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Abstract. We consider the problem of determining optimal tolls in a traffic
network in which a toll-setting authority aims to maximize revenues and the
users of the network act in the sense of Wardrop’s user equilibrium. The
setting is modeled as a mathematical problem with equilibrium constraints
and a mixed-integer, nonlinear, and nonconvex reformulation is presented that
exploits binary variables and big-M constants. We prove existence of optimal
solutions to this problem, derive correct big-Ms, and provide valid inequalities.
Moreover, we consider the setting in which the network users hedge against
uncertainties regarding their travel costs. We model this setting using robust
Wardrop equilibria under budgeted uncertainty and prove existence of robust
solutions. Finally, we present preliminary computational results to illustrate
the impact of considering robust travel decisions on the revenues realized by
the toll-setting authority.

1. Introduction

In traffic networks, collecting tolls is a powerful tool for network management and
for influencing travel behavior. For instance, revenues generated by imposing tolls
may support the maintenance of existing infrastructure or fund the construction
of new roads. In addition, tolls may be used to manage traffic flow by alleviating
congestion and encouraging the more efficient use of road capacity. Thus, it is
evident that determining optimal tolls in a traffic network is an important aspect of
transportation science. In this context, the toll-setting authority has to decide on the
tolls while anticipating the reaction of the users of the traffic network, who usually
try to minimize costs and time spent on travel. The overall toll-setting problem
can thus be seen as a single-leader multi-follower game in which the toll-setting
authority acts as the leader and the users of the traffic network act as the followers.
Influential works in this context include, e.g., Brotcorne et al. (2001), Dempe and
Zemkoho (2012), Dewez et al. (2008), Kalashnikov et al. (2020), and Labbé et al.
(1998, 2000).

In this paper, we consider a multi-commodity traffic network in which a toll-
setting authority decides on the tolls of (some of) the arcs of the network. While we
consider the setting in which the toll-setting authority aims to maximize revenues
by imposing tolls, we emphasize that other objective functions may be possible as
well. Regarding the users of the traffic network, we assume that they act according
to Wardrop’s user equilibrium (Wardrop 1952; Wardrop and Whitehead 1952),
minimizing their individual travel costs that are parameterized by the imposed
tolls. In this paper, we do not make any assumptions about the separability of
the travel costs but they are assumed to be affine-linear in the traffic flows. We
model the overall toll-setting problem as a mathematical problem with equilibrium
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constraints (MPEC); see, e.g., Luo et al. (1996) for a general overview. In contrast
to Dempe and Zemkoho (2012), who study a similar setting for separable cost
functions from a theoretical point of view, we consider the toll-setting problem more
from a computational perspective. To this end, we reformulate the problem as a
mixed-integer, nonlinear, and nonconvex problem (nonconvex MINLP) that exploits
binary variables and big-M constants. The latter can be tackled using state-of-the-
art general-purpose solvers. We provide results on the existence of optimal solutions
to this problem as well as valid inequalities to enhance the problem formulation.
Moreover, we derive valid big-M constants.

In addition, we study the toll-setting problem in which the users of the traffic
network face uncertainties regarding their travel costs, which we tackle using tech-
niques from robust optimization; see, e.g., Ben-Tal et al. (2009), Bertsimas et al.
(2011), and Soyster (1973). To this end, we pursue similar ideas compared to those
in Ito (2011) and Ordóñez and Stier-Moses (2007, 2010), who also consider so-called
robust Wardrop equilibria. In Ito (2011), a strictly robust setup is considered
to hedge against uncertainties regarding the travel costs. The author makes the
necessary continuity assumptions on the robustified travel cost functions to ensure
that robust Wardrop equilibria exist. In particular, the author considers ellipsoidal
uncertainty sets. In Ordóñez and Stier-Moses (2007), the authors pursue a Γ-robust
approach (Bertsimas and Sim 2003; Sim 2004) to hedge against uncertain travel costs.
The authors provide existence results for robust Wardrop equilibria and present a
column-generation algorithm to compute them. In a follow-up paper, Ordóñez and
Stier-Moses (2010) provide more extensive theoretical and computational details on
this approach, along with further equilibrium concepts to hedge against uncertain
travel costs. All aforementioned works have in common that the authors focus on
the robust traffic assignment problem in which a path-based formulation is used to
model the travelers’ behavior. The modeling framework considered in this paper
differs from those in Ito (2011) and Ordóñez and Stier-Moses (2007, 2010) in the
following two aspects. First, we consider the problem of determining optimal tolls
in a traffic network that incorporates robust Wardrop equilibria in the constraints
of the problem. Second, we study robust Wardrop equilibria under budgeted uncer-
tainty, which necessitates the use of a node-arc formulation to model the travelers’
behavior. To the best of our knowledge, there are no other works in the literature
that consider such a network pricing under robust Wardrop equilibria. We illustrate
the impact of considering robust travel decisions on the revenues realized by the
toll-setting authority through a case study on a subnetwork of the well-known Sioux
Falls network (LeBlanc et al. 1975). Here, we observe that addressing uncertainties
in the travel costs may significantly impact the travel behavior and, in particular,
lead to increased revenues realized by imposing tolls.

The remainder of this paper is organized as follows. In Section 2, we present the
overall toll-setting problem, which we model as an MPEC. In Section 3, we present
an MINLP reformulation of the toll-setting problem, prove existence of optimal
solutions, derive valid big-Ms, and provide valid inequalities. In Section 4, we
present a robustified variant of the toll-setting problem under budgeted uncertainty.
We provide an MINLP reformulation of this problem and prove existence of robust
solutions. In Section 5, we present preliminary computational results to illustrate
the impact of considering robust travel decisions on the revenues realized by the
toll-setting authority. Finally, we conclude in Section 6.

2. The MPEC Model

We consider a traffic network that is modeled using a directed graph G = (N ,A)
with node set N and arc set A ⊆ N ×N . We elaborate on the graph’s connectivity
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later in this section. In what follows, we denote f = (fa)a∈A as the vector of all arc
flows and τ = (τa)a∈A as the tolls imposed on the arcs of the network. The aim of
the toll-setting authority is to maximize the revenues∑

a∈A
τafa

that are realized by charging tolls on certain arcs of the network. Throughout this
paper, we make the following assumption.

Assumption 1. The tolls τ are subject to constraints described by a polytope
T = {τ ∈ R|A| : Bτ ≤ b} ≠ ∅ for some matrix B and a vector b of appropriate di-
mension.

The constraints Bτ ≤ b are used to model, e.g., lower and upper bounds on the
tolls or toll-free arcs. Here and in what follows, we assume that the set T induces
a finite upper bound τ+a as well as a lower bound of zero for the toll τa on each
arc a ∈ A. Arcs a ∈ A for which the set T imposes the upper bound τ+a = 0 are
called toll-free arcs. All remaining arcs are called toll arcs. The overall toll-setting
problem can now be stated as

max
τ,f,x

∑
a∈A

τafa s.t. τ ∈ T , (f, x) ∈ S(τ). (1)

Here, the set S(τ) is used to denote the Wardrop equilibria that are parameterized by
the imposed tolls τ , which we discuss in detail in the following section. In particular,
Problem (1) can be interpreted as a single-leader multi-follower problem in which
the toll-setting authority acts as the leader and the users of the traffic network act as
the followers. By optimizing over the tolls τ and the variables f and x, we consider
the so-called optimistic approach as it is known in bilevel optimization; see, e.g.,
Dempe (2002). This means that, whenever there are multiple optimal route choices
for the users of the network, they choose the ones that favor the leader the most
w.r.t. the associated revenues. The latter is a common assumption in the literature;
see, e.g., Brotcorne et al. (2001) and Labbé et al. (1998).

2.1. Wardrop Equilibrium Conditions. For node subsets O,D ⊆ N , we denote
the set of all origin-destination (OD) pairs of the network as K ⊆ O × D. For
the ease of presentation, we consider a single commodity for each OD pair k ∈ K.
Let xk = (xk

a)a∈A ∈ R|A| denote the flow vector of commodity k ∈ K. The vector of
arc flows is then given by

f =
∑
k∈K

xk ∈ R|A|. (2)

Throughout this paper, we make the following assumptions.

