
A Markovian Model for Learning-to-Optimize

Michael Sucker michael.sucker@math.uni-tuebingen.de
Department of Mathematics
University of Tübingen
Tübingen, Germany

Peter Ochs ochs@math.uni-saarland.de

Department of Mathematics and Computer Science

Saarland University

Saarbrücken, Germany

Abstract

We present a probabilistic model for stochastic iterative algorithms with the use case of
optimization algorithms in mind. Based on this model, we present PAC-Bayesian gener-
alization bounds for functions that are defined on the trajectory of the learned algorithm,
for example, the expected (non-asymptotic) convergence rate and the expected time to
reach the stopping criterion. Thus, not only does this model allow for learning stochastic
algorithms based on their empirical performance, it also yields results about their actual
convergence rate and their actual convergence time. We stress that, since the model is
valid in a more general setting than learning-to-optimize, it is of interest for other fields
of application, too. Finally, we conduct five practically relevant experiments, showing the
validity of our claims.

Keywords: learning-to-optimize, stochastic processes, pac-bayes, convergence rate, stop-
ping time

1 Introduction

Learning-to-optimize is an important topic of current research, because optimization prob-
lems are ubiquitous in science and industry, their solution is often time-consuming and
costly, and learned optimization algorithms can outperform classical ones by orders of mag-
nitude. However, more often than not, theoretical guarantees for such learned optimization
algorithms are missing, which renders their application at least questionable. Therefore:

In this work, we consider parametric stochastic iterative (optimization) algorithms to
minimize parametric (loss) functions, and how to learn such algorithms with theoretical

guarantees on their non-asymptotic convergence rate and convergence time.

The purpose of this introduction is a) to motivate the upcoming discussion and b) to
decipher the statement above. The starting point of our considerations is a parameteric
loss function ℓ(s, θ), which we want to minimize in s for every realization of θ. To do this,
a stochastic algorithm A is applied iteratively, and yields a sequence ξ = (ξ(t))t∈N0 :

ξ(t+1) = A(α, θ, ξ(t), η(t+1)) . (1)

Here, the hyperparameters α allow for adjusting the algorithm, while the parameters θ
specify the current loss function the algorithm is applied to, and η(t+1) models the (internal)

©2024 Michael Sucker and Peter Ochs.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/.

https://creativecommons.org/licenses/by/4.0/

Sucker and Ochs

randomness in each iteration. Starting from some initialization ξ(0), the overall goal of such
an algorithm is to find a state s that satisfies certain properties, typically specified in terms
of ℓ(·, θ). If such a state is found, the algorithm is stopped and is considered to be converged.
Then, the number of iterations it takes to converge is the convergence time. Since, generally,
one wants to solve optimization problems in the least amount of time, the aim of this work
is to learn A in such a way that we can guarantee to reach the stopping criterion in a certain
amount of time, that is, such that we can upper bound the convergence time. Here, learning
A refers to choosing the hyperparameters based on a data set of parameters. However, there
is a catch: Both the convergence rate and stopping time are properties of the trajectory of
the algorithm, that is, they cannot be pinpoint to single, fixed iterates. Therefore, for
stating such guarantees, one has to have access to all the iterates ξ =

(
ξ(t)
)
t∈N0

, which, for
every choice of hyperparameters α and parameters θ, form a discrete-time stochastic process,
which we have to analyze. While stochastic processes might be arbitrarily complex objects,
the process induced by Equation (1), which is visualized in Figure 1, is actually driven by a
single simple equation, which allows to disentangle the randomness of this particular process.
Indeed, the “total randomness” is exactly a superposition of the four separate sources given
by the initialization ξ(0), parameters θ, hyperparameters α, and internal randomness η(t).
Each source has a different kind of influence on the trajectories generated by A. Similarly,
as will be shown in Section 4, the distribution of the whole stochastic process ξ emerges
from a similar and equally simple equation. Even more so, it is in fact uniquely defined by
this, that is, this is actually the only way to define this distribution which is compatible
with the underlying stochasticity. Therefore, after the related work and preliminaries, in
Section 4 we will derive the corresponding probabilistic model by building it from ground
up, basically starting from Equation (1). Then, in Section 5, we use this model to derive, in
a rather standard way, generalization bounds for learning such an algorithm based on data.
Especially, our results include generalization bounds for its non-asymptotic convergence
rate and its convergence time of the following, informal form (compare to Corollaries 35
and 38 together with Remark 43):

