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Abstract

Adversarially robust optimization (ARO) has
emerged as the de facto standard for training
models that hedge against adversarial attacks
in the test stage. While these models are ro-
bust against adversarial attacks, they tend to
suffer severely from overfitting. To address
this issue, some successful methods replace
the empirical distribution in the training
stage with alternatives including (i) a worst-
case distribution residing in an ambiguity set,
resulting in a distributionally robust (DR)
counterpart of ARO; (ii) a mixture of the
empirical distribution with a distribution in-
duced by an auxiliary (e.g., synthetic, exter-
nal, out-of-domain) dataset. Inspired by the
former, we study the Wasserstein DR coun-
terpart of ARO for logistic regression and
show it admits a tractable convex optimiza-
tion reformulation. Adopting the latter set-
ting, we revise the DR approach by intersect-
ing its ambiguity set with another ambiguity
set built using the auxiliary dataset, which of-
fers a significant improvement whenever the
Wasserstein distance between the data gen-
erating and auxiliary distributions can be es-
timated. We study the underlying optimiza-
tion problem, develop efficient solution algo-
rithms, and demonstrate that the proposed
method outperforms benchmark approaches
on standard datasets.
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1 INTRODUCTION

Supervised learning traditionally involves access to a
training dataset whose instances are assumed to be in-
dependently sampled from a true data-generating dis-
tribution (Bishop, 2006; Hastie et al., 2009). Opti-
mizing an expected loss for the empirical distribution
constructed from such a training set, also known as
empirical risk minimization (ERM), enjoys several de-
sirable properties in relatively generic settings, includ-
ing convergence to the true risk minimization problem
as the number of training samples increases (Vapnik,
1999, Chapter 2). In real-world applications, however,
various challenges, such as data scarcity and the exis-
tence of adversarial attacks, lead to deteriorated out-
of-sample performance for models trained via ERM.

One of the key limitations of ERM, particularly as it is
designed to minimize an expected loss for the empiri-
cal distribution, emerges from the finite nature of data
in practice. This leads ERM to suffer from the ‘opti-
mism bias’, also known as overfitting (Murphy, 2022),
or the optimizer’s curse (DeMiguel and Nogales, 2009;
Smith andWinkler, 2006), causing deteriorated out-of-
sample performance. A popular approach to prevent
this phenomenon, distributionally robust optimization
(DRO; Delage and Ye 2010), optimizes the expected
loss for the worst-case distribution residing within a
pre-specified ambiguity set.

Another key challenge faced by ERM in practice is
adversarial attacks, where an adversary perturbs the
observed features during the testing or deployment
phase (Szegedy et al., 2014; Goodfellow et al., 2015).
For neural networks, the paradigm of adversarial train-
ing (AT; Madry et al. 2018) is thus designed to provide
adversarial robustness by simulating the attacks in the
training stage. Several successful variants of AT, spe-
cialized to different losses and attacks, have been pro-
posed in the literature to achieve adversarial robust-



Distributionally and Adversarially Robust Logistic Regression via Intersecting Wasserstein Balls

ness without significantly reducing performance on
training sets (Shafahi et al., 2019; Zhang et al., 2019;
Pang et al., 2022; Gao et al., 2019). While some works
(e.g., Carlini et al. 2019; Uesato et al. 2018) exam-
ine adversarial robustness guarantees of various train-
ing algorithms, a recent stream of research (e.g., Ben-
nouna et al. 2023; Xing et al. 2022b) focuses on adver-
sarially robust optimization (ARO), constraining ERM
to guarantee an exact pre-specified level of adversarial
robustness while maximizing training accuracy.

Recently, it has been observed that the two aforemen-
tioned notions of robustness can conflict, as adversari-
ally robust (AR) models suffer from severe overfitting
(robust overfitting ; Raghunathan et al. 2019; Yu et al.
2022; Li and Spratling 2023). Indeed, it is observed
that robust overfitting is even more severe than tradi-
tional overfitting (Rice et al., 2020). To this end, some
works address robust overfitting by revisiting AT algo-
rithms and adding adjustments for better generaliza-
tion (Chen et al., 2020; Li and Li, 2023). In a recent
work, Bennouna et al. (2023, Thm 3.2) decompose the
error gap of robust overfitting into the statistical error
of estimating the true data-generating distribution via
the empirical distribution and an adversarial error re-
sulting from the adversarial attacks, hence proposing
the simultaneous adoption of DRO and ARO.

In this work, we study logistic regression (LR) for bi-
nary classification that is adversarially robust against
ℓp-attacks (Croce et al., 2020). To address robust over-
fitting faced by the adversarially robust LR model, we
employ a DRO approach where distributional ambigu-
ity is modeled with the type-1 Wasserstein metric. We
base our work on an observation that the worst-case
logistic loss under adversarial attacks can be repre-
sented as a Lipschitz continuous and convex loss func-
tion. This allows us to use existing Wasserstein DRO
machinery for Lipschitz losses, and derive an exact re-
formulation of the Wasserstein DR counterpart of ad-
versarially robust LR as a tractable convex problem.

Our main contribution lies in reducing the size of
the Wasserstein ambiguity set in the DRO problem
mentioned above, in order to create a less conser-
vative problem while preserving the same robustness
guarantees. To accomplish this, we draw inspiration
from recent work on ARO that leverages auxiliary
datasets (e.g., Gowal et al. 2021; Xing et al. 2022b)
and revise our DRO problem by intersecting its ambi-
guity set with another ambiguity set constructed us-
ing an auxiliary dataset. Examples of auxiliary data
include synthetic data generated from a generative
model (e.g., privacy-preserving data release), data in
the presence of distributional shifts (e.g., different time
periods/regions), noisy data (e.g., measurement er-
rors), or out-of-domain data (e.g., different source);
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Figure 1: Traditional ARO optimizes the expected ad-
versarial loss over the empirical distribution PN con-
structed from N i.i.d. samples of the (unknown) true
data-generating distribution P0. Replacing PN with a
worst-case distribution in the ball Bε(PN ) gives us its
DR counterpart. To reduce the size of this ball, we in-
tersect it with another ball Bε̂(P̂N̂ ) while ensuring P0

is still included with high confidence. The latter ball is
centered at an empirical distribution P̂N constructed
from N̂ i.i.d. samples of some auxiliary distribution
P̂. Recent works using auxiliary data in ARO propose
optimizing the expected adversarial loss over a mixture
Qmix of PN and P̂N̂ ; we show that this distribution re-

sides in Bε(PN ) ∩Bε̂(P̂N̂ ) under some conditions.

any auxiliary dataset is viable as long as its instances
are sampled independently from an underlying data-
generating distribution whose Wasserstein distance to
the true data-generating distribution is known or can
be estimated. Figure 1 illustrates our framework.

The paper unfolds as follows. In Section 2, we review
related literature on DRO and ARO, with a focus on
their interactions. We examine the use of auxiliary
data in ARO and the intersection of Wasserstein balls
in DRO. We discuss open questions for LR to motivate
our loss function choice in this work. Section 3 gives
preliminaries on ERM, ARO, and type-1 Wasserstein
DRO. In Section 4, we discuss that the adversarial lo-
gistic loss can be reformulated as a Lipschitz convex
function, enabling the use of Wasserstein DRO ma-
chinery for Lipschitz losses. Our main contribution
(cf. Figure 1) is in Section 5, where we provide an ex-
plicit reformulation of the distributionally and adver-
sarially robust LR problem over the intersection of two
Wasserstein balls, prove the NP-hardness of this prob-
lem, and derive a convex relaxation of it. Our work is
mainly on optimization where we focus on how to solve
the underlying problems upon cross-validating Wasser-
stein ball radii, however, in Section 6 we discuss some
preliminary statistical approaches to set such radii.
We close the paper with numerical experiments on
standard benchmark datasets in Section 7. We bor-
row the standard notation in DR machine learning,
which is elaborated on in our Appendices.
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2 RELATED WORK

Auxiliary data in ARO. The use of auxiliary data
appears in the ARO literature. In particular, it is
shown that additional unlabeled data sampled from
the same (Carmon et al., 2019; Xing et al., 2022a)
or different (Deng et al., 2021) data-generating dis-
tributions could provide adversarial robustness. Se-
hwag et al. (2022) show that adversarial robustness
can be certified even when it is provided for a syn-
thetic dataset as long as the distance between its gen-
erator and the true data-generating distribution can
be quantified. Gowal et al. (2021); Xing et al. (2022b)
propose optimizing a weighted combination of ARO
over empirical and synthetic datasets. We show that
the latter approach can be recovered by our model.

DRO-ARO interactions. In our work, we opti-
mize ARO against worst-case data-generating distri-
butions residing in an ambiguity set, where the type-1
Wasserstein metric is used for distances since it is
arguably the most common choice in machine learn-
ing (ML) with Lipschitz losses (Shafieezadeh-Abadeh
et al., 2019; Gao, 2023). In the literature, it is shown
that standard ARO is equivalent to the DRO of the
original loss function with a type-∞ Wasserstein met-
ric (Staib and Jegelka, 2017; Khim and Loh, 2018;
Pydi and Jog, 2021; Regniez et al., 2022; Frank and
Niles-Weed, 2024), or a Lévy-Prokhorov metric (Ben-
nouna and Van Parys, 2022). In other words, in the
absence of adversarial attacks, training models adver-
sarially with artificial attacks provide some distribu-
tional robustness. Hence, our DR ARO approach can
be interpreted as optimizing the logistic loss over the
worst-case distribution whose 1-Wasserstein distance
is bounded by a pre-specified radius from at least one
distribution residing in an ∞-Wasserstein ball around
the empirical distribution. Conversely, Sinha et al.
(2018) discuss that while DRO over Wasserstein balls
is intractable for generic losses (e.g., neural networks),
its Lagrange relaxation resembles ARO and thus ARO
yields a certain degree of (relaxed) distributional ro-
bustness (Wu et al., 2020; Bui et al., 2022; Phan et al.,
2023). However, to the best of our knowledge, there
have not been works optimizing a pre-specified level
of type-1 Wasserstein distributional robustness (that
hedges against overfitting, Kuhn et al. 2019) and ad-
versarial robustness (that hedges against adversarial
attacks, Goodfellow et al. 2015) simultaneously. To
our knowledge, the only approach that considers the
exact DR counterpart of ARO is proposed by Ben-
nouna et al. (2023) who model distributional ambigu-
ity with φ-divergences for neural networks.

Intersecting ambiguity sets in DRO. Recent work
started to explore the intersection of ambiguity sets

for different contexts (Awasthi et al., 2022; Wang
et al., 2024) or different metrics (Zhang et al., 2023).
Our idea of intersecting Wasserstein balls is originated
from the “Surround, then Intersect” strategy (Taske-
sen et al., 2021, §5.2) to train linear regression under
sequential domain adaptation in a non-adversarial set-
ting (see Shafahi et al. 2020 and Song et al. 2019 for
robustness in domain adaptation/transfer learning).
The aforementioned work focuses on the squared loss
function with an ambiguity set using the Wasserstein
metric developed for the first and second distributional
moments. In a recent study, Rychener et al. (2024)
generalize most of the previous results and prove that
DRO problems over the intersection of twoWasserstein
balls admit tractable convex reformulations whenever
the loss function is the maximum of concave functions

Logistic loss in DRO and ARO. Our choice of
LR aligns with the current directions and open ques-
tions in the related literature. In the DRO literature,
even in the absence of adversarial attacks, the afore-
mentioned work of Taskesen et al. (2021) on the inter-
section of Wasserstein ambiguity sets is restricted to
linear regression. The authors show that this problem
admits a tractable convex optimization reformulation,
and their proof relies on the properties of the squared
loss. Similarly, Rychener et al. (2024) discuss that the
logistic loss fails to satisfy the piece-wise concavity as-
sumption and is inherently difficult to optimize over
the intersection of Wasserstein balls. We contribute to
the DRO literature for adversarial and non-adversarial
settings because we show that such a problem would be
NP-hard for the logistic loss even without adversarial
attacks, and develop specialized approximation tech-
niques. Our problem recovers DR LR (Shafieezadeh-
Abadeh et al., 2015; Selvi et al., 2022) as a special
case in the absence of adversarial attacks and auxil-
iary data. Answering theoretical challenges posed by
logistic regression has been useful in answering more
general questions in the DRO literature, such as DR
LR (Shafieezadeh-Abadeh et al., 2015) leading to DR
ML (Shafieezadeh-Abadeh et al., 2019) and mixed-
feature DR LR (Selvi et al., 2022) leading to mixed-
feature DR Lipschitz ML (Belbasi et al., 2023). Fi-
nally, in the (non-DR) ARO literature, there are re-
cent theory developments on understanding the effect
of auxiliary data (e.g., Xing et al. 2022b) specifically
for squared and logistic loss functions.

3 PRELIMINARIES

We consider a binary classification problem where an
instance is modeled as (x, y) ∈ Ξ := Rn×{−1,+1} and
the labels depend on the features via Prob[y | x] =
[1 + exp(−y ·β⊤x)]−1 for some β ∈ Rn; its associated
loss is the logloss ℓβ(x, y) := log(1 + exp (−y · β⊤x)).
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Empirical risk minimization. Let P(Ξ) denote the
set of distributions supported on Ξ and P0 ∈ P(Ξ) de-
note the true data-generating distribution. One wants
to minimize the expected logloss over P0, that is

inf
β∈Rn

EP0 [ℓβ(x, y)]. (RM)

In practice, P0 is hardly ever known, and one resorts
to the empirical distribution PN = 1

N

∑
i∈[N ] δξi where

ξi = (xi, yi), i ∈ [N ], are i.i.d. samples from P0 and
δξ denotes the Dirac distribution supported on ξ. The
empirical risk minimization (ERM) problem is thus

inf
β∈Rn

EPN
[ℓβ(x, y)]. (ERM)

Distributionally robust optimization. To be able
to define a distance between distributions, we first de-
fine the following feature-label metric on Ξ.

