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Abstract

In this paper, we address an extension of the classical two-dimensional bin packing (2BPP)
that considers the spread of customer orders (2BPP-OS). The 2BPP-OS addresses a set of
rectangular items, required from different customer orders, to be cut from a set of rectan-
gular bins. All the items of a customer order are dispatched together to the next stage of
production or distribution after its completion. The objective is to minimize the number of
bins used and the spread of customer orders over the cutting process. The 2BPP-OS gains
relevance in manufacturing environments that seek minimum waste solutions with satisfac-
tory levels of customer service. We propose integer linear programming (ILP) models for
variants of the 2BPP-OS that consider non-guillotine, 2-stage, restricted 3-stage, and unre-
stricted 3-stage patterns. We are not aware of integrated approaches for the 2BPP-OS in
the literature despite its relevance in practical settings. Using a general-purpose ILP solver,
the results show that the 2BPP-OS takes more computational effort to solve than the 2BPP,
as it has to consider several symmetries that are often disregarded by the traditional 2BPP
approaches.

Keywords: Cutting & Packing, Mixed-integer linear programming, Non-guillotine pattern,
2-stage and 3-stage patterns, Order spread minimization

1. Introduction1

The two-dimensional bin packing problem (2BPP) is a widely studied combinatorial op-2

timization problem that considers a set of rectangular differently sized items to be cut out3
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of a minimum number of identical rectangular bins while minimizing the number of bins4

used. The problem is strongly NP-Hard, as it is an extension of the one-dimensional bin5

packing problem (Garey & Johnson, 1979). The 2BPP has many applications in manufac-6

turing industries, such as in the cutting of glass panels, wooden boards, and steel sheets,7

and in logistical environments, such as truck loading and packaging design (Martin et al.,8

2022). There are several variations of the 2BPP, which are typically defined by the specific9

constraints related to the application field. Two of the main variations are the bin orienta-10

tion, which allows the rotation of items by 90 degrees seeking to reach solutions with better11

material utilization rates, and the cutting profile, which is related to the cutting device and12

may consider non-guillotine or guillotine patterns (Lodi et al., 1999).13

Solution approaches for the 2BPP are surveyed in the works of Lodi et al. (2002a),14

Scheithauer (2018), and Iori et al. (2021). These approaches can be categorized as: (i)15

exact algorithms that explore all possible solutions, such as branch and bound algorithms16

and models of integer linear programming (Lodi et al., 2004; Puchinger & Raidl, 2007); (ii)17

approximation algorithms with worst-case performance guarantees based on shelf allocation18

strategies such as first fit decreasing height and best fit decreasing height (Coffman et al.,19

1980; Lodi et al., 2002b); (iii) heuristic and metaheuristic algorithms to find satisfactory20

solutions to the problem in a reasonable amount of time (Lodi et al., 1999; Alvelos et al.,21

2009; Cui et al., 2015). There is also a strong field of studies about lower and upper bounds22

which are useful for the solution approaches (Boschetti & Mingozzi, 2003a,b).23

In manufacturing environments, the items to be cut are related to customer orders. In24

this sense, Dyson & Gregory (1974) and Madsen (1979, 1988) seem to be the first to address25

cutting problems that deal with a sequencing decision seeking to contemplate the customer26

orders from a two-phase approach. They proposed to first solve the cutting problem with27

the column generation approach of Gilmore & Gomory (1965) and, then, to sequence the28

cutting patterns to reduce the number of discontinuities, which are the number of times that29

a customer order (e.g. all the copies of an item type) is re-initiated, from traveling salesman30

based approaches. They discussed that, in the glass industry, the shade of the glasses can be31

slightly different, which justifies that from aesthetic aspects the items of a customer order32

should be cut out of the minimum amount of objects. More recently, a few works addressed33

the 2BPP with due dates, which is a related problem that considers each item to be cut34

has a due date (Bennell et al., 2013; Arbib et al., 2021; Polyakovskiy & M’Hallah, 2021).35

This problem generally assumes that the processing of a bin lasts a constant interval of36

time regardless of the items to be cut out of the bin. The objective function is to minimize37

the number of bins used and a scheduling metric, such as the maximum lateness, which is38

computed in terms of bins.39

In contrast to these problems, it is more appropriate to optimize the spread of customer40

orders during the cutting process when the items belonging to an order are dispatched41

together to the next stage of production or distribution after the order completion. In fact,42

the manufacturer generally follows an organizational policy of awaiting the consolidation of43

the demand of some orders before starting the cutting process to improve the use of raw44

materials. This policy tends to harm the delivery times and invoicing of orders if the sequence45

of bins cut generates items without considering they belong to different customer orders.46
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This decision can be addressed by the Minimization of Order Spread Problem (MORP),47

which is a combinatorial optimization problem that seeks to determine a processing sequence48

of tasks (Dyson & Gregory, 1974). Its objective function minimizes the largest spread among49

all orders (Madsen, 1983) or the sum of the spread of all orders (Foerster & Wäscher, 1998).50

These goals bring concepts of satisfactory levels of customer service. Indeed, a 2BPP solution51

that is optimal in terms of bin usage may be poor in terms of customer service if the orders52

remain in process for a long time during the cutting operation. The MORP is NP-Hard and53

also arises in the context of several other optimization problems, such as integrated circuit54

design and Graph Theory problems (Linhares & Yanasse, 2002).55

In this paper, we propose mathematical models for the two-dimensional bin packing prob-56

lem with customer order spread (2BPP-OS). The 2BPP-OS is an integrated problem with57

the decisions of the 2BPP and MORP. We highlight the importance of the 2BPP-OS in the58

context of low-scale production systems, given that they often compete not only on cost but59

also on the speed of delivery of products — see Melega et al. (2022) for a discussion about60

cutting and packing decisions that arise in low-scale production systems. The main contri-61

bution presented in this paper is a modeling approach based on Integer Linear Programming62

(ILP) to the 2BPP-OS for distinct cutting profiles. We present models for variants of the63

2BPP-OS of non-guillotine, 2-stage, restricted 3-stage, and unrestricted 3-stage patterns –64

these patterns are explained in the next section. We are not aware of integrated approaches65

for the 2BPP-OS in the literature despite its evident relevance in practical settings. The66

proposed ILP formulations are derived from the modeling approaches of Padberg (2000),67

Lodi et al. (2004) and Puchinger & Raidl (2007) concerning the 2BPP. Using a general-68

purpose ILP solver, the results show that the 2BPP-OS takes more computational effort to69

solve than the 2BPP, as it has to consider several symmetries that are often disregarded by70

the traditional 2BPP approaches.71

The paper is organized as follows. In Section 2, we describe the 2BPP-OS, the four72

addressed cutting profiles, and an illustrative example to highlight the notion of customer73

order spread. In Section 3, we present ILP formulations for the 2BPP-OS of non-guillotine,74

2-stage, restricted 3-stage, and unrestricted 3-stage patterns. Using a general-purpose ILP75

solver and adapted benchmark instances from the literature, the computational performance76

of the proposed formulations is reported in Section 4. In Section 5, we conclude the study77

and discuss opportunities for future research.78

2. Description of the problems79

The 2BPP-OS addresses a set I = {1, . . . , n} of rectangular items to be cut out of a set80

of rectangular bins of length L and width W . Each item i ∈ I is characterized by its length81

li, width wi, and it is associated with a single customer order ci ∈ C = {1, . . . ,m}. The82

problem considers identical items as distinct items. All the items of a customer order c ∈ C83

are represented by set Ic = {i ∈ I | ci = c}. Let us assume a set S = {1, . . . , s} of bins to be84

ordinal and so its kth element represents the kth bin to be processed in the cutting process.85

Let us define a binary parameter πs
i that is equal to 1 if item i ∈ I is cut out of bin s ∈ S,86
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and 0 otherwise. Therefore, the spread of customer order c ∈ C is given by87

