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Abstract

We consider a two-stage stochastic multi-objective linear program (TSSMOLP) which
is a natural multi-objective generalization of the well-studied two-stage stochastic linear
program. The second-stage recourse decision is governed by an uncertain multi-objective
linear program whose solution maps to an uncertain second-stage nondominated set.
The TSSMOLP then comprises the objective function, which is the Minkowsi sum of
a linear term plus the expected value of the second-stage nondominated set, and the
constraints, which are linear. Since the second-stage nondominated set is a random set,
its expected value is defined through the selection expectation. We prove properties of
TSSMOLPs and the multifunctions that arise therein, including that the global Pareto
set of a TSSMOLP with two or more objectives is cone-convex on a general probability
space. We also prove that two reformulations of the TSSMOLP are nondominance-
equivalent to the original; these reformulations facilitate mathematical analysis and the
future development of TSSMOLP solution methods.

Key words: stochastic programming; two-stage stochastic linear programming; multi-objective
stochastic optimization; multi-objective optimization under uncertainty

1 Introduction

Two-stage stochastic programs refer to optimization problems in which strategic decisions
must be made first under uncertainty, followed by recourse decisions made after the uncer-
tainty is revealed. Two-stage stochastic programs arise in a wide variety of application areas,
including agriculture, airline management, production planning, water resource modeling,
energy planning, supply chain management, and transportation and logistics [Birge and Lou-
veaux, 2011, Infanger, 2011, Shapiro et al., 2009]. In such problems, key strategic decisions,
such as the allocation of crops in a field, the allocation of airplanes to certain routes, or the
amount of a new product to stock, must be made in the first stage before uncertain parame-
ters, such as crop yield, the weather, or product demand, are known. Once the uncertainty
is observed, recourse decisions made in the second stage enable the system’s decision-makers
to respond to the observed values of the previously-uncertain parameters. For example, a
farmer can adjust purchases and sales of products in response to crop yield, airlines can
re-route airplanes in response to weather events, and stores can adjust subsequent product
orders in response to observed demand.

Historically, two-stage stochastic programs have been formulated with the goal of opti-
mizing one objective. In the seminal work by Dantzig [1955], the goal is to minimize the
total expected cost. In practical applications, a single “cost” objective may be formulated in
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a variety of ways: by considering the monetary cost of each decision (e.g., maximize expected
profit), or by assigning monetary value to all system design criteria and aggregating the
criteria into a single “cost” value, or by deeming one system design criterion to be the “cost”
and posing other “non-cost” system criteria as constraints. Either way, classic two-stage
stochastic programs usually have a single objective, which results in a single optimal value,
and there exists at least one feasible decision that can produce the optimal value.

In this article, we consider two-stage stochastic programs which enable decision-makers to
consider multiple simultaneous and conflicting linear objectives across both decision stages.
Specifically, the second-stage recourse decision is governed by an uncertain multi-objective
linear program (MOLP) whose solution maps to an uncertain second-stage nondominated
set. The two-stage stochastic multi-objective linear program (TSSMOLP) then comprises
the objective function, which is the Minkowsi sum of a linear term plus the expected value
of the second-stage nondominated set, and the constraints, which are linear. Since the
second-stage nondominated set is a random set, its expected value is defined through the
selection expectation, which employs the Aumann integral [Aumann, 1965]. We view this
formulation as the natural extension from a recourse decision which is posed as an uncertain
linear program to a recourse decision which is posed as an uncertain multi-objective linear
program. Thus, our interest lies in the multi-objective generalization of the well-studied
two-stage stochastic linear program [Dantzig, 1955, Sen and Higle, 1999, Shapiro et al., 2009,
Birge and Louveaux, 2011, Infanger, 2011].

1.1 Motivating example

To provide a concrete example of a TSSMOLP, we consider the context of disaster manage-
ment or humanitarian logistics, in which there are usually multiple stages and conflicting
objectives [Celik et al., 2012, Huang et al., 2012, Gutjahr and Nolz, 2016, Kress, 2016].
Inspired by Mete and Zabinsky [2010], suppose there exists an impending disaster, such as a
hurricane or earthquake, for which leaders must make logistic deployment decisions. Supplies
can be pre-staged by moving them from a centralized warehouse to several localized depots
in the first stage. After the disaster occurs and the uncertainty is realized in the form of its
exact location and severity, the supplies are then moved from localized depots to community
distribution centers to meet demand in the second stage. Throughout the disaster planning
and response process, decision-makers want to simultaneously minimize the expected total
transport cost and maximize the expected demand coverage.

Given a feasible first-stage decision x ∈ Rq1 , which allocates the supplies to the q1 local-
ized depots, and after the disaster occurs such that the uncertainty u is known, moving the
supplies from q1 depots to r2 community distribution centers to minimize the transporta-
tion cost and maximize the demand coverage is an MOLP with p = 2 objectives. For a
second-stage decision y ∈ Rq2 , where q2 = q1 × r2 and yij represents the amount of supplies
to transport from localized depot i to community distribution center j, the second-stage
MOLP is

minimize
[
d1(u)

⊺y
d2(u)

⊺y

]
s.t.

∑m
j=1 yij ≤ xi for all depots i = 1, . . . , q1,∑q1
i=1 yij ≤ sj(u) for all distribution centers j = 1, . . . , r2,

y ∈ Rq2 , y ≧ 0.

(1)
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Here, the coefficient on the first objective d1(u) ∈ Rq2 is a vector representing the observed
transportation costs for moving supplies from depot i to distribution center j, which are
subject to uncertainty due to the possibility that certain routes may become impassable or
certain modes of transport may become infeasible. The coefficient on the second objective
d2(u) = (−d21(u), . . . ,−d2r2(u), . . . ,−d21(u), . . . ,−d2r2(u))⊺ ∈ Rq2 is a vector representing
the negative observed proportional demand at the community distribution centers, where∑r2

j=1 d2j = 1. Notice that the demand coverage objective is equal to −
∑r2

j=1(d2j(u)
∑q1

i=1 yij)
where

∑q1
i=1 yij is the amount of supply received by distribution center j across all depots

i = 1, . . . , q1 [Rath et al., 2016]. Finally, the constraints ensure that no depot ships more
than it has, and no distribution center j accepts more than its capacity sj(u), where the
distribution center’s capacity is subject to uncertainty u; e.g., a storage area may be destroyed
or unusable.

For each feasible first-stage decision x, a solution to the second-stage MOLP maps
to the second-stage nondominated set in the objective space, which we define as follows.
First, the feasible set of (1) is a polyhedron, which we denote as the set Y(x, u) ⊂ Rq2 .
Likewise, its image set is a polyhedron, V(x, u) = D(u)Y(x, u), where D(u) ∈ Rp×q2 is
a matrix representing the second-stage coefficients across p conflicting objectives, D(u) =
(d1(u)

⊺, d2(u)
⊺)⊺, and the multiplication is elementwise, D(u)Y(x, u) = {D(u)y : y ∈ Y(x, u)}.

Then the second-stage nondominated set is

VN(x, u) = {z ∈ V(x, u) : ∄z̃ ∈ V(x, u) such that z̃ ≤ z} ⊂ Rp,

where, consistent with the multi-objective optimization literature, we use z̃ ≤ z to denote
that z̃k ≤ zk for all k = 1, . . . , p and z̃ ̸= z; we use z̃ ≦ z when equality is allowed.

While only one second-stage decision can be implemented in practice, the goal of solving
the second-stage MOLP in (1) is to present the decision-maker with a characterization of
all nondominated outcomes with respect to the simultaneous objectives. Given two feasible
first-stage decisions x1, x2 ∈ X and three possible scenarios u1, u2, and u3, Figure 1a shows
the resulting six polyhedral image sets and their corresponding nondominated sets for the
second-stage MOLP in (1), which are translated by the first stage costs Cx1 and Cx2 described
in problem (2) below. For any given combination of first-stage decision and uncertainty in
Figure 1a, the resulting nondominated set provides the decision-maker with perspective on
the tradeoffs between the objectives when choosing a final decision for implementation. For
example, the decision maker can readily assess how much more it will cost to achieve an
incremental improvement in demand coverage under each first-stage decision and scenario.
MOLP solution methods are well-studied in the literature, and open-source software exists
to solve MOLPs. We refer the reader to Benson [1998], Ehrgott [2005], Löhne [2011], Luc
[2016] for MOLPs and to Adeyefa and Luhandjula [2011] for stochastic MOLPs. Figure 1
was created using Bensolve, which is an open-source software for solving vector optimization
problems [Löhne and Weißing, 2017].

Having posed the second-stage problem as an uncertain MOLP, we now pose the overall
TSSMOLP to determine the first-stage decisions which lead to globally Pareto optimal
outcomes with respect to both objectives. Let ξ : Ω → Rm denote a random vector in a
to-be-discussed probability space that models the uncertainty. The TSSMOLP to minimize
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(a) For a given (x, u), the plot shows the translated second-
stage image set Cx+ V(x, u) (polyhedron) and translated
second-stage nondominated set and Cx+ VN(x, u) (line).

C
C

(b) For a given x, the plot shows the translated expected
second-stage image set Cx+ E[V(x, ξ)] (polyhedron) and
the nondominated translated expected second-stage non-
dominated set (Cx+ E[VN(x, ξ)])N (line).

Figure 1: Example instances of the relevant sets for the TSSMOLP in (2), given two first-stage decisions
x1, x2 ∈ X and scenarios u1, u2, u3 ∈ Ξ occurring with respective probabilities α1, α2, α3 > 0, α1+α2+α3 = 1.

the expected total transport cost and maximize the expected demand coverage is

minimize
[
c⊺1x
c⊺2x

]
+ E[VN(x, ξ)]

s.t.
∑q1

i=1 xi ≤ bw

xi ≤ bi for all depots i = 1, . . . , q1

x ∈ Rq1 , x ≧ 0,

(2)

where c1 ∈ Rq1 is a vector representing the first-stage transportation costs, c2 = (0, . . . , 0)
implies that demand coverage is not a consideration in the first stage (although we could
formulate a more complex example with some form of first-stage demand coverage), and the
constraints defining the feasible set X ⊂ Rq1 imply we do not ship more than the warehouse
has or more than the depots can accept. The symbol + in the objective function of (2)
denotes a Minkowski sum between a vector and a set; thus, the objective in (2) is a set
[Hamel et al., 2015]. The expected value of the random nondominated set E[VN(x, ξ)] is
defined using the selection expectation, which is discussed on a general probability space
in Appendix A. To fix ideas, for now, it is sufficient to consider only the case of an atomic
probability measure (see Subsection 1.4) in which the random variable ξ takes on a finite
set of values called scenarios, u1 = ξ(ω1), . . . , un = ξ(ωn), ωi ∈ Ω for all i = 1, . . . , n, with
respective probabilities α1, . . . , αn ∈ (0, 1),

∑
i αi = 1. In this special case, the expected

value under the selection expectation equals

E[VN(x, ξ)] =
n∑

i=1
αiVN(x, ui)

where the sum of the nondominated sets employs the Minkowski sum.
Given two feasible first-stage decisions x1, x2 ∈ X and three possible scenarios ui oc-

curring with respective probabilities αi for i ∈ {1, 2, 3}, Figure 1b shows the corresponding
expected image and nondominated sets from (2). Each first-stage decision x produces an



PROPERTIES OF TSSMOLPS 5

entire set of expected nondominated outcomes in the image space and, together with the
uncertainty, governs the nature of the nondominated set available to the decision-maker
when solving the second-stage MOLP. We remark here that E[VN(x, ξ)] may contain points
dominated by other points in the same set; in particular, if the underlying probability mea-
sure is nonatomic, E[VN(x, ξ)] is convex under the selection expectation. Due to the outer
minimization in (2), we plot (Cx+ E[VN(x, ξ)])N instead of Cx+ E[VN(x, ξ)] in Figure 1b.