Definition 1. The distance between instances ξ =
(x, y) ∈ Ξ and ξ′ = (x′, y′) ∈ Ξ for κ > 0 and q ≥ 1 is

d(ξ, ξ′) = ∥x− x′∥q + κ · 1[y ̸= y′].

Using this metric, we define the Wasserstein distance.

Definition 2. The type-1 Wasserstein distance be-
tween distributions Q,Q′ ∈ P(Ξ) is defined as

W(Q,Q′) = inf
Π∈C(Q,Q′)

{∫
Ξ×Ξ

d(ξ, ξ′)Π(dξ,dξ′)

}
,

where C(Q,Q′) is the set of couplings of Q and Q′.

In finite-data settings, the distance between the true
data-generating distribution and the empirical distri-
bution is upper-bounded by some ϵ > 0. The Wasser-
stein DRO problem is thus defined as

inf
β∈Rn

sup
Q∈Bε(PN )

EQ[ℓβ(x, y)], (DRO)

where Bε(P) := {Q ∈ P(Ξ) : W(Q,P) ≤ ε} denotes
the Wasserstein ball centered at P ∈ P(Ξ) with radius
ε. We refer to Mohajerin Esfahani and Kuhn (2018)
and Kuhn et al. (2019) for the properties of DRO.

Adversarially robust optimization. The goal of
adversarial robustness is to provide robustness against
adversarial attacks (Goodfellow et al., 2015). An ad-
versarial attack, in the widely studied ℓp-noise set-
ting (Croce et al., 2020), perturbs the features of the
test instances (x, y) by adding additive noise z to x.
The adversary chooses the noise vector z, subject to
∥z∥p ≤ α, so as to maximize the loss ℓβ(x + z, y) as-
sociated with this perturbed test instance. Therefore,
ARO solves the following optimization problem in the

training stage to hedge against adversarial perturba-
tions at the test stage:

inf
β∈Rn

EPN
[ sup
z:∥z∥p≤α

{ℓβ(x+ z, y)}]. (ARO)

ARO reduces to ERM when α = 0. Note that ARO is
identical to feature robust training (Bertsimas et al.,
2019) which is not motivated by adversarial attacks,
but the presence of noisy observations in the training
set (Ben-Tal et al., 2009; Gorissen et al., 2015).

DRO-ARO connection. A connection between
ARO and DRO is noted in the literature (Staib and
Jegelka 2017, Proposition 3.1, Khim and Loh 2018,
Lemma 22, Pydi and Jog 2021, Lemma 5.1, Reg-
niez et al. 2022, Proposition 2.1, Frank and Niles-
Weed 2024, Lemma 3, and Bennouna et al. 2023, §3).
Namely, problem ARO is equivalent to a DRO problem

inf
β∈Rn

sup
Q∈B∞

α (PN )

EQ[ℓβ(x, y)], (1)

where the ambiguity set B∞
α (PN ) is a type-∞ Wasser-

stein ball (Givens and Shortt, 1984) with radius α.
Hence, in non-adversarial settings, ARO provides ro-
bustness with respect to the type-∞ Wasserstein dis-
tance. In the case of adversarial attacks, it suffers from
robust overfitting as discussed earlier. To address this
issue, one straightforward approach is to revisit (1)
and replace α with some α′ > α. This approach, how-
ever, does not provide improvements for the out-of-
sample performance since (i) the type-∞ Wasserstein
distance employed in problem (1) uses a metric on the
feature space, ignoring labels; (ii) type-∞ Wasserstein
distances do not provide strong out-of-sample perfor-
mances in ML (unlike, e.g., the type-1 Wasserstein
distance) since the required radii to provide meaning-
ful robustness guarantees are typically too large (Ben-
nouna and Van Parys, 2022, §1.2.2, and references
therein). We thus study the type-1 Wasserstein coun-
terpart of ARO, which we initiate in the next section.

4 DISTRIBUTIONALLY AND
ADVERSARIALLY ROBUST LR

Here we derive the Wasserstein DR counterpart
of ARO that will set the ground for our main result in
the next section. We impose the following assumption.

Assumption 1. We are given a finite ε > 0 value
satisfying W(P0,PN ) ≤ ε.

The assumption implies that we know an ε > 0 value
satisfying P0 ∈ Bε(PN ). Typically, however, ε is ei-
ther estimated through cross-validation or finite sam-
ple statistics, with the assumption then regarded as
holding with high confidence (see §6 for a review of
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related results we can borrow). The distributionally
and adversarially robust LR problem is thus:

inf
β∈Rn

sup
Q∈Bε(PN )

EQ[ sup
z:∥z∥p≤α

{ℓβ(x+ z, y)}]. (DR-ARO)

By employing a simple duality trick for the inner sup-
problem, as commonly applied in robust optimiza-
tion (Ben-Tal et al., 2009; Bertsimas and Den Her-
tog, 2022), we can represent DR-ARO as a standard
non-adversarial DRO problem with an updated loss
function, which we name the adversarial loss.

Observation 1. Problem DR-ARO is equivalent to

inf
β∈Rn

sup
Q∈Bε(PN )

EQ[ℓ
α
β(x, y)],

where the adversarial loss ℓαβ is defined as

ℓαβ(x, y) := log(1 + exp(−y · β⊤x+ α · ∥β∥p⋆)),

for p⋆ satisfying 1/p + 1/p⋆ = 1. The univariate rep-
resentation Lα(z) := log(1 + exp(−z + α · ∥β∥p⋆)) of
ℓαβ is convex and has a Lipschitz modulus of 1.

As a corollary of Observation 1, we can directly employ
the techniques proposed by Shafieezadeh-Abadeh et al.
(2019) to dualize the inner sup-problem of DR-ARO
and obtain a tractable reformulation.

Corollary 1. Problem DR-ARO admits the following
tractable convex optimization reformulation:

inf
β,λ,s

ελ+
1

N

N∑
i=1

si

s.t. ℓαβ(x
i, yi) ≤ si ∀i ∈ [N ]

ℓαβ(x
i,−yi)− λκ ≤ si ∀i ∈ [N ]

∥β∥q⋆ ≤ λ

β ∈ Rn, λ ≥ 0, s ∈ RN
+ ,

for q⋆ satisfying 1/q + 1/q⋆ = 1.

The constraints of this problem are exponential cone
representable (derivation is in the appendices) and for
q ∈ {1, 2,∞}, the yielding problem can be solved with
the exponential cone solver of MOSEK (MOSEK ApS,
2023) in polynomial time (Nesterov, 2018).

5 MAIN RESULT

In §4 we discussed the traditional DRO setting where
we have access to an empirical distribution PN con-
structed from N i.i.d. samples of the true data-
generating distribution P0, and we are given (or we
estimate) some ε so that P0 ∈ Bε(PN ). Recently in
DRO literature, it became a key focus to study the case
where we have access to an additional auxiliary empir-
ical distribution P̂N̂ constructed from N̂ i.i.d. samples

ξ̂j = (x̂j , ŷj), j ∈ [N̂ ], of some other distribution P̂;
given the increasing availability of useful auxiliary data
in the ARO domain, we explore this direction here. We
start with the following assumption.

Assumption 2. We are given finite ε, ε̂ > 0 values
satisfying W(P0,PN ) ≤ ε and W(P0, P̂N̂ ) ≤ ε̂.

The assumption implies that we know ε, ε̂ > 0 values
satisfying P0 ∈ Bε(PN ) ∩ Bε̂(P̂N̂ ). In practice, this
assumption is ensured to hold with high confidence by
estimating the ε and ε̂ values; methods across various
domains which we can adopt are reviewed in §6. Under
Assumption 2, we want to optimize the adversarial loss
over the intersection Bε(PN ) ∩Bε̂(P̂N̂ ):

inf
β∈Rn

sup
Q∈Bε(PN )∩Bε̂(P̂N̂

)

EQ[ℓ
α
β(x, y)]. (Inter-ARO)

This formulation is expected to outperform DR-ARO
as the ambiguity set is smaller while still including P0.
However, problem Inter-ARO is challenging to solve
even in the absence of adversarial attacks (α = 0) as
we reviewed in §2. To address this challenge, we first
reformulate Inter-ARO as a semi-infinite optimization
problem with finitely many variables.

Proposition 1. Inter-ARO is equivalent to:

inf
β,λ,λ̂
s,ŝ

ελ+ ε̂λ̂+
1

N

N∑
i=1

si +
1

N̂

N̂∑
j=1

ŝj

s.t.

 sup
x∈Rn

{ℓαβ(x, l)− λ∥xi − x∥q − λ̂∥x̂j − x∥q}

≤ si +
κ(1− lyi)

2
λ+ ŝj +

κ(1− lŷj)

2
λ̂


∀i ∈ [N ], j ∈ [N̂ ], l ∈ {−1, 1}

β ∈ Rn, λ ≥ 0, λ̂ ≥ 0, s ∈ RN
+ , ŝ ∈ RN̂

+ .

Even though this problem recovers the tractable prob-
lem DR-ARO as ε̂ → ∞, it is NP-hard in the finite
radius settings. We reformulate Inter-ARO as an ad-
justable robust optimization problem (Ben-Tal et al.,
2004; Yanıkoğlu et al., 2019), and borrow tools from
this literature to obtain the following result.

Proposition 2. Inter-ARO is equivalent to an ad-
justable RO problem with O(N · N̂) two-stage robust

constraints, which is NP-hard even when N = N̂ = 1.

The adjustable RO literature has developed a rich arse-
nal of relaxations that can be leveraged for Inter-ARO.
We adopt the ‘static relaxation technique’ (Bertsimas
et al., 2015) to restrict the feasible region of Inter-ARO
and obtain a tractable approximation.

Theorem 1 (main). The following convex optimiza-
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tion problem is a feasible relaxation of Inter-ARO:

inf
β,λ,λ̂,s,ŝ

z+
ij ,z

−
ij

ελ+ ε̂λ̂+
1

N

N∑
i=1

si +
1

N̂

N̂∑
j=1

ŝj

s.t.


Lα(l · β⊤xi + zl⊤

ij (x̂
j − xi))

≤ si +
κ(1− lyi)

2
λ+ ŝj +

κ(1− lŷj)

2
λ̂,

∥lβ − zl
ij∥q⋆ ≤ λ, ∥zl

ij∥q⋆ ≤ λ̂


∀i ∈ [N ], j ∈ [N̂ ], l ∈ {−1, 1}

β ∈ Rn, λ ≥ 0, λ̂ ≥ 0, s ∈ RN
+ , ŝ ∈ RN̂

+

zl
ij ∈ Rn, (i, j, l) ∈ [N ]× [N̂ ]× {−1, 1}.

(Inter-ARO⋆)

Similarly to DR-ARO, the constraints of Inter-ARO⋆

are exponential cone representable (cf. appendices).

Recall that for ε̂ large enough, Inter-ARO reduces
to DR-ARO. The following corollary shows that, de-
spite Inter-ARO⋆ being a relaxation of Inter-ARO, a
similar property holds. That is, “not learning anything
from auxiliary data” remains feasible: the static relax-
ation does not force learning from P̂N̂ , and it learns
from auxiliary data only if the objective improves.

Corollary 2. Feasibility of ignoring auxiliary data:
Any feasible solution (β, λ, s) of DR-ARO can be

used to recover a feasible solution (β, λ, λ̂, s, ŝ, z+
ij , z

−
ij)

for Inter-ARO⋆ with λ̂ = 0, ŝ = 0, and z+
ij = z−

ij = 0.
Convergence to Inter-ARO: The optimal value of
Inter-ARO⋆ converges to the optimal value of Inter-
ARO, with the same set of β solutions, as ε̂ → ∞.

We close the section by discussing how Inter-ARO can
recover some problems in the DRO and ARO liter-
ature. Firstly, recall that Inter-ARO can ignore the
auxiliary data once ε̂ is set large enough, reducing this
problem to DR-ARO. Moreover, notice that α = 0 re-
duces ℓαβ to ℓβ, hence for α = 0 and ε̂ = ∞ Inter-ARO
recovers the Wasserstein LR model of Shafieezadeh-
Abadeh et al. (2015). We next relate Inter-ARO to
the problems in the ARO literature that use auxiliary
data. The works in this literature (Gowal et al., 2021;
Xing et al., 2022b) solve the following for some w > 0:

inf
β∈Rn

1

N + wN̂

[ ∑
i∈[N ]

sup
zi∈Bp(α)

{ℓβ(xi + zi, yi)}+

w
∑
j∈[N̂ ]

sup
zj∈Bp(α)

{ℓβ(x̂j + zj , ŷj)}
]
,

(2)

where Bp(α) := {z ∈ Rn : ∥z∥p ≤ α}. We first observe
that this resembles ARO, with the empirical distribu-
tion PN being replaced with its mixture with P̂N̂ :

Observation 2. Problem (2) is equivalent to

inf
β∈Rn

EQmix
[ℓαβ(x, y)] (3)

where Qmix := λ · PN + (1− λ) · P̂N̂ for λ = N

N+wN̂
.

