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Abstract

In this paper, we consider a family of linearly constrained convex minimization
problems whose objective function is not necessarily smooth. A preliminary double-
proximal augmented Lagrangian method (DP-ALM) is developed, which enjoys a
flexible dual stepsize and a proximal subproblem with relatively smaller proximal
parameter. By a novel prediction-correction reformulation for the proposed DP-
ALM and by similar variational characterizations for both the saddle-point of the
problem and the generated sequences, we establish the global convergence of DP-
ALM and its sublinear convergence rate in both ergodic and nonergodic senses.
An toy example is taken to illustrate that the presented lower bound of proximal
parameter is optimal. Besides, we briefly discuss a relaxed accelerated DP-ALM
and the multi-block extension of DP-ALM as well as their convergence conditions.
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1 Introduction

Many application problems can be formulated as the following optimization model

min{θ(x) | Ax = b, x ∈ X}, (1)

where θ : Rn → R is a proper lower semicontinuous convex function (possibly nonsmooth,
non-Lipschitz continuous, and non-strongly convex), X ⊆ Rn is a closed convex set,
A ∈ Rm×n and b ∈ Rm are given. Here, we take several typical examples as follows:

• Linear constrained least-squares problem [18, 24] arising from scattered data
approximation, fitting curves to data, and real-time signal processing, where θ(x) =
∥Cx−d∥2; C ∈ Rl×n is large, sparse and its dimension satisfies l > n; the dimension
of A satisfies m ≪ n. A particular case of this example is θ(x) = 0, that is, the
problem reduces to an ill-conditioned linear equation.
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• Sparse optimization problem [13, 27] where θ(x) = ∥x∥1, which aims to find a
sparse solution of the underdetermined system Ax = b. This problem arises from
compressed sensing, statistical learning, machine learning, and graphical modeling,
and the dimension of the coefficient matrix A satisfies m ≪ n.

• Decentralized composite optimization over networks [7] arising from multi-
agent control, wireless communication, and machine learning, where

θ(x) =
N∑
i=1

fi(xi) +
N∑
i=1

gi(xi), A = I−W, b = 0.

Here x = [x⊤
1 , x

⊤
2 , · · · , x⊤

N ]⊤ with N denoting the number of computational agents,
and W = W ⊗ I with W being a symmetric and doubly stochastic matrix.

Except the above examples, the model (1) also arises in image processing, data processing
and so forth. Throughout this paper, we assume the solution set of (1) is nonempty.

1.1 Notations and definitions

Denoted by Rn be the set of n-dimensional real column vectors equipped with inner
product ⟨·, ·⟩ and Euclidean norm ∥ · ∥ :=

√
⟨·, ·⟩. The ℓ1-norm of x = (x1, · · · , xn) ∈ Rn

is defined as ∥x∥1 =
∑n

i=1 |xi|. We simply use bold I and 0 to represent the identity
matrix and zero matrix (or vector), respectively. The symbol ⊗ denotes the so-called

Kronecker product. Define ∥x∥G =
√
x⊤Gx as a weighted G-norm, where (·)⊤ denotes

the transpose operator and G is a symmetric positive definite matrix. The distance from
any point x to a closed convex set C in the sense of G-weighted norm is defined as
distG(x, C) := miny∈C ∥x− y∥G. When G = I, ∥x∥G reduces to the Euclidean norm and
distG(x, C), simply denoted by dist(x, C), reduces to the Euclidean distance. The spectral
radius of a square matrix A is denoted by ρ(A), while λmax(A) represents the largest
eigenvalues of A. The proximity operator of a proper convex function θ(x) : X → R with
parameter r > 0 is defined as

proxrθ(y) := argmin
x∈X

{
θ(x) +

r

2
∥x− y∥2

}
.

1.2 Related work

The Augmented Lagrangian Method (ALM, [12, 22]) is a benchmark method for solving
equality constrained minimization problem (1), and it has remained relatively popular
yet vivid in recent years, cf. [2, 4, 11, 16, 17, 23, 28] to list a few. The framework of
classic ALM for solving (1) reads{

xk+1 = argmin
x∈X

{
L(x, λk) + β

2 ∥Ax− b∥2
}
,

λk+1 = λk − γβ
(
Axk+1 − b),

(2)

where β > 0 is the quadratic penalty parameter for the equality constraint, γ ∈ (0, 2)
denotes the stepsize parameter of dual variable λ, and

L(x, λ) = θ(x)− ⟨λ,Ax− b⟩

is the associated Lagrange function. Ignoring some constants, the x-subproblem of (2)

amounts to xk+1 = argmin
x∈X

{
θ(x)+ β

2

∥∥Ax− b−λk/β
∥∥2}. When coefficient matrix A ̸= I

and the set X ̸= Rn, solving this subproblem is still challenging even as difficult as solving
(1) if without utilizing some linearization techniques or inner solvers.
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To overcome the above obstacle, a meaningful and powerful technique is to add a

quadratic proximal term in the form of 1
2

∥∥x−xk
∥∥2
D
, where D ∈ Rn×n is called the prox-

imal matrix. Consequently, the following proximal ALM has attracted much attention:{
xk+1 = argmin

x∈X

{
L(x, λk) + β

2 ∥Ax− b∥2 + 1
2

∥∥x− xk
∥∥2
D

}
,

λk+1 = λk − γβ
(
Axk+1 − b),

(3)

The proximal matrix D is usually required to be positive definite for the sake of conver-
gence. If we choose D = rI− βA⊤A with r > βρ(A⊤A), then the subproblem of (3) can
be simplified as the following proximity operator

xk+1 = proxrθ

[
xk +A⊤[λk − β(Axk − b)]/r

]
.