Theorem 1 (Informal) Under mild boundedness assumptions on the algorithm, the ρ-
average convergence time τ̄ and the ρ-average convergence rate r̄ can be bounded, respec-
tively, by the ρ-average empirical convergence time τ̂ plus some remainder term Rt,N , and
the the ρ-average empirical convergence rate r̂ plus some remainder term Rr,N , where both
Rt,N and Rr,N vanish with the size N of the data set P[N], that is, for all ε > 0 and λ > 0:

PP[N]
{∀ρ ∈ P : ρ[τ̄] ≤ ρ[τ̂] +Rt,N and ρ[r̄] ≤ ρ[r̂] +Rr,N} ≥ 1− ε .

Finally, in Section 6, we conduct several practically relevant experiments to underline the
validity of our theoretical claims. Here, we design new algorithms, which we train and
evaluate with the proposed approach to showcase their superior performance compared to
a “standard” algorithm. To our knowledge, approaching learning-to-optimize from the per-
spective of stochastic processes, modelling the corresponding distribution of the trajectory,
and using it for learning a stochastic optimization algorithm with guarantees on its con-
vergence rate and convergence time has not been done before, and might pave the way to
other approaches.

2

Markovian Learning-to-0ptimize

Parameters InitializationSuperposition

Hyperparameters Internal

Figure 1: Superposition of different sources of randomness: The algorithm can be applied to
several problem instances coming from a common distribution (upper left). Since
this is not under the control of the user, we refer to it as external randomness.
Further, the algorithm might be started from different, randomly chosen initial-
izations (upper right). Furthermore, there might be randomness (or uncertainty)
in the choice of the hyperparameters of the algorithm (lower left). Finally, the
algorithmic update might be inherently stochastic (lower right), which, as it is
inherent to the algorithm, we refer to as internal randomness. Combining these
four sources of randomness yields the superposition depicted in the middle.

2 Related Work

The literature on both learning-to-optimize and the PAC-Bayesian learning approach is
vast. Hence, the discussion of learning-to-optimize will mainly focus on learning approaches
that provide some theoretical guarantees. Especially, this excludes many approaches that
“only” evaluate their model empirically. Chen et al. (2021) provide a good overview about
the variety of approaches in learning-to-optimize, and good introductory references for the
PAC-Bayesian approach are given by Guedj (2019) and Alquier (2021).

2.0.1 Broader Context of Learning-to-Optimize

Solving optimization problems is an integral part of machine learning. Thus, learning-to-
optimize has significant overlap with the areas of meta-learning (or “learning-to-learn”)
and AutoML. The first one is a subset of learning-to-optimize, because learning-to-optimize
applies to general optimization problems while meta-learning is mostly concerned with
determining parameters of machine learning models (Vilalta and Drissi, 2002; Hospedales
et al., 2021). AutoML, however, more broadly refers to automating all steps necessary
to create a machine learning application, which therefore also involves the choice of an

3

Sucker and Ochs

optimization algorithm and its hyperparameters (Yao et al., 2018; Hutter et al., 2019; He
et al., 2021).