We give a condition on ε and ε̂ to guarantee that the
mixture distribution introduced in Proposition 2 lives
in Bε(PN ) ∩ Bε̂(P̂N̂ ), that is, the distribution Qmix

will be feasible in the sup problem of Inter-ARO.

Proposition 3. For any λ ∈ (0, 1) and Qmix = λ ·
PN + (1− λ) · P̂N̂ , we have Qmix ∈ Bε(PN ) ∩Bε̂(P̂N̂ )

whenever ε+ ε̂ ≥ W(PN , P̂N̂ ) and ε̂
ε = λ

1−λ .

For λ = N

N+N̂
, if the intersection Bε(PN ) ∩ Bε̂(P̂N̂ )

is nonempty, Proposition 3 implies that a sufficient
condition for this intersection to include Qmix is ε̂/ε =

N/N̂ , which is intuitive since the radii of Wasserstein
ambiguity sets are chosen inversely proportional to the
number of samples (Kuhn et al., 2019, Theorem 18).

6 SETTING WASSERSTEIN RADII

Thus far, we have assumed knowledge of DRO ball
radii ε and ε̂ that satisfy Assumptions 1 and 2. In this
section, we employ Wasserstein finite-sample statistics
techniques to estimate these values.

Setting ϵ for DR-ARO. In the following theorem,
we present tight characterizations for ε so that the ball
Bε(PN ) includes the true distribution P0 with arbi-
trarily high confidence. We show that for an ε chosen
in such a manner, DR-ARO is well-defined. The full
description of this result is available in our appendices.

Theorem 2 (abridged). For light-tailed distribution

P0 and ε ≥ O( log(η
−1)

N )1/n for η ∈ (0, 1), we have: (i)
P0 ∈ Bε(PN ) with 1−η confidence; (ii) DR-ARO over-
estimates the expected loss for P0 with 1−η confidence;
(iii) DR-ARO is asymptotically consistent P0-a.s.; (iv)
worst-case distributions for optimal solutions of DR-
ARO are supported on at most N + 1 outcomes.

We next derive an analogous result for Inter-ARO.

Choosing ϵ and ϵ′ in Inter-ARO. Recall that Inter-
ARO revises DR-ARO by intersecting Bε(PN ) with

Bε̂(P̂N̂ ). We need a nonempty intersection for Inter-
ARO to be well-defined. A sufficient condition follows
from the triangle inequality: ε+ ε̂ ≥ W(PN , P̂N̂ ). We
also want this intersection to include P0 with high con-
fidence, in order to satisfy Assumption 2. We next
provide a tight characterization for such ε, ε̂. The full
description of this result is available in our appendices.

Theorem 3 (abridged). For light-tailed P0 and P̂, if
ε ≥ O(

log(η−1
1 )

N )1/n and ε̂ ≥ W(P0, P̂) +O(
log(η−1

2 )

N̂
)1/n

for η1, η2 ∈ (0, 1) with η := η1 + η2 < 1, we have: (i)

P0 ∈ Bε(PN )∩Bε̂(P̂N̂ ) with 1−η confidence; (ii) Inter-
ARO overestimates true loss with 1− η confidence.
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Remark 1. Inter-ARO is not asymptotically consis-
tent, given that N̂ → ∞ will let ε̂ → W(P0, P̂) due to
the non-zero constant distance between the true distri-
bution P0 and the auxiliary distribution P̂. Inter-ARO
is thus not useful in asymptotic data regimes.

Knowledge of W(P0, P̂). In Theorem 3, we use

W(P0, P̂) explicitly. This distance, however, is typi-
cally unknown, and a common approach is to cross-
validate it1. This would be applicable in our setting
thanks to Corollary 2, because the relaxation prob-
lem Inter-ARO⋆ is not forced to learn from the auxil-
iary data unless it is useful, that is, one can find evi-
dence for the usefulness of the auxiliary data via cross-
validation. Moreover, there are several domains where
W(P0, P̂) is known exactly. For some special cases, we
can use direct domain knowledge (e.g., the “Uber vs
Lyft” example of Taskesen et al. 2021). A very re-
cent example comes from learning from multi-source
data, where P0 is named the target distribution and P̂
is the source distribution (Rychener et al., 2024, §1).
Another domain is private data release, where a data
holder shares a subset of opt-in data to form PN , and
generates a privacy-preserving synthetic dataset from
the rest. The (privately generated) synthetic distribu-
tion has a known nonzero Wasserstein distance from
the true data-generating distribution (Dwork et al.,
2014; Ullman and Vadhan, 2020). Alternatively, one

can directly rely on W(PN , P̂) when it is known, es-
pecially when synthetic data generators are trained
on the empirical dataset. By employing Wasserstein
GANs, which minimize the Wasserstein-1 distance, the
distance between the generated distribution and the
training distribution is minimized. This ensures that
the synthetic distribution remains within a small ra-
dius of the training distribution (Arjovsky et al., 2017).

7 EXPERIMENTS

We conduct a series of experiments, each having a dif-
ferent source of auxiliary data, to test the proposed DR
ARO models using empirical and auxiliary datasets.
We use the following abbreviations, where ‘solution’
refers to the optimal β to make decisions:

- ERM: Solution of problem ERM (i.e., naiv̈e LR);

- ARO: Solution of problem ARO (i.e., adversarially
robust LR);

- ARO+Aux: Solution of problem (2) (i.e., replacing
the empirical distribution of ARO with its mix-
ture with auxiliary data);

1Note that, in practice, the distance between the un-
known true and auxiliary data-generating distributions is
also cross-validated in the transfer learning and domain
adaptation literature (Zhong et al., 2010).

- DRO+ARO: Solution of DR-ARO (i.e., the Wasser-
stein DR counterpart of ARO);

- DRO+ARO+Aux: Solution of Inter-ARO⋆ (i.e., relax-
ation of Inter-ARO that revises DR-ARO and in-
tersects its ambiguity set with a Wasserstein ball
built using auxiliary data);

Recall that DRO+ARO and DRO+ARO+Aux are the DR
models that we propose. Note also that, ERM, ARO, and
DRO+ARO are oblivious to auxiliary data. All Wasser-
stein radii of DR models, and the weight parameters of
ARO+Aux are cross-validated from the same grids. All
experiments are conducted in Julia (Bezanson et al.,
2014) and executed on Intel Xeon 2.66GHz proces-
sors with 16GB memory in single-core mode. We use
MOSEK’s exponential cone optimizer to solve all prob-
lems. Implementation details are in the appendices.

7.1 UCI Datasets (Auxiliary Data is
Synthetically Generated)

We compare the out-of-sample error rates of each
method on 10 UCI datasets for binary classifica-
tion (Kelly et al., 2023). For each dataset, we run
10 simulations as follows: (i) Select 40% of the data
as a test set (Nte ∝ 0.4); (ii) Sample 25% of the re-
maining to form a training set (N ∝ 0.6 · 0.25); (iii)
The rest (N̂ ∝ 0.6 · 0.75) is used to fit a synthetic gen-
erator Gaussian Copula from the SDV package (Patki
et al., 2016), which is then used to generate auxiliary
data. The mean errors on the test set are reported in
Table 1 for ℓ2-attacks of strength α = 0.05. The best
error is always achieved by DRO+ARO+Aux, followed by
DRO+ARO, DRO+Aux, ARO, ERM, respectively. In our ap-
pendices, we report similar results for attack strengths
α ∈ {0, 0.05, 0.2}, and share data preprocessing details
and standard deviations of out-of-sample errors.

7.2 MNIST/EMNIST Datasets (Auxiliary
Data is Out-of-Domain)

We use the MNIST digits dataset (LeCun et al., 1998)
to classify whether a digit is 1 or 7. For an auxiliary
dataset, we use the larger EMNIST digits dataset (Co-
hen et al., 2017), whose authors summarize that this
dataset has additional samples collected from a differ-
ent group of individuals (high school students). Since
EMNIST digits include MNIST digits, we remove the
latter from the EMNIST dataset. We simulate the fol-
lowing 25 times: (i) Sample 1,000 instances from the
MNIST dataset as a training set; (ii) The remaining
instances in the MNIST dataset are our test set; (iii)
Sample 1,000 instances from the EMNIST dataset as
an auxiliary dataset. Table 2 reports the mean out-
of-sample errors in various adversarial attack regimes.
The results are analogous to the UCI experiments.
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Table 1: Out-of-sample errors of UCI experiments with ℓ2-attacks of strength α = 0.05.

Data ERM ARO ARO+Aux DRO+ARO DRO+ARO+Aux

absent 44.02% 38.82% 35.95% 34.22% 32.64%
anneal 18.08% 16.61% 14.97% 13.50% 12.78%
audio 21.43% 21.54% 17.03% 11.76% 9.01%
breast-c 4.74% 4.93% 3.87% 3.06% 2.52%
contrac 44.14% 42.86% 40.98% 40.00% 39.65%
derma 15.97% 16.46% 13.47% 12.78% 10.84%
ecoli 16.30% 14.67% 13.26% 11.11% 9.78%
spam 11.35% 10.23% 10.16% 9.83% 9.81%
spect 33.75% 29.69% 25.78% 25.47% 21.56%
p-tumor 21.84% 20.81% 17.35% 16.18% 14.78%

Table 2: Out-of-sample errors of MNIST/EMNIST experiments with various attacks.

Attack ERM ARO ARO+Aux DRO+ARO DRO+ARO+Aux

No attack (α = 0) 1.55% 1.55% 1.19% 0.64% 0.53%
ℓ1 (α = 68/255) 2.17% 1.84% 1.33% 0.66% 0.57%
ℓ2 (α = 128/255) 99.93% 3.36% 2.54% 2.40% 2.12%
ℓ∞ (α = 8/255) 100.00% 2.60% 2.38% 2.20% 1.95%

7.3 Artificial Experiments (Auxiliary Data is
Perturbed)

We generate empirical and auxiliary datasets by con-
trolling their data-generating distributions (more de-
tails in the appendices). We simulate 25 cases, each

with N = 100 training, N̂ = 200 auxiliary, and
Nte = 10, 000 test instances and n = 100 features.
The performance of benchmark models with varying
ℓ2-attacks is available in Figure 2 (left). ERM provides
the worst performance, followed by ARO. The relation-
ship between DRO+ARO and ARO+Aux is not monotonic:
the latter works better in larger attack regimes, con-
forming to the robust overfitting phenomenon. Finally,
Adv+DRO+Aux always performs the best. We conduct a
similar simulation for datasets with n = 100, and grad-
ually increase N = N̂ to report median (50% ± 15%
quantiles shaded) runtimes of each method (cf. Fig-
ure 2, right). The fastest methods is ARO, followed by
ERM, ARO+Aux, DRO+ARO, and DRO+ARO+Aux. The slow-
est is DRO+ARO+Aux, but the runtime scales graciously.

8 CONCLUSIONS

We formulate the distributionally robust counterpart
of adversarially robust logistic regression. Addition-
ally, we demonstrate how to effectively utilize appro-
priately curated auxiliary data by intersecting Wasser-
stein balls. We illustrate the superiority of the pro-
posed approach in terms of out-of-sample performance
and confirm its scalability in practical settings.

It would be natural to extend our results to more
loss functions as is typical for theoretical DRO studies
stemming from logistic regression. Moreover, recent
breakthroughs in the area of foundation models nat-
urally pose the question of whether our ideas in this
work apply to these models. For example, Ye et al.
(2022) use pre-trained language model (PLM) to gen-
erate synthetic pairs of text sequences and labels which
are then used to train downstream models. It would
be interesting to adapt our ideas to the text domain
to explore robustness in the presence of two PLMs.

References

Arjovsky, M., Chintala, S., and Bottou, L. (2017).
Wasserstein generative adversarial networks. In Pro-
ceedings of the 34th International Conference on
Machine Learning, volume 70.

Awasthi, P., Jung, C., and Morgenstern, J. (2022).
Distributionally robust data join. arXiv:2202.05797.

Belbasi, R., Selvi, A., and Wiesemann, W. (2023). It’s
all in the mix: Wasserstein machine learning with
mixed features. arXiv:2312.12230.

Ben-Tal, A., Ghaoui, L. E., and Nemirovski, A. (2009).
Robust Optimization. Princeton University Press.

Ben-Tal, A., Goryashko, A., Guslitzer, E., and Ne-
mirovski, A. (2004). Adjustable robust solutions of
uncertain linear programs. Mathematical Program-
ming, 99(2):351–376.

Bennouna, A., Lucas, R., and Van Parys, B. (2023).
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9 NOTATION

Throughout the paper, bold lower case letters denote vectors, while standard lower case letters are reserved
for scalars. A generic data instance is modeled as ξ = (x, y) ∈ Ξ := Rn × {−1,+1}. For any p > 0, ∥x∥p
denotes the rational norm (

∑n
i=1|xi|p)

1/p
and ∥x∥p⋆ is its dual norm where 1/p+ 1/p⋆ = 1 with the convention

of 1/1 + 1/∞ = 1. The set of probability distributions supported on Ξ is denoted by P(Ξ). The Dirac measure
supported on ξ is denoted by δξ. The logloss is defined as ℓβ(x, y) = log(1 + exp(−y · β⊤x)) and its associated
univariate loss is L(z) = log(1 + exp(−z)) so that L(y · β⊤x) = ℓβ(x, y). The exponential cone is denoted
by Kexp = cl({ω ∈ R3 : ω1 ≥ ω2 · exp(ω3/ω2), ω1 > 0, ω2 > 0}) where cl is the closure operator. The
Lipschitz modulus of a univariate function f is defined as Lip(f) := supz,z′∈R {|f(z)− f(z′)|/|z − z′| : z ̸= z}
whereas its effective domain is dom(f) = {z : f(z) < +∞}. For a function f : Rn 7→ R, its convex conjugate is
f∗(z) = supx∈Rn z⊤x− f(x). We reserve α ≥ 0 for the radii of the norms of adversarial attacks on the features
and ε ≥ 0 for the radii of distributional ambiguity sets.