Assumption 2. For every node i ∈ N , there is at least one path that connects
node i to each destination node j ∈ D.

Assumption 3. For every commodity k ∈ K, the travel demand dk ∈ R is non-
negative and fixed.

We emphasize that Assumption 2 is a standard assumption in the literature; cf.,
e.g., Assumption 2.A in Patriksson (2015). Let us further mention that Assumption 3
is w.l.o.g. since any elastic-demand problem can equivalently be reformulated as a
fixed-demand problem; see, e.g., Dantzig et al. (1976) and Gartner (1980). For each
commodity k = (αk, ωk) ∈ K, flow conservation can now be modeled via∑

a∈δin(i)

xk
a −

∑
a∈δout(i)

xk
a = dki , i ∈ N , (3)



A TOLL-SETTING PROBLEM WITH ROBUST WARDROP EQUILIBRIUM CONDITIONS 4

with

dki =


+dk, i = ωk,

0, i ∈ N \ {αk, ωk} ,
−dk, i = αk.

Here, δin(i) and δout(i) denote the sets of in- and outgoing arcs of node i ∈ N , respec-
tively. Next, we elaborate on Wardrop’s second1 principle to model user-optimized
behavior. It is assumed that the users of the traffic network seek to minimize their
individual travel costs such that no user can reduce costs by unilaterally changing
routes. This behavior can be modeled as

0 ≤ cka(f ; τa) + tkj − tki ⊥ xk
a ≥ 0, a = (i, j) ∈ A, k ∈ K. (4)

A similar setting is, e.g., considered in Section 3.6.2 in Ferris and Pang (1997).
In (4), the cost for commodity k ∈ K to travel along an arc a ∈ A is given by the
function cka(f ; τa) that depends on the overall flows f and that is parameterized
by the imposed toll τa. Moreover, tki denotes the minimum cost to reach the
destination of commodity k ∈ K from node i ∈ N . We abbreviate t = (tk)k∈K
with tk = (tki )i∈N ∈ R|N |. To sum up, the τ -parameterized set of Wardrop equilibria
is given by

S(τ) := {(f, x) : ∃t such that (f, x, t) solves (2)–(4)} .

3. An MINLP Reformulation

We introduce additional binary variables z ∈ {0, 1}|A|·|K| to obtain a reformulation
of Problem (1) that is given by

max
τ,f,x,t,z

∑
a∈A

τafa (5a)

s.t. τ ∈ T , f =
∑
k∈K

xk, (5b)∑
a∈δin(i)

xk
a −

∑
a∈δout(i)

xk
a = dki , i ∈ N , k ∈ K, (5c)

xk
a ≥ 0, cka(f ; τa) + tkj − tki ≥ 0, a = (i, j) ∈ A, k ∈ K, (5d)

cka(f ; τa) + tkj − tki ≤ Mk
a (1− zka), a = (i, j) ∈ A, k ∈ K, (5e)

xk
a ≤ Mk

a z
k
a , a ∈ A, k ∈ K, (5f)

zka ∈ {0, 1} , a ∈ A, k ∈ K. (5g)

Problem (5) is as a mixed-integer nonlinear problem (MINLP) due to bilineari-
ties in the objective function as well as possible nonlinearities in the travel cost
functions cka(f ; τa), a ∈ A, k ∈ K. By construction, Problem (5) is equivalent to
the toll-setting problem (1) if the big-M constants Mk

a , a ∈ A, k ∈ K, are chosen
sufficiently large. To obtain such constants, however, we need further knowledge
about the travel cost functions cka(f ; τa). In this paper, we assume that the travel
cost functions are affine-linear in the flows f so that, in Problem (5), we consider a
bilinear objective that is optimized over mixed-integer and linear constraints. We
acknowledge that this is a strong assumption. However, we illustrate in Section 5
that even under this simplifying assumption, solving the toll-setting problem is a
highly challenging task.

1In the literature, the user optimum is commonly referred to as Wardrop’s second principle,
despite it being introduced first in Wardrop and Whitehead (1952); see, e.g., the respective
discussion by Ferris and Pang (1997).
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Assumption 4. For every commodity k ∈ K, the travel cost functions
ck(f ; τ) =

(
cka(f ; τa)

)
a∈A are affine-linear in the flows, i.e., there exists a ma-

trix Ck ∈ R|A|×|A|
≥0 and a vector cfix,k ∈ R|A|

>0 with ck(f ; τ) = Ckf + cfix,k + τ .

We emphasize that we do not make any assumptions about the separability of
the travel cost functions in Assumption 4. In traffic assignment problems, it is
often interesting to consider travel costs that are non-separable. This means that,
for k ∈ K, the costs cka(f ; τa) may not only depend on the flow fa on arc a ∈ A itself
but also on the flows fa′ , a′ ≠ a ∈ A, on the other arcs. For motivating examples
as well as further discussions on non-separable travel costs, we refer to Dafermos
(1971). In Assumption 4, non-separability implies that the travel cost matrix Ck is
not a diagonal matrix.

The remainder of this section is organized as follows. In Section 3.1, we elaborate
on how to obtain sufficiently large big-M constants that can be used in Problem (5).
Afterward, in Section 3.2, we prove the existence of an optimal solution to the
toll-setting problem (5). In Section 3.3, we provide valid inequalities to strengthen
the formulation in (5).

3.1. Computing Big-Ms. In what follows, we provide bounds for the flow vari-
ables f and x as well as for the minimum travel costs t, which are essential for
obtaining sufficiently large big-Ms that can be used in the MINLP reformulation (5)
of the toll-setting problem. For this purpose, we first establish the existence of a
Wardrop equilibrium for any given toll-setting policy τ ∈ T .

Lemma 1. Let τ ∈ T be given arbitrarily. Then, under Assumptions 1–4, S(τ) ̸= ∅
holds, i.e., there exists a Wardrop equilibrium for the given tolls τ .

Proof. For every commodity k = (αk, ωk) ∈ K, there exists at least one path that
connects αk and ωk due to Assumption 2. Moreover, Assumption 1 implies τa ≥ 0
for all a ∈ A. Hence, by Assumptions 1 and 4, the travel cost functions cka(f ; τa) are
positive and continuous for all a ∈ A and k ∈ K. Moreover, by Assumption 3, the
travel demand is fixed, positive, and bounded from above. Under Assumptions 1–4,
we can thus apply Theorem 5.5 in Aashtiani and Magnanti (1981), which yields
the existence of a Wardrop equilibrium in the path formulation. As a consequence,
there also exists a Wardrop equilibrium in the node-arc formulation; see, e.g., the
discussion in Section 2.2.2 in Patriksson (2015) for further details. □

Next, we provide bounds for the commodity flow variables x in a Wardrop
equilibrium.

Proposition 1. Let τ ∈ T be given arbitrarily. Then, under Assumptions 1–4,
there exists (f, x) ∈ S(τ) that satisfies

0 ≤ xk
a ≤ dk, a ∈ A, k ∈ K.

In particular, xk
a = 0 holds for all a ∈ δin(αk) ∪ δout(ωk) with k = (αk, ωk) ∈ K.