2.0.2 Learning-to-Optimize with Guarantees

Chen et al. (2021) point out that learned optimization methods may lack theoretical guar-
antees for the sake of convergence speed. That being said, there are applications where a
convergence guarantee is of highest priority. To underline this, Moeller et al. (2019) provide
an example where a purely learning-based approach fails to reconstruct the crucial details
in a medical image. Also, they prove convergence of their method by restricting the out-
put to descent directions, for which mathematical guarantees exist. The basic idea is to
trace the learned object back to, or constrain it to, a mathematical object with convergence
guarantees. Similarly, Sreehari et al. (2016) provide sufficient conditions under which the
learned mapping is a proximal mapping. Related schemes, under different assumptions and
guarantees, are given by Chan et al. (2016), Teodoro et al. (2017), Tirer and Giryes (2018),
Buzzard et al. (2018), Ryu et al. (2019), Sun et al. (2019), Terris et al. (2021) and Cohen
et al. (2021). A major advantage of these methods is the fact that the number of itera-
tions is not restricted a priori. However, a major drawback is their restriction to specific
algorithms and problems. Another approach, which limits the number of iterations, yet in
principle can be applied to every iterative optimization algorithm, is unrolling, pioneered
by Gregor and LeCun (2010). Xin et al. (2016) study the IHT algorithm and show that it
is, under some assumptions, able to achieve a linear convergence rate. Likewise, Chen et al.
(2018) establish a linear convergence rate for the unrolled ISTA. However, a difficulty in
the theoretical analysis of unrolled algorithms is actually the notion of convergence itself,
such that one rather has to consider the generalization performance. Only few works have
addressed this: Either directly by means of Rademacher complexity (Chen et al., 2020),
or indirectly in form of a stability analysis (Kobler et al., 2020), as algorithmic stability is
linked to generalization (Bousquet and Elisseeff, 2000, 2002; Shalev-Shwartz et al., 2010).
Another line of work studies the design of learned optimization algorithms, pathologies and
pitfalls during training, and how it affects the possible guarantees (Wichrowska et al., 2017;
Metz et al., 2019, 2022). In this context, Liu et al. (2023) advocated for more mathematical
structure in learning-to-optimize and proposed to enforce these convergence properties by
design. Similarly, Castera and Ochs (2024) analyze hand-crafted optimization algorithms
that can be applied in a wide range of problems, extract common geometric properties from
them, and, based on that, provide design-principles for learned optimization algorithms.
A recent work somewhat related to ours is the the preprint of Xie et al. (2024), in which
the authors also tackle the problem of learning optimization algorithms with convergence
rates. In doing so, they also introduce a notion of “stopping time”. However, while try-
ing to provide an answer to the same question, the approaches taken are complementary:
In their work, the authors combine the ODE-approach to optimization algorithms with
learning-to-optimize to leverage the convergence of a continuous-time trajectory together
with the stability of a (forward Euler) discretization scheme to deduce, analytically, the
convergence of their algorithm. Through this, if the ODE is discretized in a stable way,
they can provide asymptotic, worst-case convergence rates, which yield an upper bound on
the performance of the algorithm. On the other hand, we approach the problem statisti-

4

Markovian Learning-to-0ptimize

cally, and provide generalization guarantees for the non-asymptotic, average convergence
rate, that is, a guarantee that the rate which gets observed during training will generalize
to new problems from the same distribution. By design, this closely resembles the average
performance of the learned algorithm. Another important difference to our work is the fact
that, since the discretization scheme is fixed, the choice of the ODE completely determines
(up to hyperparameters) the resulting algorithm. In our approach, however, we investigate
an abstract algorithm, that is, the design of the update-step is not fixed a-priori. Thus,
we use the iterative approach of learning the update step of an abstract algorithm. This
has three advantages: a) We can use an arbitrary number of iterations, b) it does not limit
the design of the algorithm, and c) it allows for deriving the distribution of the trajectory.
Then, we provide generalization guarantees for (bounded) functions defined on the space of
trajectories, that is, functions that resemble some statistic about the algorithm. Especially,
this includes non-asymptotic convergence rates, finite stopping times, and function values
at any finite iteration.

2.0.3 PAC-Bayesian Bounds and Bounded Loss Functions

The PAC-Bayesian framework allows for giving high probability bounds on the risk, either
as an oracle or as an empirical bound. The key ingredient is a change-of-measure inequality,
which strongly influences the corresponding bound. The one used most often is based on a
variational representation of the Kullback–Leibler divergence due to Donsker and Varadhan
(1975), employed, for example, by Catoni (2004, 2007). Yet, not all bounds are based on a
variational representation, that is, holding uniformly over all posterior distributions (Rivas-
plata et al., 2020). While most bounds involve the Kullback–Leibler divergence as measure
of proximity (McAllester, 2003a,b; Seeger, 2002; Langford and Shawe-Taylor, 2002; Germain
et al., 2009), more recently other divergences have been used (Honorio and Jaakkola, 2014;
London, 2017; Bégin et al., 2016; Alquier and Guedj, 2018; Ohnishi and Honorio, 2021;
Amit et al., 2022; Haddouche and Guedj, 2023). Here, the assumptions that can be made
about the function in question decisively influence the choice of divergence (or distance).
A typical assumption is boundedness, which is used to apply some exponential moment in-
equality like the Hoeffding- or Bernstein-inequality (Rivasplata et al., 2020; Alquier, 2021).
In many applications this is very restrictive, and several ways have been developed to cir-
cumvent it (Germain et al., 2009; Alquier et al., 2016; Catoni, 2004; Haddouche and Guedj,
2022; Rodŕıguez-Gálvez et al., 2024). However, the loss-functions occurring in this work
can naturally be bounded by properties of the optimization algorithm. Thus, we use a
standard PAC-Bayesian argument involving the Donsker-Varadhan variational formulation
and Hoeffding’s inequality to get the generalization bounds.