10 MISSING PROOFS

10.1 Proof of Observation 1

For any β ∈ Rn, with standard robust optimization arguments (Ben-Tal et al., 2009; Bertsimas and Den Hertog,
2022), we can show that

sup
z:∥z∥p≤α

{ℓβ(x+ z, y)}

⇐⇒ sup
z:∥z∥p≤α

{log(1 + exp(−y · β⊤(x+ z)))}

⇐⇒ log

(
1 + exp

(
sup

z:∥z∥p≤α

{−y · β⊤(x+ z)}

))

⇐⇒ log

(
1 + exp

(
−y · β⊤x+ α · sup

z:∥z∥p≤1

{−y · β⊤z}

))
⇐⇒ log(1 + exp(−y · β⊤x+ α · ∥−y · β∥p⋆))

⇐⇒ log(1 + exp(−y · β⊤x+ α · ∥β∥p⋆)),

where the first step follows from the definition of logloss, the second step follows from the fact that log and exp
are increasing functions, the third step takes the constant terms out of the sup problem and exploits the fact
that the optimal solution of maximizing a linear function will be at an extreme point of the ℓp ball, the fourth
step uses the definition of dual norm, and finally the redundant −y ∈ {−1,+1} is omitted from the dual norm.
We can therefore define the adversarial loss ℓαβ(x, y) := log(1 + exp(−y · β⊤x+ α · ∥β∥p⋆)) where α models the
strength of the adversary, β is the decision vector, and (x, y) is an instance. Replacing supz:∥z∥p≤α{ℓβ(x+z, y)}
in DR-ARO with ℓαβ(x, y) concludes the equivalence of the optimization problem.

Furthermore, to see Lip(Lα) = 1, firstly note that since Lα(z) = log(1 + exp(−z + α · ∥β∥p⋆)) is differentiable
everywhere in z and its gradient Lα′ is bounded everywhere, we have that Lip(Lα) is equal to supz∈R{|Lα′(z)|}.
We thus have:
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Lα′(z) =
− exp(−z + α · ∥β∥p⋆)

1 + exp(−z + α · ∥β∥p⋆)
=

−1

1 + exp(z − α · ∥β∥p⋆)
∈ (−1, 0)

and |Lα′(z)| = [1 + exp(z − α · ∥β∥p⋆)]
−1 −→ 1 as z −→ −∞.

10.2 Proof of Corollary 1

Observation 1 lets us represent DR-ARO as the DR counterpart of empirical minimization of ℓαβ:

minimize
β

sup
Q∈Bε(PN )

EQ
[
ℓαβ(x, y)

]
subject to β ∈ Rn.

(4)

Since the univariate loss Lα(z) := log(1+ exp(−z+α · ∥β∥p⋆)) satisfying the identity Lα(⟨y ·x,β⟩) = ℓαβ(x, y) is
Lipschitz continuous, Theorem 14 (ii) of Shafieezadeh-Abadeh et al. (2019) is immediately applicable. We can
therefore rewrite (4) as:

minimize
β, λ, s

λ · ε+ 1

N

∑
i∈[N ]

si

subject to Lα(⟨yi · x,β⟩) ≤ si ∀i ∈ [N ]
Lα(⟨−yi · x,β⟩)− λ · κ ≤ si ∀i ∈ [N ]
Lip(Lα) · ∥β∥q⋆ ≤ λ
β ∈ Rn, λ ≥ 0, s ∈ RN .

Replacing Lip(Lα) = 1 and substituting the definition of Lα concludes the proof.

10.3 Proof of Proposition 1

We prove Proposition 1 by constructing the optimization problem in its statement. We will thus dualize the
inner sup problem of Inter-ARO for fixed β. To this end, we present a sequence of reformulations to the inner
problem and then exploit strong semi-infinite duality.

By interchanging ξ = (x, y), we first rewrite the inner problem as

maximize
Q,Π,Π̂

∫
ξ∈Ξ

ℓαβ(ξ)Q(dξ)

subject to

∫
ξ,ξ′∈Ξ2

d(ξ, ξ′)Π(dξ,dξ′) ≤ ε∫
ξ∈Ξ

Π(dξ,dξ′) = PN (dξ′) ∀ξ′ ∈ Ξ∫
ξ′∈Ξ

Π(dξ,dξ′) = Q(dξ) ∀ξ ∈ Ξ∫
ξ,ξ′∈Ξ2

d(ξ, ξ′)Π̂(dξ,dξ′) ≤ ε̂∫
ξ∈Ξ

Π̂(dξ,dξ′) = P̂N̂ (dξ′) ∀ξ′ ∈ Ξ∫
ξ′∈Ξ

Π̂(dξ,dξ′) = Q(dξ) ∀ξ ∈ Ξ

Q ∈ P(Ξ), Π ∈ P(Ξ2), Π̂ ∈ P(Ξ2).

Here, the first three constraints specify that Q and PN have a Wasserstein distance bounded by ε from each
other, modeled via their coupling Π. The latter three constraints similarly specify that Q and P̂N̂ are at most
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ε̂ away from each other, modeled via their coupling Π̂. As Q lies in the intersection of two Wasserstein balls
in Inter-ARO, the marginal Q is shared between Π and Π̂. We can now substitute the third constraint into the
objective and the last constraint and obtain:

maximize
Π,Π̂

∫
ξ∈Ξ

ℓαβ(ξ)

∫
ξ′∈Ξ

Π(dξ,dξ′)

subject to

∫
ξ,ξ′∈Ξ2

d(ξ, ξ′)Π(dξ,dξ′) ≤ ε∫
ξ∈Ξ

Π(dξ,dξ′) = PN (dξ′) ∀ξ′ ∈ Ξ∫
ξ,ξ′∈Ξ2

d(ξ, ξ′)Π̂(dξ,dξ′) ≤ ε̂∫
ξ∈Ξ

Π̂(dξ,dξ′) = P̂N̂ (dξ′) ∀ξ′ ∈ Ξ∫
ξ′∈Ξ

Π̂(dξ,dξ′) =

∫
ξ′∈Ξ

Π(dξ,dξ′) ∀ξ ∈ Ξ

Π ∈ P(Ξ2), Π̂ ∈ P(Ξ2).

Denoting by Qi(dξ) := Π(dξ | ξi) the conditional distribution of Π upon the realization of ξ′ = ξi and exploiting
the fact that PN is a discrete distribution supported on the N data points {ξi}i∈[N ], we can use the marginal-

ized representation Π(dξ,dξ′) = 1
N

∑N
i=1 δξi(dξ′)Qi(dξ). Similarly, we can introduce Q̂i(dξ) := Π̂(dξ | ξ̂i)

for {ξ̂i}i∈[N̂ ] to exploit the marginalized representation Π̂(dξ,dξ′) = 1

N̂

∑N̂
j=1 δξ̂j (dξ

′)Q̂j(dξ). By using this

marginalization representation, we can use the following simplification for the objective function:

∫
ξ∈Ξ

ℓαβ(ξ)

∫
ξ′∈Ξ

Π(dξ,dξ′) =
1

N

N∑
i=1

∫
ξ∈Ξ

ℓαβ(ξ)

∫
ξ′∈Ξ

δξi(dξ′)Qi(dξ) =
1

N

N∑
i=1

∫
ξ∈Ξ

ℓαβ(ξ)Qi(dξ).

Applying analogous reformulations to the constraints leads to the following reformulation of the inner sup problem
of Inter-ARO:

maximize
Q,Q̂

1

N

N∑
i=1

∫
ξ∈Ξ

ℓαβ(ξ)Qi(dξ)

subject to
1

N

N∑
i=1

∫
ξ∈Ξ

d(ξ, ξi)Qi(dξ) ≤ ε

1

N̂

N̂∑
j=1

∫
ξ∈Ξ

d(ξ, ξ̂j)Q̂j(dξ) ≤ ε̂

1

N

N∑
i=1

Qi(dξ) =
1

N̂

N̂∑
j=1

Q̂j(dξ) ∀ξ ∈ Ξ

Qi ∈ P(Ξ), Q̂j ∈ P(Ξ) ∀i ∈ [N ], ∀j ∈ [N̂ ].

We now decompose each Qi into two measures corresponding to y = ±1, so that Qi(d(x, y)) = Qi
+1(dx) for

y = +1 and Qi(d(x, y)) = Qi
−1(dx) for y = −1. We similarly represent each Q̂j via Q̂j

+1 and Q̂j
−1 depending on

y. Note that these new measures are not probability measures as they do not integrate to 1, but non-negative
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measures supported on Rn (denoted ∈ P+(Rn)). We get:

maximize
Q±1,Q̂±1

1

N

N∑
i=1

∫
x∈Rn

[ℓαβ(x,+1)Qi
+1(dx) + ℓαβ(x,−1)Qi

−1(dx)]

subject to
1

N

N∑
i=1

∫
x∈Rn

[d((x,+1), ξi)Qi
+1(dx) + d((x,−1), ξi)Qi

−1(dx)] ≤ ε

1

N̂

N̂∑
j=1

∫
x∈Rn

[d((x,+1), ξ̂j)Q̂j
+1(dx) + d((x,−1), ξ̂j)Q̂j

−1(dx)] ≤ ε̂∫
x∈Rn

Qi
+1(dx) +Qi

−1(dx) = 1 ∀i ∈ [N ]∫
x∈Rn

Q̂j
+1(dx) + Q̂j

−1(dx) = 1 ∀j ∈ [N̂ ]

1

N

N∑
i=1

Qi
+1(dx) =

1

N̂

N̂∑
j=1

Q̂j
+1(dx) ∀x ∈ Rn

1

N

N∑
i=1

Qi
−1(dx) =

1

N̂

N̂∑
j=1

Q̂j
−1(dx) ∀x ∈ Rn

Qi
±1 ∈ P+(Rn), Q̂j

±1 ∈ P+(Rn) ∀i ∈ [N ], j ∈ [N̂ ].

Next, we explicitly write the definition of the metric d(·, ·) in the first two constraints as well as use auxiliary
measures A±1 ∈ P+(Rn) to break down the last two equality constraints:
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maximize
A±1,Q±1,Q̂±1

1

N

N∑
i=1

∫
x∈Rn

[ℓαβ(x,+1)Qi
+1(dx) + ℓαβ(x,−1)Qi

−1(dx)]

subject to
1

N

∫
x∈Rn

[
κ ·

∑
i∈[N ]:yi=−1

Qi
+1(dx) + κ ·

∑
i∈[N ]:yi=+1

Qi
−1(dx)+

N∑
i=1

∥x− xi∥q · [Qi
+1(dx) +Qi

−1(dx)]
]
≤ ε

1

N̂

∫
x∈Rn

[
κ ·

∑
j∈[N ]:ŷj=−1

Q̂j
+1(dx) + κ ·

∑
j∈[N ]:ŷj=+1

Q̂j
−1(dx)+

N̂∑
j=1

∥x− x̂j∥q · [Q̂j
+1(dx) + Q̂j

−1(dx)]
]
≤ ε̂∫

x∈Rn

Qi
+1(dx) +Qi

−1(dx) = 1 ∀i ∈ [N ]∫
x∈Rn

Q̂j
+1(dx) + Q̂j

−1(dx) = 1 ∀j ∈ [N̂ ]

1

N

N∑
i=1

Qi
+1(dx) = A+1(dx) ∀x ∈ Rn

1

N̂

N̂∑
j=1

Q̂j
+1(dx) = A+1(dx) ∀x ∈ Rn

1

N

N∑
i=1

Qi
−1(dx) = A−1(dx) ∀x ∈ Rn

1

N̂

N̂∑
j=1

Q̂j
−1(dx) = A−1(dx) ∀x ∈ Rn

A±1 ∈ P+(Rn), Qi
±1 ∈ P+(Rn), Q̂j

±1 ∈ P+(Rn) ∀i ∈ [N ], j ∈ [N̂ ].

The following semi-infinite optimization problem, obtained by standard algebraic duality, is a strong dual to
the above problem since ε, ε̂ > 0 (Shapiro, 2001).
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minimize
λ,λ̂,s,ŝ,p±1,p̂±1

1

N

Nελ+ N̂ ε̂λ̂+

N∑
i=1

si +

N̂∑
j=1

ŝj


subject to κ

1− yi

2
λ+ λ∥xi − x∥q + si +

p+1(x)

N
≥ ℓαβ(x,+1) ∀i ∈ [N ], ∀x ∈ Rn

κ
1− ŷj

2
λ̂+ λ̂∥x̂j − x∥q + ŝj +

p̂+1(x)

N̂
≥ 0 ∀j ∈ [N̂ ], ∀x ∈ Rn

κ
1 + yi

2
λ+ λ∥xi − x∥q + si +

p−1(x)

N
≥ ℓαβ(x,−1) ∀i ∈ [N ], ∀x ∈ Rn

κ
1 + ŷj

2
λ̂+ λ̂∥x̂j − x∥q + ŝj +

p̂−1(x)

N̂
≥ 0 ∀j ∈ [N̂ ], ∀x ∈ Rn

p+1(x) + p̂+1(x) ≤ 0

p−1(x) + p̂−1(x) ≤ 0

λ ∈ R+, λ̂ ∈ R+, s ∈ RN , ŝ ∈ RN̂

p±1 : Rn 7→ R, p̂±1 : Rn 7→ R.