The objective function θ(x) may be special enough so that the above proximity operator
has a closed-form solution. Such a representative is the case with θ = ∥x∥1 as mentioned
in the sparse signal recovery problem. Otherwise, one may exploit inner solvers or to
solve it inexactly, or use the formula provided by [21] for accurately approximating the
proximity operator. Recently, to investigate an indefinite proximal term, He, et al. [11]
proposed the following optimal proximal ALM based on the scheme (3):{

xk+1 = argmin
x∈X

{
L(x, λk) + β

2

∥∥Ax− b
∥∥2 + 1

2

∥∥x− xk
∥∥2
D0

}
,

λk+1 = λk − γβ(Axk+1 − b),
(4)

where D0 = D − (1− τ)βA⊤A and D is an arbitrarily positive-definite matrix in Rn×n.
Global convergence of (4) and its sublinear convergence was established for any τ > 2+γ

4 .
Obviously, here the matrix D0 is not necessarily positive definite. The scheme (4) is
called optimal proximal ALM since the proximal parameter τ can not be smaller than
2+γ
4 , that is, 2+γ

4 is the optimal (smallest) lower bound of τ .
More recently, Bai, et al. [2] considered a new double-penalty ALM with a relaxation

step for convex optimization problems, where the key subproblem and the dual variable
obey the following iterations:{

xk+1 = argmin
x∈X

{
L(x, λk) + β

2

∥∥A(x− xk)
∥∥2 + 1

2

∥∥x− xk
∥∥2
D

}
,

λk+1 = λk − β
[
A(2xk+1 − xk)− b

]
.

(5)

The authors showed that the global convergence and sublinear convergence rate of (5)
can be established for any arbitrarily positive-definite matrix D. Notice that the scheme
(5) is different from most of ALM-type methods since the subproblem does not depend
on the data b either. The involved two quadratic terms can be treated as different
proximal terms: one involves the matrix A, and the other does not involve it. Based on
[2], a different penalty dual-primal ALM was developed in [23] and was demonstrated
to be efficiency on solving large-scale basic pursuit problem and Lasso problem. Cui,
et al. [5] also provided some gentle introductions to the recent advance in augmented
Lagrangian methods for solving large-scale convex matrix optimization problems. Han
[8] systematically reviewed the developments of the problem (1) and its multi-block
extensions from ALM to its related splitting methods. For more details on accelerated
versions of ALM, we refer to [15, 16, 28].

Except the above deterministic ALM-type work on convex programming problems,
some researchers also focused on studying stochastic ALM and nonconvex ALM. For
example, a stochastic ALM based on a variant of stochastic accelerated gradient method
was presented in [1, Appendix A.1] for solving the case of (1) that θ(x) is a finite-
sum of Lipschitz continuously differentiable convex functions. Li, et al. [17] developed a
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stochastic composite ALM by penalizing the constraints to formulate a quadratic penalty
problem and employing semi-gradient for the value function. Bollapragada, et al. [4] also
constructed an adaptive sampling ALM for linearly equality constrained optimization
problems with a stochastic objective function, and they further established its sublinear
convergence for convex objectives and linear convergence for strongly convex objectives.
Recent progresses on nonconvex ALM can be found in e.g. [16, 20].

1.3 The proposed algorithm and contributions

In this paper, mainly motivated by the interesting work [2, 11] we propose the following
novel double-proximal ALM-type method for solving the problem (1):

(DP-ALM)

{
xk+1 = argmin

x∈X

{
θ(x)− ⟨λk, Ax⟩+ τβ

2

∥∥A(x− xk)
∥∥2 + τ

2

∥∥x− xk
∥∥2
D

}
,

λk+1 = λk − β
[
γ(Axk+1 − b) +A(xk+1 − xk)

]
,

(6)
where D = rI− βA⊤A with r > βρ(A⊤A) and the parameter τ satisfies

τ >
(α− γ

2 )
2

2− γ
+

2 + γ

4
, ∀γ ∈ (0, 2), α ∈ R. (7)

With the structure of D, the above x-subproblem can be simplified as that in (9a). Here,
α can be treated as an auxiliary parameter. For using a smaller τ approximating to the
so-called optimal parameter value 0.75 as in [11], one can select α = γ/2 and γ = 1. We
further describe DP-ALM (6) as the following prediction-correction framework, where

wk =

(
xk

λk

)
, w̃k =

(
x̃k

λ̃k

)
and M =

[
I 0

−(1− αγ)βA γI

]
. (8)

A prediction-correction reformulation of DP-ALM (6).

Prediction Step:

x̃k = proxτrθ

[
xk +A⊤λk/(τr)

]
; (9a)

λ̃k = λk − β
[
Ax̃k − b+ αA(x̃k − xk)

]
; (9b)

Correction Step:
wk+1 = wk −M(wk − w̃k). (10)

Main features and contributions of this paper are summarized as three aspects:

- Flexibility of the algorithm. If (τ, γ) = (1, 1), our DP-ALM reduces to the
double-penalty ALM in [2] without using relaxation step, and both of them enjoy
the same proximal subproblem. However, when α < 1 or α > γ − 1, we will have

(α− γ
2 )

2

2− γ
+

2 + γ

4
< 1,

which indicates that DP-ALM could enjoy a smaller proximal parameter τ than
the method in [2]. As discussed in Section 4, 2+γ

4 is the optimal lower bound of
proximal parameter τ. Moreover, as γ approximates to zero, the lower bound of
τ will approximate to 1/2. Compared to the subproblem in the traditional ALM
(2), the subproblem of DP-ALM not only maintains the merits of that in [2], but
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also allows relatively smaller proximal parameter, while the dual update has an
extra term −βA(xk+1 − xk) that is not involved in (2) and (4). The preliminary
method DP-ALM is further extended to the version with a relaxation step and the
multi-block version whose subproblems are updated in parallel.