Ultimately, our goal in solving (2) is to present the decision-maker with only feasible
first-stage decisions that produce expected second-stage nondominated sets containing at
least one globally Pareto optimal point. Under the definition of global Pareto optimality
which we adopt in Definition 2.1, such feasible decisions are members of the global efficient
set, XE. Temporarily supposing that we consider a reduced feasible set X̃ = {x1, x2} in
Figure 1b, both x1 and x2 are globally efficient on X̃ : first, all points in (Cx1 + E[VN(x1, ξ)])N
are globally Pareto optimal on X̃ , which implies x1 is efficient. Second, while some points
in (Cx2 + E[VN(x2, ξ)])N are dominated by points in (Cx1 + E[VN(x1, ξ)])N, others are not,
implying that a subset of (Cx2 + E[VN(x2, ξ)])N is globally Pareto optimal on X̃ . Thus, x2
is also efficient. The first-stage decisions we wish to exclude from consideration are those
that produce expected second-stage nondominated sets containing only dominated points;
the image sets corresponding to these first-stage decisions are not shown in Figure 1.

Since every feasible decision in the global efficient set produces an entire set of expected
second-stage nondominated outcomes, the multi-objective setting may seem prohibitively
complex or impractical in a real-world setting. However, the multi-objective optimization
literature contains methods which make the solutions to complex or high-dimensional multi-
objective optimization problems usable for decision-makers. For example, Sayin [2000]
discusses methods for creating discrete representations of Pareto sets which can be easier for
the decision-maker to evaluate. In the context of TSSMOLPs, such methods can be adapted
to provide the decision-maker with valuable and comprehensible information regarding the
expected second-stage nondominated sets across different efficient first-stage decisions. For
example, once again comparing the two expected nondominated sets in Figure 1b on the
reduced feasible set X̃ = {x1, x2}, one can see that if an expected demand coverage of 30
is acceptable, decision x1 is much cheaper in expectation. However, if expected demand
coverage must be over 60, only x2 can achieve it, and the expected nondominated set for x2
quantifies the increase in expected transport cost as the expected demand coverage increases.

Finally, we remark that reformulating the TSSMOLP in (2) into a single-objective
optimization problem and solving it provides only a very small part of the information
supplied by the original TSSMOLP: The single-objective problem’s optimal solution is only
one of the efficient points of the TSSMOLP. The multi-objective setting facilitates providing
decision-makers with the broader perspective demonstrated in Figure 1, which enables them
to incorporate their judgment and factors external to the mathematical model when choosing
among the Pareto alternatives.

1.2 Related literature

While the problem context for TSSMOLPs arises in the literature, general formulations
and unified mathematical solution approaches are only beginning to appear. In this regard,
Dowson et al. [2022] and Hamel and Löhne [2024] consider TSSMOLPs where the uncertainty
is governed by atomic distributions with finite support. First, Dowson et al. [2022] provide
an algorithm to solve a bi-objective multistage stochastic program assuming the probability
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distribution governing the uncertainty is known. The authors employ scalarization in both
stages, so that the expected second stage objective value at optimality is a vector rather than
a set. Second, the formulation in Hamel and Löhne [2024] employs the selection expectation
to handle the second-stage random sets, however, they minimize over the second-stage
decision variables outside the Minkowski sum rather than inside. Their formulation would
be equivalent to ours in one objective [Shapiro et al., 2009]; however, it is not immediately
clear to us that equivalence holds in two or more objectives.

Further related literature appears in the survey by Gutjahr and Pichler [2016], which
includes a section on two-stage stochastic multi-objective optimization. They remark that
the majority of problems appearing in the literature assume a bi-objective formulation
with special dependence structure between the objectives that facilitates analysis through
the epsilon-constraint method. Many such papers in disaster relief planning reformulate
multiple objectives into a single-objective problem using, e.g., goal programming, compromise
programming, or the epsilon-constraint method [Grass and Fisher, 2016, p. 94]; also see the
discussion in Rath et al. [2016]. Further, we remark that papers in both areas often employ
integer or binary variables which are both useful in practice and beyond the scope of the
present work, e.g. Huang et al. [2012], Yang and Bayraksan [2023]. Finally, while we consider
the risk-neutral formulation, we remark that risk-averse formulations exist in the literature;
see Ç. Ararat et al. [2017], Dentcheva and Wolfhagen [2016], Noyan et al. [2022].

1.3 Contribution and overview of main results

To the best of our knowledge, we are the first to define and study properties of (risk-neutral)
TSSMOLPs for two or more objectives on a general probability space. By allowing probability
measures that are nonatomic or atomic with infinite support, our formulation facilitates
modeling a wider variety of real-world settings than existing formulations in Dowson et al.
[2022] and Hamel and Löhne [2024]. In the process, we avoid the need to discretize or
truncate the support of an otherwise nonatomic probability measure, which introduces error
that cannot be overcome by sampling when the probability measure is unknown. However,
analyzing and solving such general TSSMOLPs poses new challenges because fundamental
results are not yet available. We fill this gap in the literature by proving foundational
properties of TSSMOLPs and the set-valued maps, or multifunctions, that arise therein.

We demonstrate the properties of the TSSMOLPs formulated in Section 2 as follows.
First, in Section 3, we prove properties of the second-stage image and nondominated random
multifunctions, and in Section 4, we prove properties of their corresponding expectations.
Importantly, under appropriate regularity conditions, we show that the second-stage image
multifunction V : X × Ξ ⇒ Rp is a set-valued convex normal integrand (Proposition 3.4),
and we show that the expected second-stage image multifunction E[V(·, ξ)] : X ⇒ Rp is
outer semicontinuous, graph-convex, and bounded on the feasible set X (Proposition 4.3).
Then, in Section 5, we present two reformulations of the TSSMOLP and prove that they are
nondominance-equivalent to the original. First, under the polyhedral reformulation, we show
that we can replace the expected second-stage nondominated set E[VN(x, ξ)] in the objective
function of the original TSSMOLP in Section 2 with the expected second-stage image set
E[V(x, ξ)] (Theorem 5.2). Thus, we can work only with the second-stage image random
multifunction and its corresponding expected value whenever doing so is convenient. Second,
under the full-dimensional reformulation, we show that we can replace E[VN(x, ξ)] with the
expected value of a full-dimensional polyhedron constructed from V(x, ξ) (Theorem 5.6).
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This reformulation stands in analogy to the reformulation facilitating outer approximation
methods for MOLPs by Benson [1998]. The polyhedral and full-dimensional reformulations
facilitate future mathematical analysis, algorithm development, and computation. In evi-
dence of their usefulness, we employ the polyhedral reformulation and the properties of the
second-stage image multifunction to provide a concise proof that the global Pareto set of
the TSSMOLP is cone-convex (Theorem 6.1) in Section 6. This result implies that every
point in the global Pareto set has a supporting hyperplane, such that outer approximation
methods might be employed to solve TSSMOLPs. Section 7 contains concluding remarks.

Given the foundational nature of this work and the breadth of our intended audience
spanning multi-objective optimization and stochastic programming, we provide detailed
references to the results in four books which we recommend as reading companions: Shapiro
et al. [2009] for stochastic programming, Ehrgott [2005] for multi-objective optimization,
Rockafellar and Wets [1998] for set-valued mappings (or multifunctions), and Molchanov
[2017] for the theory of random sets (also called measurable multifunctions). Both Shapiro
et al. [2009] and Molchanov [2017] contain useful appendices detailing key concepts of
probability theory on which we rely. For convenience and completeness, preliminary concepts
and definitions for working with random closed sets, multifunctions, random multifunctions,
and the selection expectation are included in Appendix A.

1.4 Notation and terminology

When comparing two vectors z, z′ ∈ Rp, we write z′ ≦ z if z′k ≤ zk for all k ∈ {1, . . . , p} and
write z′ ≤ z if z′ ≦ z and z′ ̸= z; we use analogous definitions for ≧,≥. Thus, the set

R
p
≧
:= {z ∈ Rp : z ≧ 0}

is the non-negative orthant in p dimensions; likewise, Rp
> := {z ∈ Rp : z > 0}. The set

R := R ∪ {−∞,+∞} denotes the extended real numbers where −∞ ≤ z1 ≤ +∞ for all
z1 ∈ R. Then Rp

= (z1, . . . , zp) where zk ∈ R for all k = 1, . . . , p. Unless otherwise indicated,
∥z∥ is the Euclidean norm of the vector z ∈ Rp. B1(0p) denotes the p-dimensional unit ball.

For a set S ⊂ Rp, clS denotes its closure, bdS its boundary, intS its interior, and
diamS := sups1,s2∈S∥s1 − s2∥ its diameter. For sets S1,S2 ⊂ Rp, the Minkowski sum is S1 +
S2 = {s1+ s2 : s1 ∈ S1, s2 ∈ S2}, scalar multiplication of α ∈ R with S is αS = {αs : s ∈ S},
and multiplication of a matrix M ∈ Rn×p times a set S ⊂ Rp×1 is MS = {Ms : s ∈ S} ⊂ Rn×1.
For any set S ⊂ Rp, let SN be the set of all nondominated points in S,

SN := {s ∈ S : ∄s′ ∈ S such that s′ ≤ s}.