To eliminate the (function) variables p+1 and p̂+1, we first summarize the constraints they appear
p+1(x) ≥ N ·

[
ℓαβ(x,+1)− si − λ∥xi − x∥q − κ

1− yi

2
λ

]
∀i ∈ [N ], ∀x ∈ Rn

p̂+1(x) ≥ N̂ ·
[
−ŝj − λ̂∥x̂j − x∥q − κ

1− ŷj

2
λ̂

]
∀j ∈ [N̂ ], ∀x ∈ Rn

p+1(x) + p̂+1(x) ≤ 0 ∀x ∈ Rn,

and notice that this system is equivalent to the epigraph-based reformulation of the following constraint

ℓαβ(x,+1)− si − λ∥xi − x∥q − κ
1− yi

2
λ+

N̂

N
·
[
−ŝj − λ̂∥x̂j − x∥q − κ

1− ŷj

2
λ̂

]
≤ 0

∀i ∈ [N ], ∀j ∈ [N̂ ], ∀x ∈ Rn.

We can therefore eliminate p+1 and p̂+1. We can also eliminate p−1 and p̂−1 since we similarly have:
p−1(x) ≥ N ·

[
ℓαβ(x,−1)− si − λ∥xi − x∥q − κ

1 + yi

2
λ

]
∀i ∈ [N ], ∀x ∈ Rn

p̂−1(x) ≥ N̂ ·
[
−ŝj − λ̂∥x̂j − x∥q − κ

1 + ŷj

2
λ̂

]
∀j ∈ [N̂ ], ∀x ∈ Rn

p−1(x) + p̂−1(x) ≤ 0 ∀x ∈ Rn

⇐⇒ ℓαβ(x,−1)− si − λ∥xi − x∥q − κ
1 + yi

2
λ+

N̂

N
·
[
−ŝj − λ̂∥x̂j − x∥q − κ

1 + ŷj

2
λ̂

]
≤ 0

∀i ∈ [N ], ∀j ∈ [N̂ ], ∀x ∈ Rn.

This trick of eliminating p±1, p̂±1 is due to the auxiliary distributions A±1 that we introduced; without them,
the dual problem is substantially harder to work with. We therefore obtain the following reformulation of the
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dual problem

minimize
λ,λ̂,s,ŝ

1

N

Nελ+ N̂ ε̂λ̂+

N∑
i=1

si +

N̂∑
j=1

ŝj


subject to sup

x∈Rn

{ℓαβ(x,+1)− λ∥xi − x∥q −
N̂

N
λ̂∥x̂j − x∥q} ≤

si + κ
1− yi

2
λ+

N̂

N
·
[
ŝj + κ

1− ŷj

2
λ̂

]
∀i ∈ [N ], ∀j ∈ [N̂ ]

sup
x∈Rn

{ℓαβ(x,−1)− λ∥xi − x∥q −
N̂

N
λ̂∥x̂j − x∥q} ≤

si + κ
1 + yi

2
λ+

N̂

N
·
[
ŝj + κ

1 + ŷj

2
λ̂

]
∀i ∈ [N ], ∀j ∈ [N̂ ]

λ ≥ 0, λ̂ ≥ 0, s ∈ RN
+ , ŝ ∈ RN̂

+

where we replaced the ∀x ∈ Rn with the worst case realizations by taking the suprema of the constraints over
x. We also added non-negativity on the definition of s and ŝ which is without loss of generality since this is
implied by the first two constraints, which is due to the fact that in the primal reformulation the “integrates to
1” constraints (whose associated dual variables are s and ŝ) can be written as∫

x∈Rn

Qi
+1(dx) +Qi

−1(dx) ≤ 1 ∀i ∈ [N ]∫
x∈Rn

Q̂j
+1(dx) + Q̂j

−1(dx) ≤ 1 ∀j ∈ [N̂ ]

due to the objective pressure. Relabeling
N̂

N
λ̂ as λ̂ and

N̂

N
ŝj as ŝj simplifies the problem to:

minimize
λ,λ̂,s,ŝ

ελ+ ε̂λ̂+
1

N

N∑
i=1

si +
1

N̂

N̂∑
i=1

ŝj

subject to sup
x∈Rn

{ℓαβ(x,+1)− λ∥xi − x∥q − λ̂∥x̂j − x∥q} ≤

si + κ
1− yi

2
λ+ ŝj + κ

1− ŷj

2
λ̂ ∀i ∈ [N ], ∀j ∈ [N̂ ]

sup
x∈Rn

{ℓαβ(x,−1)− λ∥xi − x∥q − λ̂∥x̂j − x∥q} ≤

si + κ
1 + yi

2
λ+ ŝj + κ

1 + ŷj

2
λ̂ ∀i ∈ [N ], ∀j ∈ [N̂ ]

λ ≥ 0, λ̂ ≥ 0, s ∈ RN
+ , ŝ ∈ RN̂

+ .

Combining all the sup constraints with the help of an an auxiliary parameter l ∈ {−1, 1} and replacing this
problem with the inner problem of Inter-ARO concludes the proof.

10.4 Proof of Proposition 2

We first present a technical lemma that will allow us to rewrite a specific type of difference of convex func-
tions (DC) maximization problem that appears in the constraints of Inter-ARO. Rewriting such DC maximiza-
tion problems is one of the key steps in reformulating Wasserstein DRO problems, and our lemma is inspired
from Shafieezadeh-Abadeh et al. (2019, Lemma 47), Shafieezadeh-Abadeh et al. (2023, Theorem 3.8), and Belbasi
et al. (2023, Lemma 1) who reformulate maximizing the difference of a convex function and a norm. Our DRO
problem Inter-ARO, however, comprises two ambiguity sets, hence the DC term that we investigate will be the
difference between a convex function and the sum of two norms. This requires a new analysis and we will see
that Inter-ARO is NP-hard due to this additional difficulty.
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Lemma 1. Suppose that L : R 7→ R is a closed convex function, and ∥·∥q is a norm. For vectors ω,a, â ∈ Rn

and scalars λ, λ̂ > 0, we have:

sup
x∈Rn

{L(ω⊤x)− λ∥a− x∥q − λ̂∥â− x∥q}

= sup
θ∈dom(L∗)

− L∗(θ) + θ · ω⊤a+ θ · inf
z∈Rn

{z⊤(â− a) : |θ| · ∥ω − z∥q⋆ ≤ λ, |θ| · ∥z∥q⋆ ≤ λ̂}

Proof. We denote by fω(x) = ω⊤x and by g the convex function g(x) = g1(x)+g2(x) where g1(x) := λ∥a−x∥q
and g2(x) := λ̂∥â− x∥q, and reformulate the sup problem as

sup
x∈Rn

L(ω⊤x)− g(x) = sup
x∈Rn

(L ◦ fω)(x)− g(x) = sup
z∈Rn

g∗(z)− (L ◦ fω)∗(z),

where the first identity follows from the definition of composition and the second identity employs Toland’s
duality (Toland, 1978) to rewrite difference of convex functions optimization.

By using infimal convolutions (Rockafellar, 1997, Theorem 16.4), we can reformulate g∗:

g∗(z) = inf
z1,z2

{g∗1(z1) + g∗2(z2) : z1 + z2 = z}

= inf
z1,z2

{z⊤
1 a+ z⊤

2 â : z1 + z2 = z, ∥z1∥q⋆ ≤ λ, ∥z2∥q⋆ ≤ λ̂},

where the second step uses the definitions of g∗1(z1) and g∗2(z2). Moreover, we show

(L ◦ fω)∗(z) = sup
x∈Rn

z⊤x− L(ω⊤x)

= sup
t∈R, x∈Rn

{z⊤x− L(t) : t = ω⊤x}

= inf
θ∈R

sup
t∈R, x∈Rn

z⊤x− L(t)− θ · (ω⊤x− t)

= inf
θ∈R

sup
t∈R

sup
x∈Rn

(z − θ · ω)⊤x− L(t) + θ · t

= inf
θ∈R

sup
t∈R

{
−L(t) + θ · t if θ · ω = z

+∞ otherwise.

= inf
θ∈R

{
L∗(θ) if θ · ω = z

+∞ otherwise.

= inf
θ∈dom(L∗)

{L∗(θ) : θ · ω = z},

where the first identity follows from the definition of the convex conjugate, the second identity introduces an
additional variable to make this an equality-constrained optimization problem, the third identity takes the
Lagrange dual (which is a strong dual since the problem maximizes a concave objective with a single equality
constraint), the fourth identity rearranges the expressions, the fifth identity exploits unboundedness of x, the
sixth identity uses the definition of convex conjugates and the final identity replaces the feasible set θ ∈ R with
the domain of L⋆ without loss of generality as this is an inf problem.

Replacing the conjugates allows us to conclude that the maximization problem equals

sup
z∈Rn

g∗(z) + sup
θ∈dom(L∗)

{−L∗(θ) : θ · ω = z}

= sup
z∈Rn, θ∈dom(L∗)

{g∗(z)− L∗(θ) : θ · ω = z}

= sup
θ∈dom(L∗)

g∗(θ · ω)− L∗(θ)

= sup
θ∈dom(L∗)

− L∗(θ) + inf
z1,z2∈Rn

{z⊤
1 a+ z⊤

2 â : z1 + z2 = θ · ω, ∥z1∥q⋆ ≤ λ, ∥z2∥q⋆ ≤ λ̂}

= sup
θ∈dom(L∗)

− L∗(θ) + θ · inf
z1,z2∈Rn

{z⊤
1 a+ z⊤

2 â : z1 + z2 = ω, |θ| · ∥z1∥q⋆ ≤ λ, |θ| · ∥z2∥q⋆ ≤ λ̂}

= sup
θ∈dom(L∗)

− L∗(θ) + θ · ω⊤a+ θ · inf
z∈Rn

{z⊤(â− a) : |θ| · ∥ω − z∥q⋆ ≤ λ, |θ| · ∥z∥q⋆ ≤ λ̂}.
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Here, the first identity follows from writing the problem as a single maximization problem, the second identity
follows from the equality constraint, the third identity follows from the definition of the conjugate g∗, the fourth
identity is due to relabeling z1 = θ · z1 and z2 = θ · z2, and the fifth identity is due to a variable change
(z1 = ω − z2 relabeled as z).

DC maximization terms similar to the one dealt by Lemma 1 appear on the left-hand side of the constraints
of Inter-ARO (cf. formulation in Proposition 1). These constraints would admit a tractable reformulation for
the case without auxiliary data because the inf term in the reformulation presented in Lemma 1 does not appear
in such cases. To see this, eliminate the second norm (the one associated with auxiliary data) by taking λ̂ = 0,

which will cause the constraint |θ| · ∥z∥q⋆ ≤ λ̂ to force z = 0, and the alternative formulation will thus be: sup
θ∈dom(L∗)

{−L∗(θ) + θ · ω⊤a} if supθ∈dom(L∗){|θ|} · ∥z∥q⋆ ≤ λ

+∞ otherwise

=

{
L(ω⊤a) if Lip(L) · ∥z∥q⋆ ≤ λ

+∞ otherwise

where we used the fact that L = L∗∗ and supθ∈dom(L)|θ| = Lip(L) since L is closed convex (Rockafellar,
1997, Corollary 13.3.3). Hence, the DC maximization can be represented with a convex function with an
additional convex inequality, making the constraints tractable for the case without auxiliary data. For the case
with auxiliary data, however, the supθ infz structure makes these constraints equivalent to two-stage robust
constraints (with uncertain parameter θ and adjustable variable z), bringing an adjustable robust optimization
(Ben-Tal et al., 2004; Yanıkoğlu et al., 2019) perspective to Inter-ARO. By using the univariate representation
ℓαβ(x, y) = Lα(y · β⊤x), Inter-ARO can be written as

minimize
β,λ,λ̂,s,ŝ

ελ+ ε̂λ̂+
1

N

N∑
j=1

sj +
1

N̂

N̂∑
i=1

ŝi

subject to sup
x∈Rn

{Lα(β⊤x)− λ∥xi − x∥q − λ̂∥x̂j − x∥q} ≤

si + κ
1− yi

2
λ+ ŝj + κ

1− ŷj

2
λ̂ ∀i ∈ [N ], ∀j ∈ [N̂ ]

sup
x∈Rn

{Lα(−β⊤x)− λ∥xi − x∥q − λ̂∥x̂j − x∥q} ≤

si + κ
1 + yi

2
λ+ ŝj + κ

1 + ŷj

2
λ̂ ∀i ∈ [N ], ∀j ∈ [N̂ ]

β ∈ Rn, λ ≥ 0, λ̂ ≥ 0, s ∈ RN
+ , ŝ ∈ RN̂

+ ,

and applying Lemma 1 to the left-hand side of the constraints gives:

minimize
β,λ,λ̂,s,ŝ

ελ+ ε̂λ̂+
1

N

N∑
j=1

sj +
1

N̂

N̂∑
i=1

ŝi

subject to sup
θ∈dom(L∗)