- Global convergence and various convergence rates. By reformulating DP-
ALM as a prediction-correction version and by using variational characterizations
for both the saddle-point of (1) and the involved iterative sequences, we establish
the global convergence of DP-ALM and various convergence rate in detail, including
the sublinear ergodic convergence rate in terms of the objective function value gap
and the constraint violation, the sublinear nonergodic convergence rate in terms of
the pointwise iterative residual and the first-order optimality error of the subprob-
lems. Compared to the analysis in [11], our analysis uses a distinctive update as in
(9a) with an auxiliary parameter α ∈ R, but greatly simplify the whole convergence
analysis. Besides, we further discuss the convergence of an extended DP-ALM with
popular relaxation step as well as its multi-block splitting version in the appendix.

- The applicability of new techniques. Motivated by the novel reformulation in
Section 1.3, that is using a distinctive update, we can apply this new technique to
simply discuss the key convergence analysis for the existing scheme (4). Different
to the original prediction λ̃ = λk − β(Ax̃k − b) in [11], we can introduce the same
auxiliary prediction update as in (9a) to reformulate (4) as

x̃k = argmin
x∈X

{
L(x, λk) + β

2

∥∥Ax− b
∥∥2 + 1

2

∥∥x− xk
∥∥2
D0

}
,

λ̃k = λk − β(Ax̃k − b)− βαA(x̃k − xk),(
xk+1

λk+1

)
=

(
xk

λk

)
−
[

I 0
αγβA γI

](
xk − x̃k

λk − λ̃k

)
.

Similar to the analysis of Lemma 2, we need to derive the condition of ensuring the
positive definiteness of the following two new matrices

S =

[
D + (τ − 1− α+ α2γ)βA⊤A αγA⊤

αγA γ
β I

]
and

G =

[
D + (τ − 1− α− α2γ)βA⊤A (1− γ)αA⊤

(1− γ)αA 2−γ
β I

]
.

Analogous to the analysis of Proposition 1, positive definiteness of these two ma-
trices can be ensured if

τ >
(α+ 2−γ

2 )2

2− γ
+

2 + γ

4
, ∀γ ∈ (0, 2), α ∈ R.

The region of τ is similar to (7) and τ can be chosen approximating to 0.75 when
α = γ−2

2 . That is, the optimal proximal parameter in [11, Section 4] can be obtained
too, but here the techniques of convergence analysis is different from before.

2 Technical preliminaries

In this section, a variational inequality is firstly provided to characterize the saddle-point
of the constrained problem (1). Then, the positive definiteness of two important block
matrices are analyzed under proper conditions to ensure the the global convergence of
our proposed method.
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2.1 Variational characterization

We begin with the following preliminary lemma about the first-order optimality condition
of composite convex minimization problems.

Lemma 1 [10] Let Φ ⊂ Rm be a closed convex set and let f, h : Rm −→ R be two convex
functions. In addition, h is differentiable. Suppose that the solution set of min{f(x) +
h(x) | x ∈ Φ} is nonempty. Then,

x∗ = argmin{f(x) + h(x) | x ∈ Φ}

if and only if

x∗ ∈ Φ, f(x)− f(x∗) +
⟨
x− x∗,∇h(x∗)

⟩
≥ 0, ∀x ∈ Φ.

Let Ω := X× Rm. Then, a point (x∗, λ∗) ∈ Ω is called the saddle point of (1) if

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗), ∀x ∈ X, λ ∈ Rm.

Write these inequalities separately to have{
θ(x)− θ(x∗) +

⟨
x− x∗,−A⊤λ∗⟩ ≥ 0, ∀x ∈ X,⟨

λ− λ∗, Ax∗ − b
⟩
≥ 0, ∀λ ∈ Rm,

which can be rewritten as the following mixed variational inequality

VI(θ,J ,Ω) : θ(x)− θ(x∗) +
⟨
w − w∗,J (w∗)

⟩
≥ 0, ∀w ∈ Ω, (11)

with

w =

(
x
λ

)
and J (w) =

(
−A⊤λ
Ax− b

)
. (12)

Note that the above operator J is affine with a skew-symmetric matrix, thus we have⟨
w − w̄,J (w)− J (w̄)

⟩
≡ 0, ∀w, w̄ ∈ Ω. (13)

Since the solution set of (1) is nonempty, the solution set of VI(θ,J ,Ω), denoted by Ω∗,
is also nonempty and can be characterized as (see [9])

Ω∗ =
∩
u∈Ω

{
ū | θ(u)− θ(ū) +

⟨
u− ū,J (ū)

⟩
≥ 0
}
. (14)

2.2 Basic matrices and properties

Since the matrix M defined in (8) is nonsingular for any γ ∈ (0, 2), to simplify the
convergence analysis of our DP-ALM, let’s define

H = QM−1 and G = Q⊤ +Q−M⊤HM, (15)

where

Q =

[
τrI A⊤

αA 1
β I

]
. (16)

Now, we show that both H and G are positive definite under proper conditions.

Proposition 1 For any γ ∈ (0, 2) and τ satisfying (7), the matrices H and G defined
by (15) are symmetric positive definite.
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Proof. First of all, we have from (7) that τ > α because

τ >
(α− γ

2 )
2

2− γ
+

2 + γ

4
≥ α ⇐⇒ 4(α− 1)2 ≥ 0 since γ ∈ (0, 2).

Then, it follows from τ > α that

αρ(A⊤A) <
τβρ(A⊤A)

β
<

τr

β
, (17)

which ensures the nonsingularity of the matrix Q. Together with this property and the
nonsingularity of M , we have S := Q⊤M is also nonsingular and symmetric. With the
notation S, the matrices H and G given by (15) can be rewritten as

H = QS−1Q⊤ and G = Q⊤ +Q− S.