Proof. By Assumptions 1–4, we can apply Lemma 1, i.e., there exists (f, x) ∈ S(τ).
The non-negativity of the commodity flows x immediately follows from (4). We now
prove the upper bound. To this end, let k = (αk, ωk) ∈ K be given arbitrarily. By
the flow decomposition theorem, we obtain

xk
a =

∑
{p∈Pk : a∈p}

hp +
∑

{ℓ∈C : a∈ℓ}

gkℓ , a ∈ A;

see, e.g., Theorem 3.5 in Ahuja et al. (1993). Here, Pk denotes the set of all
simple paths between the origin αk and the destination ωk of commodity k and C
denotes the set of all cycles in the traffic network. The vectors h = (hp)p∈Pk
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and gk = (gkℓ )ℓ∈C are used for the path and cycle flows, respectively. Suppose that
there is a cycle ℓ ∈ C with positive flow, i.e., gkℓ > 0 holds. This implies that xk

a′ > 0
holds for all a′ ∈ ℓ. Wardrop’s second principle (4) thus yields∑

a′∈ℓ

cka′(f ; τa′) = 0,

which is a contradiction to Assumptions 1 and 4. Hence, there cannot be a cycle
with positive flow. Consequently, xk

a = 0 holds for all a ∈ δin(αk) ∪ δout(ωk)
with k = (αk, ωk) ∈ K. From flow conservation (3), we thus obtain∑

a∈δin(ωk)

xk
a =

∑
a∈δout(αk)

xk
a = dk. (6)

Moreover, again due to flow conservation (3), we have

dk =
∑

a∈δin(ωk)

xk
a ≥

∑
a∈δout(i)

xk
a =

∑
a∈δin(i)

xk
a, i ∈ N \ {αk, ωk} . (7)

The non-negativity of the commodity flows as well as (6) and (7) finally yield xk
a ≤ dk

for all a ∈ A, which concludes the proof. □

Since the overall arc flows f and the commodity flows xk, k ∈ K, are linearly
coupled, Proposition 1 also yields valid bounds for the arc flows.

Proposition 2. Let τ ∈ T be given arbitrarily. Then, under Assumptions 1–4,
there exists (f, x) ∈ S(τ) that satisfies

0 ≤ fa ≤
∑
k∈K

dk, a ∈ A.

Proof. By Assumptions 1–4, we can apply Lemma 1, i.e., there exists (f, x) ∈ S(τ).
For all a ∈ A, we have

0 ≤ fa =
∑
k∈K

xk
a ≤

∑
k∈K

dk.

Here, the first inequality follows from (2) and the non-negativity of the commodity
flows given by (4), the equality follows from (2), and the last inequality is due to
Proposition 1. □

In the following proposition, we provide bounds for the minimum travel costs t.
The key idea is that, whenever a vector (f, x, t) solves (2)–(4), we can shift all values
of t by the same amount while still satisfying the conditions.

Proposition 3. Let τ ∈ T be given arbitrarily and suppose that Assumptions 1–4
hold. Then, for all (f, x) ∈ S(τ), there exists t such that (f, x, t) solves (2)–(4)
and t has the following properties:

(i) For all k = (αk, ωk) ∈ K, it holds tkωk
= 0.

(ii) For all k = (αk, ωk) ∈ K and i ∈ N \ {ωk}, it holds

0 ≤ tki ≤ min
p∈Pk

i

∑
a∈p

∑
a′∈A

Ck
aa′

∑
q∈K

dq + cfix,k
a + τ+a


with Pk

i being the set of all simple paths between nodes i and ωk.

Proof. Under Assumptions 1–4, there exists t such that (f, x, t) solves (2)–(4) due
to Lemma 1. For all k ∈ K, let now ∆tk = tkωk

and consider tki −∆tk instead of tki
for all i ∈ N . Then, by construction, tkωk

= 0 holds for all k ∈ K. Moreover, we have

0 ≤ cka(f ; τa) + (tkj −∆tk)− (tki −∆tk) = cka(f ; τa) + tkj − tki ⊥ xk
a ≥ 0,
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for all a = (i, j) ∈ A and all k ∈ K, i.e., Wardrop’s second principle (4) remains
satisfied. Hence, and since Conditions (2) and (3) do not depend on t, there
exists (f, x, t) with tkωk

= 0 for all k ∈ K that solves (2)–(4) for the given tolls τ .
This proves (i). Let now k ∈ K be given arbitrarily. Summing over Conditions (4)
and applying (i) yields

tki ≤
∑
a∈p

cka(f ; τa) + tkωk
=
∑
a∈p

cka(f ; τa), i ∈ N , p ∈ Pk
i ,

which is equivalent to

tki ≤ min
p′∈Pk

i

∑
a∈p′

cka(f ; τa)

 , i ∈ N . (8)

We now show that for every node i ∈ N that is traversed in a path with positive
commodity flow, the corresponding inequality in (8) is satisfied with equality. To
this end, let p ∈ Pk

i , i ∈ N , be a path with positive commodity flow, i.e., xk
a > 0 for

all a ∈ p. Due to the complementarity in (4), we thus have tkn = cka(f ; τa) + tkm for
all a = (n,m) ∈ p, which yields

tki =
∑
a∈p

cka(f ; τa).

In particular, this means that p is a minimum-cost path from node i to ωk. Next,
we show that at least one equilibrium is preserved by setting

tki = min
p′∈Pk

i

∑
a∈p′

cka(f ; τa)

 (9)

for all nodes i ∈ N \{ωk}. By our previous considerations, it suffices to consider arcs
with zero flow, i.e., a = (n,m) ∈ A with xk

a = 0. In this case, the complementarity
in (4) is trivially satisfied. Hence, we only need to show that tkn ≤ cka(f ; τa) + tkm
holds for tkn and tkm as defined in (9). To this end, let

pm = argmin
p′∈Pk

m

∑
a′∈p′

cka′(f ; τa′)

 .

Since pm ∪ {a} ∈ Pk
n, we have

tkn = min
p′∈Pk

n

∑
a′∈p′

cka′(f ; τa′)

 ≤ cka(f ; τa) +
∑

a′∈pm

cka′(f ; τa′) = cka(f ; τa) + tkm,

where both equalities follow from (9).
Since k ∈ K was chosen arbitrarily, we conclude that (f, x, t) with t = (tk)k∈K,

tk = (tki )i∈N as in (9), and tkωk
= 0 solves (2), (3) and (4) for the given tolls τ . The

non-negativity of t now follows from Assumptions 1 and 4. For all i ∈ N \ {ωk}
and k ∈ K, applying Assumptions 1 and 4 as well as Propositions 1 and 2 to (9)
finally yields

tki ≤ min
p′∈Pk

i

∑
a∈p′

(∑
a′∈A

Ck
aa′fa′ + cfix,k

a + τa

)
≤ min

p′∈Pk
i

∑
a∈p′

∑
a′∈A

Ck
aa′

∑
q∈K

dq + cfix,k
a + τ+a

 . □
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Finally, we note that sufficiently large big-M constants for Problem (5) can be
obtained by exploiting Assumptions 1 and 4 as well as Propositions 2 and 3.

3.2. Existence of Solutions. We now show the existence of an optimal solution to
the overall toll-setting problem (1). To this end, we start with the following result.

Corollary 1. Let τ ∈ T be given arbitrarily. Then, under Assumptions 1–4, it
holds

S(τ) =
{
(f, x) : ∃t so that (f, x, t) solves (2)–(4) with 0 ≤ tki ≤ uk

i , i ∈ N , k ∈ K
}
,

where, for all k = (αk, ωk) ∈ K, we have uk
ωk

= 0 and

uk
i := min

p∈Pk
i

∑
a∈p

∑
a′∈A

Ck
aa′

∑
q∈K

dq + cfix,k
a + τ+a

 , i ∈ N \ {ωk}.

Corollary 1 immediately follows from Proposition 3 in which we state that
imposing tki ≤ uk

i , i ∈ N , k ∈ K, does not affect the flows (f, x) in a Wardrop
equilibrium.

Theorem 1. Under Assumptions 1–4, the toll-setting problem (1) has an optimal
solution (τ, f, x).

Proof. By Assumption 1 and Lemma 1, the toll-setting problem (1) is feasible, i.e.,

F := {(τ, f, x) : τ ∈ T , (f, x) ∈ S(τ)} ≠ ∅.
From Corollary 1 and Propositions 1–3, we further obtain that the feasible set F
of Problem (1) is bounded. Moreover, the set F is described by a finite number of
continuous functions, which implies that F is closed. Since the function (τ, f) 7→∑

a∈A τafa is continuous as well, the Weierstraß theorem thus ensures that the
toll-setting problem (1) has an optimal solution. □

3.3. Valid Inequalities. We now conclude this section by providing valid inequal-
ities for the feasible set of Problem (5) as well as valid inequalities for optimal
solutions to the problem.