In general, SN may be empty (e.g. if S is open) [Ehrgott, 2005]. The norm of a set S is

∥S∥ := sup{∥s∥ : s ∈ S}. (3)

A set that can be written as the intersection of finitely many half-spaces is a polyhedral
convex set [Rockafellar, 1970, p. 11] or a polyhedron [Ehrgott, 2005, p. 163]. We sometimes
refer to a bounded polyhedron as a polytope. The dimension of a polyhedron X is the
maximal number of affinely independent points of X , minus one [Ehrgott, 2005, p. 164]. A
set S is not connected if there exist open sets O1,O2 such that S ⊂ O1 ∪ O2, S ∩ O1 ̸= ∅,
S ∩ O2 ̸= ∅, and S ∩ O1 ∩ O2 = ∅; otherwise, S is connected [Ehrgott, 2005, p. 86].
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Given a probability space (Ω,A,P), the acronym w.p.1 stands for with probability one.
For any event A ∈ A, stating that A occurs w.p.1 means P(A) = P({ω ∈ Ω: ω ∈ A}) = 1.
The abbreviations a.e. and a.s. stand for almost every and almost surely, respectively. The
σ-algebra A and the probability space (Ω,A,P) are called complete if, for every set A ∈ A
with P(A) = 0, all subsets of A are contained in A [Molchanov, 2017, p. 587]. For any set
S, B(S) denotes the σ-algebra of all Borel subsets of S. A measure P, and the probability
space (Ω,A,P), is nonatomic if any set A ∈ A such that P(A) > 0 contains a subset B ∈ A
such that P(A) > P(B) > 0 [Shapiro et al., 2009, p. 367]. If a measure is not nonatomic,
then it is atomic; that is, it contains atoms : events A for which P(A) > 0 but for all B ⊂ A,
P(B) = P(A) or P(B) = 0.

2 TSSMOLP problem formulation

Let ξ denote a real-valued random vector ξ : Ω → Rm, defined with respect to the complete
probability space (Ω,A,P). We formulate the TSSMOLP for p ≥ 2 objectives as

minimize {Cx+ E[VN(x, ξ)]}
s.t. x ∈ X :=

{
x ∈ Rq1 : Ax = b, x ≧ 0

}
,

(M)

where the second-stage decision is modeled as a stochastic MOLP with nondominated set

VN(x, ξ) = min D(ξ)y

s.t. y ∈ Y(x, ξ) :=
{
y ∈ Rq2 : W(ξ)y = h(ξ)− T(ξ)x, y ≧ 0

}
.

(L)

The expected value of the second-stage nondominated set in (M) is the selection expectation
with respect to the random variable ξ, where the selection expectation is defined using the
Aumann integral (Definitions A.9 and A.10). The first-stage feasible set X is a nonempty,
polyhedral, convex subset of Rq1 . The matrix C ∈ Rp×q1 is the first-stage cost matrix,
D(ξ) ∈ Rp×q2 is the second-stage cost matrix, and there are p linear objectives in each stage,

Cx =

c
⊺
1x
...
c⊺px

 , D(ξ)y =

d1(ξ)
⊺y

...
dp(ξ)

⊺y

 .
The constraints are specified by the matrix A ∈ Rr1×q1 and vector b ∈ Rr1 in the first stage,
and by (possibly random) matrices W(ξ) ∈ Rr2×q2 , T(ξ) ∈ Rr2×q1 , and vector h(ξ) ∈ Rr2 in
the second stage. We refer to the image set for the second-stage MOLP in (L) as

V(x, ξ) = D(ξ)Y(x, ξ) = {D(ξ)y : y ∈ Y(x, ξ)} ⊂ Rp, (4)

which is a random polyhedral convex set. Random elements corresponding to uncertainty in
the second-stage problem, (D(ξ), h(ξ),T(ξ),W(ξ)), are understood to be A-measurable.

If the second-stage MOLP is infeasible for some x ∈ X and ξ(ω), ω ∈ Ω, then the
second-stage image set is empty, V(x, ξ(ω)) = ∅, which implies VN(x, ξ(ω)) = ∅. Further, if
there does not exist a point z ∈ Rp such that V(x, ξ(ω)) ⊂ z + Rp

≧, then we say that the
second-stage MOLP is unbounded from below. In this case, following the conventions in
Ehrgott [2005], the second-stage nondominated set is empty, VN(x, ξ(ω)) = ∅. For example,
if V(x, ξ(ω)) is the half-space {(z1, z2) ∈ R2 : z1 ≥ 0}, then V(x, ξ(ω)) is unbounded from
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below and VN(x, ξ(ω)) = ∅. These events shall occur on a set of measure zero by assumption;
we formalize this assumption later.

To define the solution to (M), first, notice that each feasible decision value x ∈ X maps
to a (possibly empty) subset of Rp denoted by {Cx+ E[VN(x, ξ)]}. Such a mapping from X
into the set of subsets of Rp is called a set-valued mapping or multifunction (Definition A.1).
Throughout, we adopt the notation and conventions as discussed in Rockafellar and Wets
[1998, p. 149] and let the mapping Z : X ⇒ Rp be the multifunction

Z(x) := Cx+ E[VN(x, ξ)] for all x ∈ X .

Given any set of feasible first-stage decisions S ⊆ X , the image of S under Z is the union of
the translated expected second-stage nondominated sets,

Z(S) := ∪x∈S Z(x).

Thus, Z(X ) denotes the image set corresponding to (M). This notation enables us to define
the global Pareto and efficient sets as follows.

Definition 2.1. The global Pareto set for the TSSMOLP in (M) is

ZP := ZN(X ) = {z∗ ∈ Z(X ) : ∄z ∈ Z(X ) such that z ≤ z∗}.

The solution to (M) in the decision space is the global efficient set

XE := {x∗ ∈ X : ∃z∗ ∈ Z(x∗) such that z∗ ∈ ZP}.

Hamel et al. [2015, p. 82] refer to this approach for defining the global Pareto set as the
“vector approach to set optimization.” Under Definition 2.1, we say that a feasible point
x∗ ∈ X is efficient for (M) if at least one of the points in its corresponding translated expected
second-stage nondominated set Z(x∗) belongs to the global Pareto set, ZP. Notably, under
Definition 2.1, the image of the efficient set,

Z(XE) = ∪x∗∈XE Z(x∗) = ∪x∗∈XE Cx∗ + E[VN(x
∗, ξ)],

is a superset of the global Pareto set ZP; hence,

ZP ≡ ZN(X ) ⊆ Z(XE) ⊆ Z(X ).

Remark 2.2. In addition to ZP, a decision-maker may be interested in observing ZN(x
∗) =

(Cx∗ + E[VN(x
∗, ξ)])N ⊆ Z(XE) for one or more identified values x∗ ∈ XE, since trade-off

rates in the relevant second-stage expected nondominated sets that make up Z(XE) may be
informative for decision-making; see, for example, Figure 1b.

Remark 2.3. The TSSMOLP in (M) is fundamentally different from the traditional multi-
objective simulation optimization (MOSO) formulation discussed in Hunter et al. [2019], in
which the minimization acts on a collection of vectors. We remark that in general, (M) is
not equivalent to the problem

minimize
[
E[c⊺1x+ V1(x, ξ)], . . . ,E[c⊺px+ Vp(x, ξ)]

]⊺ s.t. x ∈ X ,
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where Vk(x, ξ) is the optimal value of the kth stochastic linear program identical to (L)
except having only one objective, dk(ξ)⊺y for each k = 1, . . . , p. Modeling each objective
with a separate second-stage linear program would decouple the interactions between the
second-stage decision variables y.

Remark 2.4. Rather than working exclusively in the original probability space (Ω,A,P),
often, it is convenient to work in the probability space that results from completing the
probability space induced by ξ. Let the probability space induced by ξ be (Ξ,B(Ξ), Pξ),
where Ξ is a Borel subset of Rm denoting the support of ξ, and B(Ξ) denotes the σ-algebra
of all Borel subsets of Ξ. The probability space (Ξ,B(Ξ), Pξ) can be completed, and we
denote the resulting completed induced probability space as (Ξ,M,Pξ) [Billingsley, 1995,
p. 45]. For clarity here and in what follows, ξ : Ω → Rm is always a random vector with
support Ξ, ξ(ω) is its value at ω ∈ Ω, and u represents a generic vector value in Ξ ⊆ Rm.

3 Properties of the random closed-valued multifunctions

In addition to the image set mapping Z defined in Section 2, the TSSMOLP formulation in
(M) contains several other relevant multifunctions whose properties we study. In particular,
for each x ∈ X , the mappings V(x, ξ) and VN(x, ξ) represent random closed sets, which
are also called measurable closed-valued multifunctions (Definition A.2). The mappings
V(·, ξ) and VN(·, ξ) appearing in (4) and (L), respectively, represent random closed-valued
multifunctions, which are also called set-valued integrands (Definition A.3).

In what follows, we demonstrate the properties of the random multifunctions relevant
to TSSMOLPs. Specifically, in Proposition 3.4, we demonstrate that V(·, ·) is a set-valued
convex normal integrand, and in Proposition 3.6, we demonstrate that VN(·, ·) is a set-valued
normal integrand (Definition A.4). Since both random multifunctions arise in the context of
an MOLP, we begin by presenting basic properties of MOLPs in the following Lemma 3.1.
Then, we present the main results in Subsections 3.1 and 3.2 which follow. We continue to
maintain the notation and conventions of Rockafellar and Wets [1998], even though we invoke
results from Molchanov [2017] which employs an alternate, but equivalent, representation
for multifunctions (see Rockafellar and Wets [1998, Theorem 14.4, p. 645], Molchanov [2017,
Theorem 1.3.9, p. 62]). For convenience, in the remainder of Section 3, we work in the
completed probability space induced by ξ, (Ξ,M,Pξ); see Remark 2.4.

Lemma 3.1 (properties of MOLPs). Consider an MOLP,

minimize Cx s.t. x ∈ X = {Ax = b, x ≧ 0},

where the feasible set X ⊂ Rq is nonempty, there are p objectives such that C ∈ Rp×q, and
the image set is S = {Cx : x ∈ X} ≠ ∅. Then the following statements hold:

1. The image set S is a closed polyhedral convex set (see Subsection 1.4).
2. If S is bounded from below, that is, there exists z ∈ Rp such that S ⊂ z +Rp

≧, then the
nondominated set SN is nonempty, connected, and closed.

3. If X is compact, then (a) S is a nonempty, compact polyhedron, and (b) SN is nonempty,
connected, and compact.

Proof sketch. All of Parts 1 and 2 except that SN is closed follow from Ehrgott [2005], where
connected sets are defined in Subsection 1.4. That SN is closed follows because the efficient
set for the MOLP is a union of a finite number of closed faces of X [Benson and Sun, 1999,
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Yu and Zeleny, 1975], and SN is its image under a linear map; see Rockafellar [1970]. Part
3a follows because the image set is the image of the feasible set under a linear map, and
Part 3b follows from Parts 2 and 3a.