OSc = max
s∈S,i∈Ic

{sπs
i : π

s
i = 1} − min

s∈S,i∈Ic
{sπs

i : π
s
i = 1}+ 1;

thus, the spread of the customer orders is computed in terms of bins; we assume the pro-88

cessing of each bin lasts a constant interval of time regardless of the items to be cut out of89

the bin. Therefore, in addition to the number of bins, one could minimize the largest spread90

among all the orders (max
c∈C

{OSc}) and/or the sum of the spread of all orders (
∑
c∈C

OSc).91

We state the problem in a lexicographical/hierarchical relation when the minimization of92

the number of bins is a primary objective (major contribution to the objective function)93

and the minimization of the customer order spread has a minor contribution to the objec-94

tive function. Indeed, we consider the minimization of the largest spread among all orders95

as a secondary objective and the minimization of the sum of the spread of all orders as96

a tertiary objective. According to the typology of Wäscher et al. (2007) for cutting and97

packing problems, the 2BPP-OS can be categorized as a standard problem known as the98

Two-dimensional Rectangular Single-Stock Size Bin Packing Problem (2D-R-SSS-BPP), in99

which the spread of the customer orders is understood as an extension.100

2.1. Cutting profiles101

We address four variants of the 2BPP-OS that all include the following geometric con-102

straints: the cuts are orthogonal and so the edges of the items must be parallel to the bins’103

edges, and any pair of items cut out of a bin must not overlap each other. As far as the104

technological constraint is concerned, we consider non-guillotine and guillotine patterns. In105

a guillotine pattern, all the cut items are obtained after a sequence of edge-to-edge cuts106

(the cutting of a larger rectangle produces two smaller rectangles); this limitation arises107

in manufacturing environments when they use cutting saws. The four cutting profiles are108

depicted in Fig. 1; for sake of clarity, we use arrows to highlight the relevant cuts of each109

pattern. These cutting profiles are described in what follows:110

A

(a) non-guillotine.

B C

D E

F

(b) 2-stage.

B
G
G
G

D E

H

F

(c) restricted 3-stage.

B
G
G
G
G

D E

H

F

(d) unrestricted 3-stage.

Figure 1: Examples of non-guillotine, 2-stage, unrestricted 3-stage, and unrestricted 3-stage patterns.
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Table 1: Illustrative example of the 2BPP-OS with L = W = 6 and n = 10 items from m = 3 customer
orders.

i 1 2 3 4 5 6 7 8 9 10

li 4 4 1 1 1 2 2 4 3 2
wi 3 3 3 3 3 4 2 2 3 3
ci 1 1 1 1 2 2 2 3 3 3

• Non-guillotine pattern: it is a more general type of cutting pattern that is not limited111

to edge-to-edge cuts only; the applications generally use laser beams or water jets as112

cutting devices with cuts in “L” and/or interrupted cuts;113

• 2-stage pattern: there are two sequences of cuts in the same direction, that is, first-114

stage cuts generate strips out of a bin (as strips BC, DE, and F in Fig. 1b), and then115

second-stage cuts generate items out of the strips;116

• Restricted 3-stage patterns: there are three sequences of cuts in the same direction,117

that is, first-stage cuts generate strips out of a bin (as strips BGGG, DEH, and F in118

Fig. 1c), second-stage cuts generate items or stacks out of the strips (as item D and119

stack EH out of strip DEH in Fig. 1c), and lastly, third-stage cuts generate items out120

of the stacks (as items E and H out of stack EH in Fig. 1c); this pattern limits the121

width of the strips to be equal to the width of an item (as strip BGGG that has the122

width of item B in Fig. 1c);123

• Unrestricted 3-stage patterns: it is similar to the previous one; however, this pattern124

allows the strips to have a width that is a combination of the items’ width. (as strip125

BGGGG that has the width of stack GGGG in Fig. 1d).126

2.2. Illustrative example127

In Table 1, we present an illustrative example of the 2BPP-OS with bins of size L =128

W = 6 and n = 10 items from m = 3 customer orders (i.e., C = {1, 2, 3}). For this example,129

2x4
3x3 1x

3

4x2 2x2

(a) Bin s = 1.

4x3

4x3

2x3

1x
3

1x
3

(b) Bin s = 2.

Figure 2: A solution for the illustrative example with two bins, largest spread of 2 units, and sum of the
spread of 6 units.

5



the material bound is equal to ⌈
∑

i∈I liwi/(LW )⌉ = ⌈1.889⌉, that is, 2 bins is a lower bound130

on the optimal number of bins used (Scheithauer, 2018). In Fig. 2, we present a solution131

with two bins, largest spread of 2 units, and sum of the spread of 6 units. The items of132

customer order c = 1 are depicted in red, c = 2 in green, and c = 3 in blue; the hatched area133

is waste. Note that the processing of the three orders starts in the first bin and ends in the134

second bin; thus, each of them has a spread of 2 (= 2− 1 + 1) units. In contrast, in Fig. 3,135

we present another solution for the illustrative example with two bins, largest spread of 2136

units, and sum of the spread of 4 units. For this solution, customer order c = 1 has an order137

spread of 1 (= 2− 2 + 1) unit; customer order c = 2 has an order spread of 2 (= 2− 1 + 1)138

units; and, customer order c = 3 has an order spread of 1 (= 1− 1 + 1) units.139

2x4
3x3

2x3

1x
3

4x2

(a) Bin s = 1.

4x3

4x31x
3

1x
3

2x2

(b) Bin s = 2.

Figure 3: A solution for the illustrative example with two bins, largest spread of 2 units, and sum of the
spread of 4 units.

The minimization of the largest spread among all the orders tends to contribute to the140

service level of the operation (scenario of the worst case), and the minimization of the sum141

of the spread of all orders tends to contribute to the flow of the operation (scenario of the142

medium case). Notice that issues such as time-consuming cutting, difficulties in managing143

the operation with greater volumes of work-in-process, and the difficulty of identifying and144

handling items tend to be reduced when the spread of customer orders is minimized. As the145

solutions in Figs. 2 and 3 present the same bin usage, the solution of Fig. 3 is preferable to146

the solution of Fig. 2 as the latter have a better metric of customer order spread.147

3. Mathematical models148

In this section, we propose ILP formulations for the 2BPP-OS of non-guillotine, 2-stage,149

restricted 3-stage, and unrestricted 3-stage patterns in Sections 3.1, 3.2, 3.3, and 3.4, re-150

spectively. For each formulation, we point out that the notation referring to its variables is151

within the scope of its section only, unless otherwise indicated. For instance, all these four152

formulations have the same approach for modeling the spread of customer orders which is153

explained in Section 3.1. For sake of clarity, we next recall the notation of the 2BPP-OS154

with the addition of two new definitions:155
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156

L, W length and width of the bins, respectively;
I = {1, . . . , n} set of items;
li, wi length and width of item i ∈ I, respectively;
C = {1, . . . ,m} set of customer orders;
ci ∈ C customer order of item i ∈ I;
Ic = {i ∈ I | ci = c} set of all items belonging to customer order c ∈ C;
s, s lower and upper bounds on the number of bins, respectively;
S = {1, . . . , s} set of bins;
Oc lower bound on the number of bins required to fulfill customer order

c ∈ C only.

157

We assume, without loss of generality, the input data have positive integers. In particular,158

the data concerning the items (li, wi, ci) are sorted by non-increasing width, such that, w1 ≥159

w2 ≥ . . . ≥ wn. Notice that parameter s and parameters s and Oc can be computed from160

relaxations and heuristics for the 2BPP-OS, respectively. As mentioned before, the modeling161

approach is rooted in the works of Padberg (2000), Lodi et al. (2004), and Puchinger & Raidl162

(2007) concerning the 2BPP. The main differences concerning these works are discussed at163

the end of the corresponding sections.164

3.1. Non-guillotine patterns165

The non-guillotine patterns have to fulfill the geometric constraints only. There are nine166

families of decision variables in the formulation, of which six concern the cutting problem167

and the rest the spread of the customer orders. They are defined in what follows:168

ys binary variable which equals 1, if bin s ∈ S is cut, and 0 otherwise;
xs
i binary variable which equals 1, if item i ∈ I is packed at bin s ∈ S, and

0 otherwise;
(αi, βi) variables that represent the allocation point (lower-left corner) of item i ∈ I;
uij binary variable which equals 1, if item i ∈ I is packed at the left of item j ∈ I,

and 0 otherwise;
vij binary variable which equals 1, if item i ∈ I is packed below item j ∈ I,

and 0 otherwise;
bc start of the processing of customer order c ∈ C in terms of bins;
ec end of the processing of customer order c ∈ C in terms of bins;
sc spread of customer order c ∈ C in terms of bins.