Proposition 4. Let τ ∈ T be given arbitrarily. Further, let i, j ∈ N be such
that (i, j), (j, i) ∈ A holds. Then, under Assumptions 1 and 4, the inequalities

zk(i,j) + zk(j,i) ≤ 1, k ∈ K,

are valid for the feasible set of Problem (5).

Proof. We prove the claim by contradiction. To this end, let (τ, f, x, t, z) be feasible
for Problem (5) and let k ∈ K be given arbitrarily. Suppose now that zk(i,j) = 1 =

zk(j,i) holds. Then, Constraints (5e) yield

ck(i,j)(f ; τ(i,j)) + tkj = tki and ck(j,i)(f ; τ(j,i)) + tki = tkj .

From the latter, we obtain

tki = ck(i,j)(f ; τ(i,j)) +
(
ck(j,i)(f ; τ(j,i)) + tki

)
⇐⇒ 0 = ck(i,j)(f ; τ(i,j)) + ck(j,i)(f ; τ(j,i)),

which is a contradiction to Assumptions 1 and 4. Hence, a feasible point for
Problem (5) satisfies zk(i,j) + zk(j,i) ≤ 1. □

From Proposition 4, we particularly obtain 0 ≤ xk
(i,j) ⊥ xk

(j,i) ≥ 0 for all
nodes i, j ∈ N with (i, j), (j, i) ∈ A and all commodities k ∈ K. This means
that, under the assumption of positive travel costs, there cannot be positive com-
modity flow on both an arc and its reversed arc. Finally, we provide valid inequalities
for the tolls τ in an optimal solution to Problem (5).
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Proposition 5. Under Assumptions 1–4, there exists an optimal solu-
tion (τ, f, x, t, z) to Problem (5) that satisfies

τa ≥ τ+a

(
1−

∑
k∈K

zka

)
, a ∈ A. (10)

Proof. Under Assumptions 1–4, there exists an optimal solution (τ, f, x, t, z) to
Problem (5) due to Theorem 1. By Assumption 1, an optimal solution particularly
satisfies τa ≥ 0 for all a ∈ A. For all arcs a ∈ A for which the set T imposes the
upper bound τ+a = 0, Inequality (10) is trivially satisfied. Hence, we only need to
consider arcs a ∈ A with τ+a > 0 in the following. Suppose that there is an arc a ∈ A
with τ+a > 0 for which Inequality (10) is violated. If there exists k ∈ K with zka = 1,
this implies τa < 0, which is a contradiction to the feasibility of τ . Hence, if a
feasible point violates Inequality (10), τa < τ+a and zka = 0 for all k ∈ K needs to
hold. In particular, the latter implies xk

a = 0 for all k ∈ K and, thus, fa = 0. We
now set

τ̂a′ =

{
τa′ , a′ ∈ A \ {a},
τ+a′ , a′ = a.

By construction and due to Assumption 1, (τ̂, f, x, t, z) satisfies Constraints (5b),
(5c), (5d), (5f), and (5g). Moreover, (5e) is satisfied for a sufficiently large big-M
constant Mk

a for all k ∈ K. Hence, (τ̂, f, x, t, z) is feasible for Problem (5). By
construction, we further have τa′fa′ = τ̂a′fa′ for all a′ ∈ A, i.e., (τ̂, f, x, t, z) solves
Problem (5) as well. In particular, τ̂a ≥ τ+a (1 −

∑
k∈K zka) holds. Repeating the

previous procedure until there are no arcs left that violate Inequality (10) concludes
the proof. □

4. Robustification

Up to now, we have considered the setting in which the users of the traffic network
act under perfect information. In real-world applications, however, travelers often
face uncertainties when making their decisions. For instance, the travel costs may
be subject to uncertainty due to unforeseen events such as accidents, maintenance
work, or changing weather conditions. Hence, the assumption of perfect information
seems to be rather strong. In this section, we consider the toll-setting problem (1)
under uncertainties regarding the travel costs, which we tackle using techniques
from robust optimization. In Section 4.1, we present a robustified variant of the
toll-setting problem in which the network users hedge against uncertain travel
costs within a predefined and user-specific uncertainty set. We model this setting
as a mathematical problem with robustified Wardrop equilibrium conditions, for
which we present an MINLP reformulation that exploits binary variables and big-M
constants in Section 4.2. Section 4.3 is devoted to deriving valid big-Ms. We
conclude by proving the existence of robust solutions in Section 4.4.

4.1. A Robust Toll-Setting Problem. We start from the nominal Wardrop
equilibrium model given by Conditions (2)–(4), for which we now assume that the
travel costs of each arc a ∈ A and each commodity k ∈ K are not known exactly.
More formally, we impose the following.

Assumption 5. For all a ∈ A and k ∈ K, the travel costs cka(f ; τa) are subject to
additive deviations Y k

a ∆cka with Y k
a being a random variable with support in [0, 1]

and ∆cka ≥ 0.

The parameters ∆cka ≥ 0 denote upper bounds on the possible deviation from the
nominal travel costs. Since it is unlikely that the costs realize in a worst-case sense
on every arc of the network and, hence, to avoid being overly conservative, we assume
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that each commodity k ∈ K hedges against deviations of up to Γk ∈ {0, . . . , |A|}.
The robustified version of Wardrop’s second principle (4) then reads

0 ≤ cka(f ; τa) + yka∆cka + tkj − tki ⊥ xk
a ≥ 0, a = (i, j) ∈ A, k ∈ K. (11)

Here, for a commodity k ∈ K and a given flow vector xk, the vector yk solves

max
yk

∑
a∈A

(∆ckax
k
a)y

k
a (12a)

s.t.
∑
a∈A

yka ≤ Γk, (12b)

0 ≤ yka ≤ 1, a ∈ A. (12c)

Problem (12) is a linear problem for fixed xk, k ∈ K. Hence, the KKT conditions
are necessary and sufficient optimality conditions, i.e., replacing Problem (12) by its
KKT conditions yields an equivalent reformulation of (11) and (12) that is given by

0 ≤ cka(f ; τa) + yka∆cka + tkj − tki ⊥ xk
a ≥ 0, a = (i, j) ∈ A, k ∈ K, (13a)

0 ≤ ξk + ζka −∆ckax
k
a ⊥ yka ≥ 0, a ∈ A, k ∈ K, (13b)

0 ≤ 1− yka ⊥ ζka ≥ 0, a ∈ A, k ∈ K, (13c)

0 ≤ Γk −
∑
a∈A

yka ⊥ ξk ≥ 0, k ∈ K. (13d)

For notational convenience, we use c̃ka(f ; τa) := cka(f ; τa) + yka∆cka to denote the
robustified travel costs for commodity k ∈ K on arc a ∈ A in the following. We
further emphasize that the equilibrium conditions (2) and (3) do not explicitly
depend on the travel costs. Hence, the set of robust Wardrop equilibria for given
tolls τ and fixed Γ = (Γk)k∈K can be stated as

Srob(τ) = {(f, x) : ∃(t, y, ξ, ζ) such that (f, x, t, y, ξ, ζ) solves (2), (3), and (13)} .
The overall robustified toll-setting problem is then given by

max
τ,f,x

∑
a∈A

τafa s.t. τ ∈ T , (f, x) ∈ Srob(τ). (14)

4.2. An MINLP Reformulation. Similar as it is done in Section 3, we exploit
sufficiently large big-M constants and additional binary variables to linearize the
complementarity constraints in (13). An MINLP reformulation of the robustified
toll-setting problem (14) then reads

max
τ,f,x,t,r

∑
a∈A

τafa (15a)

s.t. τ ∈ T , f =
∑
k∈K

xk, (15b)∑
a∈δin(i)

xk
a −

∑
a∈δout(i)

xk
a = dki , i ∈ N , k ∈ K, (15c)

c̃ka(f ; τa) + tkj − tki ≥ 0, a = (i, j) ∈ A, k ∈ K, (15d)

c̃ka(f ; τa) + tkj − tki ≤ Mk
a (1− zka), a = (i, j) ∈ A, k ∈ K, (15e)

xk
a ≥ 0, xk

a ≤ Mk
a z

k
a , a ∈ A, k ∈ K, (15f)

