τ,Q, η̂) = (1, 1, Bt, εt), to conclude that

λtLc(yi<t, ut, yi−1
>t ; q̃k−1) +

1

2
∥ut − yi−1

t ∥2 − 1

4
∥ut − yt∥2Bt

≥ λtLc(yi<t, yt, yi−1
>t ; q̃k−1) +

1

2
∥yt − yi−1

t ∥2 − 2εt + ⟨rt, ut − yt⟩.

The preliminary claim (39) follows by dividing the previous inequality by λt, and using both (40) and the
Cauchy-Schwarz inequality.

We now prove (38). Using (39) with ut = yi−1
t and the definition of (∆Lc)it(yt) (see (37)), we have

(∆Lc)it(yt) ≥
1

2λt
∥yt − yi−1

t ∥2 + c

4
∥At(yi−1

t − yt)∥2 −
1

λt
(∥rt∥∥yt − yi−1

t ∥+ 2εt). (41)

Using the inequality 2ab ≤ a2 + b2 with (a, b) = (2∥rt∥, (1/2)∥yt − yi−1
t ∥) and the condition on the error

(rt, εt) as in (36), we conclude that

1

λt

(
1

λt
∥rt∥2 + ∥rt∥∥yt − yi−1

t ∥+ 2εt

)
≤ 1

λt

(
1

λt
∥rt∥2 + 2∥rt∥2 +

1

8
∥yt − yi−1

t ∥2 + 2εt

)
=

1

λt

[
(λ−1
t + 2)∥rt∥2 +

1

8
∥yt − yi−1

t ∥2 + 2εt

]
=

1

λt

[
(λ−1
t + 2)∥rt∥2 + 2εt

]
+

1

8λt
∥yt − yi−1

t ∥2

(36)

≤ σ1 + (1/8)

λt
∥yt − yi−1

t ∥2 + σ2(∆Lc)it(yt)

≤ 1

4λt
∥yt − yi−1

t ∥2 + σ2(∆Lc)it(yt),
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where the last inequality is due to the assumption σ1 ≤ 1/8. The conclusion now follows by combining the
previous inequality with (41).

To shorten the formulas in this subsection, for each i ∈ N and t ∈ {1, . . . , B}, we define the quantity

∆yit := yit − yi−1
t . (42)

Lemma 4.4 Let i ∈ Ik, t ∈ {1, . . . , B}, and the triple (λt, yt, rt) be obtained from lines 4 and 5 of S-
ADMM. Then, the loop consisting of lines 5 to 9 terminates with a triple (λit, y

i
t, r

i
t) ∈ RB++ × H × H

satisfying

(1 + σ2)(∆Lc)it(yit) ≥
1

4λit
∥∆yit∥2 +

c

4
∥At∆yit∥2 +

∥rit∥2

(λit)
2

(43)

and

min

{
1

2mt
, γt

}
≤ λit ≤ γt, (44)

where (c, γ, σ2) ∈ R++ ×RB++ ×R++ is part of the input for S-ADMM, ∆yit is as in (42), and (∆Lc)it(·) is
as in (37).

Proof : First, note that if (λt, yt, rt), as in line 5 of S-ADMM, is such that λt ∈ (0, 1/mt), then it follows
from Lemma 4.3 that the loop consisting of lines 5 to 9 terminates with (λit, y

i
t, r

i
t) = (λt, yt, rt). The above

observation, in conjunction with the facts that the loop is initialized with λt = λi−1
t and λt is halved every

time a loop iteration fails to satisfy (38), then imply that

min

{
1

2mt
, λi−1
t

}
≤ λit ≤ λi−1

t .

This conclusion together with the fact that λ0t = γt can now be easily seen to imply the conclusion of the
lemma.

The next result shows that vi, computed in line 13 of S-ADMM, is a stationary residual for the pair
(yi, qi) and also establishes an upper bound for it.

Lemma 4.5 Let Ik be an epoch generated by S-ADMM and define

qi := q̃k−1 + c(Ayi − b) ∀i ∈ Ik. (45)

Then, for every i ∈ Ik, we have
vi ∈ ∇f(yi) + ∂δih(y

i) +A∗qi (46)

and

∥vi∥2 + δi ≤ (χ(γ) + (1 + σ2)cB∥A∥2†)(∆Lc)i (47)

where (c, γ, σ2) ∈ R++×RB++×R++ is part of the input for S-ADMM, (vi, δi) is as in line 13 of S-ADMM,

(∆Lc)i := Lc(yi−1; q̃k−1)− Lc(yi; q̃k−1) (48)

and
χ(γ) := 2(1 + σ2)

[
1 + 12∥L∥2 max(γ) + 12(2max(m) + max(γ−1)) + 2σ1

]
+ σ2. (49)

Proof : We first prove that (46) holds. For each t ∈ {1, . . . , B}, let (λit, yit, rit, εit) be the quadruple obtained
in line 9 of S-ADMM. Using (35) with (λt, yt, rt, εt) = (λit, y

i
t, r

i
t, ε

i
t), we have

rit
λit

(35)
∈ ∇ytf(yi<t, yit, yi−1

>t ) +A∗
t

[
q̃k−1 + c[A(yi<t, y

i
t, y

i−1
>t )− b]

]
+

1

λit
∆yit + ∂(εit/λi

t)
ht(y

i
t)

(45)
= ∇ytf(yi<t, yit, yi−1

>t ) +A∗
t

(
qi − c

B∑
s=t+1

As∆y
i
s

)
+

1

λit
∆yit + ∂(εit/λi

t)
ht(y

i
t),

14



where in the inclusion above we used the well-known ε-subdifferential property that ∂εtλth(yt) = λt∂εt/λt
h(yt)

(e.g., see [19, Proposition 1.3.1]). By rearranging the above inclusion and using the definition of (∆f)it, as
in line 11 of S-ADMM, we have

(∆f)it +
rit
λit

+ cA∗
t

B∑
s=t+1

As∆y
i
s −

1

λit
∆yit ∈ ∇ytf(yi) + ∂(εit/λi

t)
ht(y

i
t) +A∗

t q
i.

Noting that the left-hand side of the above inclusion equals vit (see line 12 of S-ADMM) and using the
well-known fact that δi = (εi1/λ

i
1) + . . .+ (εiB/λ

i
B) implies that

∂δih(y
i) ⊃ ∂(εi1/λi

1)
h1(y

i
1)× . . .× ∂(εiB/λi

B)hB(y
i
B),

we conclude that inclusion (46) holds.
We now prove (47). It follows from the definition of (∆f)it and vit in lines 11 and 12 of S-ADMM,

respectively, the triangle and Cauchy-Schwarz inequalities, and assumption (A4), that∥∥∥∥vit − rit
λit

∥∥∥∥2 =

∥∥∥∥∥∇ytf(yi<t, yit, yi>t)−∇ytf(yi<t, yit, yi−1
>t ) + cA∗

t

B∑
s=t+1

As∆y
i
s −

1

λit
∆yit

∥∥∥∥∥
2

≤ 3

∥∇ytf(yi<t, yit, yi>t)−∇ytf(yi<t, yit, yi−1
>t )∥2 + c2∥At∥2

∥∥∥∥∥
B∑

s=t+1

As∆y
i
s

∥∥∥∥∥
2

+
1

(λit)
2
∥∆yit∥2


(18)