169

For the formulation, the non-overlapping of any pair of items i, j ∈ I, i ̸= j, cut out of the170

same bin is guaranteed with two sets of binary variables uij and vij, and a set of constraints171

that ensure one out of four possible relative positions is at least fulfilled: item i is to the left172

of item j, item i is to the right of item j, item i is below item j, or item i is above item j173

(Padberg, 2000). An ILP formulation for the 2BPP-OS of non-guillotine patterns is given174

by model (1).175
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Mininimize r1
∑
s∈S

ys + r2max
c∈C

{sc}+ r3
∑
c∈C

sc, (1a)

s.t.∑
s∈S

xsi = 1, i ∈ I, (1b)∑
i∈I

liwix
s
i ≤ LWys, s ∈ S, (1c)

αi + li ≤ αj + L(1− uij), i, j ∈ I, i ̸= j, (1d)

βi + wi ≤ βj +W (1− vij), i, j ∈ I, i ̸= j, (1e)

uij + uji + vij + vji ≥ xsi + xsj − 1, s ∈ S, i, j ∈ I, i > j, (1f)

bc ≤
∑
s∈S

sxsi , c ∈ C, i ∈ Ic, (1g)

ec ≥
∑
s∈S

sxsi , c ∈ C, i ∈ Ic, (1h)

sc = ec − bc + 1, c ∈ C, (1i)

ys = 1, s = 1, . . . , s, (1j)

ys ≥ ys+1, s = s, . . . , s− 1, (1k)

ys ∈ {0, 1}, s ∈ S, (1l)

xsi ∈ {0, 1}, s ∈ S, i ∈ I, (1m)

0 ≤ αi ≤ L− li, 0 ≤ βi ≤ W − wi, i ∈ I, (1n)

uij , vij ∈ {0, 1}, i, j ∈ I, i ̸= j, (1o)

1 ≤ bc ≤ s−Oc + 1, c ∈ C, (1p)

Oc ≤ ec ≤ s, c ∈ C, (1q)

Oc ≤ sc ≤ s, c ∈ C. (1r)

The objective function (1a) minimizes the number of bins used, the largest spread among176

all orders, and the sum of the spread of all orders according to parameters r1, r2, and r3177

that work as weights to these three objectives. In the computational experiments of Section178

4, we used r1 = ms2, r2 = ms, and r3 = 1 to establish a primary objective to the number of179

used bins, a secondary objective to the largest spread, and a tertiary objective to the sum of180

the spread. The term max
c∈C

{sc} can be written in a linear form if replaced with an auxiliary181

variable K and the addition of constraints K ≥ sc, c ∈ C.182

Constraints (1b) ensure each item i ∈ I is packed at a single bin. Constraints (1c) ensure183

that no item is packed at a bin (xs
i = 0, i ∈ I) when the bin is not cut (ys = 0). In addition,184

when ys = 1, they ensure the sum of the items’ area packed at bin s ∈ S does not exceed185

the bin’s area L W . Constraints (1d) and (1e) enforce the definition of variables uij and vij186

for any pair of items i, j ∈ I, i ̸= j. Constraints (1f) ensure the fulfillment of at least one187

of the four possible relative positions when two items i, j ∈ I, i ̸= j are packed at the same188

bin s ∈ S.189
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Constraints (1g), (1h), and (1i) are responsible for modeling the spread of the customer190

orders. From the cutting variables xs
i , constraints (1g) and (1h) enforce the definition of191

variables bc and ec, respectively, by considering each item i ∈ Ic of customer order c ∈ C.192

They work as linking constraints between the cutting and order spread decisions of the193

2BPP-OS. Constraints (1i) computes the spread of a customer order c ∈ C in terms of bins,194

as defined in Section (2).195

Expressions (1j) and (1k) work as fixing variables and valid inequalities, respectively.196

Constraints (1l) to (1r) define the domain of the variables. We note that considering pa-197

rameter Oc in our computational experiments, that is, a lower bound on the number of198

bins required to fulfill the customer order c ∈ C in the definition of variables bc, ec, and sc199

was useful to provide better LP-relaxations. We also consider two additional expressions to200

eliminate those possibilities when two items i, j ∈ I do not fit in a single bin in a horizontal201

and/or vertical direction, as given by expressions (2a) and 2b, respectively.202

uij = uji = 0, i, j ∈ I, i ̸= j, li + lj > L, (2a)

vij = vji = 0, i, j ∈ I, i ̸= j, wi + wj > W. (2b)

We note that Beasley (1985b) presented an alternative ILP modeling approach for non-203

guillotine patterns. In a preliminary phase of this study, we considered that approach to the204

2BPP-OS of non-guillotine patterns, but discarded it after experiencing poor computational205

performance, mainly due to its pseudo-polynomial/great number of variables. In contrast,206

model (1) is based on the approach of Padberg (2000), which has a polynomial number of207

variables and constraints. The reader is referred to Scheithauer (2018) for a discussion about208

modeling strategies to reduce these numbers of variables in a Padberg-based formulation.209

3.2. 2-stage patterns210

The models of 2-stage patterns often assume that first-stage horizontal cuts generate211

strips out of the bins, and then second-stage vertical cuts generate items out of the strips.212

For this problem, without loss of optimality, the width of a strip is always equal to an item’s213

width, which is known as its initializing item. In this sense, the other items packed in such214

a strip always have a smaller width. That is why we sorted the input data of the items by215

non-increasing width. Thus, we can characterize a strip by the index of its initializing item,216

as defined in set I, that is, strip j ∈ I and the possible items to be packed at such a strip217

as items i ∈ I, where j ≤ i. Moreover, we do not have to consider constraints for modeling218

the non-overlapping of pairs of items because the sequence of guillotine cuts already fulfills219

such a requirement.220

There are seven families of decision variables in the formulation, of which four concern the221

cutting problem and the rest the spread of the customer orders. In addition to variables ys,222

bc, ec, and sc, which were defined in the previous section, the formulation has the following223

variables:224
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225

αji binary variable which equals 1, if item i ∈ I is packed at strip j ∈ I, j ≤ i, and
0 otherwise;

βs
j binary variable which equals 1, if strip j ∈ I is packed at bin s ∈ S, and 0 otherwise;

λs
ji binary variable which equals 1, if and only if βs

j = 1 and αji = 1, s ∈ S, j, i ∈ I, j ≤ i,
and 0 otherwise;

226

An ILP formulation for the 2BPP-OS of 2-stage patterns is given by model (3).227

Mininimize (1a),

s.t.