− Lα∗(θ) + θ · β⊤xi + θ · inf
z∈Rn

{z⊤(x̂j − xi) : |θ| · ∥β − z∥q⋆ ≤ λ, |θ| · ∥z∥q⋆ ≤ λ̂} ≤

si + κ
1− yi

2
λ+ ŝj + κ

1− ŷj

2
λ̂ ∀i ∈ [N ], ∀j ∈ [N̂ ]

sup
θ∈dom(L∗)

− Lα∗(θ)− θ · β⊤xi + θ · inf
z∈Rn

{z⊤(x̂j − xi) : |θ| · ∥−β − z∥q⋆ ≤ λ, |θ| · ∥z∥q⋆ ≤ λ̂} ≤

si + κ
1 + yi

2
λ+ ŝj + κ

1 + ŷj

2
λ̂ ∀i ∈ [N ], ∀j ∈ [N̂ ]

β ∈ Rn, λ ≥ 0, λ̂ ≥ 0, s ∈ RN
+ , ŝ ∈ RN̂

+ .
(5)
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Which, equivalently, can be written as the following problem with 2N · N̂ two-stage robust constraints:

minimize
β,λ,λ̂,s,ŝ

ελ+ ε̂λ̂+
1

N

N∑
j=1

sj +
1

N̂

N̂∑
i=1

ŝi

subject to

∀θ ∈ dom(L∗), ∃z ∈ Rn :


−Lα∗(θ) + θ · β⊤xi + θ · z⊤(x̂j − xi) ≤ si + κ

1− yi

2
λ+ ŝj + κ

1− ŷj

2
λ̂

|θ| · ∥β − z∥q⋆ ≤ λ

|θ| · ∥z∥q⋆ ≤ λ̂


∀i ∈ [N ], ∀j ∈ [N̂ ]

∀θ ∈ dom(L∗), ∃z ∈ Rn :


−Lα∗(θ)− θ · β⊤xi + θ · z⊤(x̂j − xi) ≤ si + κ

1 + yi

2
λ+ ŝj + κ

1 + ŷj

2
λ̂

|θ| · ∥−β − z∥q⋆ ≤ λ

|θ| · ∥z∥q⋆ ≤ λ̂


∀i ∈ [N ], ∀j ∈ [N̂ ]

β ∈ Rn, λ ≥ 0, λ̂ ≥ 0, s ∈ RN
+ , ŝ ∈ RN̂

+ . (Inter-adjustable)

By using adjustable robust optimization theory, we show that this problem is NP-hard even in the simplest
setting. To this end, take N = N̂ = 1 as well as κ = 0; the formulation presented in Proposition 1 reduces to:

minimize
β,λ,λ̂,s,ŝ

ελ+ ε̂λ̂+ s+ ŝ

subject to sup
x∈Rn

{ℓαβ(x, l)− λ∥x1 − x∥q − λ̂∥x̂1 − x∥q} ≤ s1 + ŝ1 ∀l ∈ {−1, 1}

β ∈ Rn, λ ≥ 0, λ̂ ≥ 0, s ≥ 0, ŝ ≥ 0.

The worst case realization of l ∈ {−1, 1} will always make ℓαβ(x, l) = log(1 + exp(−l ·β⊤x+α · ∥β∥p⋆)) equal to

ςαβ (x) = log(1+exp(|l ·β⊤x|+α ·∥β∥p⋆)), where ς inherits similar properties from ℓ: it is convex in β and its uni-
variate representation Sα has the same Lipschitz constant with Lα. We can thus represent the above problem as

minimize
β,λ,λ̂,s,ŝ

ελ+ ε̂λ̂+ s+ ŝ

subject to sup
x∈Rn

{Sα(β⊤x)− λ∥x1 − x∥q − λ̂∥x̂1 − x∥q} ≤ s+ ŝ

β ∈ Rn, λ ≥ 0, λ̂ ≥ 0, s ≥ 0, ŝ ≥ 0.

Substituting s+ŝ into the objective (due to the objective pressure) allows us to reformulate the above problem as

minimize
β,λ,λ̂

ελ+ ε̂λ̂+ sup
x∈Rn

{Sα(β⊤x)− λ∥x1 − x∥q − λ̂∥x̂1 − x∥q}

subject to β ∈ Rn, λ ≥ 0, λ̂ ≥ 0,
(6)

and an application of Lemma 1 leads us to the following reformulation:

inf
β∈Rn

λ≥0,λ̂≥0

sup
θ∈dom(S∗)

inf
z∈Rn

ελ+ ε̂λ̂− Sα∗(θ) + θ · β⊤x1 + θ · z⊤(x̂1 − x1)︸ ︷︷ ︸
(1)

: |θ| · ∥β − z∥q⋆ ≤ λ︸ ︷︷ ︸
(2)

, |θ| · ∥z∥q⋆ ≤ λ̂

 .

The objective term (1) has a product of the uncertain parameter θ and the adjustable variable z, and even when
(2) is linear such as in the case of q = 1 the product of the uncertain parameter with both the decision variable
β and the adjustable variable z still appear since:

|θ| · ∥β − z∥∞ ≤ λ ⇐⇒ −λ ≤ θβ − θz ≤ λ.

This reduces problem (6) to a generic two-stage robust optimization problem with random recourse (Subra-
manyam et al., 2020, Problem 1) which is proven to be NP-hard even if Sα∗ was constant (Guslitser, 2002).
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10.5 Proof of Theorem 1

Consider the reformulation Inter-adjustable of Inter-ARO that we introduced in the proof of Proposition 2. For
any i ∈ [N ] and j ∈ [N̂ ], the corresponding constraint in the first group of ‘adjustable robust’ (∀, ∃) constraints
will be:

∀θ ∈ dom(L∗),∃z ∈ Rn :


−Lα∗(θ) + θ · β⊤xi + θ · z⊤(x̂j − xi) ≤ si + κ

1− yi

2
λ+ ŝj + κ

1− ŷj

2
λ̂

|θ| · ∥β − z∥q⋆ ≤ λ

|θ| · ∥z∥q⋆ ≤ λ̂.

By changing the order of ∀ and ∃, we obtain:

∃z ∈ Rn,∀θ ∈ dom(L∗) :


−Lα∗(θ) + θ · β⊤xi + θ · z⊤(x̂j − xi) ≤ si + κ

1− yi

2
λ+ ŝj + κ

1− ŷj

2
λ̂

|θ| · ∥β − z∥q⋆ ≤ λ

|θ| · ∥z∥q⋆ ≤ λ̂.

Notice that this is a safe approximation, since any fixed z satisfying the latter system is a feasible static solution
in the former system, meaning that for every realization of θ in the first system, the inner ∃z can always ‘play’
the same z that is feasible in the latter system (hence the latter is named the static relaxation, Bertsimas et al.
2015). In the relaxed system, we can drop ∀θ and keep its worst-case realization instead:

∃z ∈ Rn :


supθ∈dom(L∗){−Lα∗(θ) + θ · β⊤xi + θ · z⊤(x̂j − xi)} ≤ si + κ

1− yi

2
λ+ ŝj + κ

1− ŷj

2
λ̂

supθ∈dom(L∗){|θ|} · ∥β − z∥q⋆ ≤ λ

supθ∈dom(L∗){|θ|} · ∥z∥q⋆ ≤ λ̂.

The term supθ∈dom(L∗){−Lα∗(θ) + θ · β⊤xi + θ · z⊤(x̂j − xi)} is the definition of the biconjugate Lα∗∗(β⊤xi +

z⊤(x̂j − xi)). Since Lα is a closed convex function, we have Lα∗∗ = Lα (Rockafellar, 1997, Corollary 12.2.1).
Moreover, supθ∈dom(L∗){|θ|} is an alternative representation of the Lipschitz constant of the function Lα (Rock-
afellar, 1997, Corollary 13.3.3), which is equal to 1 as we showed earlier. The adjustable robust constraint thus
reduces to:

∃z ∈ Rn :


Lα(β⊤xi + z⊤(x̂j − xi)) ≤ si + κ

1− yi

2
λ+ ŝj + κ

1− ŷj

2
λ̂

∥β − z∥q⋆ ≤ λ

∥z∥q⋆ ≤ λ̂

as a result of the static relaxation. This relaxed reformulation applies to all i ∈ [N ] and j ∈ [N̂ ] as well as to the
second group of adjustable robust constraints analogously. Replacing each constraint of Inter-adjustable with
this system concludes the proof.

10.6 Proof of Corollary 2

To prove the first statement, take λ̂ = 0 and observe the constraint ∥zl
ij∥q⋆ ≤ λ̂ implies zl

ij = 0 for all

l ∈ {−1, 1}, i ∈ [N ], j ∈ [N̂ ]. The optimization problem can thus be written without those variables:

minimize
β,λ,s,ŝ

ελ+
1

N

N∑
i=1

si +
1

N̂

N̂∑
j=1

ŝj

subject to Lα(lβ⊤xi) ≤ si + κ
1− lyi

2
λ+ ŝj ∀l ∈ {−1, 1}, ∀i ∈ [N ], ∀j ∈ [N̂ ]

∥β∥q⋆ ≤ λ

β ∈ Rn, λ ≥ 0, s ∈ RN
+ , ŝ ∈ RN̂

+ .

Notice that optimal solutions should satisfy ŝj = ŝj′ for all j, j′ ∈ [N ]. To see this, assume for contradiction
that ∃j, j′ ∈ [N ] such that ŝj < ŝj′ . If a constraint indexed with (l, i, j) for arbitrary l ∈ {−1, 1} and i ∈ [N ] is
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feasible, it means the consraint indexed with (l, i, j′) cannot be tight given that these constraints are identical
except for the ŝj or ŝj′ appearing on the right hand side. Hence, such a solution cannot be optimal as this is
a minimization problem, and updating ŝj′ as ŝj preserves the feasibility of the problem while decreasing the
objective value. We can thus use a single variable τ ∈ R+ and rewrite the problem as

minimize
β,λ,s,ŝ

ελ+
1

N

N∑
i=1

(si + τ)

subject to Lα(β⊤xi) ≤ si + κ
1− yi

2
λ+ τ ∀i ∈ [N ]

Lα(−β⊤xi) ≤ si + κ
1 + yi

2
λ+ τ ∀i ∈ [N ]

∥β∥q⋆ ≤ λ

β ∈ Rn, λ ≥ 0, s ∈ RN
+ , ŝ ∈ RN̂

+ ,

where we also eliminated the index l ∈ {−1, 1} by writing the constraints explicitly. Since si and τ both appear
as si + τ in this problem, we can use a variable change where we relabel si + τ as si (or, equivalently set τ = 0
without any optimality loss). Moreover, the constraints with index i ∈ [N ] are

{
Lα(β⊤xi) ≤ si + τ

Lα(−β⊤xi) ≤ si + κλ+ τ
=

{
Lα(yi · β⊤xi) ≤ si + τ

Lα(−yi · β⊤xi) ≤ si + κλ+ τ

if yi = 1, and similarly they are

{
Lα(β⊤xi) ≤ si + κλ+ τ

Lα(−β⊤xi) ≤ si + τ
=

{
Lα(−yi · β⊤xi) ≤ si + κλ+ τ

Lα(yi · β⊤xi) ≤ si + τ

if yi = −1. Since these are identical, the problem can finally be written as

minimize
β,λ,s

ελ+
1

N

N∑
i=1

si

subject to log(1 + exp(−yi · β⊤xi + α · ∥β∥p⋆)) ≤ si ∀i ∈ [N ]

log(1 + exp(yi · β⊤xi + α · ∥β∥p⋆))− λκ ≤ si ∀i ∈ [N ]

∥β∥q⋆ ≤ λ
β ∈ Rn, λ ≥ 0, s ∈ RN

+ ,

where we also used the definition of Lα. This problem is identical to DR-ARO, which means that feasible
solutions of DR-ARO are feasible for Inter-ARO⋆ if the additional variables (λ̂, ŝ, zl

ij) are set to zero, concluding
the first statement of the corollary.

The second statement is immediate since ε̂ → ∞ forces λ̂ = 0 due to the term ε̂λ̂ in the objective of Inter-ARO⋆,
and this proof shows in such a case Inter-ARO⋆ reduces to DR-ARO (which is identical to Inter-ARO when
ε → ∞ by definition).
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10.7 Proof of Observation 2

By standard linearity arguments and from the definition of Qmix, we have

EQmix

[
sup

z∈Bp(α)

{ℓβ(x+ z, y)}

]

⇐⇒
∫
(x,y)∈Rn×{−1,+1}

sup
z∈Bp(α)

{ℓβ(x+ z, y)} dQmix((x, y))

⇐⇒ N

N + wN̂

∫
(x,y)∈Rn×{−1,+1}

sup
z∈Bp(α)

{ℓβ(x+ z, y)}dPN ((x, y))+

wN̂

N + wN̂

∫
(x,y)∈Rn×{−1,+1}

sup
z∈Bp(α)

{ℓβ(x+ z, y)} dP̂N̂ ((x, y))

⇐⇒ N

N + wN̂
· 1

N

∑
i∈[N ]

sup
zi∈Bp(α)

{ℓβ(xi + zi, yi)}+ wN̂

N + wN̂
· 1

N̂

∑
j∈[N̂ ]

sup
zj∈Bp(α)

{ℓβ(x̂j + zj , ŷj)}

⇐⇒ 1

N + wN̂

∑
i∈[N ]

sup
zi∈Bp(α)

{ℓβ(xi + zi, yi)}+ w ·
∑
j∈[N̂ ]

sup
zj∈Bp(α)

{ℓβ(x̂j + zj , ŷj)}

 ,

which coincides with the objective function of (2). Since we have

EQmix

[
sup

z∈Bp(α)

{ℓβ(x+ z, y)}

]
= EQmix [ℓ

α
β(x, y)]

we can conclude the proof.