In practice, simple algebra shows

S =

[
τrI− (1− αγ)αβA⊤A αγA⊤

αγA γ
β I

]
and

G =

[
τrI+ (1− αγ)αβA⊤A (1 + α− αγ)A⊤

(1 + α− αγ)A 2−γ
β I

]
. (18)

Because the matrix S is symmetric, we have from the relationship H = QS−1Q⊤

that H is also symmetric. Hence, to prove the positive definiteness of H, we only need
to demonstrate the positive definiteness of S. Without loss of generality, suppose m ≤
n and let A = V ΣU⊤ be the singular value decomposition of A, where V ∈ Rm×m

and U ∈ Rn×n are orthogonal matrices, Σ = (Σm,0) is a diagonal matrix, and Σm =
diag(s1, s2, . . . , sm) ∈ Rm×m with si ≥ 0(i = 1, 2, . . . ,m) being its singular values. Then,
it follows that

A⊤A = U

[
Σ2

m 0
0 0

]
U⊤ and AA⊤ = V Σ2

mV ⊤.

So, the matrix S can be rewritten as

S =

[
U 0
0 V

]τrI− (1− αγ)αβΣ2
m 0 αγΣm

0 τrI 0
αγΣm 0 γ

β I


︸ ︷︷ ︸

P

[
U 0
0 V

]⊤
.

By advanced algebra computations (similar techniques can be found in [25, Page 16]), it
can be demonstrated that the matrix P is positive definite if and only if[

τr − (1− αγ)αβs2i
]γ
β
− (αγsi)

2 > 0, for all i = 1, · · · ,m,

which is equivalent to
(
τr
β − αs2i

)
γ > 0. Since γ ∈ (0, 2) and ρ(A⊤A) = max

i∈{1,...,m}
s2i > 0,

then, the matrix P is positive definite if τr
β > αρ(A⊤A), which has been ensured by (7)

or precisely (17). Consequently, H is positive definite if (7) holds.
By analogous analysis for the matrix G in (18), it can be shown that G is positive

definite if (7) holds. The proof is completed. �
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3 Convergence analysis

In this section, we analyze the global convergence of DP-ALM and its sublinear con-
vergence rate in the ergodic and nonergodic sense. We also discuss a possible stopping
criterion of DP-ALM and the sublinear convergence rate of the optimality gap.

3.1 Global convergence

Based on the prediction-correction reformulation as in (9a)-(9b) and (10), we next show
that the sequence {w∗ − wk} is monotone decreasing under the H-weighted norm.

Lemma 2 Let {w̃k} and {wk+1} be the predictor sequence and corrector sequence gen-
erated by DP-ALM, respectively. Then, under the condition (7) it holds w̃k ∈ Ω and

θ(x)− θ(x̃k)+
⟨
w− w̃k,J (w)

⟩
≥ 1

2

(∥∥w−wk+1
∥∥2
H
−
∥∥w−wk

∥∥2
H

)
+

1

2

∥∥wk − w̃k
∥∥2
G

(19)

for any w ∈ Ω, where H and G are given by (15). Moreover, we have∥∥w∗ − wk
∥∥2
H

≥
∥∥w∗ − wk+1

∥∥2
H
+
∥∥wk − w̃k

∥∥2
G
, ∀w∗ ∈ Ω∗. (20)

Proof. According to Lemma 1, the first-order optimality condition of (9a) is x̃k ∈ X and

θ(x)− θ(x̃k) +
⟨
x− x̃k,−A⊤λ̃k + τβA⊤A(x̃k − xk) + τD(x̃k − xk) +A⊤(λ̃k − λk)

⟩
≥ 0

for any x ∈ X. Besides, the equality (9b) can be rewritten as⟨
λ− λ̃k, Ax̃k − b+ αA(x̃k − xk) +

1

β
(λ̃k − λk)

⟩
= 0

for any λ ∈ Rm. Combine the last two relationships with the notations in (8), (12) and
the matrix Q in (16) to obtain

θ(x)− θ(x̃k) +
⟨
w − w̃k,J (w̃k)

⟩
≥ (w − w̃k)⊤Q(wk − w̃k)

= (w − w̃k)⊤H(wk − wk+1), (21)

where the equality uses the update in (10) and the equality in the left-hand-side of (15).
Now, applying the identity

(a− b)⊤H(c− d) =
1

2

(
∥a− d∥2H − ∥a− c∥2H

)
+

1

2

(
∥c− b∥2H − ∥d− b∥2H

)
with a = w, b = w̃k, c = wk and d = wk+1 to the right-hand side of (21) gives

(w − w̃k)⊤H(wk − wk+1)− 1

2

(∥∥w − wk+1
∥∥2
H
−
∥∥w − wk

∥∥2
H

)
=

1

2

(∥∥wk − w̃k
∥∥2
H
−
∥∥wk+1 − w̃k

∥∥2
H

)
=

1

2

(∥∥wk − w̃k
∥∥2
H
−
∥∥wk+1 − wk + wk − w̃k

∥∥2
H

)
(10)
=

1

2

(∥∥wk − w̃k
∥∥2
H
−
∥∥(wk − w̃k)−M(wk − w̃k)

∥∥2
H

)
=

1

2

(
wk − w̃k

)⊤(
Q⊤ +Q−M⊤HM

)(
wk − w̃k

) (15)
=

1

2

∥∥wk − w̃k
∥∥2
G
.

Substituting the last relationship into (21) together with (13) confirms the assertion (19).
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Finally, setting w = w∗ in (19) and using (11) leads to∥∥w∗ − wk
∥∥2
H
−
∥∥w∗ − wk+1

∥∥2
H
−
∥∥wk − w̃k

∥∥2
G
≥ 0.

So, (20) follows directly. The proof is completed. �
Now, we are ready to establish the global convergence of our DP-ALM based on the

aforementioned Lemma 2.

Theorem 1 Let {wk+1} be the sequence generated by DP-ALM. Then, under the con-
dition (7) we have

lim
k→∞

∥∥wk − wk+1
∥∥ = 0 (22)

and there exists a w∞ ∈ Ω∗ such that lim
k→∞

wk = w∞.