≤ 3

(
L2
t∥yi>t − yi−1

>t ∥2 + c2∥At∥2(B − t)
B∑

s=t+1

∥As∆yis∥2 +
1

(λit)
2
∥∆yit∥2

)

≤ 3

(
L2
t

B∑
s=1

∥∆yis∥2 +Bc2∥At∥2
B∑
s=1

∥As∆yis∥2 +
1

(λit)
2
∥∆yit∥2

)
. (50)

We now upper bound the first and third terms of the right-hand of (50). For the first term, we have

B∑
s=1

∥∆yis∥2 =

B∑
s=1

λis ·
1

λis
∥∆yis∥2

(44)

≤
B∑
s=1

γs ·
1

λis
∥∆yis∥2

(7)

≤ max(γ) ·
B∑
s=1

1

λis
∥∆yis∥2. (51)

To bound the third term of (50), first note that for t ∈ {1, . . . , B},

1

λit

(44)

≤
(
min

{
1

2mt
, γt

})−1

= max

{
2mt,

1

γt

}
(7)

≤ 2max(m) + max(γ−1) =: m̂, (52)

which yields
1

(λit)
2
∥∆yit∥2 =

1

λit
· 1
λit
∥∆yit∥2 ≤

m̂

λit
∥∆yit∥2. (53)

Combining the inequalities (50), (51), (52), and (53), and using (43), we have∥∥∥∥vit − rit
λit

∥∥∥∥2 ≤ 3

(
L2
t max(γ)

B∑
s=1

1

λis
∥∆yis∥2 +Bc2∥At∥2

B∑
s=1

∥As∆yis∥2 +
m̂

λit
∥∆yit∥2

)
.

(43)

≤ 3
[
4L2

t max(γ)(1 + σ2)(∆Lc)i + 4Bc∥At∥2(1 + σ2)(∆Lc)i + 4m̂(1 + σ2)(∆Lc)it
]

= 12(1 + σ2)
[
L2
t max(γ)(∆Lc)i +Bc∥At∥2(∆Lc)i + m̂(∆Lc)it

]
,

where (∆Lc)i and (∆Lc)it(·) are as in (48) and (37), respectively. Using the reverse triangle inequality in
the left-hand side of the previous inequality, we conclude after simple manipulations that

∥vit∥2 − 2
∥rit∥2

(λit)
2
≤ 24(1 + σ2)

[
L2
t max(γ)(∆Lc)i +Bc∥At∥2(∆Lc)i + m̂(∆Lc)it

]
.
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Now, summing up the last inequality from t = 1 to t = B and using (20) and (48), one has

∥vi∥2 +
B∑
t=1

εit
λit

(20)

≤

(
B∑
t=1

2∥rit∥2

(λit)
2

+
εit
λit

)
+ 24(1 + σ2)

[
∥L∥2 max(γ) +Bc∥A∥2† + m̂

]
(∆Lc)i

(43)

≤
B∑
t=1

εit
λit

+ 2(1 + σ2)[1 + 12(∥L∥2 max(γ) +Bc∥A∥2† + m̂)](∆Lc)i

≤ [4σ1(1 + σ2) + σ2](∆Lc)i + 2(1 + σ2)[1 + 12(∥L∥2 max(γ) +Bc∥A∥2† + m̂)](∆Lc)i,

where the last inequality above is due to (36) with (λit, y
i
t, ε

i
t) = (λt, yt, εt) and (43). The conclusion now

follows from the previous inequality and the definitions of m̂ and χ(γ) as in (52) and (49), respectively.
The following result shows that ∥vi∥2 = O(Ti − Ti−1), and hence that {∥vi∥2} is summable.

Lemma 4.6 For any iteration i ≥ 1 of S-ADMM, we have

1

χ(γ) + (1 + σ2)cB∥A∥2†

(
∥vi∥2 + δi

)
≤ Ti − Ti−1, (54)

where (δi, Ti) is as in lines 13 and 14 of S-ADMM (with T0 := 0 by convention), (γ, c) ∈ RB++ × R++ is
part of the input for S-ADMM, and χ(γ) is as in (49). As a consequence, Ti ≤ Tj for any two iterations
i < j of S-ADMM.

Proof : Consider an arbitrary iteration index i of S-ADMM and assume that the k-th epoch Ik is the one
that contains this index. Then,

(∆Lc)i
(47)

≥ 1

[χ(γ) + (1 + σ2)cB∥A∥2†]
(
∥vi∥2 + δi

)
.

Thus, it follows from the definition of (∆Lc)i as in (48) and Lemma 4.1 with (i, j) = (i − 1, i), that the
left-hand side of the previous inequality is equal to Ti − Ti−1, and this concludes the proof.

We now present the main result of this subsection, which establishes an upper bound on the number of
epochs generated by S-ADMM.

Proposition 4.7 The total number of epochs performed by S-ADMM is bounded by

K̄ :=

⌈
χ(γ) + (1 + σ2)cB∥A∥2†

α

⌉
, (55)

where (γ, c, σ2) ∈ RB++ × R++ × R++ are part of the input for S-ADMM, and χ(γ) is as in (49).

Proof : Assume for the sake of contradiction, that S-ADMM generates an epoch Ik such that k ≥ K̄ + 1.
Summing the inequality (54) from i = 1 to i = i+k−1 and using the fact that T0 = 0 and Ti+k−1

= T̃k−1, due

to Lemma 4.1(a), we have

i+k−1∑
i=1

(
∥vi∥2 + δi

) (54)

≤ [χ(γ) + (1 + σ2)cB∥A∥2†][Ti+k−1
− T0] = [χ(γ) + (1 + σ2)cB∥A∥2†]T̃k−1. (56)

Since S-ADMM did not terminate during epochs I1, . . . , Ik−1, it follows from its termination criterion in
line 18 that ∥vi∥2 + δi > ρ2 for every iteration i ≤ i+k−1. This observation and (56) then imply that

ρ2 <
1

i+k−1

i+k−1∑
i=1

(
∥vi∥2 + δi

) (56)

≤ [χ(γ) + (1 + σ2)cB∥A∥2†]
T̃k−1

i+k−1

≤ [χ(γ) + (1 + σ2)cB∥A∥2†]
ρ2

(k − 1)α

(55)

≤ K̄

k − 1
ρ2,

where the second last inequality is due to the last inequality of Lemma 4.1(a) with k = k − 1 . Since by
assumption k − 1 ≥ K̄, the above inequality yields the desired contradiction.
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4.2 Step 2: Bounding the Epoch Size

The goal of this subsection is to prove a uniform bound on sizes of the epochs I1, I2, . . .. The first result of
this subsection, which establishes a bound on the difference of the augmented Lagrangian function evaluated
at two different pairs, will be used a few times later on.

Lemma 4.8 Given triples (zj , uj , c) ∈ H × Rl × R++ with j = 1, 2. If ζ̄ = maxj ∥uj∥, then

Lc(z1;u1)− Lc(z2;u2) ≤ ϕ− ϕ+
(c∥Az1 − b∥+ ζ̄)2

2c
(57)

where (ϕ, ϕ) is as in (19).