(1i), (1j), (1k), (1p), (1q), (1r),

i∑
j=1

αji = 1, i ∈ I, (3a)

∑
s∈S

βs
j = αjj , j ∈ I, (3b)

n∑
i=j+1

liαji ≤ (L− lj)αjj , j ∈ I, (3c)

∑
j∈I

wjβ
s
j ≤ Wys, s ∈ S, (3d)

βs
j + αji ≤ 1 + λs

ji, s ∈ S, j, i ∈ I, j ≤ i, (3e)

λs
ji ≤ (βs

j + αji)/2, s ∈ S, j, i ∈ I, j ≤ i, (3f)

bc ≤
∑
s∈S

i∑
j=1

sλs
ji, c ∈ C, i ∈ Ic, (3g)

ec ≥
∑
s∈S

i∑
j=1

sλs
ji, c ∈ C, i ∈ Ic, (3h)

αji ∈ {0, 1}, j, i ∈ I, j ≤ i, (3i)

βs
j ∈ {0, 1}, s ∈ S, j ∈ I, (3j)

λs
ji ∈ {0, 1}, s ∈ S, j, i ∈ I, j ≤ i. (3k)

Constraints (3a) ensure each item i ∈ I is packed at a single strip j ∈ I, j ≤ i. Con-228

straints (3b) ensure each strip j ∈ I, if any, is packed at a single bin s ∈ S. Constraints (3c)229

guarantee the sum of the items’ length packed at a strip j ∈ I does not exceed the strips’230

length L. Constraints (3d) guarantee the sum of the strips’ width packed at a bin s ∈ S231

does not exceed the bin’ width W . The previous two constraints also enforce: αji = 0 if232

αjj = 0, j, i ∈ I, j ≤ i; and, βs
j = 0 if ys = 0, s ∈ S, j ∈ I. Constraints (3e) and (3f) are233

responsible for generating the result λs
ji = βs

jαji, s ∈ S, j, i ∈ I, j ≤ i. From the cutting234

variables λs
ji, the linking constraints (3g) and (3h) generate the definition of variables bc and235

ec by considering all the items i ∈ Ic of the customer order c ∈ C. Constraints (3i) to (3k)236

10



define the domain of the variables. The other variables and constraints are as previously237

defined.238

Similar to the previous section, we consider expressions to eliminate that possibility when239

two items i, j ∈ I, j < i do not fit in a single strip in a horizontal direction, as given by240

expressions (4a) and 4b.241

αji = 0, j, i ∈ I, j < i, li + lj > L, (4a)

λs
ji = 0, s ∈ S, j, i ∈ I, j < i, li + lj > L. (4b)

The model of Lodi et al. (2004) for 2-stage patterns assumes, without loss of optimality,242

βs
j = 0 if s > j, s ∈ S, j ∈ I. Indeed, this assumption is able to eliminate symmetries of the243

2BPP by limiting the first item to be packed up to the first bin, the second item up to the244

second bin, and so on. Nevertheless, we do not consider this assumption, as it represents245

a virtual sequencing constraint that may lead to a loss of optimality when minimizing the246

spread of customer orders. For instance, one could solve a problem instance where the247

optimal solution of the 2BPP-OS has to pack the first item in the last bin due to the spread248

of a customer order. Moreover, in comparison to that model, we had to create the cutting249

variables λs
ji to associate the items packed at the same bin, as this information is required250

by the linking constraints (3g) and (3h).251

3.3. Restricted 3-stage patterns252

Puchinger & Raidl (2007) extended to 3-stage patterns the modeling approach of Lodi253

et al. (2004). The model assumes that first-stage horizontal cuts generate strips out of254

the bins; second-stage vertical cuts generate stacks out of the strips; and, then, third-stage255

horizontal cuts generate items out of the stacks. Similar to the previous section, the width of256

a strip is always equal to its initializing item’s width. That is why they called this pattern257

restricted in opposition to the unrestricted 3-stage pattern that allows the strips to have258

more general widths. In addition, we now have stacks of items, and the first item in a stack259

is called its initializing item. All the items packed at the same stack must have the length of260

the stack’s initializing item as the pattern is limited to three guillotine stages. Thus, we can261

characterize a stack by the index of its initializing item, as defined in set I, that is, stack262

j ∈ I and the possible items to be packed at such a stack as items i ∈ I, where j ≤ i, lj = li.263

Notice that a stack is allowed to contain only its initializing item (stack of a single item).264

There are eight families of decision variables in the formulation, of which five concern the265

cutting problem and the rest the spread of the customer orders. In addition to variables ys,266

bc, ec, and sc, which were defined in Section 3.1, the formulation has the following variables:267

268
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αji binary variable which equals 1, if item i ∈ I is packed at stack j ∈ I, j ≤ i, and
0 otherwise;

βkj binary variable which equals 1, if stack j ∈ I is packed at strip k ∈ I, k ≤ j,
0 otherwise;

γs
k binary variable which equals 1, if strip k ∈ I is packed at bin s ∈ S, and 0 otherwise;

λs
kji binary variable which equals 1, if and only if γs

k = 1, βkj = 1, and αji = 1, s ∈ S, k ∈ I,
j ∈ I, I ∈ I, k ≤ j ≤ i, and 0 otherwise.

269

An ILP formulation for the 2BPP-OS of restricted 3-stage patterns is given by model270

(5).271

Mininimize (1a),

s.t.

(1i), (1j), (1k), (1p), (1q), (1r),

i∑
j=1

αji = 1, i ∈ I, (5a)

j∑
k=1

βkj = αjj , j ∈ I, (5b)∑
s∈S

γsk = βkk, k ∈ I, (5c)

n∑
i=j

wiαji ≤
j∑

k=1

wkβkj , j ∈ I, (5d)

n∑
j=k+1

ljβkj ≤ (L− lk)βkk, k ∈ I, (5e)

∑
k∈K

wkγ
s
k ≤ Wys, s ∈ S, (5f)

γsk + βkj + αji ≤ 2 + λs
kji, s ∈ S, k, j, i ∈ I, k ≤ j ≤ i, (5g)

λs
kji ≤ (γsk + βkj + αji)/3, s ∈ S, k, j, i ∈ I, k ≤ j ≤ i, (5h)

bc ≤
∑
s∈S

∑
k∈I

i∑
j=k

sλs
kji, c ∈ C, i ∈ Ic, (5i)

ec ≥
∑
s∈S

∑
k∈I

i∑
j=k

sλs
kji, c ∈ C, i ∈ Ic, (5j)

αji ∈ {0, 1}, j ∈ I, i ∈ I, j ≤ i, (5k)

βkj ∈ {0, 1}, k ∈ I, j ∈ I, k ≤ j, (5l)

γsk ∈ {0, 1}, s ∈ S, k ∈ I, (5m)

λs
kji ∈ {0, 1}, s ∈ S, k, j, i ∈ I, k ≤ j ≤ i, (5n)
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Constraints (5a) ensure each item i ∈ I is packed at a single stack j ∈ I, j ≤ i.272

Constraints (5b) ensure each stack j ∈ I, if any, is packed at a single strip k ∈ I, k ≤ j.273

Constraints (5c) ensure each strip k ∈ I, if any, is packed at a single bin s ∈ S. Constraints274

(5d) guarantee the sum of the items’ width packed at stack j ∈ I does not exceed the width275

wk of its corresponding strip k ∈ I, k ≤ j. Constraints (5e) guarantee the sum of the276

stacks’ length packed at a strip k ∈ I does not exceed the strips’ length L. Constraints (5f)277

guarantee the sum of the strips’ width packed at a bin s ∈ S does not exceed the bin’ width278

W . The previous two constraints also enforce: βkj = 0 if βkk = 0, k, j ∈ I, k ≤ j; and,279

γs
k = 0 if ys = 0, s ∈ S, k ∈ I. Constraints (5g) and (5h) are responsible for generating the280

result λs
kji = γs

kβkjαji, s ∈ S, k, j, i ∈ I, k ≤ j ≤ i. From the cutting variables λs
kji, the281

linking constraints (5i) and (5j) generate the definition of variables bc and ec by considering282

all the items i ∈ Ic of the customer order c ∈ C. Constraints (5k) to (5n) define the domain283

of the variables. The other variables and constraints are as previously defined.284

Similar to the previous sections, we consider expressions to eliminate those possibilities285

when: two items i, j ∈ I, j < i do not fit in a single stack in a horizontal or vertical direction,286

as given by expressions (6a); and, two items k, j ∈ I, k < j do not fit in a single strip in a287

horizontal direction, as given by expressions (6b). Expressions (6c) present the counterpart288

of these ideas for variables λs
kji.289

αji = 0, j, i ∈ I, j < i, li ̸= lj ∨ wi + wj > W, (6a)

βkj = 0, k, j ∈ I, k < j, lk + lj > L, (6b)

λs
kji = 0, s ∈ S, k, j, i ∈ I, j < i, lj ̸= li ∨ wj + wi > W. (6c)