Proof. It follows from (20) and the positive definiteness of G and H that the sequence
{wk} is uniformly bounded and

lim
k→∞

∥∥wk − w̃k
∥∥ = 0. (23)

Combine (23), (10) and the nonsingularity of M to confirm the result in (22).
By the uniformly boundness of {wk} and (10), the sequence {w̃k} is also uniformly

bounded and has at least one limit point w∞ = (x∞;λ∞) ∈ Ω∗. Suppose that {w̃kj} is
a subsequence converging to w∞. Then, it follows from (21) that

θ(x)− θ(x̃kj ) +
⟨
w − w̃kj ,J (w̃kj )

⟩
≥ (w − w̃kj )⊤Q(wkj − w̃kj ), ∀w ∈ Ω,

which, together with (23), the lower semicontinuity of θ(x) and the continuity of J (w),
implies

θ(x)− θ(x∞) +
⟨
w − w∞,J (w∞)

⟩
≥ 0, ∀w ∈ Ω.

In other words, w∞ is a solution point of VI(θ,J ,Ω) (11) and hence is also a solution
point of the convex optimization problem (1).

Now, by (23) and limj→∞ wkj = w∞, the sequence {wkj} also converges to w∞. By
(20) again, we have ∥∥w∞ − wkj

∥∥
H

≥
∥∥w∞ − wk

∥∥
H

for all k ≥ kj .

Hence, the whole sequence {wk} converges to w∞. �

3.2 Ergodic convergence rate

Motivated by (14), for any ϵ > 0, w̄ ∈ Ω∗ is called an ϵ-approximate solution of
VI(θ,J ,Ω) with the accuracy if it holds

θ(x)− θ(x̄) +
⟨
w − w̄,J (w)

⟩
≥ −ϵ, ∀w ∈ Bw̄ =

{
w ∈ Ω | ∥w − w̄∥ ≤ 1

}
.

To analyze the convergence rate of DP-ALM in terms of the iteration complexity for
{wk}, we need to show that for given ϵ > 0, after T -th iterations, DP-ALM is able to
find a point w̃ ∈ Ω such that

sup
w∈Bw̄

{
θ(x̄)− θ(x) +

⟨
w̄ − w,J (w)

⟩}
≤ ϵ = O(1/T ).

Based Lemma 2, we next establish the O(1/T ) ergodic convergence rate of DP-ALM.
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Theorem 2 Let {w̃k} be the sequence generated by DP-ALM and H be defined in (15).
For any integer number T > 0, let

xT :=
1

T + 1

T∑
k=0

x̃k and wT :=
1

T + 1

T∑
k=0

w̃k. (24)

Then, under the condition (7) we have

θ(xT )− θ(x) +
⟨
wT − w,J (w)

⟩
≤ 1

2(1 + T )

∥∥w − w0
∥∥2
H
, ∀w ∈ Ω. (25)

Proof. Combing the positive definiteness of G, we can rewrite (19) as

θ(x̃k)− θ(x) +
⟨
w̃k − w,J (w)

⟩
≤ 1

2

(∥∥w − wk
∥∥2
H
−
∥∥w − wk+1

∥∥2
H

)
, ∀w ∈ Ω.

Summarizing this inequality over k = 0, 1, ....T results in

T∑
k=0

θ(x̃k)− (1 + T )θ(x) +
⟨ T∑

k=0

w̃k − (1 + T )w,J (w)
⟩
≤ 1

2

∥∥w − w0
∥∥2
H
.

Namely,

1

1 + T

T∑
k=0

θ(x̃k)− θ(x) +
⟨ 1

1 + T

T∑
k=0

w̃k − w,J (w)
⟩
≤ 1

2(1 + T )

∥∥w − w0
∥∥2
H
,

which, by the convexity of θ and the definition of xT and wT in (24), confirms the result
in (25). �

The above theorem shows that the average of first T iterates defined in (24) is an
approximate solution of VI(θ,J ,Ω) with the rate of O(1/T ). In what follows, a more
compact result based on Theorem 2 will be provided, showing that both the objective
value gap and the constraint violation will decrease in the order of O(1/T ). Similar
theory can be found in [26]. To proceed, for any ς > 0, let Γς = {λ | ∥λ∥ ≤ ς} and

γς = inf
x∗∈X

sup
λ∈Γς

∥∥∥( x∗

λ

)
−
( x0

λ0

)∥∥∥2
H
. (26)

Corollary 1 Let γς be defined in (26) and xT be defined in (24). Then, for any (x∗;λ∗) ∈
Ω∗ and T > 0, we have∣∣θ(xT )− θ(x∗)

∣∣ ≤ γς
2(1 + T )

and
∥∥AxT − b

∥∥ ≤ γς

2(1 + T )
(
1 + ∥λ∗∥

) . (27)

Proof. Set w = (x∗;λ) into the inequality (25) to obtain

θ(xT )− θ(x∗) +
⟨
wT − w,J (w)

⟩
=θ(xT )− θ(x∗)− λ⊤(AxT − b)

≤ 1

2(1 + T )

∥∥∥( x∗

λ

)
−
( x0

λ0

)∥∥∥2
H
,

(28)

where the equality uses Ax∗ = b. Then, we deduce from the last inequality that

θ(xT )− θ(x∗) + ς∥AxT − b∥ = sup
λ∈Γς

{
θ(xT )− θ(x∗)− λ⊤(AxT − b)

}
≤ γς

2(1 + T )
. (29)
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By (28) again with (11), we have θ(xT )− θ(x∗)− λ⊤(AxT − b) ≥ 0, showing that

θ(xT )− θ(x∗) ≥ −
∥∥λ∗∥∥∥∥AxT − b

∥∥. (30)

Then, take ς = 2∥λ∗∥+ 1 in (29) together with (30) to get(
1 +

∥∥λ∗∥∥)∥∥AxT − b
∥∥ ≤ θ(xT )− θ(x∗) +

(
1 + 2

∥∥λ∗∥∥)∥∥AxT − b
∥∥ ≤ γς

2(1 + T )
.