Proof : Using the definitions of Lc(· ; ·) (with (θ, χ) = (0, 1)) and ϕ as in (3) and (19), respectively, we have

Lc(z2;u2)− ϕ
(19)

≥ Lc(z2;u2)− (f + h)(z2)

(3)
= ⟨u2, Az2 − b⟩+ c

2
∥Az2 − b∥2 =

1

2

∥∥∥∥ u2√c +√c(Az2 − b)
∥∥∥∥2 − ∥u2∥22c

≥ − ζ̄
2

2c
,

where the last inequality is due to the definition of ζ̄. On the other hand, using the definitions of Lc( · ; · )
(with (θ, χ) = (0, 1)) and ϕ̄ as in (3) and (19), respectively, and the Cauchy-Schwarz inequality, we have

Lc(z1;u1)− ϕ
(19)

≤ Lc(z1;u1)− (f + h)(z1)
(3)
= ⟨u1, Az1 − b⟩+ c

2
∥Az1 − b∥2

≤ ∥u1∥∥Az1 − b∥+ c

2
∥Az1 − b∥2 ≤ ζ̄∥Az1 − b∥+ c

2
∥Az1 − b∥2,

where the last inequality is due to the definition of ζ̄. Combining the above two relations we then conclude
that (57) holds.

For any k ≥ 1, let
Ik(C) := {i ∈ Ik : ∥vi∥2 + δi ≤ C2}, (58)

where C > 0 is part of the input for S-ADMM and (vi, δi) is as in line 13 of S-ADMM. The next result
shows that the Lagrange multiplier qj remains bounded as long as j ∈ Ik(C). It also shows that if i ∈ Ik(C)
and epoch Ik does not terminate at the i-th iteration, then it generates another index j ∈ Ik(C) such that
0 < j − i = O(c).

Lemma 4.9 The following statements about an epoch Ik generated by S-ADMM hold:

(a) for every j ∈ Ik, we have
Tj − T̃k−1 ≤ Γk−1 (59)

where

Γk−1 := ϕ− ϕ+
(c∥Aỹk−1 − b∥+ ∥q̃k−1∥)2

2c
; (60)

(b) if either i = i+k−1 or i ∈ Ik(C) and Ik does not terminate at the i-th iteration, then there exists
j ∈ Ik(C) such that

0 < j − i ≤

⌈
χ(γ) + (1 + σ2)cB∥A∥2†

C2
Γk−1

⌉
, (61)

where χ(γ) is as in (49) and σ2 is part of the input for S-ADMM;

(c) if q̃k−1 ∈ A(Rn) and ∥q̃k−1∥ ≤ κp, then for every j ∈ Ik(C), the pair (yj , qj), where qj as in (45),
satisfies

qj ∈ A(Rn), ∥qj∥ ≤ κp and c∥Ayj − b∥ ≤ 2κp. (62)
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Proof : (a) Assume that j ∈ Ik. Using the definition of Tj as in line 14 of S-ADMM, and Lemma 4.8 with
(u1, u2) = (q̃k−1, q̃k−1) and (z1, z2) = (ỹk−1, yj), we have

Tj − T̃k−1 = Lc(ỹk−1; q̃k−1)− Lc(yj ; q̃k−1)
(57)

≤ ϕ− ϕ+
(c∥Aỹk−1 − b∥+ ∥q̃k−1∥)2

2c

(60)
= Γk−1,

which yields (59).
(b) Assume that i ∈ Ik(C) ∪ {i+k−1} is an iteration for which the termination criterion of the k-th epoch

is not satisfied and assume for the sake of contradiction that j /∈ Ik(C) for every j ∈ {i+1, . . . , i+ s}, where

s :=

⌈
χ(γ) + (1 + σ2)cB∥A∥2†

C2
Γk−1

⌉
. (63)

Since by assumption the k-th epoch does not stop at iteration i and it can only stop at some iteration
j lying in Ik(C) (see line 15 of S-ADMM), we conclude that every j ∈ {i + 1, . . . , i + s} lies in Ik and
∥vj∥2 + δj > C2. Using this conclusion, (59), Lemma 4.6, the fact T̃k−1 = Ti+k−1

(see Lemma 4.1(a)), and

the nondecreasing property of the sequence Ti (see Lemma 4.6), we conclude that

Γk−1

(59)

≥ Ti+s − T̃k−1 = Ti+s − Ti+k−1
≥ Ti+s − Ti =

i+s∑
l=i+1

(Tl − Tl−1)

(54)

≥ 1

χ(γ) + (1 + σ2)cB∥A∥2†

i+s∑
l=i+1

(∥vl∥2 + δl) >
sC2

χ(γ) + (1 + σ2)cB∥A∥2†
≥ Γk−1,

where the last inequality is due to (63). Since the above inequality is not possible, statement (b) follows.
(c) The inclusion in (62) follows from the definition of qj in (45) and the assumption that q̃k−1 ∈ A(Rn).

We now prove the first inequality in (62). Relations (45) and (46) imply that the triple (z, q, r) = (yj , qj , vj−
∇f(yj)) satisfies the conditions in (79) of Lemma A.3 with (χ, δ) = (c, δj), and hence the conclusion of this
lemma implies that

∥qj∥ ≤ max

{
∥q̃k−1∥, 2Dh(Mh + ∥vj −∇f(yj)∥) + δj

d̄ν+A

}
,

whereMh, d̄ > 0 and Dh are as in assumptions (A5), (A6) and (19), respectively, and ν+A denotes the smallest
positive singular value of A. This inequality together with the triangle inequality, the facts that ∥vj∥ ≤ C,
δj ≤ C2, and ∥∇f(yj)∥ ≤ ∇f , due to (58) and (19), respectively, and the assumption that ∥q̃k−1∥ ≤ κp,
imply that

∥qj∥
(19)

≤ max

{
κp,

2Dh(Mh + C +∇f ) + C2

d̄ν+A

}
(22)
= κp,

and hence the first inequality in (62) holds. Moreover, using the definition of qj in (45), the first inequality
in (62), and the assumption that ∥q̃k−1∥ ≤ κp, we have

c∥Ayj − b∥ (45)
= ∥qj − q̃k−1∥ ≤ ∥qj∥+ ∥q̃k−1∥

(62)

≤ 2κp,

and hence the second inequality in (62) also holds.
The next result shows that every epoch of S-ADMM ends.

Lemma 4.10 Every epoch Ik generated by S-ADMM terminates and the following relations hold:

Lc(ỹk; q̃k−1) ≤ Lc(yi; q̃k−1) ∀i ∈ Ik, (64)

Lc(ỹk; q̃k−1) +
∥q̃k − q̃k−1∥2

c
= Lc(ỹk; q̃k). (65)
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Proof : We first show that every epoch Ik generated by S-ADMM terminates. Assume for the sake of
contradiction that Ik is infinite. Lemma 4.9(b) then implies that Ik(C) is also infinite. This in turn implies
that i < (αkTi)/ρ

2 for every i ∈ Ik(C) since otherwise the k-epoch would terminate at the first iteration
i ∈ Ik(C) that violates this condition (see line 15 of S-ADMM). This conclusion together with (59) then
imply that any i ∈ Ik(C) satisfies

i <
αk

ρ2
Ti

(59)

≤ αk

ρ2

(
T̃k−1 + Γk−1

)
,

and hence that Ik is finite as the right-hand side of the above inequality is independent of i ∈ Ik. Since this
contradicts our previous assumption that Ik is infinite, we conclude that Ik terminates.