2.0.4 Minimization of the PAC-Bound and Choice of the Prior

The PAC-bound relates the true risk to other terms such as the empirical risk. Yet, it
does not directly say anything about the absolute numbers. Thus, in learning procedures
based on the PAC-Bayesian approach one typically aims to minimize the provided up-
per bound: Langford and Caruana (2001) compute non-vacuous numerical generalization
bounds through a combination of PAC-bounds with a sensitivity analysis. Dziugaite and
Roy (2017) extend this by minimizing the PAC-bound directly. Pérez-Ortiz et al. (2021)

5

Sucker and Ochs

also consider learning as minimization of the PAC-Bayesian upper bound and provide tight
generalization bounds. Thiemann et al. (2017) provide sufficient conditions under which
their resulting minimization problem is quasi-convex, which they solve by alternating min-
imization. Nevertheless, a common difficulty in learning with PAC-Bayesian bounds is the
choice of the prior distribution, as it heavily influences the performance of the learned mod-
els and the generalization bound (Catoni, 2004; Dziugaite et al., 2021; Pérez-Ortiz et al.,
2021). In part, and especially for the Kullback-Leibler divergence, this is due to the fact
that the divergence term can dominate the bound, keeping the posterior close to the prior.
This lead to the idea of choosing a data- or distribution-dependent prior (Seeger, 2002;
Parrado-Hernández et al., 2012; Lever et al., 2013; Dziugaite and Roy, 2018; Pérez-Ortiz
et al., 2021), which, by using an independent subset of the data set, gets optimized to yield
a good performance. We follow this approach and consider learning as minimization of the
PAC-Bayesian upper-bound, however, applied to the context of learning-to-optimize. Also
for us, the choice of the prior distribution is crucial for the performance of our learned
algorithms, such that we use a data-dependent prior, which we construct similarly as in our
prior work (Sucker et al., 2024).

2.0.5 More Generalization Bounds

There are many areas of machine learning research that study generalization bounds and
have not been discussed here. Importantly, the vast field of “stochastic optimization” (SO)
provides generalization bounds for specific algorithms. In most of the cases, the concrete
algorithms studied in SO generate a single point estimate by either minimizing the (regu-
larized) empirical risk functional over a possibly large data set, or by repeatedly updating
the point estimate based on a newly drawn (small) batch of samples. Then, one studies
the properties of this point in terms of the stationarity measure of the true risk functional
(Bottou et al., 2018; Davis and Drusvyatskiy, 2022; Bianchi et al., 2022). Further, as the
setting in SO is more explicit, more assumptions have to be made. Typical assumptions
are (weak) convexity (Shalev-Shwartz et al., 2009; Davis and Drusvyatskiy, 2019), bounded
gradients (Défossez et al., 2022), bounded noise (Davis and Drusvyatskiy, 2022), or smooth-
ness (Kavis et al., 2022). All of these assumptions cannot be made without severely limiting
the applicability of our results, because we consider an abstract loss function, an abstract
optimization algorithm, and the problem of finding a distribution over its hyperparameters.
Further, through learning, we go explicitly beyond analytically tractable quantities.

3 Preliminaries and Notation

We will endow every topological space X with its Borel-σ-algebra B(X), and we assume it
to be a Polish space, that is, it is separable and admits a complete metrization. Given two
spaces X and Y , we write their product as X×Y , and, for products with a generic number
of terms, we use

∏N
n=1Xn. Similarly, the product-σ-algebra of B(X) and B(Y) on X×Y is

denoted by B(X) ⊗ B(Y). Further, for a generic number of terms, we use
⊗N

n=1 B(Xn) to
denote the product-σ-algebra, and, if Xn ≡ X for all n = 1, ..., N , also XN and B(X)⊗N .