Rearrange the above inequality to confirm the second inequality in (27). Meanwhile,
substitute the second inequality in (27) into (30) to obtain

θ(xT )− θ(x∗) ≥ − γς
2(1 + T )

,

which in turn confirms the first inequality in (27). �

3.3 Nonergodic convergence rate

In this subsection, we will show the worst-case O(1/t) nonergodic convergence rate of DP-
ALM in terms of pointwise iterative residual and optimality error based on the following
preliminary lemma.

Lemma 3 Let M and H be given by (8) and (15), respectively. Then, the iterates {wk}
and {w̃k} generated by DP-ALM satisfy

(wk−w̃k)⊤M⊤HM
{
(wk−w̃k)−(wk+1−w̃k+1)

}
≥ 1

2

∥∥(wk−w̃k)−(wk+1−w̃k+1)
∥∥2
Q+Q⊤ .

(31)

Proof. Setting w = w̃k+1 in (21) results in

θ(x̃k+1)− θ(x̃k) +
⟨
w̃k+1 − w̃k,J (w̃k) +Q(w̃k − wk)

⟩
≥ 0. (32)

Meanwhile, it follows from the inequality (21) with k := k + 1 that

θ(x)− θ(x̃k+1) +
⟨
w − w̃k+1,J (w̃k+1) +Q(w̃k+1 − wk+1)

⟩
≥ 0,

which, by letting w = w̃k, gives

θ(x̃k)− θ(x̃k+1) +
⟨
w̃k − w̃k+1,J (w̃k+1) +Q(w̃k+1 − wk+1)

⟩
≥ 0. (33)

Combine (32) and (33) together with the property in (13) to achieve

(w̃k − w̃k+1)⊤Q
{
(wk − w̃k)− (wk+1 − w̃k+1)

}
≥ 0. (34)

Now, by adding the identity{
(wk − w̃k)− (wk+1 − w̃k+1)

}⊤
Q
{
(wk − w̃k)− (wk+1 − w̃k+1)

}
=
1

2

∥∥(wk − w̃k)− (wk+1 − w̃k+1)
∥∥2
Q+QT

to both sides of (34), we can get

(wk − wk+1)⊤Q
{
(wk − w̃k)− (wk+1 − w̃k+1)

}
≥ 1

2

∥∥(wk − w̃k)− (wk+1 − w̃k+1)
∥∥2
Q+QT ,

which immediately ends the proof of (31) based on (10) and the matrix H in (15). �
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Theorem 3 Let M and H be given by (8) and (15), respectively. Then, for any integer
t > 0 there exits a constant c > 0 such that the sequences {wk} and {w̃k} generated by
DP-ALM satisfy ∥∥M(wk − w̃k)

∥∥2
H

≤ 1

(t+ 1)c

∥∥w0 − w∗∥∥2
H
, ∀w∗ ∈ Ω∗.

Proof. According to Proposition 1 and (20), there exists a constant c > 0 such that∥∥wk+1 − w∗∥∥2
H

≤
∥∥wk − w∗∥∥2

H
− c
∥∥M(wk − w̃k)

∥∥2
H
, ∀w∗ ∈ Ω∗, (35)

which shows

c

t∑
k=0

∥∥M(wk − w̃k)
∥∥2
H

≤
∥∥w0 − w∗∥∥2

H
(36)

for any integer t > 0. In addition, by applying the following identity

∥a∥2H − ∥b∥2H = 2a⊤H(a− b)− ∥a− b∥2H , (37)

with a = M(wk − w̃k) and b = M(wk+1 − w̃k+1), we have∥∥M(wk − w̃k)
∥∥2
H
−
∥∥M(wk+1 − w̃k+1)

∥∥2
H

=2(wk − w̃k)⊤M⊤HM
{
(wk − w̃k)− (wk+1 − w̃k+1)

}
−
∥∥M(wk − w̃k)−M(wk+1 − w̃k+1)

∥∥2
H

≥
∥∥(wk − w̃k)− (wk+1 − w̃k+1)

∥∥2
Q+QT −

∥∥M(wk − w̃k)−M(wk+1 − w̃k+1)
∥∥2
H

=
∥∥(wk − w̃k)− (wk+1 − w̃k+1)

∥∥2
G
≥ 0,

where the first inequality uses Lemma 3 and the final equality uses the definition of G in
(15). As a result, ∥∥M(wk − w̃k)

∥∥2
H

≥
∥∥M(wk+1 − w̃k+1)

∥∥2
H
,

showing that

(t+ 1)
∥∥M(wt − w̃t)

∥∥2
H

≤
t∑

k=0

∥∥M(wk − w̃k)
∥∥2
H
.

Substituting it into (36) ends the proof. �

Remark 1 For any given ϵ > 0, Theorem 3 indicates that our DP-ALM needs at most

[c1/ϵ] iterations to guarantee
∥∥M(wk − w̃k)

∥∥2
H

≤ ϵ, where c1 = inf
w∗∈Ω∗

∥∥w0 − w∗
∥∥2
H
/c.

According to Theorem 1 and Theorem 3,
∥∥wk−wk+1

∥∥ can be used as a stopping condition
of DP-ALM. In addition, by letting dk = (dkx; d

k
λ) where{

dkx = τβA⊤A(x̃k − xk) + τD(x̃k − xk) +A⊤(λ̃k − λk),

dkλ = αA(x̃k − xk) + 1
β (λ̃

k − λk),
(38)

we have Ax̃k − b+ dkλ = 0 and

θ(x)− θ(x̃k) +
⟨
x− x̃k,−A⊤λ̃k + dkx

⟩
≥ 0, ∀x ∈ X,

or equivalently A⊤λ̃k−dkx ∈ ∂θ(x̃k)+NX(x̃
k). Here, ∥dkx∥ measures the first-order optimal-

ity error, NX(x) denotes the normal cone of X at x, and ∂f(x) denotes the subdifferential
of f at x. Notice that (38) can be rewritten as dk = Q(uk − ũk) = H(uk − uk+1). So,

∥dk∥ = ∥H(uk − uk+1)∥ ≤ λmax(H)∥uk − uk+1∥H ,

which, by Theorem 3 and (10), implies ∥dk∥ goes to zero in a sublinear rate.
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4 Optimality of the formula (7)

In Section 1.3, we have provided a region of the proximal parameter τ to guarantee the
convergence of DP-ALM. Moreover, it should be larger than 2+γ

4 for any γ ∈ (0, 2).