We now prove (64). First, observe that, by Lemma 4.1(a), we have ỹk = yi
+
k . Hence, it follows from

Lemma 4.1(b) with i = i+k and j = i that Lc(yi; q̃k−1) − Lc(ỹk; q̃k−1) = T̃k − Ti. Inequality (64) now
follows from the last conclusion of Lemma 4.6. Finally, the identity in (65) follows from the definition of the
augmented Lagrangian function in (3) (with (θ, χ) = (0, 1)) and the fact that q̃k = q̃k−1 + c(Aỹk − b), due
to line 16 of S-ADMM.

The next result provides some preliminary bounds on the Lagrangian multiplier sequence {q̃k}, the
feasibility residual sequence {∥Aỹk − b∥}, and the sequence {Ti}.

Lemma 4.11 If the final iterate of the (k − 1)-th epoch satisfies the conditions that q̃k−1 ∈ A(Rn) and
∥q̃k−1∥ ≤ κp, then the following statements hold:

(a) the pair (ỹk, q̃k) satisfies

q̃k ∈ A(Rn), ∥q̃k∥ ≤ κp and c∥Aỹk − b∥ ≤ 2κp; (66)

(b) for every i ∈ Ik(C), there holds

Ti ≤ T̃k−1 +
4κ2p
c

+∆k, (67)

where
∆k := Lc(ỹk−1; q̃k−1)− Lc(ỹk; q̃k); (68)

(c) there holds

T̃k − T̃k−1 ≤
4κ2p
c

+∆k, (69)

where T̃k is as in Lemma 4.1(a).

Proof : Assume that the conditions q̃k−1 ∈ A(Rn) and ∥q̃k−1∥ ≤ κp hold.
(a) The conclusion that the pair (ỹk, q̃k) satisfies (66) follows from (62) with j = i+k and the fact that

(ỹk, q̃k) = (yi
+
k , qi

+
k ).

(b) Using the definition of Ti as in line 14 of S-ADMM, inequality (64), and the identity in (65), we
have

Ti − T̃k−1 = Lc(ỹk−1; q̃k−1)− Lc(yi; q̃k−1)
(64)

≤ Lc(ỹk−1; q̃k−1)− Lc(ỹk; q̃k−1)

(65)
= Lc(ỹk−1; q̃k−1)− Lc(ỹk; q̃k) +

∥q̃k − q̃k−1∥2

c
.

Inequality (67) now follows from the above identity, the definition of ∆k in (68), the triangle inequality for
norms, and the first inequality in (66).

(c) Inequality (69) follows from (67) with i = i+k and the fact that T̃k = Ti+k
(see Lemma 4.1(a)).

The main purpose of the next result is to provide a preliminary bound on the cardinality of the k-th
epoch.
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Lemma 4.12 Assume that the initial Lagrange multiplier satisfies p ∈ A(Rn) and ∥p∥ ≤ κp, and define

Γ(x; c) := ϕ− ϕ+
(∥Ax− b∥+ 3κp)

2

2c
, (70)

where (x, c) is part of the input for S-ADMM. Then, the following statements about any epoch Ik generated
S-ADMM hold:

(a) Γk−1 ≤ Γ(x; c), where Γk−1 is as in (60);

(b) there hold
k∑
l=1

∆l ≤ Γ(x; c),

k∑
l=1

l∆l ≤ kΓ(x; c) (71)

where ∆l is as in (68); moreover,

T̃k ≤
4kκ2c
c

+ Γ(x; c); (72)

(c) its length satisfies

|Ik| ≤
α

ρ2

(
8kκ2p
c

+ Γ(x; c) + k∆k

)
+ 1 +

(χ(γ) + (1 + σ2)cB∥A∥2†)Γ(x; c)
C2

, (73)

where χ(γ) is as in (49) and σ2 is part of the input for S-ADMM.

Proof : (a) Recalling the definitions of Γk−1 and Γ(x; c) in (60) and (70), respectively, the inequality Γk−1 ≤
Γ(x; c) for k = 1 follows from the facts that ỹ0 = x and q̃0 = p (see line 1 of S-ADMM) and the assumption
∥p∥ ≤ κp, and for k ≥ 2 follows from both inequalities in (66).

(b) We first claim that Lc(ỹl−1; q̃l−1)− Lc(ỹk; q̃k) ≤ Γ(x; c) for every l ∈ {1, . . . , k}. Using the fact that
(66) implies that ∥q̃l∥ ≤ κp and c∥Aỹl − b∥ ≤ 2κp for every l ∈ {1, . . . , k}, Lemma 4.8 with (u1, u2) =
(q̃l−1, q̃k), (z1, z2) = (ỹl−1, ỹk), the assumption that ∥p∥ ≤ κp, we conclude that

Lc(ỹl−1; q̃l−1)− Lc(ỹk; q̃k) ≤ ϕ− ϕ+
(c∥Aỹl−1 − b∥+ κp)

2

2c
≤ Γ(x; c)

for every l ∈ {1, . . . , k}, where the last inequality above follows by repeating the same argument as in
statement (a). Thus, we conclude that the claim holds. We now prove the first inequality in (71). Using the
definition of ∆l in (68), we have

k∑
l=1

∆l =

k∑
l=1

(
Lc(ỹl−1; q̃l−1)− Lc(ỹl; q̃l)

)
= Lc(ỹ0; q̃0)− Lc(ỹk; q̃k) ≤ Γ(x; c),

where the last inequality above follows from the previous claim with l = 1 and the fact that (ỹ0, q̃0) = (x, p)
(see line 1 of S-ADMM). We now prove the second inequality in (71). Using the identity in (68) and simple
algebraic manipulations, we have

k∑
l=1

l∆l
(68)
=

k∑
l=1

l[Lc(ỹl−1; q̃l−1)− Lc(ỹl; q̃l)]

=

k∑
l=1

Lc(ỹl−1; q̃l−1) +

k∑
l=1

[(l − 1)Lc(ỹl−1; q̃l−1)− lLc(ỹl; q̃l)]

=

k∑
l=1

(Lc(ỹl−1; q̃l−1))− kLc(ỹk; q̃k) =
k∑
l=1

(
Lc(ỹl−1; q̃l−1)− Lc(ỹk; q̃k)

)
≤ kΓ(x; c),

where the last inequality above follows from the previous claim.
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Inequality (72) follows by summing inequality in (69) from k = 1 to k = k, using the fact that (ỹ0, q̃0, T̃0) =
(x, p, 0) (see line 1 of S-ADMM), and the first inequality in (71).