10.8 Proof of Proposition 3

We first prove auxiliary results on mixture distributions. To this end, denote by C(Q,P) ⊆ P(Ξ× Ξ) the set of
couplings of the distributions Q ∈ P(Ξ) and P ∈ P(Ξ).

Lemma 2. Let Q,P1,P2 ∈ P(Ξ) be probability distributions. If Π1 ∈ C(Q,P1) and Π2 ∈ C(Q,P2), then,
λ ·Π1 + (1− λ) ·Π2 ∈ C(Q, λ · P1 + (1− λ) · P2) for all λ ∈ (0, 1).

Proof. Let Π = λ ·Π1 +(1−λ) ·Π2 and P = λ ·P1 +(1−λ) ·P2. To have Π ∈ C(Q,P) we need Π(dξ,Ξ) = Q(dξ)
and Π(Ξ,dξ′) = P(dξ′). To this end, observe that

Π(dξ,Ξ) = λ ·Π1(dξ,Ξ) + (1− λ) ·Π2(dξ,Ξ)

= λ ·Q+ (1− λ) ·Q = Q

where the second identity uses the fact that Π1 ∈ C(Q,P1). Similarly, we can show:

Π(Ξ,dξ) = λ ·Π1(Ξ,dξ) + (1− λ) ·Π2(Ξ,dξ)

= λ · P1 + (1− λ) · P2 = P,

which concludes the proof.

We further prove the following intermediary result.

Lemma 3. Let Q,P1,P2 ∈ P(Ξ) and P = λ · P1 + (1− λ) · P2 for some λ ∈ (0, 1). We have:

W(Q,P) ≤ λ ·W(Q,P1) + (1− λ) ·W(Q,P2).

Proof. The Wasserstein distance between Q,Q′ ∈ P(Ξ) can be written as:

W(Q,Q′) = min
Π∈C(Q,Q′)

{∫
Ξ×Ξ

d(ξ, ξ′)Π(dξ,dξ′)

}
,
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and since d is a feature-label metric (cf. Definition 1) the minimum is well-defined (Villani et al., 2009, Theorem
4.1). We name the optimal solutions to the above problem the optimal couplings. Let Π1 be an optimal coupling
of W(Q,P1) and let Π2 be an optimal coupling of W(Q,P2) and define Πc = λ ·Π1 + (1− λ) ·Π2. We have

W(Q,P) = min
Π∈C(Q,P)

{∫
Ξ×Ξ

d(ξ, ξ′)Π(dξ,dξ′)

}
≤
∫
Ξ×Ξ

d(ξ, ξ′)Πc(dξ,dξ′)

= λ ·
∫
Ξ×Ξ

d(ξ, ξ′)Π1(dξ,dξ′) + (1− λ) ·
∫
Ξ×Ξ

d(ξ, ξ′)Π2(dξ,dξ′)

= λ ·W(Q,P1) + (1− λ) ·W(Q,P2),

where the first identity uses the definition of the Wasserstein metric, the inequality is due to Lemma 2 as Πc is a
feasible coupling (not necessarily optimal), the equality that follows uses the definition of Πc and the linearity of
integrals, and the final identity uses the fact that Π1 and Π2 were constructed to be the optimal couplings.

We now prove the proposition (we refer to Qmix in the statement of this lemma simply as Q). To prove

Q ∈ Bε(PN ) ∩ Bε̂(P̂N̂ ), it is sufficient to show that W(PN ,Q) ≤ ε and W(P̂N̂ ,Q) ≤ ε̂ jointly hold. By using
Lemma 3, we can derive the following inequalities:

W(PN ,Q) ≤ λ ·W(PN ,PN )︸ ︷︷ ︸
=0

+(1− λ) ·W(PN , P̂N̂ )

W(P̂N̂ ,Q) ≤ λ ·W(PN , P̂N̂ ) + (1− λ) ·W(P̂N̂ , P̂N̂ )︸ ︷︷ ︸
=0

.

Therefore, sufficient conditions on W(PN ,Q) ≤ ε and W(P̂N̂ ,Q) ≤ ε̂ would be:{
(1− λ) ·W(PN , P̂N̂ ) ≤ ε

λ ·W(PN , P̂N̂ ) ≤ ε̂.

Moreover, given that ε+ ε̂ ≥ W(PN , P̂N̂ ), the sufficient conditions further simplify to{
(1− λ) · ε̂ ≤ λ · ε
λ · ε ≤ (1− λ) · ε̂.

⇐⇒ λ · ε = (1− λ) · ε̂,

which is implied when
λ

1− λ
=

ε̂

ε
, concluding the proof.

10.9 Proof of Theorem 2

Since each result in the statement of this theorem is abridged, we will present these results sequentially as
separate results. We review the existing literature to characterize Bε(PN ), in a similar fashion with the results
presented in (Selvi et al., 2022, Appendix A) for the logistic loss, by revising them to the adversarial loss whenever
necessary. The N -fold product distribution of P0 from which the training set PN is constructed is denoted below
by [P0]N .

Theorem 4. Assume there exist a > 1 and A > 0 such that EP0 [exp(∥ξ∥a)] ≤ A for a norm ∥·∥ on Rn. Then,
there are constants c1, c2 > 0 that only depend on P0 through a, A, and n, such that [P0]N (P0 ∈ Bε(PN )) ≥ 1−η
holds for any confidence level η ∈ (0, 1) as long as the Wasserstein ball radius satisfies the following optimal
characterization

ε ≥


(
log(c1/η)

c2 ·N

)1/max{n,2}

if N ≥ log(c1/η)

c2(
log(c1/η)

c2 ·N

)1/a

otherwise.
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Proof. The statement follows from Theorem 18 of Kuhn et al. (2019). The presented decay rate O(N−1/n) of ε
as N increases is optimal (Fournier and Guillin, 2015).

Now that we gave a confidence for the radius ε of Bε(PN ), we analyze the underlying optimization problems.
Most of the theory is well-established for logistic loss function, and in the following we show that similar results
follow for the adversarial loss function. For convenience, we state DR-ARO again by using the adversarial loss
function as defined in Observation 1:

minimize
β

sup
Q∈Bε(PN )

EQ[ℓ
α
β(x, y)]

subject to β ∈ Rn.
(DR-ARO)

Theorem 5. If the assumptions of Theorem 4 are satisfied and ε is chosen as in the statement of Theorem 4,
then

[P0]N

(
EP0 [ℓαβ⋆(x, y)] ≤ sup

Q∈Bε(PN )

EQ[ℓ
α
β⋆(x, y)]

)
≥ 1− η

holds for all η ∈ (0, 1) and all optimizers β⋆ of DR-ARO.

Proof. The statement follows from Theorem 19 of Kuhn et al. (2019) given that ℓαβ is a finite-valued continuous
loss function.

Theorem 5 states that the optimal value of DR-ARO overestimates the true loss with arbitrarily high confidence
1−η. Despite the desired overestimation of the true loss, we show that DR-ARO is still asymptotically consistent
if we restrict the set of admissible β to a bounded set2.

Theorem 6. If we restrict the hypotheses β to a bounded set H ⊆ Rn, and parameterize ε as εN to show its
dependency to the sample size, then, under the assumptions of Theorem 4, we have

sup
Q∈BεN

(PN )

EQ[ℓ
α
β⋆(x, y)] −→

N→∞
EP0 [ℓαβ⋆(x, y)] P0-almost surely,

whenever εN is set as specified in Theorem 4 along with its finite-sample confidence ηN , and they satisfy∑
N∈N ηN < ∞ and limN→∞ εN = 0.

Proof. If we show that there exists ξ0 ∈ Ξ and C > 0 such that ℓαβ(x, y) ≤ C(1 + d(ξ, ξ0)) holds for all β ∈ H
and ξ ∈ Ξ (that is, the adversarial loss satisfies a growth condition), the statement will follow immediately from
Theorem 20 of (Kuhn et al., 2019).

To see that the growth condition is satisfied, we first substitute the definition of ℓαβ and d explicitly, and note

that we would like to show there exists ξ0 ∈ Ξ and C > 0 such that

log(1 + exp(−y · β⊤x+ α · ∥β∥p⋆)) ≤ C(1 + ∥x− x0∥q + κ · 1[y ̸= y0])

holds for all β ∈ H and ξ ∈ Ξ. We take ξ0 = (0, y0) and show that the right-hand side of the inequality can be
lower bounded as:

C(1 + ∥x− x0∥q + κ · 1[y ̸= y0]) = C(1 + ∥x∥q + κ · 1[y ̸= y0])

≥ C(1 + ∥x∥q).

Moreover, the left-hand side of the inequality can be upper bounded for any β ∈ H ⊆ [−M,M ]n (for some

2Note that, this is without loss of generality given that we can normalize the decision boundary of linear classifiers.
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M > 0) and ξ = (x, y) ∈ Ξ as:

log(1 + exp(−y · β⊤x+ α · ∥β∥p⋆)) ≤ log(1 + exp(|β⊤x|+ α · ∥β∥p⋆))

≤ log(2 · exp(|β⊤x|+ α · ∥β∥p⋆))

= log(2) + |β⊤x|+ α · ∥β∥p⋆

≤ log(2) + sup
β∈[−M,M ]n

{|β⊤x|}+ α · sup
β∈[−M,M ]n

{∥β∥p⋆}

= log(2) +M · ∥x∥1 +M · α
≤ log(2) +M · n(q−1)/q · ∥x∥1 +M · α

where the final inequality uses Hölder’s inequality to bound the 1-norm with the q-norm. Thus, it suffices to
show that we have

log(2) +M · n(q−1)/q · ∥x∥1 +M · α ≤ C(1 + ∥x∥q) ∀ξ ∈ Ξ,

which is satisfied for any C ≥ max{log(2) + M · α, M · n(q−1)/q}. This completes the proof by showing the
growth condition is satisfied.

So far, we reviewed tight characterizations for ε so that the ball Bε(PN ) includes the true distribution P0 with
arbitrarily high confidence, proved that the DRO problem DR-ARO overestimates the true loss, while converging
to the true problem asymptotically as the confidence 1− η increases and the radius ε decreases simultaneously.
Finally, we discuss that for optimal solutions β⋆ to DR-ARO, there are worst case distributions Q⋆ ∈ Bε(PN )
of nature’s problem that are supported on at most N + 1 atoms.

Theorem 7. If we restrict the hypotheses β to a bounded set H ⊆ Rn, then there are distributions Q⋆ ∈ Bε(PN )
that are supported on at most N + 1 atoms and satisfy:

EQ⋆ [ℓαβ(x, y)] = sup
Q∈Bε(PN )

EQ[ℓ
α
β(x, y)].

Proof. The proof follows from (Yue et al., 2022).

See the proof of Selvi et al. (2022, Theorem 8) and the discussion that follows for insights and further analysis
on these results presented.

10.10 Proof of Theorem 3

Firstly, since P̂N̂ is constructed from i.i.d. samples of P̂, we can overestimate the distance ε̂1 = W(P̂N̂ , P̂)
analogously by applying Theorem 4, mutatis mutandis. This leads us to the following result where the joint
(independent) N -fold product distribution of P0 and the N̂ -fold product distribution of P̂ is denoted below by

[P0 × P̂]N×N̂ .

Theorem 8. Assume that there exist a > 1 and A > 0 such that EP0 [exp(∥ξ∥a)] ≤ A, and there exist â > 1 and

Â > 0 such that EP̂[exp(∥ξ∥
â)] ≤ Â for a norm ∥·∥ on Rn. Then, there are constants c1, c2 > 0 that only depends

on P0 through a, A, and n, and constants ĉ1, ĉ2 > 0 that only depends on P̂ through â, Â, and n such that

[P0× P̂]N×N̂ (P0 ∈ Bε(PN )∩Bε̂(P̂N̂ )) ≥ 1−η holds for any confidence level η ∈ (0, 1) as long as the Wasserstein
ball radii satisfy the following characterization

ε ≥


(
log(c1/η1)

c2 ·N

)1/max{n,2}

if N ≥ log(c1/η1)

c2(
log(c1/η1)

c2 ·N

)1/a

otherwise

ε̂ ≥ W(P0, P̂) +


(
log(ĉ1/η2)

ĉ2 · N̂

)1/max{n,2}

if N̂ ≥ log(ĉ1/η2)

ĉ2(
log(ĉ1/η2)

ĉ2 · N̂

)1/â

otherwise
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for some η1, η2 > 0 satisfying η1 + η2 = η.

Proof. It immediately follows from Theorem 4 that [P0]N (P0 ∈ Bε(PN )) ≥ 1− η1 holds. If we take ε̂1 > 0 as

ε̂1 ≥


(
log(ĉ1/η2)

ĉ2 · N̂

)1/max{n,2}

if N̂ ≥ log(ĉ1/η2)

ĉ2(
log(ĉ1/η2)

ĉ2 · N̂

)1/â

otherwise

then, we similarly have [P̂]N̂ (P̂ ∈ Bε̂1(P̂N̂ )) ≥ 1 − η2. Since the following implication follows from the triangle
inequality:

P̂ ∈ Bε̂1(P̂N̂ ) =⇒ P0 ∈ Bε̂1+W(P0,P̂)(P̂N̂ ),

we have that [P̂]N̂ (P0 ∈ Bε(P̂N̂ )) ≥ 1−η2. These results, along with the facts that P̂N̂ and PN are independently
sampled from their true distributions, imply:

[P0 × P̂]N×N̂ (P0 ̸∈ Bε(PN ) ∨ P0 ̸∈ Bε̂(P̂N̂ ))

≤[P0 × P̂]N×N̂ (P0 ̸∈ Bε(PN )) + [P0 × P̂]N×N̂ (P0 ̸∈ Bε̂(P̂N̂ ))

=[P0]N (P0 ̸∈ Bε(PN )) + [P̂]N̂ (P0 ̸∈ Bε̂(P̂N̂ )) < η1 + η2

implying the desired result [P0 × P̂]N×N̂ (P0 ∈ Bε(PN ) ∩Bε̂(P̂N̂ )) ≥ 1− η.