ξk + ζka −∆ckax
k
a ≥ 0, a ∈ A, k ∈ K, (15g)

ξk + ζka −∆ckax
k
a ≤ Nk

aw
k
a , a ∈ A, k ∈ K, (15h)

yka ≥ 0, yka ≤ 1− wk
a , a ∈ A, k ∈ K, (15i)
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yka ≤ 1, yka ≥ vka , a ∈ A, k ∈ K, (15j)

ζka ≥ 0, ζka ≤ Lk
av

k
a , a ∈ A, k ∈ K, (15k)

ξk ≥ 0, ξk ≤ Rkqk, k ∈ K, (15l)∑
a∈A

yka ≤ Γk, k ∈ K, (15m)

Γk −
∑
a∈A

yka ≤ Rk(1− qk), k ∈ K, (15n)

qk, v
k
a , w

k
a , z

k
a ∈ {0, 1} , a ∈ A, k ∈ K. (15o)

Here, r contains all variables that are used for the robustification of the travel costs as
well as the variables that are introduced for the linearization of the complementarity
constraints, i.e., r := (y, ξ, ζ, q, v, w, z). By construction, Problem (15) is equivalent
to the robustified toll-setting problem (14) for sufficiently large constants Lk

a, Mk
a ,

Nk
a , and Rk for all a ∈ A and k ∈ K. Before we elaborate on how to obtain such

constants in Section 4.3, we provide enhanced formulations for Problem (15) in the
remainder of this section. For this purpose, we need the following auxiliary lemma.

Lemma 2. Let k ∈ K, xk ∈ R|A|
≥0 , and Γk ∈ {0, . . . , |A|} be given arbitrarily. Then,

Problem (12) has an optimal solution yk that satisfies∑
a∈A

yka = Γk.

Proof. The objective function of Problem (12) is linear for fixed xk, the zero vector
is feasible for Problem (12), and the feasible set of Problem (12) is compact. By
the Weierstraß theorem, Problem (12) thus has an optimal solution yk. Moreover,
the system Myk ≤ v that describes the feasible set of Problem (12) consists
of a totally unimodular matrix M ∈ {0, 1}(|A|+1)×|A| and the right-hand side
vector v =

(
Γk, 1, . . . , 1

)⊤ ∈ Z|A|+1. Hence, by Proposition 3.3 in Wolsey (2020),
Problem (12) has an integer solution. For Γk = 0, Constraint (12b) is satisfied with
equality since yk = 0 is the only feasible point for Problem (12). If

∑
a∈A yka < Γk

holds for some Γk ≥ 1, the integrality of yk implies that there exists at least one
arc a ∈ A with yka = 0. If ∆ckax

k
a > 0 holds, we have a contradiction to the optimality

of yk. Hence, there exists a ∈ A with yka = 0 and ∆ckax
k
a = 0. We set

ŷka′ =

{
yka′ , a′ ∈ A \ {a},
1, a′ = a.

By construction, ŷ solves Problem (12) as well. Repeating the previous procedure
until Constraint (12b) is satisfied with equality concludes the proof. □

By Lemma 2, we can reduce the size of Problem (15) by eliminating the auxiliary
binary variables q used for the linearization of the complementarity in (13d). To
this end, we can replace Constraints (15l), (15m), and (15n) by

ξk ≥ 0,
∑
a∈A

yka = Γk, k ∈ K.

While the complementarity in (13d) is satisfied for any ξ ≥ 0, we emphasize that finite
upper bounds on the variables ξ are required to obtain valid big-M constants Nk

a ,
a ∈ A, k ∈ K, for Constraint (15h). Hence, we additionally impose ξk ≤ Rk for
all k ∈ K.

Proposition 6. The inequalities

vka + wk
a ≤ 1, a ∈ A, k ∈ K,

are valid for the feasible set of Problem (15).
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Proof. We prove the claim by contradiction. To this end, let (τ, f, x, t, y, ξ, ζ, q, v, w, z)
be feasible for Problem (15) and suppose that there exists an arc a ∈ A and a
commodity k ∈ K for which the inequality vka + wk

a ≤ 1 is violated. Hence,
we have vka = 1 = wk

a . Then, we obtain yka = 1 by Constraint (15j), which
contradicts yka = 0 that is obtained from Constraint (15i). □

Finally, we note that the robustified travel costs c̃ka(f ; τa) are positive for all a ∈ A
and k ∈ K under Assumptions 1, 4, and 5. Thus, the valid inequalities derived in
Proposition 4 are also valid for Problem (15). Moreover, since we do not use any
information about the travel costs to prove the validity of Inequalities (10), the
latter are valid for optimal solutions to the robustified toll-setting problem as well.

4.3. Computing Big-Ms. We now derive bounds for the variables of Problem (15),
which we exploit to obtain sufficiently large big-M constants Lk

a, Mk
a , Nk

a , and Rk

for all a ∈ A and k ∈ K. For this purpose, we first prove the existence of a robust
Wardrop equilibrium for given tolls τ ∈ T .

Theorem 2. Let τ ∈ T as well as Γ = (Γk)k∈K with Γk ∈ {0, . . . , |A|} for all k ∈ K
be given arbitrarily. Then, under Assumptions 1–5, there exists (f, x) ∈ Srob(τ).

Proof. By Lemma 2, Problem (12) has an optimal solution yk for arbitrarily
given xk ∈ R|A|

≥0 , k ∈ K. Since the KKT conditions are necessary and suffi-
cient for Problem (12), there exist ξk and ζk = (ζka )a∈A such that (yk, ξk, ζk)
solves (13b)–(13d) for all k ∈ K. Hence, Conditions (13b)–(13d) cannot induce
any infeasibility. Similar as it is done in the proof of Lemma 1, we now apply
Theorem 5.5 in Aashtiani and Magnanti (1981) to prove the existence of a robust
Wardrop equilibrium. For the application of this theorem, it only remains to show
that the robustified travel cost functions c̃ka(f ; τa) are positive and continuous for
all a ∈ A and k ∈ K. The positivity of the travel cost functions immediately follows
from Assumptions 1, 4, and 5. Moreover, Problem (12) is a linear problem for
given commodity flows xk so that we can use classic sensitivity results as, e.g.,
Proposition 4.3.3 in Bertsekas (2016). As a consequence, the function xk 7→ yka∆cka
with yk being an optimal solution to the xk-parameterized linear problem (12), is
continuous for all a ∈ A and k ∈ K. Thus, under Assumption 4, the robustified
travel cost functions c̃ka(f ; τa) := cka(f ; τa) + yka∆cka are continuous. This concludes
the proof. □

Remark 1. The budgeted uncertainty modeling used in Problem (12) is closely
related to the so-called Γ-robust approach presented in Bertsimas and Sim (2003) and
Sim (2004). Pursuing a Γ-robust approach in our setting, however, would imply that
the users of the traffic network hedge against uncertain travel costs on at most Γk

many arcs of the network. This requires imposing integrality on the variables yk in
Problem (12), which leads to robustified travel cost functions c̃ka(f ; τa) := cka(f ; τa) +
yka∆cka that are no longer continuous. Continuity is needed to prove the existence
of robust Wardrop equilibria using Theorem 5.5 in Aashtiani and Magnanti (1981).
Hence, proving existence of Γ-robust Wardrop equilibria in the sense of Bertsimas
and Sim (2003) and Sim (2004) most likely requires different techniques compared
to those used in the last proof.

In the remainder of this section, we provide bounds for the flow variables f and x
as well as for the variables t, ξ, and ζ in a robust Wardrop equilibrium.