(c) We now prove (73). First, we recall from Lemma 4.10 that Ik is finite. Let i be the largest index in
Ik(C) ∪ {i+k−1} satisfying i < i+k (with the convention that i+0 = 0). Then, since i and i+k are consecutive
indices in Ik(C), it follows from Lemma 4.9(b) and the fact that Γk−1 ≤ Γ(x; c) from statement (a), that

|Ik| = i+k − i
+
k−1 = (i− i+k−1) + (i+k − i)

(61)

≤ i− i+k−1 + 1 +
(χ(γ) + (1 + σ2)cB∥A∥2†)Γ(x; c)

C2
. (74)

If i = i+k−1 then (74) implies that (73) holds. Suppose now that i ∈ Ik(C). Using the facts that i ∈
Ik(C) \ {i+k } and i

+
k is the only index in Ik(C) satisfying the second condition in line 15 of S-ADMM, we

then conclude that

ρ2i

α
< kTi

(67)

≤ k

(
T̃k−1 +

4κ2p
c

+∆k

)
= (k − 1)T̃k−1 + T̃k−1 +

4kκ2p
c

+ k∆k

(34)

≤
ρ2i+k−1

α
+ T̃k−1 +

4kκ2p
c

+ k∆k

(72)

≤
ρ2i+k−1

α
+

[
4(k − 1)κ2p

c
+ Γ(x; c)

]
+

4kκ2p
c

+ k∆k

≤
ρ2i+k−1

α
+

8kκ2p
c

+ Γ(x; c) + k∆k,

where the second last inequality is due to the second inequality in (34) with k = k − 1, and the third
inequality is due to (72) with k = k−1. Inequality (73) follows by combining (74) and the last inequality.

4.3 Step 3: Proof of Theorem 3.1

In this subsection, we marshal all of the results of the previous subsections to finally prove S-ADMM’s main
iteration-complexity result (Theorem 3.1).

We first show that the assumptions (24) and (25) implies that

χ(γ) ≤ χ̄, Γ(x; c) ≤ Γ̄, (75)

where χ(γ) and (χ̄, Γ̄) are as in (49) and (22), respectively. Indeed, the lower bound (25) on γt implies that
γ−1 ≤ max{2m, γ̄−1} ≤ 2m+ γ̄−1. This inequality, the second inequality in (25), and the definition of χ(γ)
in (49), then imply that χ(γ) ≤ χ̄. The second inequality in (75) follows immediately from the first and
third inequality in (24) combined with (22) and (70).

(a) By Proposition 4.7, S-ADMM performs a finite number K of epochs that is bounded by K̄ as
in (55). Since |Ik| is the number of iterations performed during the k-epoch, it suffices to show that∑K
k=1 |Ik| ≤ Λ(c, ρ) where Λ(c, ρ) is as in (26). Using the bound in (73), second inequality in (75), and the

second inequality in (71), we have

K∑
k=1

|Ik|
(73)

≤
K∑
k=1

[
8kακ2p
ρ2c

+
αΓ(x; c)

ρ2
+
αk∆k

ρ2
+ 1 +

(χ(γ) + (1 + σ2)cB∥A∥2†)Γ(x; c)
C2

]
(71)

≤ K(K + 1)

2
·
8ακ2p
cρ2

+K

[
1 +

(
2α

ρ2
+

(χ(γ) + (1 + σ2)cB∥A∥2†)
C2

)
Γ(x; c)

]
(75)

≤ K(K + 1)

2
·
8ακ2p
cρ2

+K

[
1 +

(
2α

ρ2
+

(χ(γ) + (1 + σ2)cB∥A∥2†)
C2

)
Γ̄

]
.

After some algebraic manipulations, we can easily see that the previous inequality, the fact that K ≤ K̄ ≤
[χ̄+ (1 + σ2)cB∥A∥2†]/α+ 1 (see Proposition 4.7), and the first inequality in (75), imply that

K∑
k=1

|Ik| ≤ Λ0
c

ρ2
+ Λ1 + Λ2c+ Λ3c

2 + Λ4
1

ρ2
= Λ(c, ρ),
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where Λ0, Λ1, Λ2, Λ3, and Λ4 are as in (23).
(b) Since K is the last epoch generated by S-ADMM and the inclusion in (46) holds for every i ∈ IK ,

we conclude that (yi
+
K , qi

+
K , vi

+
K , δi+K

) = (x+, p+, v+, ε+) satisfies (46), and hence that (27) holds. The two

first inequalities in (28) follows from Lemma 4.11(a), due to the fact that (yi
+
K , qi

+
K ) = (ỹK , q̃K). Finally,

the last inequality in (28) follows from the fact that S-ADMM terminates on line 18 with the condition

∥v+∥2 + ε+ = ∥vi
+
K∥2 + δi+K

≤ ρ2 satisfied. We now prove the inequalities in (29). First, observe that

γ+ = λi
+
K (see lines 16 and 19 of S-ADMM). Second, using (25) and (44), we have

γ̄t
(25)

≥ γt
(44)

≥ λ
i+K
t

(44)

≥ min

{
1

2mt
, γt

}
(25)

≥ min

{
1

2mt
, γ̄t

}
,

for every t ∈ {1, . . . , B}. Combining these two observations we conclude that (29) holds.

(c) Using the assumption that c ≥ 2κp/η, Lemma 4.11(a) guarantees that S-ADMM output yi
+
K = x+

satisfying

∥Ax+ − b∥ ≤ 2κp
c
≤ η.

Hence, the conclusion that (x+, p+, v+, ε+) = (ỹK , q̃K , ṽK , ε̃K) satisfies (2) follows from the previous in-
equality, the inclusion in (27), and the last inequality in (28).

5 Numerical Experiments

This section showcases the numerical performance of A-ADMM on two linearly and box constrained, non-
convex, quadratic programming problems. Subsection 5.1 summarizes the performance of A-ADMM on a
distributed variant of our experimental problem, while Subsection 5.2 focuses on a non-distributable variant.
The distributed variant employs a small number of high-dimensional blocks while the non-distributable
variant conversely has a large number of uni-dimensional blocks. These two proof-of-concept experiments
indicate that A-ADMM may not only substantially outperform the relevant benchmarking methods in
practice, but also be relatively robust to the relationship between block counts and sizes.

All experiments were implemented and executed in MATLAB 2021b and run on a macOS machine with
a 1.7 GHz Quad-Core Intel processor, and 8 GB of memory.

5.1 Distributed Quadratic Programming Problem

This subsection studies the performance of A-ADMM for finding stationary points of a box-constrained,
nonconvex block distributed quadratic programming problem with B blocks (DQP).

The B-block DQP is formulated as

min
(x1,...,xB)∈RBn

−
B−1∑
i=1

[αi
2
∥xi∥2 + ⟨xi, βi⟩

]
s.t. ∥x∥∞ ≤ ω (76)

xi − xB = 0 for i = 1, . . . , B − 1 (77)

where ω > 0, n ∈ N, {αi}B−1
i=1 ⊆ [0, 1], and {βi}B−1

i=1 ⊆ [0, 1]n. It is not difficult to see that DQP fits the
template of (1). The smooth component is taken to be

f(x) = −
B−1∑
i=1

[αi
2
∥xi∥2 + ⟨xi, βi⟩

]
.