The second statement immediately follows under the assumptions of Theorem 8: Inter-ARO overestimates the
true loss analogously as Theorem 5 with an identical proof.

11 EXPONENTIAL CONIC REFORMULATION OF DR-ARO

For any i ∈ [N ], the constraints of DR-ARO are{
log(1 + exp(−yi · β⊤xi + α · ∥β∥p⋆)) ≤ si

log(1 + exp(yi · β⊤xi + α · ∥β∥p⋆))− λ · κ ≤ si,

which, by using an auxiliary variable u, can be written as
log(1 + exp(−yi · β⊤xi + u)) ≤ si

log(1 + exp(yi · β⊤xi + u))− λ · κ ≤ si

α · ∥β∥p⋆ ≤ u.

Following the conic modeling guidelines of MOSEK ApS (2023), for new variables v+i , w
+
i ∈ R, the first constraint

can be written as{
v+i + w+

i ≤ 1, (v+i , 1, [−u+ yi · β⊤xi)− si] ∈ Kexp, (w+
i , 1,−si) ∈ Kexp,

by using the definition of the exponential cone Kexp. Similarly, for new variables v−i , w
−
i ∈ R, the second

constraint can be written as{
v−i + w−

i ≤ 1, (v−i , 1, [−u− yi · β⊤xi]− si − λ · κ) ∈ Kexp, (w−
i , 1,−si − λ · κ) ∈ Kexp.
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Applying this for all i ∈ [N ] concludes that the following is the conic formulation of DR-ARO:

minimize
β, λ, s, u

v+,w+,v−,w−

λ · ε+ 1

N

∑
i∈[N ]

si

subject to v+i + w+
i ≤ 1 ∀i ∈ [N ]

(v+i , 1, [−u+ yi · β⊤xi]− si) ∈ Kexp, (w+
i , 1,−si) ∈ Kexp ∀i ∈ [N ]

v−i + w−
i ≤ 1 ∀i ∈ [N ]

(v−i , 1, [−u− yi · β⊤xi]− si − λ · κ) ∈ Kexp, (w−
i , 1,−si − λ · κ) ∈ Kexp ∀i ∈ [N ]

α · ∥β∥p⋆ ≤ u

∥β∥q⋆ ≤ λ

β ∈ Rn, λ ≥ 0, s ∈ RN , u ∈ R, v+,w+,v−,w− ∈ RN .

12 FURTHER DETAILS ON NUMERICAL EXPERIMENTS

12.1 UCI Experiments

Preprocessing UCI datasets We experiment on 10 UCI datasets (Kelly et al., 2023) (cf. Table 3). We use
Python 3 for preprocessing these datasets. Classification problems with more than two classes are converted to
binary classification problems (most frequent class/others). For all datasets, numerical features are standardized,
the ordinal categorical features are left as they are, and the nominal categorical features are processed via one-
hot encoding. As mentioned in the main paper, we obtain auxiliary (synthetic) datasets via SDV, which is also
implemented in Python 3.

Table 3: Size of the UCI datasets.

DataSet N N̂ Nte n

absent 111 333 296 74
annealing 134 404 360 41
audiology 33 102 91 102
breast-cancer 102 307 274 90
contraceptive 220 663 590 23
dermatology 53 161 144 99
ecoli 50 151 135 9
spambase 690 2,070 1,841 58
spect 24 72 64 23
prim-tumor 50 153 136 32

Detailed misclassification results on the UCI datasets Table 4 contains detailed results on the out-
of-sample error rates of each method on 10 UCI datasets for classification. All parameters are 5-fold cross-
validated: Wasserstein radii from the grid {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 0, 1, 2, 5, 10} (10−6, 10−5, 2, 5, 10
are rarely selected, but we did not change our grid in order not to introduce a bias), κ from the grid {1,

√
n, n}

the weight parameter of ARO+Aux from grid {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 0, 1}. We fix the norm defining
the feature-label metric to the ℓ1-norm, and test ℓ2-attacks, but other choices with analogous results are also
implemented.

Finally, we demonstrate that our theory, especially DRO+ARO+Aux, contributes to the DRO literature even without
adversarial attacks. In this case of α = 0, ERM and ARO would be equivalent, and DRO+ARO would reduce to the
traditional DR LR model (Shafieezadeh-Abadeh et al., 2015). ARO+Aux would be interpreted as revising the
empirical distribution of ERM to a mixture (mixture weight cross-validated) of the empirical and auxiliary
distributions. DRO+ARO+Aux, on the other hand, can be interpreted as DRO over a carefully reduced ambiguity
set (intersection of the empirical and auxiliary Wasserstein balls). The results are in Table 5. Analogous results
follow as before (that is, DRO+ARO+Aux is the ‘winning’ approach, DRO+ARO and ARO+Aux alternate for the ‘second’
approach), with the exception of the dataset contraceptive, where ARO+Aux outperforms others.
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Table 4: Mean (± std) out-of-sample errors of UCI datasets, each with 10 simulations. Results for adversarial
(ℓ2-)attack strengths α = 0.05 and α = 0.2 are shared.

Data α ERM ARO ARO+Aux DRO+ARO DRO+ARO+Aux

absent
0.05 44.02% (± 2.89) 38.82% (± 2.86) 35.95% (± 3.78) 34.22% (± 2.70) 32.64% (± 2.54)
0.20 73.65% (± 4.14) 51.49% (± 3.39) 49.56% (± 3.80) 45.61% (± 2.32) 44.90% (± 2.30)

annealing
0.05 18.08% (± 1.89) 16.61% (± 2.16) 14.97% (± 1.39) 13.50% (± 2.98) 12.78% (± 2.78)
0.20 37.31% (± 3.92) 23.08% (± 2.82) 21.30% (± 1.93) 20.70% (± 1.32) 19.53% (± 1.42)

audiology
0.05 21.43% (± 3.64) 21.54% (± 3.92) 17.03% (± 2.90) 11.76% (± 3.28) 9.01% (± 3.54)
0.20 37.91% (± 6.78) 29.34% (± 5.89) 20.44% (± 2.75) 20.00% (± 3.01) 17.91% (± 3.28)

breast-cancer
0.05 4.74% (± 1.26) 4.93% (± 1.75) 3.87% (± 1.17) 3.06% (± 0.79) 2.52% (± 0.50)
0.20 9.93% (± 1.73) 8.14% (± 2.01) 6.09% (± 1.79) 5.04% (± 1.11) 4.67% (± 0.99)

contraceptive
0.05 44.14% (± 2.80) 42.86% (± 2.59) 40.98% (± 0.95) 40.00% (± 1.33) 39.65% (± 1.15)
0.20 66.19% (± 5.97) 43.49% (± 2.24) 42.71% (± 1.47) 42.71% (± 1.47) 42.71% (± 1.47)

dermatology
0.05 15.97% (± 2.64) 16.46% (± 1.67) 13.47% (± 1.97) 12.78% (± 1.61) 10.84% (± 1.24)
0.20 30.07% (± 4.24) 28.54% (± 3.25) 21.53% (± 2.17) 22.64% (± 2.15) 20.21% (± 1.58)

ecoli
0.05 16.30% (± 4.42) 14.67% (± 5.13) 13.26% (± 3.07) 11.11% (± 5.52) 9.78% (± 2.61)
0.20 51.41% (± 3.37) 42.67% (± 2.91) 41.85% (± 2.95) 39.70% (± 2.68) 38.89% (± 2.57)

spambase
0.05 11.35% (± 0.77) 10.23% (± 0.54) 10.16% (± 0.56) 9.83% (± 0.37) 9.81% (± 0.38)
0.20 27.32% (± 2.11) 15.83% (± 0.77) 15.70% (± 0.76) 15.67% (± 0.72) 15.50% (± 0.68)

spect
0.05 33.75% (± 5.17) 29.69% (± 5.46) 25.78% (± 3.06) 25.47% (± 3.38) 21.56% (± 2.74)
0.20 54.22% (± 9.88) 37.5% (± 3.53) 35.16% (± 2.47) 33.75% (± 2.68) 30.16% (± 3.61)

prim-tumor
0.05 21.84% (± 4.55) 20.81% (± 3.97) 17.35% (± 3.59) 16.18% (± 3.83) 14.78% (± 2.89)
0.20 34.19% (± 6.17) 25.37% (± 4.58) 21.62% (± 3.45) 21.84% (± 3.34) 19.63% (± 2.71)

Table 5: Mean out-of-sample errors of UCI experiments without adversarial attacks.

Data ERM ARO ARO+Aux DRO+ARO DRO+ARO+Aux

absent 36.28% 36.28% 31.86% 28.31% 27.74%
annealing 10.61% 10.61% 7.64% 7.14% 7.14%
audiology 14.94% 14.94% 12.97% 10.11% 7.69%
breast-cancer 6.64% 6.64% 5.22% 2.55% 2.15%
contraceptive 35.00% 35.00% 33.75% 34.56% 33.85%
dermatology 16.04% 16.04% 11.60% 9.93% 8.06%
ecoli 6.74% 6.74% 4.96% 5.19% 4.37%
spambase 8.95% 8.95% 8.52% 8.34% 8.16%
spect 30.74% 30.74% 24.69% 22.35% 18.75%
prim-tumor 22.79% 22.79% 17.28% 15.07% 13.97%

12.2 MNIST/EMNIST Experiments

Our setting is analogous to the UCI experiments. However, for auxiliary data, we use the EMNIST dataset. We
used the MLDatasets package of Julia to prepare such auxiliary data.

12.3 Artificial Experiments

Data generation We sample a ‘true’ β from a unit ℓ2-ball, and generate data as summarized in Algorithm 9.
Such a dataset generation gives N instances from the same true data-generating distribution. In order to obtain
N̂ auxiliary dataset instances, we perturb the probabilities pi with standard random normal noise which is
equivalent to sampling i.i.d. from a perturbed distribution. Testing is always done on true data, that is, the test
set is sampled according to Algorithm 9.

Strength of the attack and importance of auxiliary data In the main paper we discussed how the
strength of an attack determines whether using auxiliary data in ARO (ARO+Aux) or considering distributional
ambiguity (DRO+ARO) is more effective, and observed that unifying them to obtain DRO+ARO+Aux yields the best
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Algorithm 1 Data from a ground truth logistic classifier

Input: set of feature vectors xi, i ∈ [N ]; vector β

for i ∈ {1, . . . , N} do

Find the probability pi =
[
1 + exp(−β⊤x)

]−1
.

Sample u = U(0, 1)
if pi ≥ u then

yi = +1
else
yi = −1

end if
end for

Output: (xi, yi), i ∈ [N ].

Table 6: Mean w in problem (2) and ε/ε̂ in problem Inter-ARO across 25 simulations of cross-validating ω, ε,
and ε̂.

Attack ARO+Aux (cross-validated w) DRO+ARO+Aux (cross-validated ε/ε̂)

α = 0 0.002 0.0120
α = 0.1 0.046 0.172
α = 0.25 0.086 0.232
α = 0.5 0.290 0.241

results in all attack regimes. Now we focus on the methods that rely on auxiliary data, namely ARO+Aux and
DRO+ARO+Aux and explore the importance of auxiliary data P̂N̂ in comparison to its empirical counterpart PN .
Table 6 shows the average values of w for problem (2) obtained via cross-validation. We see that the greater the
attack strength is the more we should use the auxiliary data in ARO+Aux. The same relationship holds for the
average of ε/ε̂ obtained via cross-validation in Inter-ARO, which means that the relative size of the Wasserstein
ball built around the empirical distribution gets larger compared to the same ball around the auxiliary data, that
is, ambiguity around the auxiliary data is smaller than the ambiguity around the empirical data. We highlight
as a possible future research direction exploring when a larger attack per se implies the intersection will move
towards the auxiliary data distribution.

More results on scalability We further simulate 25 cases with an ℓ2-attack strength of α = 0.2, N = 200
instances in the training dataset, N̂ = 200 instances in the auxiliary dataset, and we vary the number of features
n. We report the median (50%±15% quantiles shaded) runtimes of each method in Figure 3. The fastest methods
are ERM and ARO among which the faster one depends on n (as the adversarial loss includes a regularizer of β),
followed by ARO+Aux, DRO+ARO, and DRO+ARO+Aux, respectively. DRO+ARO+Aux is the slowest, which is expected
given that DRO+ARO is its special for large ε̂. The runtime however scales graciously.

Finally, we focus further on DRO+ARO+Aux which solves problem Inter-ARO with O(n · N · N̂) variables and

exponential cone constraints. For n = 1, 000 and N = N̂ = 10, 000, we observe that the runtimes vary between
134 to 232 seconds across 25 simulations.
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Figure 3: Runtimes under a varying number of features in the artificially generated empirical and auxiliary
datasets.
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