Remark 2 Countable products of Polish spaces are again Polish, and we have the equal-
ity B

(∏
n∈NXn

)
=
⊗

n∈N B(Xn) (Kallenberg, 2021, Lemma 1.2, p.11). Therefore, as we

6

Markovian Learning-to-0ptimize

Kernel & Resulting Trajectory

Distributions ν and ν · µ Distribution ν ⊗ µ

Figure 2: Visualization of kernels and their corresponding operations: The top figure
visualizes the distributions µ(xi, ·), i = 0, ..., 3, (colored dots) for four selected
points x0, ..., x3. Here, each color represents one distribution µ(xi, ·), i = 0, ..., 3,
and the colored lines connecting xi with each point from the next cluster should
represent all the possible outcomes of µ(xi, ·). The blackish line connecting the
points x0, ..., x3 (and x4) shows that, by selecting one sample from each µ(xi, ·),
a trajectory emerges from this process. The lower left figure visualizes how
a distribution ν (blue) is transformed by the kernel µ into the distribution ν · µ
(purple): At each point x we have a distribution µ(x, ·) (represented by several
pink dots connected to one blue dot), and by integrating these points w.r.t. ν, the
distribution ν ·µ emerges. The lower right figure shows the distribution ν⊗µ.
The creation is the same as for ν · µ, which is the marginal of ν ⊗ µ. However,
µ⊗ ν is a measure on S2, while ν · µ is a measure on S.

consider a discrete-time algorithm, all resulting product spaces in this work will be Polish
spaces endowed with the Borel-σ-algebra, which coincides with the product-σ-algebra.

We use the same notation for measures: Given two measures ν1 and ν2 on X and Y , the
corresponding product measure on X × Y is denoted by ν1 ⊗ ν2. If the product involves a
generic number of measures, this is denoted by

⊗N
n=1 νn, and, if νn ≡ ν for all n = 1, ..., N ,

we also use ν⊗N . Further, if necessary, we will write the integral of a function f : X →
R w.r.t. ν in the operator notation, that is, ν[f] :=

∫
X ν(dx) f(x) :=

∫
X f(x) ν(dx).

Especially, this applies when having multiple iterated integrals at once, in which case this
has to be read from right to left instead from inside to outside. For example, if we integrate

7

Sucker and Ochs

f : X × Y × Z → R w.r.t. ν ⊗ µ⊗ λ, by Fubini’s theorem we have:
∫

X×Y×Z
f(x, y, z) (ν ⊗ µ⊗ λ)(dx, dy, dz) =

∫

X

∫

Y

∫

Z
f(x, y, z) λ(dz) µ(dy) ν(dx)

=

∫

X
ν(dx)

∫

Y
µ(dy)

∫

Z
λ(dz) f(x, y, z) .

In doing so, the integrand is closer to its “next” integrator and one can avoid many brackets.
Especially, this applies to kernels, which are of fundamental importance for this work:

Definition 3 Let (X,X) and (Y,Y) be measurable spaces. A kernel µ from X to Y is a
mapping

µ : X × Y → [0,∞] ,

such that x 7→ µ(x,A) is measurable for every fixed A ∈ Y, and A 7→ µ(x,A) is a measure
for every x ∈ X. µ is called a probability kernel, if µ(x, Y) = 1 for every x ∈ X.

Notation 4 We adopt the standard (abuse of) notation for kernels, that is, µ : X × Y →
[0,∞] is abbreviated as µ : X → Y .

For two (probability) kernels µ : X → Y and ν : X × Y → Z, the product of µ and ν is
defined as the kernel µ⊗ ν : X → Y × Z given by:

(µ⊗ ν)(x)[f] =

∫

Y
µ(x, dy)

∫

Z
ν((x, y), dz) f(y, z) ,

where f : Y × Z → R is a measurable function. That is, for every x ∈ X, (µ⊗ ν)(x, ·) is a
measure on Y × Z, such that for a set A× B ∈ B(Y × Z) it holds:

(µ⊗ ν)(x,A× B) =

∫

A
ν((x, y),B) µ(x, dy) .

Similarly, the composition of µ and ν is given by the kernel µ · ν : X → Z defined through:

(µ · ν)(x)[g] =
∫

Y
µ(x, dy)

∫

Z
ν((x, y), dz) g(z) ,

where g : Z → R is a measurable function. That is, for a measurable set B ⊂ Z it holds:

(µ · ν)(x,B) =
∫

Y
ν((x, y),B) µ(x, dy) .

Hence, it holds that (µ · ν)(x)[g] = (µ ⊗ ν)(x)[1Y ⊗ g], that is, (µ · ν)(x, ·) is the marginal
of (µ⊗ ν)(x, ·) on Z. Here, 1A denotes the indicator function of a set A, which is equal to
one for x ∈ A and zero else, that is, we have 1A(x) = δx(A), where δx is the Dirac-measure.