Then, it is interesting to ask whether or not the lower bound 2+γ
4 is optimal (smallest).

In this section, we take an example to illustrate that this bound is optimal and it is
impossible to find a lower bound smaller than 2+γ

4 .
Consider the example in [11, Section 4], that is, the simplest equation x = 0 in R,

and we will show that DP-ALM is not necessarily convergent when τ < 2+γ
4 . Clearly,

x = 0 is a special case of the model (1) as:

min
R

{
0 · x | x = 0

}
. (39)

Without loss of generality we take β = 1. Then, DP-ALM for solving (39) reads{
xk+1 = argmin

x∈R

{
− xλk + τ

2

(
x− xk

)2
+ τ(r−1)

2

(
x− xk

)2}
= λk

τr + xk,

λk+1 = λk −
(
γxk+1 + xk+1 − xk

)
= τr−1−γ

τr λk − γxk.
(40)

By setting τ̄ = τr, we can rewrite the above updates as

wk+1 = φ(τ̄)wk with φ(τ̄) =

[
1 1

τ̄

−γ τ̄−1−γ
τ̄

]
.

Let f1(τ̄), f2(τ̄) be the two eigenvalues of the matrix φ(τ̄). Then, simple algebra shows

f1(τ̄) = 1 +
−1− γ +

√
(1 + γ)2 − 4γτ̄

2τ̄
and f2(τ̄) = 1 +

−1− γ −
√
(1 + γ)2 − 4γτ̄

2τ̄
.

For the function f2(τ̄), we have f2

(
2+γ
4

)
= −1 and

f ′
2(τ̄) =

1

4τ̄2

(
4γτ̄√

(1 + γ)2 − 4γτ̄
+ 2(1 + γ) + 2

√
(1 + γ)2 − 4γτ̄

)
.

Then, for any γ ∈ (0, 2) and τ̄ ∈
(
0, 2+γ

4

)
, we obtain (1 + γ)2 − 4γτ̄ > 0 and f ′

2(τ̄) > 0.
Consequently,

f2(τ̄) < f2

(2 + γ

4

)
= −1, for any τ̄ ∈

(
0,

2 + γ

4

)
.

Since here r > β = 1, combine the definition of τ̄ and its region to have τ ∈
(
0, 2+γ

4

)
. So,

for any τ ∈
(
0, 2+γ

4

)
, the matrix φ(τ̄) has an eigenvalue less than −1. Theretofore, the

iterative scheme in (40), that is the application of DP-ALM to the problem (39), is not
necessarily convergent for any τ ∈

(
0, 2+γ

4

)
. In other words, 2+γ

4 is the smallest lower
bound of τ to ensure the convergence of DP-ALM.

5 Relaxed version of DP-ALM

This section aims to extend the previous DP-ALM to the following relaxed accelerated
version and provide a concise discussion on its convergence:

(RP-ALM)


x̂k = argmin

x∈X

{
θ(x)− ⟨λk, Ax⟩+ τβ

2

∥∥A(x− xk)
∥∥2 + τ

2

∥∥x− xk
∥∥2
D

}
,

λ̂k = λk − βγ(Ax̂k − b)− βA(x̂k − xk),(
xk+1

λk+1

)
=

(
xk

λk

)
+ η

(
x̂k − xk

λ̂k − λk

)
,

(41)
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where η ∈ (0, 2) denotes the relaxation parameter satisfying γη ∈ (0, 2), and the rest
parameters are the same as before. When η = 1, this RP-ALM reduces to previous
DP-ALM.

Analogous to the aforementioned analysis in Lemma 2, it is not difficult (for details,
see e.g. [2, 6]) to show

θ(x)−θ(x̃k)+
⟨
w− w̃k,J (w)

⟩
≥ 1

2η

(∥∥w−wk+1
∥∥2
H
−
∥∥w−wk

∥∥2
H

)
+

1

2

∥∥wk− w̃k
∥∥2
G

(42)

and ∥∥w∗ − wk
∥∥2
H

≥
∥∥w∗ − wk+1

∥∥2
H
+ η
∥∥wk − w̃k

∥∥2
G
. (43)

Here
x̃k = x̂k, G = Q⊤ +Q− ηM⊤HM,

and the rest notations are the same as before. To ensure the monotonicity of the sequence

{
∥∥w∗−wk

∥∥2
H
}, we just need to investigate the condition to ensure the positive definiteness

of G. Similar to the analysis in Proposition 1, G is positive definite if the proximal
parameter τ satisfies

τ >
[α+ 2−2η−2γη+γη2

2 ]2

(2− η)(2− γη)
+

η(η2γ − 4ηγ − 2η + 4γ + 4)

4(2− η)
(44)

for any α ∈ [0, 1). The region of τ indicates

τ >
[α+ 2−2η−2γη+γη2

2 ]2

(2− η)(2− γη)
+

η(η2γ − 4ηγ − 2η + 4γ + 4)

4(2− η)
≥ α,

which in turn guarantees the positive definiteness of the matrix H. When η = 1, the
inequality (44) reduces to the previous in (7); when γ = 1 and τ = 1, the proposed
RP-ALM reduces to our proposed method in [2]. However, the parameter τ in RP-ALM
could be smaller than 1, and hence our RP-ALM is more general than the previous.
Besides, simple algebra shows that (44) amounts to

τ >
α2γη − αη

2− η
+

[(1− γη)α+ 1)]2

(2− η)(2− γη)
. (45)

We can conclude that:

• If α = 0, this region reduces to τ > 1
(2−η)(2−γη) . By selecting η → 0, we have that

the lower bound of τ approximates to 1/4 which is half of bound 1/2 as shown by
(7). This lower bound seems to be the smallest one in the literature.