The model of Puchinger & Raidl (2007) for restricted 3-stage patterns assumes, without290

loss of optimality, γs
k = 0 if s > k, s ∈ S, k ∈ I. As in the previous section, these virtual291

sequencing constraints eliminate symmetries of the 2BPP; however, we do not consider them292

to avoid loss of optimality since we also minimize the spread of customer orders in the 2BPP-293

OS. Moreover, in comparison to that model, we had to create the cutting variables λs
kji to294

associate the items packed at the same bin, as this information is required by the linking295

constraints (5i) and (5j).296

3.4. Unrestricted 3-stage patterns297

The model of Puchinger & Raidl (2007) for unrestricted 3-stage patterns assumes the298

same definitions and sequence of cuts of the previous section. However, the unrestricted 3-299

stage patterns consider that the width of each stack k ∈ I is equal to its initializing stack’s300

width, which is defined by index k ∈ I. (In the previous section, the width of each stack301

k ∈ I is the item’s width wk.) This new definition leads to another difference: a stack j ∈ I302

can be packed at any strip k ∈ I, that is, not requiring the condition k ≤ j anymore as in303

variables βkj of model (5). Therefore, the initializing stack k ∈ I of a strip k may not be304

the first stack of such a strip.305

There are nine families of decision variables in the formulation, of which six concern the306

cutting problem and the rest the spread of the customer orders. In addition to variables ys,307

bc, ec, and sc, which were defined in Section 3.1, the formulation has the following variables:308
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αji binary variable which equals 1, if item i ∈ I is packed at stack j ∈ I, j ≤ i, and
0 otherwise;

βkj binary variable which equals 1, if stack j ∈ I is packed at strip k ∈ I, and 0 otherwise;
γs
k binary variable which equals 1, if strip k ∈ I is packed at bin s ∈ S, and 0 otherwise;

δsji binary variable which equals 1, if and only if γs
j = 1 and αji = 1, s ∈ S, j, i ∈ I, j < i,

and 0 otherwise. Thus, the variable assumes the value of 1 for all the items i packed
a stack j (but its initializing item), which is then packed at a bin s;

λs
kji binary variable which equals 1, if and only if γs

k = 1, βkj = 1, and αji = 1, s ∈ S, k ∈ I,
j ∈ I, I ∈ I, k ≤ j ≤ i, and 0 otherwise.

310

An ILP formulation for the 2BPP-OS of unrestricted 3-stage patterns is given by model311

(7).312

Mininimize (1a),

s.t.

(1i), (1j), (1k), (1p), (1q), (1r),

i∑
j=1

αji = 1, i ∈ I, (7a)

n∑
i=j+1

αji ≤ (n− j)αjj , j ∈ I\{n}, (7b)

∑
k∈I

βkj = αjj , j ∈ I, (7c)∑
s∈S

γsk = βkk, k ∈ I, (7d)∑
k∈I

γsk ≤ nys, s ∈ S, (7e)

n∑
i=j

wiαji ≤
n∑

i=k

wiαki +W (1− βkj), k, j ∈ I, k ̸= j, (7f)

n∑
j=k+1

ljβkj ≤ (L− lk)βkk, k ∈ I, (7g)

∑
j∈I

wjγ
s
j +

∑
j∈I

n∑
i=j+1

wiδ
s
ji ≤ Wys, s ∈ S, (7h)

γsj + αji ≤ 1 + δsji, s ∈ S, j, i ∈ I, j < i, (7i)

δsji ≤ (γsj + αji)/2, s ∈ S, j, i ∈ I, j < i, (7j)

γsk + βkj + αji ≤ 2 + λs
kji, s ∈ S, k, j, i ∈ I, j ≤ i, (7k)

λs
kji ≤ (γsk + βkj + αji)/3, s ∈ S, k, j, i ∈ I, j ≤ i, (7l)
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bc ≤
∑
s∈S

∑
k∈I

i∑
j=1

sλs
kji, c ∈ C, i ∈ Ic, (7m)

ec ≥
∑
s∈S

∑
k∈I

i∑
j=1

sλs
kji, c ∈ C, i ∈ Ic, (7n)

αji ∈ {0, 1}, j, i ∈ I, j ≤ i, (7o)

βkj ∈ {0, 1}, k, j ∈ I, k ≤ j, (7p)

γsk ∈ {0, 1}, s ∈ S, k ∈ I, (7q)

δsji ∈ {0, 1}, s ∈ S, j, i ∈ I, j < i, (7r)

λs
kji ∈ {0, 1}, s ∈ S, k, j, i ∈ I, j ≤ i. (7s)

Constraints (7a) ensure each item i ∈ I is packed at a single stack j ∈ I, j ≤ i.313

Constraints (7b) enforce αji = 0 if αjj = 0, j, i ∈ I, j ≤ i. Constraints (7c) ensure each314

stack j ∈ I, if any, is packed at any strip k ∈ I. Constraints (7d) ensure each strip k ∈ I, if315

any, is packed at a single bin s ∈ S. Constraints (7e) enforce γs
k = 0 if ys = 0, s ∈ S, k ∈ I.316

Expressions (7f) are disjunctive constraints that guarantee the width of each stack j ∈ I317

packed at strip k ∈ I (βkj = 1) does not exceed the width of the strip, which is given by318

n∑
i=k

wiαki. Constraints (7g) guarantee the sum of the stacks’ length packed at a strip k ∈ I319

does not exceed the strips’ length L. Constraints (7h) guarantee the sum of the strips’320

width packed at a bin s ∈ S does not exceed the bin’ width W . For a bin s ∈ S, the term321 ∑
j∈I

wjγ
s
j gives the width of the initializing item of each stack packed at this bin, and the term322

∑
j∈I

n∑
i=j+1

wiδ
s
ji gives the width of the remaining items of these corresponding stacks. The323

previous two constraints also enforce: βkj = 0 if βkk = 0, k, j ∈ I, k ≤ j; and, γs
j = 0 and324

δsji = 0 if ys = 0, s ∈ S, j, i ∈ I, j < i. Constraints (7i) and (7j) are responsible for generating325

the result δsji = γs
jαji, s ∈ S, j, i ∈ I, j < i. Constraints (7k) and (7l) are responsible for326

generating the result λs
kji = γs

kβkjαji, s ∈ S, k, j, i ∈ I, j ≤ i. From the cutting variables327

λs
kji, the linking constraints (7m) and (7n) generate the definition of variables bc and ec by328

considering all the items i ∈ Ic of the customer order c ∈ C. Constraints (7o) to (7s) define329

the domain of the variables. The other variables and constraints are as previously defined.330

Similar to the previous sections, we consider expressions to eliminate those possibilities331

when: two items i, j ∈ I, j < i do not fit in a single stack in a horizontal or vertical direction,332

as given by expressions (8a); and, two items k, j ∈ I, k < j do not fit in a single strip in a333

horizontal direction, as given by expressions (8c). Expressions (8b), (8d), and (8e) are the334

counterpart of these ideas for variables δsji and λs
kji.335

αji = 0, j, i ∈ I, j < i, li ̸= lj ∨ wi + wj > W, (8a)

δsji = 0, j, i ∈ I, j < i, li ̸= lj ∨ wi + wj > W, (8b)

βkj = 0, k, j ∈ I, k ̸= j, lk + lj > L, (8c)
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λs
kji = 0, s ∈ S, k, j, i ∈ I, j < i, lj ̸= li ∨ wj + wi > W, (8d)

λs
kji = 0, s ∈ S, k, j, i ∈ I, k ̸= j, lk + lj > L. (8e)

The model of Puchinger & Raidl (2007) for unrestricted 3-stage patterns assumes, with-336

out loss of optimality, γs
k = 0 if s > k, s ∈ S, k ∈ I. Again, we do not consider them to avoid337

loss of optimality since we also minimize the spread of customer orders. In comparison to338

that model, we had to create the cutting variables λs
kji to associate the items packed at the339

same bin, as this information is required by the linking constraints (7m) and (7n).340