Example 5 Having two random variables on the same probability space taking values in
Polish spaces X and Y , say X :

(
Ω,A,P

)
→ X and Y :

(
Ω,A,P

)
→ Y , there exists a

regular version of the conditional distribution PY |X of Y , given X , such that their joint
distribution can be factorized into the marginal and the conditional distribution:

P(X ,Y) = PX ⊗ PY |X ,

8

Markovian Learning-to-0ptimize

where (x,A) 7→ PY |X =x{A} is a probability kernel from X to Y . Similarly, the marginal of
Y is given by:

PY {B} = P{Y ∈ B} = P{X ∈ X, Y ∈ B} = P(X ,Y) {X × B}

=
(
PX ⊗ PY |X

)
{X × B} =

∫

X
PY |X =x{B} PX (dx) =

(
PX · PY |X

)
{B} .

For notational simplicity, when we have N elements x1, ..., xN in some space X, and we
refer to them all at once, that is, to the vector (x1, ..., xN) ∈ XN , we indicate this by
x[N] = (x1, ..., xN). For example, when integrating w.r.t. a product measure P⊗N

X this
allows for the more compact notation:

P⊗N
X [f] =

∫

XN

P⊗N
X (dx[N]) f(x[N]) :=

∫

XN

f(x1, ..., xN) P⊗N
X (dx1, ..., dxN) .

Similarly, given such a vector x[N], we refer to its components as x1, ..., xN , and the cor-
respondence will be clear from the context. Furthermore, as this will turn up in the gen-
eralization bounds, the space of measures on an underlying space X is denoted by M(X),
and all probability measures that are absolutely continuous w.r.t. a reference measure
µ ∈ M(X) are denote by P(µ) := {ν ∈ M(X) : ν ≪ µ and ν[X] = 1}. In this context,
the Kullback-Leiber divergence between two measures µ and ν is defined as:

DKL(ν ∥ µ) =
{
ν[log(f)] =

∫
X log(f(x)) ν(dx), ν ≪ µ with density f ,

+∞, otherwise .

Here, we have the following variational formulation due to Donsker and Varadhan (1975):

Lemma 6 (Variational Formulation by Donsker and Varadhan) For any measur-
able and bounded function h : X → R, it holds that:

log

(∫

X
exp(h(x)) µ(dx)

)
= sup

ν∈P(µ)

{∫

X
h(x) ν(dx)−DKL(ν ∥ µ)

}
.

Finally, the following definitions are used in the so-called monotone-class argument, which
is needed to derive the distribution of the trajectory of the algorithm:

Definition 7 Let (X,X) be a measurable space. A class C ⊂ X is called a π-system, if it
is closed under finite intersection, that is, A,B ∈ C implies A∩B ∈ C. Furthermore, a class
D ⊂ X is called a λ-system, if it contains X and it is closed under proper differences and
increasing limits. That is, we require X ∈ D, that A,B ∈ D with A ⊃ B implies A \ B ∈ D,
and that A1,A2, ... ∈ D with An ↑ A implies A ∈ D.

The following theorem can be found in Kallenberg (2021, Thm. 1.1, p.10).

Theorem 8 (Monotone Classes) For any π-system C and λ-system D in a measurable
space X, it holds that:

C ⊂ D =⇒ σ(C) ⊂ D,
where σ(C) is the σ-algebra generated by C.

9

Sucker and Ochs

4 The Probabilistic Model

In this section we derive the distribution of the trajectories of the algorithm. Starting from
the ad-hoc motivation in the introduction, especially Equation (1), we aim for a probability
space that describes the trajectories generated by the algorithm depending on the hyperpa-
rameters and parameters. For this, we first introduce a probability space (Ωpre,Apre,Ppre)
which describes the underlying randomness outlined in the introduction. Then, in Def-
inition 13, we define the transition kernel of A, which is the needed measure-theoretic
equivalent to Equation (1). Afterwards, in Theorem 19, we show that the transition kernel
(together with the initialization) yields a unique probability kernel onto the space of trajec-
tories, which describes the distribution of ξ = (ξ(t))t∈N0 depending on the hyperparameters
α and parameters θ. This, in turn, allows us to define the probability space (Ω,A,P), which
describes the joint distribution of the hyperparameters, parameters, and the resulting tra-
jectory ξ in the correct way, and which will be used to derive the generalization results.
Since this is quite technical, we want to stress once again that this builds the fundament
of our principled treatment of learning-to-optimize with theoretical guarantees, and it is
absolutely necessary for giving generalization bounds for the convergence rate and stopping
times. For this, our model relies on the following two mild assumptions:

Assumption 9 We are given four Polish probability spaces: the state space (S,B(S),PI),
the parameter space (P,B(P),PP), the hyperparameter space (H,B(H),PH), and the ran-
domization space (R,B(R),PR) .