• If γη = 1, this region reduces to τ >
(α− η

2 )
2

2−η + 2+η
4 . By selecting α = η

2 and

η → 1/2, the lower bound of τ approximates to 5/8, which is also smaller than 3/4

as discussed in Section 4 and [3, 11, 14] as well as the region 13−2
√
13

9 in [19].

The above discussions indicate that the region of proximal parameter τ could be sig-
nificantly reduced by exploiting a relaxed acceleration step in the original algorithm.
Exactly, the lower bound of τ in the relaxed method will be a half of that in the method
without relaxation step. We guess this conjecture holds for other first-order proximal
methods such as the proximal point method, proximal alternating direction method and
primal-dual hybrid gradient method.

Finally, we have from (42) and (43) that RP-ALM converges globally with sublinear
ergodic/nonergodic convergence rates, whose proofs are similar to the analysis in Section
3 and thus are omitted for the sake of conciseness.
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Appendix: a multi-block extension

In this appendix, we will extend DP-ALM to solve the following multiple block separable
convex optimization problem

min

{
θ(x) :=

p∑
i=1

θi(xi)
∣∣∣ p∑

i=1

Aixi = b, xi ∈ Xi

}
, (46)

where θi : Rni → R(i = 1, 2, · · · , p) are proper lower semicontinuous convex functions
(possibly nonsmooth, non-Lipschitz continuous, and non-strongly convex), Xi ⊆ Rni are
closed convex sets, Ai ∈ Rm×ni and b ∈ Rm are given. Our multi-block extension of
DP-ALM (denoted by DP-mALM) for solving (46) reads

xk+1
1 = arg min

x1∈X1

{
θ1(x1)− ⟨λk, A1x1⟩+ τβ

2

∥∥A1(x1 − xk
1)
∥∥2 + τ

2

∥∥x1 − xk
1

∥∥2
D1

}
,

xk+1
2 = arg min

x2∈X2

{
θ2(x2)− ⟨λk, A2x2⟩+ τβ

2

∥∥A2(x2 − xk
2)
∥∥2 + τ

2

∥∥x2 − xk
2

∥∥2
D2

}
,

...

xk+1
p = arg min

xp∈Xp

{
θp(xp)− ⟨λk, Apxp⟩+ τβ

2

∥∥Ap(xp − xk
p)
∥∥2 + τ

2

∥∥xp − xk
p

∥∥2
Dp

}
,

λk+1 = λk − β
[
γ
( p∑

i=1

Aix
k+1
i − b

)
+

p∑
i=1

Ai(x
k+1
i − xk

i )
]
,

(47)
where Di = riI − βA⊤

i Ai with ri > βρ(A⊤
i Ai). Note that the subproblems in (47) are

updated in parallel and are similar to the updating way in [2], but the dual variable
updates differently from the previous.

By denoting

x̃k
i = xk+1

i (i = 1, 2, · · · , p), λ̃k = λk − β
[ p∑

i=1

Aix̃
k
i − b+ α

p∑
i=1

Ai

(
x̃k
i − xk

i

)]
, (48)

the previous inequality (21) still holds for any w ∈ Ω := X1 × · · ·Xp × Rm, but with

w =

(
x
λ

)
=


x1

x2

...
xp

λ

 ,J (w) =


−A⊤

1 λ
−A⊤

2 λ
...

−A⊤
p λ∑p

i=1 Aixi − b

 , Q =


τr1I · · · 0 A⊤

1
...

. . .
...

...
0 · · · τrpI A⊤

p

αA1 · · · αAp
1
β I

 .

By making use of the notations in (48) and the update of λk+1 in (47), we can obtain
the previous relationship (10) with

M =


I 0 · · · 0
0 I · · · 0
...

...
. . .

...
−(1− γα)βA1 · · · −(1− γα)βAp γI

 . (49)

Obviously, the notations in this section are multi-block extension of the previous, so the
convergence theories in Section 3 can be similarly established if both

H = QM−1 and G = Q⊤ +Q−M⊤HM
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are positive definite. Analogous to the analysis in proving Proposition 1, we need to
analyze the conditions to ensure the positive definiteness of S = Q⊤M , namely,

S =


τr1I αγA⊤

1

. . .
...

τrpI αγA⊤
p

αγA1 · · · αγAp
γ
β I

− (1− αγ)αβ

[
A 0
0 0

]
,

where
A = (A1 A2 · · ·Ap)

⊤(A1 A2 · · ·Ap).

For all ri > βρ(A⊤
i Ai), it is not difficulty to verify that S is positive definite if τ > pα.

Besides, we can ensure the positive definiteness of the matrix

G =


τr1I (1 + α− αγ)A⊤

1

. . .
...

τrpI (1 + α− αγ)A⊤
p

(1 + α− αγ)A1 · · · (1 + α− αγ)Ap
2−γ
β I

+ (1− αγ)αβ

[
A 0
0 0

]

for any

τ > p
[ (1 + α− αγ)2

2− γ
− (1− αγ)α

]
= p
[ (α− γ

2 )
2

2− γ
+

2 + γ

4

]
, ∀α ∈ R,

which also ensures τ > pα. Obviously, this new region reduces to the previous region in
(7) when p = 1. Finally, the relaxed version of (47) with the relaxation step as in (41) is
still convergent, and similar analysis can date back to Section 5.
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