4. Computational experiments341

We ran computational experiments to evaluate the computational performance of the342

proposed formulations. In what follows, we refer to model (1) for the 2BPP-OS of non-343

guillotine patterns as Model-NG. Likewise, the 2BPP-OS of 2-stage, restricted 3-stage, and344

unrestricted 3-stage patterns are referred to as Model-2S, Model-R3, and Model-U3 respec-345

tively. Since we are not aware of other integrated approaches for the 2BPP-OS, we compare346

our models with each other. The four models were coded in C++ using GUROBI v.10.0.0347

as the general-purpose ILP solver. All the experiments were carried out on a PC with Intel348

Xeon E5-2680v2 (2.8 GHz), using 10 threads, 16 GB RAM, under a CentOS Linux 7.2.1511349

Operating System. Each run of the solver was limited to 3,600 seconds. We next use letters350

“tl” in the tables to indicate when this time limit was reached for an instance or group of351

instances.352

This section is divided into two parts. We comment on the benchmark instances used in353

the experiments at the beginning of these sections; we generated instances for the 2BPP-OS354

by adapting instances from the literature concerning the 2BPP. These adapted instances355

are available upon request to the authors. As a preprocessing phase prior to the models, we356

consider the two widely-known techniques of reducing the bins’ size and enlarging the items’357

size, as discussed in Scheithauer (2018). In the experiments, from solutions with similar358

levels of bin usage, the goal is to analyze the models’ performance concerning the quality359

of the solutions about the spread of customer orders in comparison with solutions from the360

approaches when these decisions are neglected during the search. In this sense, we report361

results from different sets of experiments. In all these experiments, the number of bins used362

is minimized (Φ1 =✓), except when s = s as the optimal number of bins used is already363

known. In addition, we have sets of experiments with and without minimizing the largest364

spread among all customer orders (Φ2 =✓,✗) and the sum of the spread of all customer365

orders (Φ3 =✓,✗). Therefore, we are able to compare solutions with the same levels of bin366

usage when the decisions of the spread of customer orders are and are not considered.367

Recall that parameters s, s, and Oc are required as input for the proposed formulations.368

For Model-2S (resp. Model-R3 and Model-U3), we presented the model of Lodi et al. (2004)369

(resp. restricted or unrestricted model of Puchinger & Raidl (2007)) to the solver to obtain370

valid bounds for parameters s and s, considering up to 60 seconds for each run of the solver.371

Notice that s = s when the optimality was proven during the 60 seconds; otherwise, after372

the end of the search, we rounded the dual bound’s value up to obtain a value for the373
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parameter s, and the incumbent solution’s value was used as the value of parameter s. As374

far as the Model-NG is concerned, we considered solving a one-dimensional bin packing375

problem to provide a value for parameter s and the model of Lodi et al. (2004) to provide376

a value for parameter s; we chose the model of Lodi et al. (2004) instead of the model of377

Padberg (2000), as the former provided better solutions within the 60 seconds. The solution378

obtained was provided to the solver as an initial solution for the integrated models. We379

highlight the integrated problems remain NP-Hard even when an optimal solution in terms380

of bins usage is provided to the solver (i.e., with s = s), as the MORP is NP-Hard and381

the cutting patterns of the initial solution are not fixed in the integrated models. Similarly,382

for each c ∈ C, we obtained the value of parameter Oc by solving these previous models383

considering only the items in set Ic.384

4.1. Results for the set of instances #A385

We generated instances for the 2BPP-OS by adapting the twelve gcut1-12 instances386

proposed in Beasley (1985a). The size L×W of the bins is 250× 250 for gcut1-4 instances,387

500 × 500 for gcut5-8 instances, and 1000 × 1000 for gcut9-12 instances. The number of388

items n is 10, 20, 30, or 50 (we considered the demand of one unit per item). The length389

li and width wi of item i ∈ I were sampled in the intervals [L/4, 3L/4] and [W/4, 3W/4],390

respectively. We arbitrarily aggregated the items to generate customer orders. For each391

instance, we only established the number of customers and a minimum number of items per392

customer. In this sense, the adapted instances: with n = 10, 20 items have m = 3 customer393

orders (minimum of 2 items per customer); with n = 30 items have n = 3, 5 customer394

orders (minimum of 3 items per customer); and, with n = 50 items have m = 5, 7 customer395

orders (minimum of 4 items per customers). Thus, the set of instances #A has a total of 18396

instances. We refer to each instance as “name-#n-#m”; for example, instance gcut12-50-07397

was generated from instance gcut12, and it has n = 50 items and m = 7 customers.398

We report the results for Model-NG considering the set of instances #A in Table 2. We399

report the value of the number of customer orders m, number of items n, instance name,400

number of bins used (
∑

ys), largest spread among all the orders (max{sc}), sum of the401

spread of all orders (
∑

sc), value of objective function (OFV), linear relaxation (LR), lower402

bound at the end of the search (LB), optimality gap in percentage (gap[%]), and processing403

time in seconds (time[s]). The calculation of the processing time in the two rows of average404

results includes the case when the time limit was reached.405

The results in Table 2 show that, for instances in set #A, the average optimality gap406

of the solver with Model-NG was 2.96% (1571.10 s) when Φ2 = Φ3 =✗ and 9.60% (2609.13407

s) when Φ2 = Φ3 =✓. Moreover, they show a value of 9.61 bins, the largest spread of 9.50408

units, and the sum of the spread of 37.89 units for the first case, and a value of 9.72 bins,409

the largest spread of 5.61 units, and the sum of the spread of 18.17 units for the second410

case. Considering the experiments with Φ2 = Φ3 =✓, the solver was able to find an optimal411

solution and prove its optimality in 4 out of 18 instances. Despite a low number of proven412

optimal solutions, we observe a reduction of almost 50% on the metrics of the spread of413

customer orders. For instance, instance gcut11-30-05 presented the largest spread of 9 units414

and the sum of the spread of 29 units when Φ2 = Φ3 =✗, and the largest spread of 4 units415
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Table 2: Results for the Model-NG with the set of instances #A.

Φ2 Φ3 m n Instance
∑

ys max{sc}
∑

sc OFV LR LB gap[%] time[s]

✗ ✗ 3 10 gcut01-10-03 5 4 10 375 253.71 375.00 0.00 0.06
gcut05-10-03 3 3 8 144 121.00 144.00 0.00 0.04
gcut09-10-03 3 3 6 81 61.19 81.00 0.00 0.01

20 gcut02-20-03 6 6 16 648 510.00 648.00 0.00 0.19
gcut06-20-03 7 7 18 1029 777.50 1029.00 0.00 18.19
gcut10-20-03 7 7 18 1344 1114.94 1344.00 0.00 8.16

30 gcut03-30-03 8 8 20 1536 1306.01 1536.00 0.00 83.95
gcut07-30-03 11 11 29 4752 3669.97 4752.00 0.00 4.33
gcut11-30-03 9 9 25 2187 1683.42 2187.00 0.00 2915.15

5 30 gcut03-30-05 8 8 31 2560 2176.68 2560.00 0.00 43.45
gcut07-30-05 11 11 47 7920 6116.61 7920.00 0.00 6.42
gcut11-30-05 9 9 29 3645 2805.71 3240.00 11.11 tl

50 gcut04-50-05 14 14 57 13720 11579.26 12740.00 7.14 tl
gcut08-50-05 13 13 53 12740 11315.50 11760.00 7.69 tl
gcut12-50-05 16 16 65 20480 16297.43 19200.00 6.25 tl

7 50 gcut04-50-07 14 14 76 19208 16210.96 17836.00 7.14 tl
gcut08-50-07 13 12 79 17836 15841.70 16464.00 7.69 tl
gcut12-50-07 16 16 95 28672 22816.40 26880.00 6.25 tl

Average 9.61 9.50 37.89 7715.39 6369.89 7260.89 2.96 1571.10

✓ ✓ 3 10 gcut01-10-03 5 2 6 411 271.71 411.00 0.00 0.77
gcut05-10-03 3 2 6 174 136.00 174.00 0.00 0.28
gcut09-10-03 3 2 4 22 12.00 22.00 0.00 0.31