3.1 Properties of the second-stage image random multifunction

We begin by considering the properties of the second-stage image mapping V : X × Ξ ⇒ Rp

defined in (4). First, under Definition A.3, the map V(·, ·) is a random closed-valued
multifunction because for each x ∈ X , V(x, ·) is a random closed set taking values in Rp.
That V(x, ·) is a random closed set for each x ∈ X holds by the properties of image sets
for MOLPs enumerated in Lemma 3.1, and because for each x ∈ X , all of the second-stage
objective functions are linear (and, thus, continuous) in y, and each dk(·)⊺y is measurable
with respect to its argument for k = 1, . . . , p; see Vogel [1992, p. 115], Rockafellar [1976].

Before establishing that V(·, ·) is a set-valued convex normal integrand in Proposition 3.4,
first, we detail several properties of V(·, u) for given u ∈ Ξ in Lemma 3.2. Then, in Lemma 3.3,
we establish joint measurability under Assumption 1, which ensures the second-stage problem
has relatively complete recourse [Shapiro et al., 2009, p. 33].

Lemma 3.2. Consider the second-stage feasible set multifunction Y(·, u) : X ⇒ Rq2 for
given u ∈ Ξ such that its domain domY(·, u) = {x ∈ X : Y(x, u) ̸= ∅} is nonempty. Then

1. Y(·, u) is polyhedral, graph-convex, and Lipschitz continuous on its domain (Defini-
tion A.5), and

2. the second-stage image set multifunction V(·, u) : X ⇒ Rp is a polyhedral, graph-convex
map and, thus, Lipschitz continuous on domY(·, u); that is, there exists κ0 ∈ R> such
that V(x′, u) ⊆ V(x, u)+κ0∥x′−x∥B1(0p) for all x, x′ ∈ domY(·, u); recall that B1(0p)
denotes the p-dimensional unit ball.

Proof. For Part 1, gphY(·, u) := {(x, y) : y ∈ Y(x, u)} ⊂ Rq1 × Rq2 , and notice that it
is the intersection of X × Rq2 with {(x, y) : W(u)y = h(u) − T(u)x} and {(x, y) : y ≧ 0};
see Rockafellar and Wets [1998, Example 5.8 Detail, p. 154]. Therefore, gphY(·, u) is an
intersection of a finite number of convex polyhedral sets, implying it is both convex and
polyhedral. Thus, Y(·, u) is Lipschitz continuous on its domain [Rockafellar and Wets, 1998,
Example 9.35, p. 376]. Part 2 follows from Part 1 because the graph of V(·, u),

gphV(·, u) := {(x, z) : z ∈ V(x, u)} = {(x, z) : z ∈ D(u)Y(x, u)} ⊂ Rq1 ×Rp,

must also be a convex polyhedron (see, e.g., Rockafellar [1970, p. 174]), which implies V(·, u)
is Lipschitz continuous on its domain.

Assumption 1 (relatively complete recourse). For every x ∈ X , the second-stage feasible
set Y(x, ξ) is nonempty w.p.1; that is, P

(
Y(x, ξ) ̸= ∅

)
= 1 for all x ∈ X . Equivalently, in

the probability space (Ξ,M,Pξ),

Pξ

(
∩x∈X {u ∈ Ξ: Y(x, u) ̸= ∅}

)
= Pξ

(
{u ∈ Ξ: domY(·, u) = X}

)
= 1.

Lemma 3.3. Under Assumption 1, the random closed-valued multifunction V : X ×Ξ ⇒ Rp

is jointly measurable with respect to the σ-algebra of X × Ξ, which is given by the product
σ-algebra of B(X ) and M.
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Proof. Assumption 1 and Lemma 3.2 imply that V(x, ·) is Lipschitz continuous in x a.s.
(Equivalently, in the original probability space, we have V(x, ξ) is Lipschitz continuous in x
a.s.) Therefore, by Molchanov [2017, Proposition 5.1.20, p. 463], the set-valued process is
separable. Then, joint measurability holds by Molchanov [2017, Theorem 5.1.21, p. 463].

Having established Lemmas 3.2 and 3.3, we are now ready to present Proposition 3.4,
in which we demonstrate that V is a set-valued convex normal integrand. This proposition
holds under Assumption 1 and the following Assumption 2, which ensures that we can equip
the feasible set X with a uniform distribution.

Assumption 2. The feasible set X ⊂ Rq1 is a nonempty compact polyhedral convex set.

Proposition 3.4. Under Assumptions 1 and 2, the random closed-valued multifunction
V : X × Ξ ⇒ Rp is a set-valued convex normal integrand.

Proof. First, gphV(·, u) must be closed for every u ∈ Ξ (Definition A.4 Part (a)). If
u ∈ Ξ is such that domY(·, u) ̸= ∅, then gphV(·, u) is closed because it is polyhedral by
Lemma 3.2. If u ∈ Ξ is such that domY(·, u) = ∅, then V(x, u) = ∅ for all x ∈ X . Therefore,
gphV(·, u) = {(x, z) : z ∈ V(x, u)} = ∅, which is closed. Thus, gphV(·, u) is closed for all
u ∈ Ξ. Second, gphV = {(x, u, z) : z ∈ V(x, u)} must belong to B(X )⊗M⊗B(Rp), where
X is a convex, Borel subset of Rq1 (Definition A.4 Part (b)). Given the joint measurability of
V(·, ·) in Lemma 3.3 and the fact that X is a nonempty compact polyhedral convex set under
Assumption 2, we can equip X with a uniform probability measure PX having full support,
i.e. PX(X ) = 1, and specify a joint distribution P(X, ξ) through independence. Then, we can
view V as a random closed set on the joint probability space (X × Ξ,B(X ) ⊗ M, P(X, ξ));
also see the discussion in Molchanov [2017, p. 464]. This view allows us to invoke Molchanov
[2017, Theorem 1.3.3, p. 59] or Rockafellar and Wets [1998, Theorem 14.8, p. 648] so that
the joint measurability of the multifunction V implies the B(X )⊗M⊗B(Rp)-measurability
of gphV. (Note that here, we do not require the probability space to be complete.) Thus,
V is a set-valued normal integrand. Finally, that gphV(·, u) is convex for a.e. u ∈ Ξ follows
directly from Lemma 3.2 Part 2 together with Assumption 1.

3.2 Properties of the second-stage nondominated random multifunction

Next, we consider the second-stage nondominated map VN(·, ·) defined in (L) and demonstrate
that it is a set-valued normal integrand under Definition A.4. To begin, under Definition A.3,
VN : X × Ξ ⇒ Rp is a random closed-valued multifunction. To see this, fix an x ∈ X and
notice that V(x, ·) +Rp

≧ is a random upper convex set; we say a set S ⊆ Rp is upper if for
all z1 ∈ S and all z2 ∈ Rp, z1 ≤ z2 implies z2 ∈ S. For all u ∈ Ξ,

VN(x, u) =
(
V(x, u) +Rp

≧

)
N

by Ehrgott [2005, Proposition 2.3, p. 27]. Thus, VN(x, ·) is the nondominated set of the
random upper convex set V(x, ·) +Rp

≧ (see Molchanov [2017, Theorem 1.3.25, p. 69]), which
implies VN(x, ·) is a random closed set by Molchanov [2017, Proposition 1.8.27, p. 159].

We now show that VN(·, ·) is a set-valued normal integrand. First, in Lemma 3.5, we
show that VN(·, u) is piecewise polyhedral for each u ∈ Ξ; see Rockafellar and Wets [1998,
Example 9.57, p. 399] for a discussion of the implications of this fact. Then, Proposition 3.6
establishes the result.
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Lemma 3.5. For given u ∈ Ξ, the multifunction VN(·, u) : X ⇒ Rp is piecewise polyhedral;
that is, gphVN(·, u) = {(x, z∗) : z∗ ∈ VN(x, u)} can be expressed as the union of finitely many
polyhedral sets which are faces of gphV(·, u).

Proof. From Lemma 3.2, gphV(·, u) = {(x, z) : z ∈ V(x, u)} is a convex polyhedron, which
implies it is closed and has finitely many faces. Each face is itself a convex polyhedron
[Rockafellar, 1970, Theorem 19.1, p. 171], and the empty set is polyhedral [Rockafellar, 1970,
p. 170]. If gphV(·, u) = ∅, then gphVN(·, u) = ∅ is a union of finitely many polyhedral
sets. Likewise, if gphV(·, u) ̸= ∅ and gphVN(·, u) = ∅, e.g. due to unboundedness, then
the result also holds. Thus, henceforth, suppose gphVN(·, u) ̸= ∅, gphV(·, u) ̸= ∅, and let
∪ℓ
j=1Fj(u) = bd(gphV(·, u)) denote the union of the ℓ faces of gphV(·, u).

First, suppose (x, z∗) ∈ gphVN(·, u). Then since z∗ ∈ VN(x, u) ⊆ bdV(x, u) by Ehrgott
[2005, Proposition 2.4, p. 28], we have z∗ ∈ bdV(x, u) ⊆ bd(gphV(·, u)). Then there exists a
face Fj∗(u), j∗ ∈ {1, . . . , ℓ} such that (x, z∗) ∈ Fj∗(u). Therefore, gphVN(·, u) ⊆ ∪ℓ

j=1Fj(u).
Let Fj∗(u) denote any face of gphV(·, u) such that there exists (x, z∗) ∈ gphVN(·, u)

with (x, z∗) ∈ Fj∗(u). We now show that Fj∗(u) ⊆ gphVN(·, u). If Fj∗(u) = {(x, z∗)}, the
result is trivially true. Thus, henceforth, suppose there exists another point in the same
face, (x̃, z̃) ∈ Fj∗(u), where we shall demonstrate (x̃, z̃) ∈ gphVN(·, u). Since gphV(·, u) is
a polyhedral convex set, Lemma 3.2 implies that there exists a normal vector λ ∈ Rq1+p

which defines a supporting hyperplane of face Fj∗(u) at (x, z∗) [Boyd and Vandenberghe,
2004, p. 51]. By the definition of supporting hyperplane, for any point (x̂, ẑ) ∈ gphV(·, u),

λ⊺xx+ λ⊺zz
∗ ≤ λ⊺xx̂+ λ⊺z ẑ (5)

where λ = (λx, λz)
⊺. Since gphV(·, u) is a polyhedron, the hyperplane defined by λ is the

supporting hyperplane of the entire face Fj∗(u). Therefore, (5) also holds by replacing
(x, z∗) on the left-hand side with (x̃, z̃) ∈ Fj∗(u). Further, since (x̂, ẑ) is an arbitrary point
in gphV(·, u) on the right-hand side, let x̂ = x̃, so that

λ⊺xx̃+ λ⊺z z̃ ≤ λ⊺xx̃+ λ⊺z ẑ,

which implies λ⊺z z̃ ≤ λ⊺z ẑ. To conclude that z̃ ∈ VN(x̃, u), it only remains to show that
λz ∈ R

p
>; this fact follows because z∗ ∈ VN(x, u) (see Isermann [1974, Theorem 1] or

Ehrgott [2005, Theorem 6.11, p. 159]). Since z̃ ∈ VN(x̃, u), then (x̃, z̃) ∈ gphVN(·, u). Thus,
gphVN(·, u) can be written as the finite union ∪j∗Fj∗(u).