The non-smooth function hi is set to the indicator of the set {x ∈ Rn : ∥xi∥∞ ≤ ω} for 1 ≤ i ≤ B. For
1 ≤ i ≤ B − 1, we take Ai ∈ Rn×Bn to be the operator which includes Ai ∈ Rn into the i-th block of RBn,
i.e.

Ai =

0(i−1)n×n
In×n

0(B−i)n×n


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where 0j×k denotes a j × k zero matrix. The matrix AB ∈ Rn×Bn is defined by the action ABx =
(−x, . . . ,−x)⊤.

We shall now outline how we conducted our DQP experiments. The number of blocks, B, for each
experiment was set to 3, while for the block-size, n, the dimensions n = 10, 20, 100, 500 were considered. For
each setting of n, we ran experiments where ω = 101, 103, 105, 107, 109. The values of {αi}B−1

i=1 ⊆ [0, 1], and
{βi}B−1

i=1 ⊆ [0, 1]n were sampled uniformly at random. To generate b, we sampled xb ∈ [−ω, ω]Bn uniformly
at random, then set b = Axb. The initial iterate x0 was also selected uniformly at random from [−ω, ω]Bn.

For this problem, A-ADMM was applied with c0 = 1, C = 1, α = 10−2, p0 = 0, and each block’s initial
stepsize set to 10, i.e. γ0i = 10 for 1 ≤ i ≤ B. To provide an adequate benchmark for A-ADMM, we
compared its performance against two instances of the method from [25] and three instances of the method
from [43]. The method of [25] was deployed with two different choices of (θ, χ): (0, 1) and (1/2, 1/18). We
call these two instances DP1 and DP2, respectively. Both DP1 and DP2 set (λ, c1) = (1/2, 1). The method
of [43] was deployed with three different settings of the penalty parameter ρ: 0.1, 1.0, and 10.0. We call
the resultant instances SD1, SD2, and SD3, respectively. Moreover, all three instances make the parameter
selections (ω, θ, τ) = (4, 2, 1) and (Mh,Kk, Jh, Lh) = (4γ, 1, 1, 0) in accordance with [43, Section 5.1]. We
reiterate that [25] provides no convergence guarantees for the pragmatic choice of (θ, χ) = (0, 1). All executed
algorithms were run for a maximum of 500, 000 iterations. Any algorithm that met this limit took at least
10 milliseconds to complete.

Iteration Time (ms)

n ω AD DP1 DP2 SD1 SD2 SD3 AD DP1 DP2 SD1 SD2 SD3

10 101 18 76 83 427 223 976 1.592 5.402 4.291 28.192 13.881 60.184
10 103 34 228 232 569 399 1855 2.259 11.752 11.858 65.049 30.209 119.417
10 105 50 385 385 * 581 2778 3.228 13.374 13.004 * 35.368 168.964
10 107 66 541 537 * * 3701 4.419 18.706 18.363 * * 239.235
10 109 81 697 689 * * 4625 5.866 24.540 24.237 * * 323.790
20 101 22 62 68 433 298 1261 1.538 2.520 2.484 27.928 19.164 80.375
20 103 44 166 171 * 498 2304 2.560 6.484 6.153 * 31.821 152.866
20 105 65 273 275 * 700 3347 4.213 10.548 9.879 * 45.812 223.235
20 107 84 379 379 * * 4383 4.684 13.961 14.009 * * 290.884
20 109 103 485 483 * * 5418 5.629 17.635 17.393 * * 365.368
100 101 20 40 46 * 433 6231 2.072 1.820 1.831 * 28.705 420.276
100 103 33 78 77 * 695 9444 2.132 3.013 2.871 * 44.640 617.636
100 105 45 116 107 * * 12664 3.148 4.545 4.041 * * 898.522
100 107 57 155 137 * * 15876 3.736 5.844 5.465 * * 1051.830
100 109 68 193 167 * * 19087 4.841 7.629 6.436 * * 1267.924
5000 101 25 121 125 * 646 2257 13.733 26.455 27.511 * 206.646 861.279
5000 103 37 221 223 * 851 3324 20.084 52.456 50.828 * 282.999 1264.225
5000 105 49 321 321 * * 4390 27.591 72.829 72.810 * * 1692.375
5000 107 61 422 419 * * 5449 32.080 96.010 97.450 * * 1968.163
5000 109 72 522 517 * * 6507 41.682 118.872 118.632 * * 2440.377
Bolded values equal to the best algorithm according to iteration count or time.

* indicates the algorithm failed to find a stationary point meeting the tolerances by the 500,000th iteration.

Table 1: Performance for all algorithms applied to the DQP problem (76), with B = 3, C = 1 and α = 10−2

for different pair of values (n, ω). The iteration and time columns record the number of iterations and time
in seconds to find a (10−5, 10−5)-stationary point.

Table 1, the record of the performance of all algorithms on this experimental problem, lays bare the
superior performance of A-ADMM. In this table, we label A-ADMM as AD for the sake of concision. In
terms of iterations, A-ADMM outperforms all other algorithms for all settings of B and m. Along the
dimension of time, A-ADMM is faster than all algorithms, for all settings of n and ω, except DP1 when
n = 100 and ω = 10.
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5.2 Nonconvex QP with Box Constraints

In this subsection, we evaluate the performance of A-ADMM for solving a general nonconvex quadratic
problem with box constraints (QP-BC). The QP-BC problem is formulated as

min
∥x∥∞≤ω

{
f(x) :=

1

2
⟨x, Px⟩+ ⟨r, x⟩ : Ax = b

}
. (78)

where P ∈ RB×B is negative definite, A ∈ Rm×B , r, b ∈ Rm×Rm and ω ∈ R++. As for the previous problem,
it is not difficult to check that QP-BC fits within the template of (1). For this problem, we take our blocks
to be single coordinates. Consequently, each column of A gives rise to a Ai matrix. The non-smooth
components of the objective are again picked to be the indicator functions of the sets {xi ∈ R : |xi| ≤ ω} for
i ∈ {1, . . . , B}.

We now describe how we orchestrated our QP-BC experiments. In all instances, ω = 1. To generate
r̃ ∈ Rm, P̃ ∈ RB×B and Ã ∈ Rm×B , we started by generating a diagonal matrix D ∈ RB×B whose entries
are selected uniformly at random in [1, 1000]. Next, we generated r̃ ∈ [−1, 1]m, P̃ ∈ [−1, 1]B×B negative
definite, and Ã ∈ [−1, 1]m×B uniformly at random. Finally, we set P = DP̃D, A = ÃD, and r = Dr̃. The
vector b ∈ Rm was set as b = Axb, where xb is a uniformly at random selected vector in [−1, 1]B . The initial
starting point x0 was chosen in this same fashion.