20 gcut02-20-03 6 4 11 731 531.00 731.00 0.00 49.16
gcut06-20-03 7 4 9 1122 801.50 1000.75 10.81 tl
gcut10-20-03 7 5 13 1477 1141.94 1477.00 0.00 113.76

30 gcut03-30-03 8 5 11 1667 1333.01 1448.01 13.14 tl
gcut07-30-03 11 7 15 5019 3708.97 5015.50 0.07 tl
gcut11-30-03 9 6 11 2360 1713.42 1878.44 20.40 tl

5 30 gcut03-30-05 8 4 14 2734 2221.68 2369.17 13.34 tl
gcut07-30-05 11 6 22 8302 6181.61 8109.28 2.32 tl
gcut11-30-05 9 4 12 3837 2855.71 2979.68 22.34 tl

50 gcut04-50-05 14 10 30 14450 11654.26 11906.00 17.61 tl
gcut08-50-05 14 7 19 14229 11390.50 11835.00 16.82 tl
gcut12-50-05 16 10 37 21317 16382.43 18395.98 13.70 tl

7 50 gcut04-50-07 14 7 29 19923 16315.96 16667.26 16.34 tl
gcut08-50-07 14 6 31 19827 15946.70 16569.00 16.43 tl
gcut12-50-07 16 10 47 29839 22935.40 27021.64 9.44 tl

Average 9.72 5.61 18.17 8191.17 6418.54 7111.71 9.60 2609.13
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and the sum of the spread of 12 units when Φ2 = Φ3 =✓. We highlight most of the reported416

solutions when Φ2 = Φ3 =✓ were found during the first 300 seconds of the search. As417

expected, the linear relaxation of Model-NG is weak since it is a Padberg-based model.418

We report the results for Model-2S, Model-R3, and Model-U3 considering the set of419

instances #A in Table 3. We present four sets of experiments: [Φ2 = Φ3 =✗], [Φ2 =✗ and420

Φ3 =✓], [Φ2 =✓ and Φ3 =✗], and [Φ2 = Φ3 =✓]. For each model, the results are aggregated421

according to these experiments, and the numbers of customer orders m and items n. Each422

entry of the table is an average over three instances, except those in the last row and columns423

OPT. We present average values in the last row of the table, except in column OPT as it is424

the summation of the entries. The results in Table 3 show that, for instances in set #A, the425

average optimality gap of the solver with Model-2S, Model-R3, and Model-U3 were 5.07%,426

5.64%, and 6.34%, with the average processing time of 1205.70 s, 1251.60 s and 1424.73 s,427

respectively. The solver was able to find an optimal solution and prove its optimality in428

51 instances (out of 72 = 4 × 18) with Model-2S, in 50 instances with Model-R3, and in429

48 instances with Model-U3. Despite the number of proven optimal solutions, these results430

clearly show that computational results get worse in terms of solution quality and processing431

time as the spread of customer orders is considered and the patterns become more general432

and complex. Although the patterns are different, the average number of used bins is 9.94433

for the three models; this can be explained because the size of the items is relatively large434

in comparison with the bin’s size in the gcut instances.435
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Table 3: Results for the Model-2S, Model-R3 and Model-U3 with the set of instances #A.

Model-2S Model-R3 Model-U3

Φ2 Φ3 n m
∑

ys max{sc}
∑

sc gap[%] time[s] OPT
∑

ys max{sc}
∑

sc gap[%] time[s] OPT
∑

ys max{sc}
∑

sc gap[%] time[s] OPT

✗ ✗ 10 3 4.00 3.67 8.00 0.00 0.01 3 4.00 4.00 10.00 0.00 0.01 3 4.00 4.00 9.33 0.00 0.01 3
20 3 7.00 7.00 18.67 0.00 0.01 3 7.00 7.00 18.67 0.00 0.01 3 7.00 7.00 18.00 0.00 0.04 3
30 3 9.67 9.67 25.67 0.00 0.01 3 9.67 9.00 23.00 0.00 0.04 3 9.67 9.67 24.00 0.00 0.09 3

5 9.67 9.67 34.00 0.00 0.01 3 9.67 9.67 32.00 0.00 0.04 3 9.67 9.67 36.00 0.00 0.10 3
50 5 14.67 14.67 60.33 0.00 0.42 3 14.67 14.67 55.33 0.00 0.20 3 14.67 14.67 52.67 0.00 0.70 3

7 14.67 14.67 79.67 0.00 0.48 3 14.67 14.00 76.33 0.00 0.21 3 14.67 14.33 76.00 0.00 0.58 3
✓ 10 3 4.00 2.00 5.33 0.00 0.03 3 4.00 2.33 5.33 0.00 0.04 3 4.00 2.33 5.33 0.00 0.10 3

20 3 7.00 4.67 11.00 0.00 13.97 3 7.00 5.00 11.00 0.00 21.77 3 7.00 5.00 10.67 0.00 71.95 3
30 3 9.67 6.67 14.00 0.00 616.65 3 9.67 6.33 13.67 0.00 689.18 3 9.67 6.33 13.67 5.13 1483.50 2

5 9.67 5.67 16.33 10.37 2499.03 1 9.67 5.67 16.33 10.37 2941.96 1 9.67 6.00 16.33 10.37 3412.39 1
50 5 14.67 9.00 24.00 13.14 tl 0 14.67 9.67 24.67 19.91 tl 0 14.67 10.67 24.67 20.37 tl 0

7 14.67 7.33 30.33 22.62 tl 0 14.67 7.00 30.33 31.83 tl 0 14.67 8.33 30.67 32.29 tl 0
✓ ✗ 10 3 4.00 2.00 6.00 0.00 0.03 3 4.00 2.00 5.67 0.00 0.03 3 4.00 2.00 5.67 0.00 0.04 3

20 3 7.00 4.33 12.33 0.00 4.75 3 7.00 4.33 12.33 0.00 5.17 3 7.00 4.33 11.67 0.00 15.30 3
30 3 9.67 6.33 18.33 0.00 54.05 3 9.67 6.33 17.67 0.00 253.30 3 9.67 6.33 18.00 0.00 783.38 3

5 9.67 5.33 22.67 12.22 2483.01 1 9.67 5.33 22.00 12.22 2662.00 1 9.67 5.00 21.67 5.56 2749.35 2
50 5 14.67 8.33 37.00 6.67 1864.25 2 14.67 8.33 35.00 6.67 1356.51 2 14.67 8.33 38.33 6.67 1667.48 2

7 14.67 5.67 36.00 16.67 3373.18 1 14.67 5.33 36.33 12.22 2861.05 1 14.67 6.33 40.33 26.19 tl 0
✓ 10 3 4.00 2.00 5.33 0.00 0.08 3 4.00 2.00 5.33 0.00 0.07 3 4.00 2.00 5.33 0.00 0.14 3

20 3 7.00 4.33 11.33 0.00 20.55 3 7.00 4.33 11.33 0.00 23.20 3 7.00 4.33 10.67 0.00 159.00 3
30 3 9.67 6.33 14.00 0.00 932.71 3 9.67 6.33 13.67 0.38 1613.09 2 9.67 6.33 13.67 0.38 2249.53 2

5 9.67 5.33 16.33 12.13 2673.67 1 9.67 5.33 16.33 12.13 3210.56 1 9.67 5.00 16.33 12.62 tl 0
50 5 14.67 8.33 25.33 6.98 tl 0 14.67 8.33 25.67 7.32 tl 0 14.67 8.67 25.33 11.29 tl 0

7 14.67 6.33 30.33 20.86 tl 0 14.67 6.00 31.00 22.30 tl 0 14.67 6.00 30.67 21.23 tl 0

Average/Sum 9.94 6.64 23.43 5.07 1205.70 51 9.94 6.60 22.88 5.64 1251.60 50 9.94 6.78 23.13 6.34 1424.73 48
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4.2. Results for the set of instances #B436

The set of instances #B is composed of 35 instances, based on the classical 2BPP problem437

instances proposed in Berkey & Wang (1987) and Lodi et al. (1999). These instances were438

randomly generated by these authors and have distinct characteristics, such as items with439

different shapes and items with small sizes in relation to the size of the bins – see Lodi et al.440