Proposition 3.6. Under Assumptions 1 and 2, the random closed-valued multifunction
VN : X × Ξ ⇒ Rp is a set-valued normal integrand.

Proof. By Lemma 3.5, the graph of VN(·, u) is the union of finitely many (closed) polyhedral
sets for each u ∈ Ξ. Therefore, it is closed. For the measurability of gphVN, first, recall
from the proof of Proposition 3.4 that V : (X × Ξ) ⇒ Rp is a random convex closed set in
the joint probability space (X × Ξ,B(X )⊗M, P(X, ξ)). Molchanov [2017, Theorem 1.3.25,
p. 69] implies V + Rp

≧ is a random closed set in the same probability space, which is also
convex and upper. Then since VN(x, u) = (V(x, u) +Rp

≧)N for all (x, u) ∈ X × Ξ [Ehrgott,
2005, Proposition 2.3, p. 27], the proof of Proposition 1.8.27 in Molchanov [2017, p. 159]
implies that gphVN is B(X )⊗M⊗B(Rp)-measurable.
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4 Expected value multifunctions

Having established the properties of the random multifunctions in Section 3, we now con-
sider the corresponding expected value multifunctions for the TSSMOLP formulation in
(M). In the following Subsections 4.1 and 4.2, we provide properties of the expected value
multifunctions from the second-stage MOLP, E[V(·, ξ)] : X ⇒ Rp and E[VN(·, ξ)] : X ⇒ Rp,
respectively. Specifically, we demonstrate that under mild regularity conditions, E[V(·, ξ)]
is outer semicontinuous, graph-convex, and bounded on X (Proposition 4.3), and that
E[VN(·, ξ)] is outer semicontinuous and bounded on X (Proposition 4.4).

While details of the selection expectation appear in Appendix A.2, we include here a
useful and intuitive lemma regarding the selection expectations for two random sets defined
in the same probability space where one random set is almost surely a subset of the other.

Lemma 4.1 (see Molchanov [2017, Theorem 2.1.31, p. 244]). Let G1,G2 ⊆ Rp be two
integrable random closed sets (Definition A.8) defined on the complete probability space
(Ω,A,P) such that G1(ω) ⊆ G2(ω) for all ω ∈ Ω1, where Ω1 ⊆ Ω and P(Ω1) = 1. Then
E[G1] ⊆ E[G2].

Proof sketch. Let G1, G2 denote integrable selections of G1,G2, respectively (Definition A.7),
where G1(ω) ∈ G1(ω) ⊆ G2(ω) for all ω ∈ Ω1 implies that G1 is an integrable selection of
G2 for all ω ∈ Ω1. Letting L1(G1),L1(G2) denote the families of all integrable selections of
G1,G2, respectively, and employing Definitions A.9 and A.10 and the fact that P(Ω1) = 1,

E[G1] = cl
{∫

Ω1
G1(ω)dP(ω) : G1 ∈ L1(G1)

}
⊆ cl

{∫
Ω1
G2(ω)dP(ω) : G2 ∈ L1(G2)

}
= E[G2].

4.1 Properties of the expected second-stage image multifunction

First, we consider the expected second-stage image multifunction E[V(·, ξ)] : X ⇒ Rp. Since
we shall invoke Fatou’s Lemma for random compact sets in Rp [Molchanov, 2017, Theorem
2.1.60, p. 263], in Assumption 3, we restrict ourselves to the case in which the closed
second-stage feasible sets Y(x, ξ) are also bounded w.p.1.

Assumption 3 (compact second-stage feasible set). For every x ∈ X , the random closed
set Y(x, ξ) is bounded w.p.1; that is, P

(
diamY(x, ξ) <∞

)
= 1 for all x ∈ X . Equivalently,

in the probability space (Ξ,M,Pξ), Pξ

(
∩x∈X {u ∈ Ξ: diamY(x, u) <∞}

)
= 1.

Assumptions 1 and 3, together with Lemma 3.2, imply that the second-stage image set
V(x, ξ) is a nonempty random compact polyhedral convex set w.p.1 for all x ∈ X . To ensure
V(x, ξ) is also integrably bounded uniformly in x ∈ X , in the following Assumption 4, we
make assumptions on the integrability of the ideal and anti-ideal points, defined next.

Definition 4.2 (see Benson [1998, p. 6]). Let (x, u) ∈ X×Ξ where V(x, u) is the second-stage
image set. For each objective k = 1, . . . , p, define the minimum and maximum as

zI
k(x, u) := min{zk(u) : z(u) ∈ V(x, u)}, zAI

k (x, u) := max{zk(u) : z(u) ∈ V(x, u)},

where by convention, if V(x, u) = ∅, then zI
k(x, u) = +∞ and zAI

k (x, u) = −∞. If V(x, u) is
unbounded in the relevant direction, then zI

k(x, u) = −∞ or zAI
k (x, u) = +∞. The points

zI(x, u) ∈ Rp and zAI(x, u) ∈ Rp are the ideal and anti-ideal points for V(x, u), respectively.
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(a) Ideal and anti-ideal points. (b) Q(x, u) is constructed from V(x, u).

Figure 2: For the motivating example in Subsection 1.1, the images show the ideal and anti-ideal points for a
second-stage image set V(x, u), as defined in Definition 4.2, and the construction of the p-dimensional image
set Q(x, u), as discussed in Subsection 5.2.

For the motivating example discussed in Subsection 1.1, Figure 2a depicts the construction
of the ideal and anti-ideal points from the second-stage image set V(x1, u2); henceforth, we
suppress the subscripts and refer to this set as V(x, u). As shown in Figure 2a, the ideal and
anti-ideal points usually lie outside the image set. Thus, in general, they are not measurable
selections of the image set. Instead, they define a bounding hyperrectangle which contains the
image set. In Assumption 4, we assume the supremum norm of all such points is integrable.

Assumption 4 (integrability). The maximum norm of all second-stage ideal and anti-ideal
points is integrable; i.e., E[Z∗] <∞ where Z∗ : Ω → R is the non-negative random variable

Z∗ := supx∈X max{∥zI(x, ξ)∥, ∥zAI(x, ξ)∥}.

We are now ready to demonstrate properties of the multifunction E[V(·, ξ)] in the following
Proposition 4.3; specifically, that it is outer semicontinuous and graph-convex.

Proposition 4.3. Under Assumptions 1, 3, and 4, the multifunction E[V(·, ξ)] : X ⇒ Rp is
outer semicontinuous, graph-convex, and bounded on X .

Proof. First, we demonstrate the outer semicontinuity of E[V(·, ξ)] using Fatou’s Lemma for
random compact sets in Rp, which appears in Molchanov [2017, Theorem 2.1.60, p. 263].
By Lemma 3.2, for any given u ∈ Ξ such that domY(·, u) = {x ∈ X : Y(x, u) ̸= ∅} is
nonempty, V(·, u) is a Lipschitz continuous multifunction on domY(·, u). Therefore, it is
also outer semicontinuous on domY(·, u), which implies that its graph is closed and for any
x0 ∈ domY(·, u),

lim sup
x→x0

V(x, u) :=
⋃

xν→x0

lim sup
ν→∞

V(xν , u)

= {z : ∃xν → x0, ∃zν → z with zν ∈ V(xν , u)} = V(x0, u), (6)

where the sequence {xν} lies in domY(·, u) [Rockafellar and Wets, 1998, p. 152]. For the
random vector ξ : Ω → Ξ, consider the sequence of random sets specified by {V(xν , ξ), ν =
1, 2, . . .} where {xν} lies in X and each set V(xν , ξ) is nonempty and compact w.p.1 following
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Lemma 3.2 with Assumptions 1 and 3. The sequence {∥V(xν , ξ)∥, ν = 1, 2, . . .} is uniformly
integrable because in the original probability space (Ω,A,P), Assumption 4 implies

∥V(xν , ξ(ω))∥ = sup{∥z(xν , ξ(ω))∥ : z(xν , ξ(ω)) ∈ V(xν , ξ(ω))}
≤ supx∈X max{∥zI(x, ξ(ω))∥, ∥zAI(x, ξ(ω))∥} = Z∗(ω) (7)

for all ω ∈ Ω, ν = 1, 2, . . . where E[Z∗] < ∞. Further, Assumption 4 implies V(x, ξ) is
integrably bounded for all x ∈ X . Since the selection expectation equals the Aumann
integral for any integrably bounded random compact set in Rp [Molchanov, 2017, p. 264],
by Fatou’s Lemma, we have

lim sup
x→x0

E[V(x, ξ)] = lim sup
x→x0

∫
Ξ
V(x, u)dPξ(u) ⊆

∫
Ξ
lim sup
x→x0

V(x, u)dPξ(u)

=

∫
Ξ
V(x0, u)dPξ(u) = E[V(x0, ξ)] (8)

where (8) follows from (6) and the implicit sequence {xν} and its limit x0 lie in X . Therefore,
E[V(·, ξ)] is outer semicontinuous relative to X .

Now, we show that gphE[V(·, ξ)] = {(x, z) : z ∈ E[V(x, ξ)]} is a convex set. From
Rockafellar and Wets [1998, p. 155], this result holds if and only if for all x1, x2 ∈ X ,

(1− β)E[V(x1, ξ)] + β E[V(x2, ξ)] ⊆ E[V((1− β)x1 + βx2, ξ)] for β ∈ (0, 1). (9)

Given u ∈ Ξ, the graph-convexity of V(·, u) in Lemma 3.2 implies that for x1, x2 ∈
domY(·, u),

(1− β)V(x1, u) + βV(x2, u) ⊆ V((1− β)x1 + βx2, u) for β ∈ (0, 1). (10)

Under Assumption 1, for random vector ξ ∈ Ξ and x1, x2 ∈ X , (10) implies

(1− β)V(x1, ξ) + βV(x2, ξ) ⊆ V((1− β)x1 + βx2, ξ) for β ∈ (0, 1) a.s. (11)

First, consider the expected value of the left side of (11), where henceforth, β ∈ (0, 1) and
x1, x2 ∈ X . By Molchanov [2017, Proposition 2.1.32, p. 244],

E[(1− β)V(x1, ξ) + βV(x2, ξ)] = cl
(
(1− β)E[V(x1, ξ)] + β E[V(x2, ξ)]

)
.