For this problem, three instances of A-ADMM, referred to as AD1, AD2, and AD3, were applied with
C = 1, α = 10−2, p0 = 0, and each block’s initial stepsize set to 10, i.e. γ0i = 1000 for 1 ≤ i ≤ B. The
three methods differ only in their choice of initial penalty parameter c0: c0 = 10 for AD1, c0 = 1 for AD2,
and c0 = .1 for AD3. The benchmarking algorithms for this experiment were three instances of the method
from [25], which we refer to as DP1, DP2 and DP3. Like the three instances of A-ADMM, these instances
differ only in their choice of c0: c0 = 10 in DP1, c0 = 1 in DP2 and c0 = 0.1 in DP3. Each of these three
methods were applied with (θ, χ) = (0, 1). Yet again, we remind the reader that [25] provides no convergence
guarantees for this choice of (θ, χ). To ensure timely execution of all algorithms, each algorithm terminated
upon meeting a 500,000 iteration limit or the discovery of an approximate stationary triple (x+, p+, v+)
satisfying the relative error criterion

v+ ∈ ∇f(x+) + ∂h(x+) +A∗p+,
∥v+∥

1 + ∥∇f(x0)∥
≤ ρ, ∥Ax+ − b∥

1 + ∥Ax0 − b∥
≤ η.

for ρ = η = 10−5.
The results for this experiment, shown in Table 2, echo those for its predecessor by again displaying the

computational superiority of A-ADMM. Measured by iteration count, A-ADMM performed better in 87%
of the problem instances. In terms of time, A-ADMM performed better in 100% of the instances. It is
worth mentioning that A-ADMM converged for all instances, while the same cannot be said for the DP1,
DP2, and DP3 benchmark methods. DP1 converged for 96% instances, DP2 converged for 54% instances,
and DP3 converged only for 27% instances. For m = 1, 2, 5, our method was at least 10 times faster in terms
of iteration count and time than any DP variant. Notably, we attempted to apply multiple versions of the
method from [25] with choices of (θ, χ) that theoretically should ensure convergence. None of the methods
managed to find the desired point within the iteration limit, so we omitted their results from the table.

6 Concluding Remarks

We now discuss some further related research directions. First, the ability of A-ADMM to allow for the
inexact solution of its block subproblem opens up many possible avenues for application. A systematic
numerical study of its performance when applied to problems requiring inexact computation would be in-
triguing. Second, it would be interesting to develop a P-ADMM that performs Lagrange multiplier updates
with (θ, χ) = (0, 1) at every iteration, rather than just at the last iteration of each epoch. This P-ADMM
would then be an instance of the class of ADMMs outlined in the Introduction with |Ik| = 1. The P-ADMM
of [25] satisfies this last property but chooses (θ, χ) in a very conservative way, namely, satisfying (6). Third,
it would be interesting to consider inexact P-ADMMs that solve the prox subproblems based on the more
relaxed error criterion (13) with ϑ > 0 since this generalization would possibly allow us to develop an inexact
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Iteration Time (sec)

B m AD1 AD2 AD3 DP1 DP2 DP3 AD1 AD2 AD3 DP1 DP2 DP3

10 1 44 23 33 3554 3560 3532 0.067 0.010 0.008 0.296 0.286 0.275
10 2 23 19 37 1355 1282 1395 0.025 0.005 0.007 0.128 0.111 0.116
10 5 1280 2421 1469 * * * 0.162 0.287 0.171 * * *
20 1 23 30 30 803 296 417 0.021 0.009 0.008 0.148 0.052 0.075
20 2 87 44 89 297 2233 * 0.032 0.014 0.026 0.063 0.441 *
20 5 147 144 114 1862 6210 * 0.036 0.034 0.027 0.333 1.088 *
20 10 682 1105 550 847 * * 0.168 0.267 0.132 0.152 * *
20 15 1286 2753 3691 1808 * * 0.308 0.656 0.879 0.329 * *
50 1 21 17 66 327 1616 1385 0.022 0.014 0.049 0.176 0.850 0.746
50 2 219 22 66 377 1180 2772 0.178 0.019 0.055 0.243 0.760 1.704
50 5 188 123 226 1880 2296 * 0.147 0.098 0.175 1.208 1.467 *
50 10 462 377 1647 1456 699 * 0.352 0.285 1.229 0.972 0.466 *
50 20 1082 56530 9363 2058 * * 0.842 42.686 7.063 2.173 * *
50 25 1326 2361 2307 1157 * * 1.230 1.913 1.835 1.243 * *
50 30 3430 1262 2045 3981 * * 2.989 1.044 1.654 4.412 * *
100 1 95 22 182 2792 1476 9554 0.446 0.084 0.572 9.545 4.887 33.713
100 2 104 32 102 802 1531 * 0.429 0.120 0.361 3.154 5.996 *
100 5 449 256 83 4603 * * 1.570 0.902 0.295 20.776 * *
100 10 1675 37263 427 3050 3281 * 5.724 124.269 1.429 15.528 16.771 *
100 25 2388 12916 2346 2687 * * 8.041 43.605 7.885 15.529 * *
100 50 4596 3526 * 3395 * * 16.336 12.488 * 23.325 * *
100 75 7070 27964 123020 4816 * * 26.387 104.134 459.301 38.100 * *
Bolded values equal to the best algorithm according to iteration count or time.

* indicates the algorithm failed to find a stationary point meeting the tolerances by the 500,000th iteration.

Table 2: Performance for all algorithms applied to the QP-BC Problem (78), with C = 1 and α = 10−2, for
different pair of values (B,ω). The iteration and time columns record the number of iterations and time in
seconds to find a stationary point satisfying the relative error condition with (ρ, η) = (10−5, 10−5).

P-ADMM in the setting of (1) with f being non-smooth. Finally, we have assumed in this paper that
domh is bounded (see assumption (A1)). It would be interesting to extend its analysis to the case where H
is unbounded.

A Technical Results for Proof of Lagrange Multipliers

This appendix provides some technical results to show that under certain conditions the Lagrangian multiplier
is bound.

The next two results, used in Lemma A.3, can be found in [16, Lemma B.3] and [28, Lemma 3.10],
respectively.

Lemma A.1 Let A : Rn → Rl be a nonzero linear operator. Then,

ν+A∥u∥ ≤ ∥A
∗u∥, ∀u ∈ A(Rn).

Lemma A.2 Let h be a function as in (A5). Then, for every δ ≥ 0, z ∈ H, and ξ ∈ ∂δh(z), we have

∥ξ∥dist(u, ∂H) ≤ [dist(u, ∂H) + ∥z − u∥]Mh + ⟨ξ, z − u⟩+ δ ∀u ∈ H

where ∂H denotes the boundary of H.

Lemma A.3 Assume that h is a function as in assumption (A5) and A : Rn → Rl is a nonzero linear
operator satisfying assumption (A2). If (q−, χ) ∈ Rl × (0,∞) and (z, q, r) ∈ domh×A(Rn)× Rn satisfy

r ∈ ∂δh(z) +A∗q and q = q− + χ(Az − b), (79)
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then we have

∥q∥ ≤ max

{
∥q−∥, 2Dh(Mh + ∥r∥) + δ

d̄ν+A

}
, (80)

where Mh, d̄ > 0, and Dh are as in (A5), (A6), and (19), respectively, and ν+A denotes the smallest positive
singular value of A.