(1999) for a detailed description. Again, we arbitrarily aggregated the items to generate441

customer orders. Thus, the adapted instances: with n = 20 items have m = 3 customer442

orders (minimum of 2 items per customer); with n = 40 items have n = 3, 5 customer orders443

(minimum of 3 items per customer); and, with n = 60 items have n = 5, 7 customer orders444

(minimum of 4 items per customer).445

We report the results for Model-2S, Model-R3, and Model-U3 considering the set of446

instances #B in Table 4. We report the results for Model-2S, Model-R3, and Model-U3447

considering the set of instances #A in Table 3. For each model, the results are aggregated448

according to the four experiments with Φ2 and Φ3, and the numbers of customer orders m449

and items n. Each entry of the table is an average value over seven instances, except those in450

the last row and columns OPT. The results in Table 4 show that, for instances in set #B, the451

average optimality gap of the solver with Model-2S, Model-R3, and Model-U3 were 7.95%,452

8.32%, and 10.07%, with the average processing time of 1551.76 s, 1544.83 s and 1815.35 s,453

respectively. The solver was able to find an optimal solution and prove its optimality in 83454

instances (out of 140 = 4 × 35) with Model-2S, in 86 instances with Model-R3, and in 72455

instances with Model-U3. Once again, these results clearly show that computational results456

get worse in terms of solution quality and processing time as the spread of customer orders457

is considered and the patterns become more general and complex. In contrast to the results458

of the previous section, as these instances have items with very different shapes, we observe459

a reduction in the number of bins used and/or the order spread metrics as the patterns460

become more complex.461

Alternatively stated, in the context of a branch-and-cut of a general-purpose ILP solver,462

the results show that the integration of the order spread to the 2BPP-OS did not make it463

easier to solve the models. In Fig. 4, we present two optimal solutions for a problem instance464

of set #B with n = 40 items and c = 5 customer orders when Φ2 = Φ3 =✗ and Φ2 = Φ3 =✓.465

The items of the same customer order are represented in the same color. It is easy to see in466

the figure that customer orders in the second case are processed quickly (i.e. they contribute467

to the service level and flow of the operation); in contrast, in the first case, there are items468

from different customer orders being cut from the same bin, which harms the order spread469

metrics.470
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Table 4: Results for the Model-2S, Model-R3 and Model-U3 with the set of instances #B.

Model-2S Model-R3 Model-U3

Φ2 Φ3 n m
∑

ys max{sc}
∑

sc gap[%] time[s] OPT
∑

ys max{sc}
∑

sc gap[%] time[s] OPT
∑

ys max{sc}
∑

sc gap[%] time[s] OPT

✗ ✗ 20 3 8.43 8.29 21.14 0.00 0.01 7 8.43 8.29 22.29 0.00 0.02 7 8.43 8.29 22.29 0.00 0.04 7
40 3 11.71 11.71 32.71 0.00 1.64 7 11.71 11.43 32.43 0.00 0.09 7 11.57 11.43 32.00 1.43 514.55 6

5 11.71 11.57 48.43 0.00 1.47 7 11.71 11.57 46.14 0.00 0.10 7 11.57 11.43 46.43 1.43 514.52 6
60 5 21.86 21.43 94.14 0.00 4.28 7 21.86 21.71 91.14 0.00 0.53 7 21.86 21.71 90.43 1.24 515.54 6

7 21.86 20.71 116.86 0.00 4.84 7 21.86 21.00 116.86 0.00 0.51 7 21.86 21.00 118.43 1.24 515.57 6
✓ 20 3 8.43 4.86 11.00 0.00 15.25 7 8.43 4.86 11.00 0.00 12.19 7 8.43 4.86 11.00 0.00 61.28 7

40 3 11.71 5.43 14.29 3.83 1190.50 5 11.71 5.29 13.86 0.95 862.97 6 11.57 5.86 14.57 5.95 1895.51 4
5 11.71 5.00 16.29 8.69 2929.60 2 11.71 4.86 16.00 5.68 2705.69 3 11.57 5.14 17.43 13.49 3267.00 1

60 5 21.86 13.86 36.71 22.72 tl 0 21.86 13.00 36.71 28.64 tl 0 21.86 13.43 38.57 24.95 tl 0
7 21.86 9.71 41.86 29.39 tl 0 21.86 9.43 40.00 30.87 tl 0 21.86 10.29 42.71 28.92 tl 0

✓ ✗ 20 3 8.43 4.71 13.43 0.00 0.84 7 8.43 4.71 13.57 0.00 1.33 7 8.43 4.71 12.86 0.00 2.86 7
40 3 11.71 5.43 16.00 5.24 1190.04 5 11.71 5.29 15.86 2.38 908.07 6 11.57 6.00 17.57 13.27 1640.65 4

5 11.71 4.86 22.43 2.86 756.55 6 11.71 4.86 23.29 2.86 606.25 6 11.57 5.00 22.29 4.35 1133.73 5
60 5 21.86 10.29 47.29 19.74 3215.85 1 21.86 10.14 48.29 22.31 3210.78 1 21.86 10.57 49.86 23.47 tl 0

7 21.86 7.71 50.29 17.12 2742.24 2 21.86 7.57 49.43 19.56 2946.10 3 21.86 8.57 55.00 22.39 2636.26 2
✓ 20 3 8.43 4.71 11.14 0.00 18.44 7 8.43 4.71 11.14 0.00 30.01 7 8.43 4.71 11.14 0.00 340.89 7

40 3 11.71 5.43 14.29 5.13 1180.75 5 11.71 5.29 14.00 2.41 1611.94 5 11.57 5.86 14.71 9.69 1668.74 4
5 11.71 4.86 16.29 4.79 3383.07 1 11.71 4.86 16.14 3.35 tl 0 11.57 5.29 18.00 8.83 tl 0

60 5 21.86 10.29 36.71 19.94 tl 0 21.86 10.14 35.29 22.55 tl 0 21.86 10.00 36.43 19.18 tl 0
7 21.86 8.14 41.86 19.54 tl 0 21.86 7.86 39.43 24.77 tl 0 21.86 8.43 41.86 21.59 tl 0

Average/Sum 15.11 8.95 35.16 7.95 1551.76 83 15.11 8.84 34.64 8.32 1544.83 86 15.06 9.13 35.68 10.07 1815.35 72
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Figure 4: Two optimal solutions for Model-2S considering a problem instance of set #B with n = 40 items and c = 5 customer orders.
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5. Conclusions471

We addressed four variants of the two-dimensional bin packing problem with customer472

order spread. The problem arises in manufacturing industries looking for minimal waste473

solutions that are responsive in terms of quickly processing customer orders. Since the474

problem may appear in different environments, we proposed models considering different475

cutting profiles. We proposed models of non-guillotine, 2-stage, restricted 3-stage, and476

unrestricted 3-stage3 patterns. The results of the computational experiments showed it is477

possible to obtain satisfactory solutions in terms of the metrics of order spread, but that is478

also optimal in terms of bin usage. The obtained solutions may seem similar in terms of bin479

usage, but they are completely different from those solutions from approaches that do not480

consider the customer order spread.481

A path for future research is to extend the pseudo-polynomial models of Silva et al. (2010)482

for the 2BPP to deal with the spread of customer orders. Note that our models are based483

on the allocation of items to bins; their performance gets worse when the number of items484

is large. Although such an extension does not seem straightforward, those models can deal485

with 2BPP’s problem instances with a large number of items. One could also consider other486

practical requirements for cutting operations or production scheduling as open stacks, due487

dates, and other cutting profiles, as p-group patterns. Other research paths could address the488

cutting of three-dimensional objects and/or distinct relations of three terms in the objective489

function (e.g. when the minimization of the customer order spread is a primary objective).490
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Silva, E., Alvelos, F., & Valério de Carvalho, J. M. (2010). An integer programming model for two- and580

three-stage two-dimensional cutting stock problems. European Journal of Operational Research, 205 ,581

699–708. doi:10.1016/j.ejor.2010.01.039.582
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