Under the selection expectation and since V(x, ξ) is almost surely convex for each x ∈ X ,
(1−β)E[V(x1, ξ)] and β E[V(x2, ξ)] are closed and convex [Molchanov, 2017, p. 238f.]. Further,
under Assumption 4, (1 − β)E[V(x1, ξ)] and β E[V(x2, ξ)] are bounded [Molchanov, 2017,
Proposition 2.1.39, p. 250]; therefore, both sets are compact convex sets. Since the Minkowski
sum of compact convex sets is compact,

E[(1− β)V(x1, ξ) + βV(x2, ξ)] = (1− β)E[V(x1, ξ)] + β E[V(x2, ξ)]. (12)

Then, the desired result in (9) holds by applying Lemma 4.1 to (10) and (11) and combining
this result with (12).

Finally, by definition, E[V(·, ξ)] is bounded if its range E[V(X , ξ)] := ∪x∈X E[V(x, ξ)] is
a bounded subset of Rp [Rockafellar and Wets, 1998, Definition 5.14, p. 157f.]. To show



PROPERTIES OF TSSMOLPS 17

E[V(X , ξ)] is bounded, we demonstrate that ∥E[V(X , ξ)]∥ <∞. Under Assumption 4, using
the set norm in (3) and applying inequalities analogous to (7), we have

∥E[V(X , ξ)]∥ = sup{∥z∥ : z ∈ ∪x∈X E[V(x, ξ)]}
= supx∈X

{
sup{∥z(x)∥ : z(x) ∈ E[V(x, ξ)]}

}
≤ E[Z∗] <∞.

4.2 Properties of the expected second-stage nondominated multifunction

We conclude our study of the expected value of second-stage multifunctions relevant to
(M) with the following Proposition 4.4 regarding the expected second-stage nondominated
multifunction.

Proposition 4.4. Under Assumptions 1–4, the multifunction E[VN(·, ξ)] : X ⇒ Rp is outer
semicontinuous and bounded on X .

Proof sketch. By Lemma 3.5, the graph of VN(·, u) is the union of finitely many (closed)
polyhedral sets for each u ∈ Ξ. Therefore, it is closed, which implies VN(·, u) is outer semi-
continuous on domY(·, u) [Rockafellar and Wets, 1998, Theorem 5.7, p. 154]. Now, consider
the sequence of random sets specified by {VN(xν , ξ), ν = 1, 2, . . .} where {xν} lies in X and
each VN(xν , ξ) is nonempty and compact w.p.1 following Lemma 3.1 under Assumptions 1
and 3. By the same arguments as in the proof of Proposition 4.3, {∥VN(xν , ξ)∥, ν = 1, 2, . . .}
is uniformly integrable under Assumption 4, outer semicontinuity holds by applying Fatou’s
Lemma, and boundedness follows under Assumption 4.

5 Nondominance-equivalent reformulations

For a given multi-objective optimization problem, a nondominance-equivalent reformula-
tion is a new optimization problem which has the same global Pareto set as the original.
The TSSMOLP in (M) can be reformulated into two nondominance-equivalent optimization
problems which do not rely on the second-stage random multifunction VN(·, ·). The first
nondominance-equivalent reformulation we present, called the polyhedral reformulation, re-
places the random nondominated set of the second-stage MOLP, VN(x, ξ), with the random
image set V(x, ξ) for all x ∈ X . This reformulation facilitates some aspects of mathematical
analysis, including the main result that the global Pareto set ZP is cone-convex in Section 6.
The second nondominance-equivalent reformulation, called the full-dimensional reformula-
tion, goes a step further by ensuring that the random image set of the second-stage MOLP
is p-dimensional w.p.1. This reformulation enables complexity analysis for computing the
expected value of the second-stage image set when the distribution is discrete and may facil-
itate the future development and analysis of outer approximation methods for TSSMOLPs
(see, e.g., Benson [1998]).

5.1 Polyhedral reformulation

For the first reformulation, we demonstrate that the optimization problem

minimize {Cx+ E[V(x, ξ)]}
s.t. x ∈ X =

{
x ∈ Rq1 : Ax = b, x ≧ 0

} (P)
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is a nondominance-equivalent problem for the original TSSMOLP in (M). Let the expected
value multifunction corresponding to (P) be ϕ : X ⇒ Rp where

ϕ(x) := Cx+ E[V(x, ξ)] for all x ∈ X .

Before we prove Theorem 5.2, which states the nondominance-equivalence of (P) and
(M), we require the following lemma.

Lemma 5.1. Under Assumptions 1, 3, and 4, E[VN(x, ξ)] +R
p
≧ = E[V(x, ξ)] +Rp

≧ for each
x ∈ X .

Proof. Let x ∈ X . By Lemma 3.2 and under Assumption 1, V(x, ξ) is a nonempty polyhedral
convex set w.p.1. Therefore, using Ehrgott [2005, Proposition 2.4, p. 28], we have VN(x, ξ) ⊆
bdV(x, ξ) ⊆ V(x, ξ), and thus VN(x, ξ) +R

p
≧ ⊆ V(x, ξ) +Rp

≧, w.p.1. For the other direction,
under Assumptions 1 and 3, V(x, ξ) is nonempty and compact w.p.1. Then VN(x, ξ) is
externally stable and V(x, ξ) ⊂ VN(x, ξ) + R

p
≧ w.p.1; see Ehrgott [2005, Theorem 2.21, p.

33]. Adding the positive orthant to both sides yields V(x, ξ) +Rp
≧ ⊆ VN(x, ξ) +R

p
≧ +Rp

≧ =

VN(x, ξ) +R
p
≧. Then, under Assumption 4, apply Lemma 4.1 in both directions.

Theorem 5.2. Under Assumptions 1, 3, and 4, ϕ(X ) is a nondominance-equivalent set for
Z(X ); that is, ϕN(X ) = ZN(X ) ≡ ZP.

Proof. Using Lemma 5.1 and Ehrgott [2005, Proposition 2.3, p. 27], we have

ZN(X ) =
(
Z(X ) +Rp

≧

)
N
=

(
∪x∈X

(
Cx+ E[VN(x, ξ)] +R

p
≧

))
N

=
(
∪x∈X

(
Cx+ E[V(x, ξ)] +Rp

≧

))
N
=

(
ϕ(X ) +Rp

≧

)
N
= ϕN(X ).

Now, using the properties of the expected second-stage image multifunction from Sub-
section 4.1, along with the assumption that the feasible set X is compact, the following
Proposition 5.3 holds for the expected value multifunction ϕ. Working with ϕ may be prefer-
able to working with Z because ϕ is graph-convex, regardless of whether the probability
space is nonatomic.

Proposition 5.3. Under Assumptions 1–4, the multifunction ϕ : X ⇒ Rp is outer semicon-
tinuous, graph-convex, and bounded on X .

Proof. To see that ϕ is outer semicontinuous, first, define the mapping T : X ⇒ Rp where
T (x) = {Cx} for all x ∈ X . Then T is bounded on X because ∥T (X )∥ = ∥CX∥ < ∞
since X is compact under Assumption 2. Further, T is continuous on X . Then since T is
continuous and bounded and E[V(·, ξ)] is outer semicontinuous on X by Proposition 4.3, it
follows that T + E[V(·, ξ)] is also outer semicontinuous on X [Rockafellar and Wets, 1998,
Exercise 5.24, p. 162]. The proof for the graph convexity of ϕ follows along the lines of the
proof in Proposition 4.3; specifically, for x1, x2 ∈ X and β ∈ (0, 1), we have

(1− β) (Cx1 + E[V(x1, ξ)]) + β (Cx2 + E[V(x2, ξ)])
= C ((1− β)x1 + βx2) + (1− β)E[V(x1, ξ)] + β E[V(x2, ξ)]
⊆ C ((1− β)x1 + βx2) + E[V((1− β)x1 + βx2, ξ)] (13)
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where (13) follows from the graph convexity of E[V(·, ξ)] which was shown in Proposition 4.3
via (9). Finally, that ϕ is bounded holds because T and E[V(·, ξ)] are bounded on X .

5.2 Full-dimensional reformulation

Even though the TSSMOLP in (M) has p objectives in each stage, the dimension of the
image set is such that dim(V(x, ξ)) ≤ rank(D(ξ)) ≤ p w.p.1, which implies V(x, ξ) may not
be full-dimension [Benson, 1998, Proposition 2.1, p. 5]. Therefore, to facilitate analysis and
the future development of outer approximation methods, we construct a random set Q(x, ξ)
which is a full-dimension polyhedron and a nondominance-equivalent set for V(x, ξ) w.p.1
for every x ∈ X ; our construction closely follows that of Benson [1998].

To begin, given ϵ ∈ Rp
>, for every (x, u) ∈ X ×Ξ, use the anti-ideal point in Definition 4.2

to define the polyhedron

Q(x, u) :=
(
V(x, u) +Rp

≧

)
∩
(
zAI(x, u) + ϵ−Rp

≧

)
(14)

= {z ∈ Rp : D(u)y ≦ z ≦ zAI(x, u) + ϵ for some y ∈ Y(x, u)},

whose construction is shown in Figure 2b for a second-stage image set from the motivating
example in Subsection 1.1. Under the definition of Q(x, u) in (14), Lemma 5.4 states the
almost sure nondominance-equivalence of the random sets Q(x, ξ) and V(x, ξ).

Lemma 5.4. Under Assumptions 1 and 3, the set Q(x, ξ) is almost surely a nondominance-
equivalent polyhedron for V(x, ξ); that is, QN(x, ξ) = VN(x, ξ) a.s. for all x ∈ X .

Proof. Let (x, u) ∈ X × Ξ be such that Y(x, u) ̸= ∅ and diamY(x, u) < ∞, which implies
Y(x, u) is compact, Q(x, u) is a nonempty, compact polyhedron, and QN(x, u) is nonempty,
connected, and compact by Lemma 3.1. That QN(x, u) = VN(x, u) follows directly from
Benson [1998, Theorem 2.1, p. 6]. Then, the set of outcomes for which QN(x, u) ̸= VN(x, u)
occurs on a set of measure zero for all x ∈ X under Assumptions 1 and 3.