Corollary 2. Let τ ∈ T as well as Γ = (Γk)k∈K with Γk ∈ {0, . . . , |A|} for all k ∈ K
be given arbitrarily. Then, under Assumptions 1–5, there exists (f, x) ∈ Srob(τ) that
satisfies

0 ≤ xk
a ≤ dk, a ∈ A, k ∈ K,
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as well as
0 ≤ fa ≤

∑
k∈K

dk, a ∈ A.

Under Assumptions 1, 4, and 5, the robustified travel cost functions c̃ka(f ; τa) are
positive for all a ∈ A and k ∈ K. Hence, Corollary 2 can be shown in analogy to the
proofs of Propositions 1 and 2 by replacing the nominal travel cost functions cka(f ; τa)
with the robustified travel cost functions c̃ka(f ; τa) for all a ∈ A and k ∈ K.

Corollary 3. Let τ ∈ T as well as Γ = (Γk)k∈K with Γk ∈ {0, . . . , |A|} for
all k ∈ K be given arbitrarily and suppose that Assumptions 1–5 hold. Then,
for all (f, x) ∈ Srob(τ), there exists (t, y, ξ, ζ) such that (f, x, t, y, ξ, ζ) solves (2), (3)
and (13), and t has the following properties:

(i) For all k = (αk, ωk) ∈ K, it holds tkωk
= 0.

(ii) For all k = (αk, ωk) ∈ K and i ∈ N \ {ωk}, it holds

0 ≤ tki ≤ min
p∈Pk

i

∑
a∈p

∑
a′∈A

Ck
aa′

∑
q∈K

dq + cfix,k
a + τ+a +∆cka

 =: uk
i

with Pk
i being the set of all simple paths between nodes i and ωk. In particular,

it holds

Srob(τ) = {(f, x) : ∃(t, y, ξ, ζ) such that (f, x, t, y, ξ, ζ) solves (2), (3), and (13)

with 0 ≤ tki ≤ uk
i , i ∈ N , k ∈ K}.

Corollary 3 can be shown in analogy to the proof of Proposition 3 by replacing
the nominal travel cost functions cka(f ; τa) with the robustified travel cost func-
tions c̃ka(f ; τa) for all a ∈ A and k ∈ K.

Proposition 7. Let τ ∈ T as well as Γ = (Γk)k∈K with Γk ∈ {0, . . . , |A|} for all
k ∈ K be given arbitrarily. Then, under Assumptions 1–5, there exists (f, x, t, y, ξ, ζ)
that solves (2), (3), and (13) with

0 ≤ ξk ≤ max
a∈A

{
∆ckadk

}
, k ∈ K, (16)

and
0 ≤ ζka ≤ ∆ckadk, a ∈ A, k ∈ K. (17)

In particular, it holds

Srob(τ) = {(f, x) : ∃(t, y, ξ, ζ) such that (f, x, t, y, ξ, ζ)
solves (2), (3), (13), (16) and (17)}.

Proof. By Theorem 2, there exists (f, x, t, y, ξ, ζ) that solves (2), (3), and (13). Since
the non-negativity of ξ and ζ immediately follows from the feasibility w.r.t. Condi-
tions (13), we only need to prove the upper bounds. To this end, let k ∈ K be given
arbitrarily. If Γk = 0 holds, commodity k does not hedge against any uncertainties
regarding the travel costs, i.e., no additional variables ξk and ζk are introduced
for the robustification of commodity k. Consequently, it suffices to consider the
case Γk ≥ 1. Due to Lemma 2, we can assume w.l.o.g. that

∑
a∈A yka = Γk holds in

a robust Wardrop equilibrium. In particular, this implies that there exists at least
one arc a ∈ A with yka > 0. Condition (13b) then yields ξk + ζka = ∆ckax

k
a. From

the non-negativity of ξk and ζka , we thus obtain

0 ≤ ζka ≤ ∆ckax
k
a and 0 ≤ ξk ≤ ∆ckax

k
a
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for all a ∈ A with yka > 0. Moreover, for all a ∈ A with yka = 0, we obtain ζka = 0
from (13c). Taking all previous considerations into account, we obtain valid bounds

0 ≤ ξk ≤ max
a∈A

{
∆ckax

k
a

}
≤ max

a∈A

{
∆ckadk

}
, k ∈ K,

0 ≤ ζka ≤ ∆ckadk, a ∈ A, k ∈ K,

by exploiting Corollary 2 as well as Assumptions 3 and 5. We further note that im-
posing these bounds does not affect the flows (f, x) in a robust Wardrop equilibrium
for the given tolls τ . This concludes the proof. □

Finally, sufficiently large big-M constants for Problem (15) can be obtained by
exploiting Assumptions 1, 4, and 5, Corollaries 2 and 3, as well as Proposition 7.

4.4. Existence of Solutions. We conclude this section by showing the existence
of solutions to the robustified toll-setting problem (14).

Theorem 3. Under Assumptions 1–5, the robustified toll-setting problem (14) has
an optimal solution (τ, f, x).

Proof. We consider the problem

max
τ,f,x,t,y,ξ,ζ

∑
a∈A

τafa (18a)

s.t. τ ∈ T , (f, x, t, y, ξ, ζ) solves (2), (3), and (13), (18b)

0 ≤ tki ≤ uk
i , i ∈ N , k ∈ K, (18c)

ζka ≤ ∆ckadk, a ∈ A, k ∈ K, (18d)

ξk ≤ max
a∈A

{
∆ckadk

}
, k ∈ K, (18e)

where, for all k ∈ K, we have uk
ωk

= 0 and

uk
i := min

p∈Pk
i

∑
a∈p

∑
a′∈A

Ck
aa′

∑
q∈K

dq + cfix,k
a + τ+a +∆cka

 , i ∈ N \ {ωk}.

By Assumption 1 and Theorem 2, the feasible set of Problem (18) is non-empty.
Moreover, the feasible set of Problem (18) is bounded due to Assumption 1, Corol-
laries 2 and 3, as well as Proposition 7. In particular, the feasible set of Problem (18)
is described by a finite number of continuous functions, which implies its closed-
ness. Since the objective function of Problem (18) is continuous, the Weierstraß
theorem thus ensures that Problem (18) has an optimal solution. From Part (iii) of
Corollary 3 and from Proposition 7, we further obtain

Srob(τ) = {(f, x) : ∃t s.t. (f, x, t, y, ξ, ζ) solves (2), (3), and (13)}
= {(f, x) : ∃t s.t. (f, x, t, y, ξ, ζ) solves (18b)–(18e)}

for arbitrarily given τ ∈ T . Since we consider the same objective functions in
Problems (14) and (18), an optimal solution to Problem (18) solves the robust
toll-setting problem (14) as well. □

5. Case Study

In this section, we present a case study to illustrate how the consideration of
travelers, who hedge against travel cost uncertainty in a robust way, may impact
toll-setting policies. In Sections 5.1 and 5.2, we briefly discuss the computational
setup and the considered test instances. In Section 5.3, we discuss the computational
results of our case study.
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Figure 1. The entire Sioux Falls network (blue and orange nodes)
consisting of 24 nodes and 76 arcs and the “Sioux Falls East” network
(orange nodes) consisting of 12 nodes and 36 arcs.

5.1. Computational Setup. All tests have been realized on an Intel XEON
SP 6126 at 2.6GHz (4 cores) with 32GB RAM, which is part of the high performance
cluster “Elwetritsch” at TU Kaiserslautern within the “Alliance of High Performance
Computing Rheinland-Pfalz” (AHRP).2 The toll-setting problems (5) and (15)
are implemented in Python 3.7.11 and we use Gurobi 10.0.3 to solve them. In
particular, the implementation of our models includes the valid inequalities presented
in Propositions 4, 5, and 6. Preliminary computational tests revealed that including
these inequalities significantly enhances the solution process. Since the toll-setting
models are nonconvex MINLPs, we need to set the Gurobi parameter NonConvex
to 2. All other parameters have been left at their default settings. For each test
run, we set a time limit (TL) of 1 h.