Remark 10 It is assumed implicitly that the state space encompasses the space of the
optimization variable as a subspace, and we denote the corresponding projection from S
onto this subspace by ΠS. This is done, for example, to be able to model algorithms that
depend on a finite number of other variables, such as previous iterates.

Assumption 11 We are given a measurable function ℓ : S×P → [0,∞], the loss function,
and a measurable map A : H × P × S ×R→ S, the algorithmic update.

As stated in the introduction, starting from some initialization ξ(0) ∈ S, the algorithm
generates a sequence of iterates ξ = (ξ(t))t∈N0 as follows:

ξ(t+1) = A(α, θ, ξ(t), η(t+1)), t ≥ 1 ,

where α ∈ H, θ ∈ P , and η(t+1) ∈ R. Thus, ξ is a discrete time stochastic process taking
values in the space S, and the goal is to learn the hyperparameters α ∈ H on a dataset of
parameters θ[N] := (θ1, ..., θN) ∈ PN .

Example 12 (i) Consider stochastic gradient descent to minimize the parametric empir-
ical risk ℓ(x, θ) := 1

m

∑m
i=1 fi(x, θ). In each iteration, the algorithm samples an index

j uniformly in {1, ...,m} and performs the update:

ξ(t+1) = ξ(t) − α∇fj(ξ(t), θ) ,

where α > 0 is a step-size. This can be summarized into a single mapping A as:

A(α, θ, ξ(t), η(t+1)) := ξ(t) − α

m∑

i=1

1{i}(η
(t+1))∇fi(ξ(t), θ) ,

10

Markovian Learning-to-0ptimize

where η(t+1) ∼ U{1, ...,m}. Thus, it holds S = Rn, H = [0,∞), and R = {1, ...,m}.
(ii) Consider an update of the form:

ξ(t+1) :=

(
h(t+1)

x(t+1)

)
:=

(
N1(α1, θ, h

(t), η(t+1))

x(t) −N2(α2, θ, ξ
(t), η(t+1))

)
,

where, additionally to updating the iterates x(t) ∈ Rn with a neural network N2, one
updates a hidden state h(t) ∈ Rm with another neural network N1. In this case, the
state would consist of ξ(t) = (h(t), x(t)) ∈ Rm+n, ΠS would be the projection from
Rm+n onto Rn with ΠS(ξ

(t)) = x(t), and the hyperparameters α would be given by the
parameters of these two networks, that is, the tuple α = (α1, α2).

4.1 The Distribution of the Trajectory on SN0

We model the underlying stochasticity through the following probability space, which com-
bines the four independent sources of randomness in the canonical way. Since we want to
learn on a dataset of size N , we have to use the N -fold product of several of these spaces.
Thus, define the measurable space (Ωpre,Apre) through:

Ωpre := H × PN × SN ×
(
RN
)N

, Apre := B(Ωpre) ,

and endow it with the probability measure

Ppre := PH ⊗ P⊗N
P ⊗ P⊗N

I ⊗
N⊗

n=1

P⊗N
R .

We denote the canonical process on Ωpre, that is, the coordinate projections, by

Xpre :=
(
H ,P[N],I[N], (R

(t))t∈N,[N]

)
.

Thus, it holds that H ∼ PH , P1, ...,PN
iid∼ PP , I1, ...,IN

iid∼ PI , and all R
(t)
n ∼ PR ,

t ∈ N, n = 1, ..., N , are i.i.d. Then, by definition of (Ωpre,Apre,Ppre) and Fubini’s theorem,
for any cylinder set B1 × ...× BN ∈ B(S)⊗N we have the following factorization:

Ppre

{(
A(H ,P1,I1,R

(1)
1), ...,A(H ,PN ,IN ,R

(1)
N)
)
∈ B1 × ...× BN

}

=

∫

H×PN×SN

N∏

n=1

PR {A(α, θn, xn, ·) ∈ Bn}
(
PH ⊗ P⊗N

P ⊗ P⊗N
I

)
(dα, dθ[N], dx[N]) ,

which motivates the following definition:

Definition 13 The transition kernel of A is given through

γ : H × P × S → S, ((α, θ, x),B) 7→ PR {A(α, θ, x, ·) ∈ B} .
The joint transition kernel of A is given through

Γ : H × PN × SN → SN ,
(
(α, θ[N], x[N]),B1 × ...× BN

)
7→

N∏

n=1

PR {A(α, θn, xn, ·) ∈ Bn} ,

that is, Γ(α, θ[N], x[N]) =
⊗N

n=1 γ(α, θn, xn).