The random set Q(x, ξ) inherits several properties of V(x, ξ); specifically, that it is
nonempty and compact w.p.1 under Assumptions 1 and 3 and integrably bounded uniformly
in x ∈ X under Assumption 4, which is formalized in the following Lemma 5.5.

Lemma 5.5. Under Assumptions 1, 3, and 4, the following hold:
1. For each x ∈ X , Q(x, ξ) is a nonempty random compact polyhedral convex set in Rp

of dimension p w.p.1.
2. Q(x, ξ) is integrably bounded uniformly in x ∈ X .
3. For each x ∈ X , E[QN(x, ξ)] +R

p
≧ = E[Q(x, ξ)] +Rp

≧.

Proof sketch. Let x ∈ X and fix a value of ϵ ∈ Rp
> in (14). For Part 1, Lemma 3.2 and

Assumptions 1 and 3 imply V(x, ξ(ω)) is a nonempty, compact polyhedron and all components
of zAI

k (x, ξ(ω)) are finite for a.e. ω ∈ Ω. Therefore, that Q(x, ξ(ω)) is a nonempty, compact
polyhedral convex set in Rp of dimension p for a.e. ω ∈ Ω holds by applying Benson
[1998, Proposition 2.2, p. 6]; measurability of the corresponding multifunction Q : X ×
Ξ ⇒ Rp follows by Molchanov [2017, p. 69]. Since ϵ is a finite constant, Part 2 follows
from Assumption 4. Finally, Part 3 follows by applying the same logic as in the proof of
Lemma 5.1.
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Under Lemma 5.5, Q(x, ξ) is an integrable random compact set for each x ∈ X . Thus,
we can pose the optimization problem

minimize {Cx+ E[Q(x, ξ)]}
s.t. x ∈ X =

{
x ∈ Rq1 : Ax = b, x ≧ 0

}
.

(F)

In the following Theorem 5.6, we show that the optimization problem in (F) is a nondominance-
equivalent reformulation for the original TSSMOLP in (M). Let the expected value multi-
function corresponding to (F) be ψ : X ⇒ Rp where

ψ(x) := Cx+ E[Q(x, ξ)] for each x ∈ X .

Theorem 5.6. Under Assumptions 1, 3, and 4, the following hold:
1. ψ(X ) is a nondominance-equivalent set for Z(X ); that is, ψN(X ) = ZN(X ) ≡ ZP.
2. The set ψ(X ) ⊂ Rp is full-dimensional; that is, it contains a p-dimensional ball.

Proof. First, apply Lemma 4.1 to Lemma 5.4 and use the result with Lemmas 5.1 and 5.5
to yield that for each x ∈ X ,

E[Q(x, ξ)] +Rp
≧ = E[QN(x, ξ)] +R

p
≧ = E[VN(x, ξ)] +R

p
≧ = E[V(x, ξ)] +Rp

≧. (15)

Then, Part 1 of the theorem follows by the same logic as the proof of Theorem 5.2.
For Part 2, since ψ(X ) = ∪x∈XCx+E[Q(x, ξ)], it is sufficient to show for a given x ∈ X ,

E[Q(x, ξ)] is full-dimensional. Let x ∈ X , and let BR(Y ) denote a p-dimensional random ball
of nonnegative random radius R ∈ R≧ centered at a random point Y ∈ Rp. By Lemma 5.5
and recalling that ϵ > 0 in (14), Q(x, ξ) is a nonempty integrable random compact polyhedral
convex set of dimension p w.p.1. Further, bdQ(x, ξ) is an integrable random closed set
[Molchanov, 2017, Theorem 1.3.25, p. 69], intQ(x, ξ) is a random open set [Molchanov, 2017,
Proposition 1.3.36, p. 76], and intQ(x, ξ) ̸= ∅ w.p.1. Since bdQ(x, ξ(ω)) ⊂ Q(x, ξ(ω)) and
bdQ(x, ξ(ω)) ̸= Q(x, ξ(ω)) for all ω ∈ domQ, we have that the collection of all integrable
selections L1

(
bdQ(x, ξ)

)
⊂ L1

(
Q(x, ξ)

)
. Therefore, there exists an integrable selection of

Q(x, ξ(ω)) which is not an integrable selection of bdQ(x, ξ(ω)) for all ω ∈ domQ. Let
this selection be Y (ω) ∈ intQ(x, ξ(ω)) for all ω ∈ domQ. Then there exists an integrable
random ball centered at Y having random radius R such that BR(ω)(Y (ω)) ⊆ Q(x, ξ(ω))
with R(ω) > 0 for every ω ∈ domQ, whence E[BR(Y )] = BE[R](E[Y ]) ⊆ E[Q(x, ξ)] under
Lemma 4.1; also see Molchanov [2017, Example 2.1.41, p. 251]. Since R > 0 w.p.1, E[R] > 0,
and the result follows.

5.2.1 Properties of the multifunctions arising from the full-dimensional reformulation

The relevant multifunctions in the reformulation (F) and the expected value multifunction
ψ inherit nice properties from their constructions. We enumerate these properties below,
which follow from results already proven.

To begin, given a scenario u ∈ Ξ, the analogue of Lemma 3.2 Part 2 holds for the
multifunction Q(·, u) : X ⇒ Rp.

Lemma 5.7. Let u ∈ Ξ be such that domY(·, u) ̸= ∅. Then the multifunction Q(·, u) : X ⇒
Rp is a polyhedral, graph-convex map and thus, Lipschitz continuous on domY(·, u).
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Proof. This result follows because gphQ(·, u) := {(x, z) : z ∈ Q(x, u)} ⊂ Rq1 × Rp is the
intersection of X × Rp with the polyhedral sets

(
V(x, u) + Rp

≧

)
and

(
zAI(x, u) + ϵ − Rp

≧

)
.

Therefore, gphQ(·, u) is an intersection of a finite number of convex polyhedral sets, implying
it is both convex and polyhedral.

Employing Lemma 5.7, the analyses for the multifunctions Q(·, ·), E[Q(·, ξ)], and ψ(·)
follow along identical lines to the previous analyses for V(·, ·), E[V(·, ξ)], and ϕ(·), in Propo-
sition 3.4, Proposition 4.3, and Proposition 5.3, respectively. Therefore, we state the results
in the following corollary.

Corollary 5.8. The following hold:
1. Under Assumptions 1 and 2, the random closed-valued multifunction Q : X × Ξ ⇒ Rp

is a set-valued convex normal integrand.
2. Under Assumptions 1, 3, and 4, the multifunction E[Q(·, ξ)] : X ⇒ Rp is outer semi-

continuous, graph-convex, and bounded on X .
3. Under Assumptions 1–4, the multifunction ψ : X ⇒ Rp is outer semicontinuous, graph-

convex, and bounded on X .

5.2.2 Complexity under atomic probability measures with finite support

As discussed in Remark 2.2, a decision-maker may be interested in

ZN(x
∗) = (Cx∗ + E[VN(x

∗, ξ)])N ⊆ Z(XE)

for one or more identified values x∗ ∈ XE to assess the trade-off rates in the second-stage
expected nondominated set. Equation (15) and Ehrgott [2005, Proposition 2.3, p. 27] imply
that given x∗ ∈ X ,

ZN(x
∗) = (Cx∗ + E[VN(x

∗, ξ)])N = (Cx∗ + E[V(x∗, ξ)])N = ϕN(x
∗)

= (Cx∗ + E[Q(x∗, ξ)])N = ψN(x
∗).

Given this relationship and assuming we are able to calculate ZN(x
∗), we can choose the

least computationally complex formulation.
Under the full-dimensional reformulation, and assuming the random variable ξ takes

only a finite set of values described by the scenarios {ui, i = 1, . . . , n} occurring with
respective known probabilities αi > 0, i = 1, . . . , n,

∑n
i=1 αi = 1, then computing E[Q(x, ξ)]

for given x ∈ X corresponds to calculating the weighted Minkowski sum of n <∞ bounded
p-dimensional polyhedral convex sets according to (16) as E[Q(x, ξ)] =

∑n
i=1 αiQ(x, ui);

consistent with the relevant literature, in this section, we refer to bounded p-dimensional
polyhedral convex sets as convex polytopes. The finite Minkowski sum of convex polytopes
is itself a convex polytope [Sanyal, 2009]. Therefore, we obtain an upper bound on the
complexity of storing the expected value polytope E[Q(x, ξ)] as a list of its vertices as follows.
Let {Qi, i = 1, . . . , n} be a set of p-dimensional convex polytopes, p ≥ 2, each containing
at least vi ≥ p+ 1 vertices for i ∈ {1, . . . , n}. If n ≤ p− 1, Fukuda and Weibel [2007] show
that the number of vertices of

∑n
i=1Qi is bounded above by the product of the number of

vertices of the individual polytopes,
∏n

i=1 vi. If n ≥ p, Sanyal [2009] shows that a smaller
upper bound holds, specifically, (1− (p+1)−p)

∏n
i=1 vi. The complexity is scale independent,

so that computing
∑n

i=1Qi has the same complexity as computing
∑n

i=1 αiQi for weights
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αi > 0,
∑n

i=1 αi = 1 [Karavelas and Tzanaki, 2016]. Therefore, given x ∈ X , these upper
bounds apply to the storage complexity for computing E[Q(x, ξ)].

Controlling the computational complexity is likely to be crucial for future TSSMOLP
applications when the number of scenarios is large. We suspect that in some cases, com-
puting E[Q(x, ξ)] results in fewer vertices than computing E[V(x, ξ)] because the number of
dominated vertices may be reduced. This concept is illustrated in Figure 2, where V(x, u) in
Figure 2a has 8 vertices, while Q(x, u) in Figure 2b has 7 vertices. Other approaches, such
as constructing representations of the second-stage image or nondominated sets, may also
provide further reduction of the computational complexity. See, e.g., Sayin [2000] for further
reading on representations of nondominated sets.

6 Cone-convexity of the global Pareto set

Given the properties of TSSMOLPs in Sections 3–5, we are now ready to present a main
result of the paper: that the global Pareto set for the TSSMOLP in (M) is cone-convex. More
specifically, we show that the upper image of the global Pareto set, ZP +Rp

≧, is nonempty,
closed, and convex. This structural property is especially useful for the future development
of solution methods for TSSMOLPs.

Theorem 6.1. Under Assumptions 1–4, the global Pareto set ZP is nonempty and bounded,
and ZP +Rp

≧ is a closed, convex set.