5.2. Test Instances. We consider a subnetwork of the Sioux Falls network
(LeBlanc et al. 1975), which is publicly available at https://github.com/bstabler/
TransportationNetworks. The subnetwork, which we refer to as “Sioux Falls East”,
consists of 12 nodes and 36 arcs. In this case study, we consider a varying number of
origin-destination (OD) pairs ranging from 4 to 8. An illustration of both the entire
Sioux Falls network and the “Sioux Falls East” subnetwork is given in Figure 1. The
travel costs that have been provided for the Sioux Falls network are defined by the
BPR function (U.S. Bureau of Public Roads 1964), which is given by

ca(fa) = cfix
a

(
1 + 0.15

(
fa
ua

)4
)
, a ∈ A.

2We kindly acknowledge the support of RHRK (https://rz.rptu.de/en/).

https://github.com/bstabler/TransportationNetworks
https://github.com/bstabler/TransportationNetworks
https://rz.rptu.de/en/
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Here, cfix
a > 0 denotes the fixed costs (“free-flow time”) and ua > 0 denotes the

capacity of an arc a ∈ A. In this paper, we address the problem of determining
optimal tolls in a network with travel cost functions that are affine-linear in the
flows f ; cf. Assumption 4. Hence, we adapt the BPR functions to account for our
setting. In this case study, we consider the travel cost functions

ca(fa; τa) = cfix
a

(
1 + 1.5

fa
ua

)
+ τa, a ∈ A.

We emphasize that these travel costs are separable and that each commodity faces
the same costs. Since the used data for the Sioux Falls network does not contain
toll arcs, we have generated toll arcs using a procedure similar to the one considered
in Brotcorne et al. (2000) and Minh Bui et al. (2022). The method works as follows.
For a given set of OD pairs, we determine the shortest path for each commodity.
For each arc of the network, we then determine the number of shortest paths that
go through that arc. Afterward, we sort the arcs of the network in decreasing order
w.r.t. the number of shortest paths traversing it. Following this order, we convert
each arc and its reversed arc into a toll arc until 2/3 of the desired number of toll
arcs is reached. The remaining 1/3 of the desired number of toll arcs is chosen
randomly among the remaining arcs. Again, if an arc is converted to a toll arc,
we also convert its reversed arc. For all arcs of the network, we impose a lower
bound of 0 on the tolls and we set the upper bound τ+a = 0 for toll-free arcs. For
toll arcs, the upper bounds τ+a on the tolls are set to the fixed travel costs cfix

a .
As usual in the literature, we half the costs cfix

a for toll arcs after their conversion.
Since we define finite upper bounds on the tolls, the revenues of the toll-setting
authority are bounded from above; cf. Proposition 2. In contrast to Brotcorne et al.
(2000) and Minh Bui et al. (2022), we thus do not need to ensure that at least
one toll-free path is preserved for each commodity when converting arcs into toll
arcs. Moreover, since the used data for the Sioux Falls network does not include
uncertainties, we have randomly generated the uncertainty parameters ∆cka and Γk,
a ∈ A, k ∈ K. For all commodities, we consider the same travel cost uncertainties,
i.e., we consider ∆cka = ∆ca for all a ∈ A and k ∈ K. Here, ∆ca is a uniformly
distributed random integer value in the interval [0.5cfix

a , 2cfix
a ]. Moreover, for each

commodity k ∈ K, the parameter Γk takes a uniformly distributed integer value in
the interval [0, 0.5|A|]. We emphasize that Γk may differ among commodities.

5.3. Computational Results. We start by considering the nominal setting, i.e.,
the setting without any uncertainties regarding the travel costs. Reflected by the
running times and the number of investigated branch-and-bound nodes shown in
Table 1, we observe that the resources required to solve Problem (5) increase with
the number of OD pairs. This is to be expected as the number of OD pairs directly
influences the size of the toll-setting problem. For each additional OD pair, we
introduce 2|A| + |N | = 84 additional variables and 3|A| + |N | = 120 additional
constraints in the model. Moreover, since every arc in the “Sioux Falls East” network
has one reversed arc, we further add 0.5|A| = 18 valid inequalities for each OD pair.
Thus, it is evident that increasing the number of OD pairs increases the amount
of resources required to solve the respective toll-setting problems. In addition, the
results in Table 1 indicate that increasing the number of toll arcs in the network
further increases the computational burden. This is due to the fact that more
toll arcs lead to more nonconvex terms in the objective function of the toll-setting
problem (5), which require a special algorithmic treatment. Gurobi tackles these
nonconvexities using spatial branching based on convex envelopes. Overall, even
under the assumption of affine-linear travel cost functions (see Assumption 4),
solving Problem (5) is a highly challenging task. The latter is particularly reflected
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Table 1. The revenues realized through imposing tolls as well
as the runtimes (in s) and the number of investigated branch-
and-bound nodes required to solve the respective nominal toll-
setting optimization problem for the “Sioux Falls East” network
with varying numbers of OD pairs (“|K|”) and toll arcs (“

∣∣Atoll
∣∣”).

Additionally, the optimality gap is shown (in %).

|K|
∣∣Atoll

∣∣ revenues runtime nodes gap

4 4 6000.00 1.90 3544 0.00
6 7176.11 2.76 9765 0.01
8 7176.11 11.58 58 979 0.01

5 4 6000.00 1.28 1100 0.00
6 7415.86 25.57 155 363 0.01
8 7415.86 27.18 153 352 0.01

6 4 6659.88 2.33 3707 0.01
6 7415.86 40.75 168 903 0.01
8 8086.66 3529.97 13 370 122 0.01

7 4 8271.18 2.49 4416 0.00
6 7415.86 162.27 845 334 0.01
8 9697.96 TL 11 804 881 0.40

8 4 8348.09 4.04 2280 0.00
6 7445.88 710.55 2 306 930 0.01
8 9835.07 TL 9 180 328 11.94

Table 2. The revenues realized through imposing tolls as well
as the runtimes (in s) and the number of investigated branch-
and-bound nodes required to solve the respective robustified toll-
setting optimization problem for the “Sioux Falls East” network
with varying numbers of OD pairs (“|K|”) and toll arcs (“

∣∣Atoll
∣∣”).

Additionally, the optimality gap is shown (in %).

|K|
∣∣Atoll

∣∣ revenues runtime nodes gap

4 4 8757.14 286.03 250 597 0.01
6 10 086.90 TL 3 973 530 3.49
8 11 794.84 TL 3 491 529 4.88

5 4 7934.72 TL 2 774 570 4.24
6 9807.33 TL 2 840 066 3.81
8 10 624.36 TL 1 578 972 15.90

by the two instances of the “Sioux Falls East” network that cannot be solved within
the time limit of 1 h.

Compared to the nominal toll-setting problem (5), the robustified toll-setting
problem (15) is significantly larger w.r.t. the number of variables and constraints. For
the “Sioux Falls East” network, we introduce 145|K| additional variables and 363|K|
additional constraints for the robustification and the linearization of robustified
constraints. Moreover, we add 36|K| additional valid inequalities; cf. Proposition 6.
Since, even for the nominal setting, the problem size is a limiting factor for solving
the respective toll-setting problem, the computational challenges resulting from
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Table 3. Nominal vs. robust travel costs for each OD pair in the
“Sioux Falls East” network with 4 (left) and 5 OD pairs (right) with
a varying number of toll arcs (“

∣∣Atoll
∣∣”).∣∣Atoll

∣∣ OD pair nominal robust

4 (8, 20) 10.02 15.92
(9, 21) 16.44 24.87

(16, 21) 14.59 27.66
(17, 22) 11.55 18.56

6 (8, 20) 10.02 15.92
(9, 21) 15.93 24.64

(16, 21) 13.68 28.40
(17, 22) 11.55 18.46

8 (8, 20) 10.02 15.92
(9, 21) 15.93 24.58

(16, 21) 13.68 27.34
(17, 22) 11.55 18.73

∣∣Atoll
∣∣ OD pair nominal robust

4 (8, 20) 10.02 15.90
(9, 21) 16.44 24.93

(21, 18) 10.20 20.23
(16, 21) 14.59 21.47
(17, 22) 11.55 18.95

6 (8, 20) 10.02 15.90
(9, 21) 15.93 24.72

(21, 18) 10.03 21.03
(16, 21) 13.68 22.04
(17, 22) 11.55 18.88

8 (8, 20) 10.02 15.89
(9, 21) 15.93 24.71

(21, 18) 10.03 21.03
(16, 21) 13.68 22.40
(17, 22) 11.55 18.99

larger models is thus even more pronounced in the robust setting. In Table 2, it can
be seen that only the smallest of our considered instances, i.e., the one with 4 OD
pairs and 4 toll arcs, can be solved within the time limit of 1 h in the robust setting.
Given this limitation, we thus refrain from presenting results for larger instances
with 6 or more OD pairs.