Proof : We first claim that
d̄ν+A∥q∥ ≤ 2Dh (Mh + ∥r∥)− ⟨q, Az − b⟩+ δ (81)

holds. The assumption on (z, q, r) implies that r−A∗q ∈ ∂δh(z). Hence, using the Cauchy-Schwarz inequality,
the definitions of d̄ and z̄ in (A6), and Lemma A.2 with ξ = r −A∗q, and u = z̄, we have:

d̄∥r −A∗q∥ −
[
d̄+ ∥z − z̄∥

]
Mh

(A.2)

≤ ⟨r −A∗q, z − z̄⟩ ≤ ∥r∥∥z − z̄∥ − ⟨q, Az − b⟩+ δ. (82)

Now, using the above inequality, the triangle inequality, the definition of Dh in (19), and the facts that
d̄ ≤ Dh and ∥z − z̄∥ ≤ Dh, we conclude that:

d̄∥A∗q∥+ ⟨q, Az − b⟩
(82)

≤
[
d̄+ ∥z − z̄∥

]
Mh + ∥r∥

(
Dh + d̄

)
≤ 2Dh (Mh + ∥r∥) + δ. (83)

Noting the assumption that q ∈ A(Rn), inequality (81) now follows from the above inequality and Lemma A.1.
We now prove (80). Relation (79) implies that ⟨q, Az − b⟩ = ∥q∥2/χ− ⟨q−, q⟩/χ, and hence that

d̄ν+A∥q∥+
∥q∥2

χ
≤ 2Dh(Mh + ∥r∥) +

⟨q−, q⟩
χ

≤ 2Dh(Mh + ∥r∥) +
∥q∥
χ
∥q−∥+ δ, (84)

where the last inequality is due to the Cauchy-Schwarz inequality. Now, letting K denote the right hand
side of (80) and using (84), we conclude that(

d̄ν+A +
∥q∥
χ

)
∥q∥

(84)

≤
(
2Dh(Mh + ∥r∥) + δ

K
+
∥q∥
χ

)
K ≤

(
d̄ν+A +

∥q∥
χ

)
K, (85)

and hence that (80) holds.
We conclude this section with a technical result of convexity which is used in the proof of Lemma 4.3.

Its proof can be found in [36, Lemma A1].

Lemma A.4 Assume that ξ > 0, ψ is a proper, closed, and convex function, and Q is a n × n positive
definite matrix such that ψ− (ξ/2)∥ · ∥2Q is convex and let (y, v, η̂) ∈ Rn ×Rn ×R+ be such that y ∈ ∂η̂ψ(y).
Then, for any τ > 0,

ψ(u) ≥ ψ(y) + ⟨v, u− y⟩ − (1 + τ−1)η̂ +
(1 + τ−1)ξ

2
∥u− y∥2Q ∀u ∈ Rn.

B Proof of Proposition 2.2

This appendix contains the proof of Proposition 2.2.
Before giving the proof of Proposition 2.2, we present a preliminary result related to S-CGM.

Lemma B.1 For every j ≥ 1, the vector ṽj ∈ Rn defined in (16) satisfies

ṽj ∈ ∇ψs(z̃j) + ∂ψn(z̃
j) and 8M [ψ(z̃j−1)− ψ(z̃j)] ≥ ∥ṽj∥2. (86)

Proof : The optimality condition for (15) implies that

0 ∈ ∇ψs(z̃j−1) + ∂ψn(z̃
j) +M(z̃j − z̃j−1).
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The inclusion (86) now follows from the above inclusion and the definition of ṽj in (16). We now prove the
inequality in (86). Using the definition of ṽj in (16), the triangle inequality, and assumption (B2), we have∥∥ṽj∥∥ ≤M ∥∥z̃j−1 − z̃j

∥∥+ ∥∥∇ψs(z̃j)−∇ψs(z̃j−1)
∥∥ ≤ 2M∥z̃j−1 − z̃j∥. (87)

On the other hand, using the fact that the objective function in (15) is M -strongly convex and that z̃j

is its optimal solution, we have

ℓψs
(w, z̃j−1) + ψn(w) +

M

2
∥w − z̃j−1∥2 − M

2
∥w − z̃j∥2 ≥ ℓψs

(z̃j , z̃j−1) + ψn(z̃
j) +

M

2
∥z̃j − z̃j−1∥2,

for every w ∈ Rn. Thus, using the previous inequality with w = z̃j−1 and the facts that, for every x̃ ∈ Rn, we
have ℓψs

(x̃; x̃) = ψs(x̃) and ℓψs
(z̃j , z̃j−1) ≥ ψs(z̃j)−(M/2)∥z̃j−z̃j−1∥2, which is a consequence of assumption

(B2), we obtain that

ψ(z̃j−1)− ψ(z̃j) ≥ M

2
∥z̃j − z̃j−1∥2. (88)

The conclusion now follows by combining (87) and (88).

Proof of Proposition 2.2
Assume for the sake of contradiction that

∥ṽj∥2 > σ[ψ(z̃0)− ψ(z̃j)] + ϑ2 ∀j ∈ {1, . . . , K̄}. (89)

Inequality (86) and the previous inequality, both with j = 1, imply that

ψ(z̃0)− ψ(z̃1)
(86)

≥ ∥ṽ
1∥2

8M

(89)
>

ϑ2 + ∥ṽ1∥2

16M
. (90)

Combining inequalities (86) and (89), we have that for j ∈ {1, . . . , K̄ − 1},

8M [ψ(z̃j)− ψ(z̃j+1)]
(86)

≥ ∥ṽj+1∥2
(89)
> σ[ψ(z̃0)− ψ(z̃j+1)]. (91)

Hence, for every j ∈ {1, . . . , K̄ − 1}, we have

8M [ψ(z̃0)− ψ(z̃j+1)] = 8M [ψ(z̃0)− ψ(z̃j)] + 8M [ψ(z̃j)− ψ(z̃j+1)]

(91)
> 8M [ψ(z̃0)− ψ(z̃j)] + σ[ψ(z̃0)− ψ(zj+1)]

(88)

≥ 8M [ψ(z̃0)− ψ(z̃j)] + σ[ψ(z̃0)− ψ(z̃j)] = (8M + σ) [ψ(z̃0)− ψ(zj)].

As a consequence, the previous inequality and (90) imply that

ψ(z̃0)− ψ∗ ≥ ψ(z̃0)− ψ(zK̄) >
(
1 +

σ

8M

)K̄−1

(ψ(z̃0)− ψ(z̃1))

>
(
1 +

σ

8M

)K̄−1 ϑ2 + ∥ṽ1∥2

16M
,

and hence that

ln

(
16M [ψ(z̃0)− ψ∗]

ϑ2 + ∥ṽ1∥2

)
> (K̄ − 1) ln

(
1 +

σ

8M

)
> (K̄ − 1)

σ/(8M)

1 + σ/(8M)
=
σ(K̄ − 1)

8M + σ
,

where in the last inequality above, we used the fact that ln(1+ x) > x/(1+ x) for every x ∈ (−1,∞). Thus,

K̄ − 1 <
8M + σ

σ
ln

(
16M [ψ(z̃0)− ψ∗]

ϑ2 + ∥ṽ1∥2

)
.

Since the last inequality contradicts with the definition of K̄ in (17), the conclusion of the proposition follows.
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