Proof. First, we show that ZP is nonempty and bounded. By Theorem 5.2, ZP = ϕN(X ),
where ϕ is outer semicontinuous, graph-convex, and bounded on X by Proposition 5.3. The
outer semicontinuity of ϕ and the fact that X is compact under Assumption 2 imply that
ϕ(X ) closed [Molchanov, 2017, Lemma E.3, p. 580]. Since ϕ(X ) is closed and bounded,
ϕ(X ) is compact; under our assumptions, ϕ(X ) is also nonempty. Therefore, ZP = ϕN(X ) is
externally stable [Ehrgott, 2005, Theorem 2.21, p. 33], which implies ϕ(X ) ⊂ ZP +Rp

≧ and,
thus, ZP ̸= ∅. Since ϕ(X ) is closed, ZP ⊆ bdϕ(X ) ⊆ ϕ(X ) [Ehrgott, 2005, Proposition 2.4,
p. 28], which implies ZP is bounded.

To see that ZP +Rp
≧ is a closed, convex set, first, note that ZP +Rp

≧ = ϕ(X ) +Rp
≧. The

graph convexity of ϕ implies ϕ(X ) is convex [Rockafellar and Wets, 1998, p. 155]. Therefore,
ϕ(X ) +Rp

≧ is convex. Since ϕ(X ) is compact and Rp
≧ is closed, ϕ(X ) +Rp

≧ is closed.

7 Concluding remarks

We consider a formulation for two-stage stochastic programs which enables the modeler
to pose multiple simultaneous linear objectives in each stage with uncertainty defined on
a general probability space. We study the properties of the resulting TSSMOLP and the
multifunctions that arise therein, provide two nondominance-equivalent reformulations, and
use one of the reformulations to show that the TSSMOLP has a cone-convex global Pareto
set. Directly solving a TSSMOLP, rather than a single-objective reformulation, has the
potential to provide valuable new insights and perspective to decision-makers facing complex
real-world problems which are subject to conflict and uncertainty.
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A Preliminary concepts and definitions

In Appendix A.1 we include concepts and definitions relevant to multifunctions, and in
Appendix A.2 we include concepts and definitions relevant to the selection expectation.
Throughout, let (Ω,A,P) denote a complete probability space (see Subsection 1.4).

A.1 Multifunctions

To begin, we define multifunctions, which are set-valued maps.

Definition A.1 (Shapiro et al. [2009, p. 365]). A multifunction G is a mapping from a set
Ω into the set of subsets of Rp, written G : Ω ⇒ Rp, such that G assigns to each ω ∈ Ω a
(possibly empty) subset of Rp. The multifunction G is closed-valued if G(ω) is a closed subset
of Rp for every ω ∈ Ω.

Importantly, the graph of the multifunction G is defined as

gphG := {(ω, y) : y ∈ G(ω)} ⊆ Ω×Rp;

see Figure 5-1 in Rockafellar and Wets [1998, p. 149].
Next, in Definition A.2, we define a random closed set which takes on values in Rp.

Given a complete probability space, several measurability concepts are equivalent (see, e.g.,
Molchanov [2017, Theorem 1.3.3, p. 59], Rockafellar and Wets [1998, Theorem 14.3, p. 644]);
therefore, we adopt a definition which is convenient for our purposes.

Definition A.2 (Shapiro et al. [2009, p. 365]). A closed-valued multifunction G : Ω ⇒ Rp

is a measurable (closed-valued) multifunction or random closed set if for every closed set
A ⊂ Rp, the set G−1(A) := {ω ∈ Ω: G(ω) ∩ A ≠ ∅} is a measurable set in A.

Because the probability space is complete and the sets we consider take values in Rp, the
measurability of a multifunction can be deduced from its graph. Specifically, in a complete
probability space, a multifunction is measurable if and only if its graph is measurable; i.e.,
if gphG ∈ A⊗B(Rp) where A⊗B(Rp) denotes the product σ-algebra of A and B(Rp); see
Molchanov [2017, Theorem 1.3.3, p. 59], Rockafellar and Wets [1998, Theorem 14.8, p. 648].

Next, we define a random (closed-valued) multifunction, which may also be considered a
set-valued stochastic process indexed by the continuous parameter x ∈ Rq (Molchanov [2017,
p. 462]; see also Kisielewicz [2013, 2020]).

Definition A.3 (see Molchanov [2017, p. 462]). A mapping H : Rq × Ω ⇒ Rp is a random
(closed-valued) multifunction or set-valued integrand if for every fixed x ∈ Rq, the multifunc-
tion H(x, ·) is a random closed set; that is, it is A-measurable according to Definition A.2.

In analogy to random lower semicontinous functions, also called normal integrands
[Shapiro et al., 2009, p. 366], we consider random outer semicontinuous multifunctions,
also called set-valued normal integrands.
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Definition A.4 (see Mordukhovich and Pérez-Aros [2021, p. 3217]). A mapping H : Rq ×
Ω ⇒ Rp is a set-valued normal integrand on a complete probability space (Ω,A,P) if (a) for
all ω ∈ Ω the multifunction H(·, ω) has a closed graph, and (b) the graph of H belongs to
B(Rq)⊗ A⊗B(Rp). If, in addition, the set gphH(·, ω) is convex for a.e. ω ∈ Ω, then H is
a set-valued convex normal integrand.

We remark that Mordukhovich and Pérez-Aros [2021, p. 3217] define set-valued normal
integrands in the context of a mapping Φ: Ω × Rq ⇒ Rm and require that gphΦ belongs
to A ⊗ B(Rq × Rp). Since we consider a mapping with arguments in the opposite order,
H : Rq × Ω ⇒ Rm, and since B(Rq) ⊗ B(Rp) = B(Rq × Rp) [Jones, 2001, p. 256], the
condition of graph measurability in Definition A.4 is equivalent to that in Mordukhovich
and Pérez-Aros [2021]. Notice that condition (a) in Definition A.4, that the graph of H(·, ω)
is closed, holds if and only if the multifunction H(·, ω) : Rq ⇒ Rp is outer semicontinuous
[Rockafellar and Wets, 1998, Theorem 5.7, p. 154], where we refer the reader to Rockafellar
and Wets [1998, p. 152ff.] for a definition and discussion of outer semicontinuous, inner
semicontinuous, and continuous multifunctions. We conclude with a definition of Lipschitz
continuity in Definition A.5.

Definition A.5 (see Rockafellar and Wets [1998, p. 368f.]). A mapping H(·, ω) : Rq ⇒ Rp

is Lipschitz continuous on X ⊂ Rq if it is nonempty, closed-valued on X and there exists a
constant κ ∈ R> such that H(x′, ω) ⊆ H(x, ω) + κ∥x′ − x∥B1(0p) for all x, x′ ∈ X .

A.2 The selection expectation

Loosely speaking, the selection expectation of a random closed set is the closure of its Aumann
integral, and the Aumann integral is the set of expected values of all the measurable selections
which are also integrable. Thus, in what follows, we discuss measurable selections, integrable
selections, the Aumann integral, and finally, the selection expectation.

First, in Definition A.6, we define the concept of measurable selections of random closed
sets; that is, real-valued random vectors that “fit inside” the random closed set; see Fig-
ure 1.3.1 in Molchanov [2017, p. 58].

Definition A.6 (Shapiro et al. [2009, p. 365]). Let G : Ω ⇒ Rp be a random closed
set (Definition A.2), and let its domain be dom G := {ω ∈ Ω: G(ω) ̸= ∅}. A mapping
G : dom G → Rp is called a measurable selection of G if G(ω) ∈ G(ω) for all ω ∈ dom G and
G is measurable. Let the family of all measurable selections of G be L0(G).

As a result of Definition A.6, if the random closed set G is nonempty w.p.1 and G is a
measurable selection of G, then G ∈ G w.p.1. Since our interest is in the expected value
of a random closed set, we are also concerned with whether the measurable selections are
integrable, and whether the random closed set is integrably bounded.

Definition A.7 (Shapiro et al. [2009, p. 367], also Molchanov [2017, p. 226]). Let G ∈ L0(G)
be a measurable selection of the random closed set G. If

∫
Ω∥G(ω)∥dP(ω) <∞, then G is an

integrable selection of G. Let the family of all integrable selections of G be L1(G).

Definition A.8 (Molchanov [2017, p. 227]). A random closed set G is integrable if the family
of all integrable selections is nonempty, L1(G) ̸= ∅. It is integrably bounded if the expected
value of the random variable ∥G∥ is finite, where ∥G∥ := sup{∥z∥ : z ∈ G}.
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Note that if G is an integrably bounded random closed set, then L0(G) = L1(G)
[Molchanov, 2017, p. 227]. With integrable random closed sets defined, we are now ready to
define the Aumann integral, originally due to Aumann [1965].

Definition A.9 (Shapiro et al. [2009, p. 367], Molchanov [2017, p. 238]). Let G be a random
closed set. If Ω = {ω1, . . . , ωn} is finite with respective probabilities α1, . . . , αn, then∫

Ω
G(ω)dP(ω) :=

n∑
i=1

αiG(ωi). (16)

For a general measure P on (Ω,A), the integral of G is the Aumann integral,∫
Ω
G(ω)dP(ω) :=

{∫
Ω
G(ω)dP(ω) : G ∈ L1(G)

}
= {E[G] : G ∈ L1(G)}.

The selection expectation, which is the closure of the Aumann integral, provides an
intuitive way to think about expectations of random sets in terms of the vector valued
random variables that form the set of all integrable selections.

Definition A.10 (Molchanov [2017, p. 238, p. 250], Shapiro et al. [2009, p. 367]). The selec-
tion expectation of an integrable random closed set G is the closure of the set of expectations
of all integrable selections of G, i.e., E[G] = cl{E[G] : G ∈ L1(G)}.

Key to intuition surrounding the selection expectation is that an integrable random closed
set G has a Castaing representation composed of integrable selections [Molchanov, 2017,
p. 228]. A Castaing representation is a countable family {Gi, i ∈ N} of measurable selections
of G such that G(ω) = cl({Gi(ω), i ∈ N}) for every ω ∈ Ω, that is, the set {Gi(ω), i ∈ N}
is dense in G(ω); see also Rockafellar [1976], Shapiro et al. [2009, p. 365], Molchanov [2017,
p. 60], Rockafellar and Wets [1998, p. 646]. However, the selection expectation of a random set
depends on the underlying probability space in a way that the expectation of a random vector
does not. See Molchanov [2017, Example 2.1.23, p. 238] for an example of a deterministic set
whose selection expectation differs when calculated with respect to two different probability
spaces. In addition, if G is an integrable random closed set in Rp defined with respect to
a nonatomic probability space (see Subsection 1.4), then E[G] is convex [Molchanov, 2017,
Theorem 2.1.26, p. 239].
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