While only one of the instances considered in the robust setting can be solved,
the results presented in Table 2 still provide valuable insights into the impact of
robustified travel decisions on the revenues realized by the toll-setting authority. It
can be seen that, for the “Sioux Falls East” network, the revenues that are realized
by imposing tolls are significantly higher in the robust setting compared to the
nominal one. In this context, we emphasize that it is not the toll-setting authority
that hedges against uncertain travel costs in a robust way, but the users of the
traffic network. In particular, the users of the traffic network decide on their route
choices in a “here-and-now” fashion, i.e., before the uncertainty realizes. Viewing the
overall toll-setting problem as a single-leader multi-follower game, this means that
we consider multiple “here-and-now” followers. Since this problem is considered from
the leader’s perspective, having higher revenues in the robust setting is thus not in
contrast to classic robust optimization theory. To further illustrate this, we show the
nominal and the robustified travel costs faced by each commodity in the “Sioux Falls
East” network in Table 3. It can be seen that, when hedging against uncertain travel
costs in a robust way, users of the traffic network always face increased travel costs
to reach their destination. More formally, the previous observations indicate that,
while the set of feasible flows do not change in the robust compared to the nominal
setting, the set of Wardrop equilibria may change. Hence, for given tolls τ ∈ T ,
neither Srob(τ) ⊆ S(τ) nor Srob(τ) ⊇ S(τ) holds in general.

To further illustrate the impact of robustified travel decisions on the actual route
choices and the imposed tolls, we now focus on the “Sioux Falls East” instance
with 4 OD pairs and 4 toll arcs, which can be solved in both the nominal and the
robust setting. In Figure 2, we show the flows in a nominal Wardrop equilibrium
and the tolls imposed by the toll-setting authority. It can be seen that revenues
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Figure 2. The “Sioux Falls East” network with 4 OD pairs and 4
toll arcs. Each OD pair is color-coded (orange, green, blue, purple).
Dashed arcs represent toll arcs and solid arcs represent toll-free
arcs. Edge labels correspond to commodity flows. For toll arcs,
edge labels are given in the format “flow | toll”. If no label is shown,
there is no flow on that edge.
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Figure 3. The robust “Sioux Falls East” network with 4 OD pairs
and 4 toll arcs. Each OD pair is color-coded (orange, green, blue,
purple). Dashed arcs represent toll arcs and solid arcs represent
toll-free arcs. Edge labels correspond to commodity flows. For toll
arcs, edge labels are given in the format “flow | toll”. If no label is
shown, there is no flow on that edge.
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are only generated by imposing tolls on arc (15, 22). The remaining toll arcs are
not used by any commodity. Nevertheless, we emphasize that imposing tolls on
arcs with zero flow may still be beneficial for the toll-setting authority, even if no
revenues are generated. In this way, the toll-setting authority can influence the
travel decisions of the users of the traffic network such as to encourage or discourage
the use of specific arcs. This may lead to overall higher revenues. In particular,
decreasing the imposed tolls on arcs with zero flow may affect the flows in a Wardrop
equilibrium. Let us now consider the specific routes taken by each commodity. In
Figure 2, we observe that the green and the blue commodities, i.e., OD pairs (9, 21)
and (17, 22), take the most direct route to reach their destination. In doing so, they
accept to pay tolls along the way. The orange and the purple commodities, i.e., OD
pairs (8, 20) and (16, 21), do not take the most direct route and prefer to take a
detour to avoid being charged tolls. However, the situation may change significantly
if users of the traffic network hedge against uncertain travel costs in a robust way. In
Figure 3, we show the imposed tolls and the flows in a robust Wardrop equilibrium.
There are five aspects that we find particularly remarkable. First, revenues are
now additionally generated by imposing tolls on the arcs that connect nodes 16
and 17. This is in contrast to the nominal setting. Second, we note that robust
travel decisions do not affect the actual tolls charged on the arcs of the network for
this instance. Despite the fact that the toll-setting authority imposes higher tolls
on arc (16, 17) in the robust setting (2 vs. 1.5), we emphasize that imposing tolls
of 2 would be optimal in the nominal setting as well; cf. Proposition 5. Third, the
green and the orange commodities do not change their travel decisions when hedging
against travel cost uncertainties in a robust way. Also in the robust setting, the
green commodity takes the most direct route, accepting the toll charges, while the
orange commodity takes a detour to avoid toll arcs. Fourth, the travel decision of
the purple commodity changes completely in the robust setting. Instead of taking a
toll-free detour, it now takes the most direct route, which includes a toll arc. Finally,
we point out that the flow of the blue commodity is split between the most direct
tolled route and the toll-free detour. Moreover, the flows of the blue commodity are
split between (20, 21, 22) and (20, 22) on the toll-free path.

To sum up, our case study illustrates that making robust travel decisions due to
travel cost uncertainties may significantly impact the travel behavior and, thus, the
revenues realized by imposing tolls. We have seen that users of the traffic network,
who hedge against travel cost uncertainties within their user-specific uncertainty
set, may be indifferent to uncertainties, change their travel decisions completely, or
decide on something in between. While we have further observed that the actual
toll-setting policies do not change in the robust setting for the specific “Sioux Falls
East” instance considered in our case study, we note that this may not be the case
in general. Nevertheless, given the significant increase in size and computational
difficulty of the robustified toll-setting problem compared to the nominal one, an
interesting future research question may be to identify situations in which nominal
toll-setting policies also provide favorable results in the robust setting.

6. Conclusion

In this paper, we consider a multi-commodity traffic network in which a toll-
setting authority aims to maximize revenues by imposing tolls on certain arcs of the
network. Users of the traffic network act in the sense of Wardrop’s user equilibrium
so that their individual travel costs are minimized. We model this setting as a
mathematical problem with equilibrium constraints, for which we present a mixed-
integer, nonlinear, and nonconvex reformulation that exploits binary variables and
big-M constants. We prove existence of solutions to this problem, derive correct
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big-Ms, and provide valid inequalities. Moreover, we consider the setting in which
the network users pursue a robust approach to hedge against uncertainties regarding
their travel costs. In this paper, the uncertainties are assumed to vary within
a predefined and user-specific uncertainty set, which relates to the notion of Γ-
robustness. We reformulate the robustified problem as a mixed-integer, nonlinear,
and nonconvex problem and prove the existence of robust solutions. To illustrate
the impact of considering robust travel decisions on the revenues realized by the
toll-setting authority, we further conduct a case study using a subnetwork of the
well-known Sioux Falls network. We observe that addressing uncertainties in the
travel costs may significantly impact the travel behavior and, in particular, may lead
to increased revenues realized by imposing tolls. However, for the specific instance
considered in our case study, we observe that the actual toll-setting policies do
not change in the robust compared to the nominal setting. Given that solving the
robustified toll-setting problem is significantly more challenging than the nominal
one, a potential future research question could thus be to identify situations in
which quality guarantees for nominal toll-setting policies in the robust setting are
available. Another interesting research question could be to identify properties
that ensure the existence of Γ-robust Wardrop equilibria in the classic sense of
Bertsimas and Sim (2003) and Sim (2004). Finally, a possible direction of future
research may be the development of tailored solution approaches that exploit, e.g.,
piecewise-linear approximations of the bilinearities in the objective function of the
toll-setting problem.
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