11

Sucker and Ochs

Remark 14 As will be shown below, for every (α, θ) ∈ H×P , the distribution of the process
ξ =

(
ξ(t)
)
t∈N0

generated by A(α, θ, ·, ·) is uniquely defined by the transition kernel γ(α, θ, ·) :
S → S and the initial distribution PI . This is the probabilistic generalization of the fact
that the trajectory of a deterministic algorithm is uniquely defined by the initialization and
its update-step.

Example 15 (i) The transition kernel of stochastic gradient descent from Example 12
is given by:

PR {A(α, θ, x, ·) ∈ B} := U{1,...,m}

{
x− α

m∑

i=1

1{i}(·)∇fi(x, θ) ∈ B

}
.

Basically, this is the transition kernel used by Bianchi et al. (2022), and our definition
is a direct generalization of it.

(ii) The transition kernel is a direct generalization of the usual algorithmic update: Con-
sider a deterministic algorithm. Then, it holds γ(α, θ, x) = δA(α,θ,x), and we get:

PR {A(α, θ, x) ∈ B} = δA(α,θ,x)[B] = 1B(A(α, θ, x)) .

Thus, integrating w.r.t. γ just yields the new iterate. Taking this approach, we recover
the average-case setting of Pedregosa and Scieur (2020); Scieur and Pedregosa (2020).

Lemma 16 Suppose that A satisfies Assumption 11. Then the transition kernel γ is a
probability kernel from H × P × S to S, and the joint transition kernel Γ is a probability
kernel from H × PN × SN to SN .

Proof By definition, it holds that:

γ((α, θ, x),B) =
(
PR ◦ A(α, θ, x, ·)−1

)
{B} .

Thus, since A : H × P × S × R → S is measurable, and PR can be seen as the constant
kernel from H × P × S → R, we get from Kallenberg (2021, Lemma 3.2 (ii), p.56) that γ
is a probability kernel from H × P × S to S. Hence, by definition of Γ, if (α, θ[N], x[N]) is

given, we also get that Γ(α, θ[N], x[N]) is a measure on SN . Therefore, it remains to show

measurability of Γ(·,A) for fixed A ∈ B(S)⊗N . We do this by a monotone-class argument.
For this, define the classes of sets:

D := {A ∈ B(S)⊗N : (α, θ[N], x[N]) 7→ Γ(α, θ[N], x[N],A) is measurable}
C := {A0 × ...× AN : A0, ...,AK ∈ B(S)} .

C is the class of cylinder sets, which, by definition, is a ∩-stable generator of the product-σ-
field. Thus, C is a π-system with σ(C) = B(S)⊗N . Furthermore, for any B1 × ...× BN ∈ C,
it holds that:

Γ
(
(α, θ[N], x[N]),B1 × ...× BN

)
=

N∏

n=1

γ(α, θn, xn,Bn) .

12

Markovian Learning-to-0ptimize

Since γ is a probability kernel, that is, measurable for fixed (α, θn, xn), it follows that
C ⊂ D. Thus, it remains to show that D is a λ-system. Clearly, it holds that SN ∈ C ⊂ D.
Thus, take A,B ∈ D with A ⊃ B. Then, since Γ

(
α, θ[N], x[N]

)
was already shown to be a

probability measure for each fixed (α, θ[N], x[N]), we have the following pointwise equality:

Γ
(
(α, θ[N], x[N]),A \ B

)
= Γ

(
(α, θ[N], x[N]),A

)
− Γ

(
(α, θ[N], x[N]),B

)
.

Therefore, since A,B ∈ D, we have that the right-hand side is measurable, which in turn
implies A \ B ∈ D. Finally, for A1,A2, ... ∈ D with An ↑ A, by continuity of a measure, we
have the pointwise equality:

Γ
(
(α, θ[N], x[N]),A

)
= lim

n→∞
Γ
(
(α, θ[N], x[N]),An

)
.

Since limits of measurable functions are measurable, it follows that A ∈ D. Therefore, D
is a λ-system, and Theorem 8 yields B(S)⊗N ⊂ D. Thus, Γ is a probability kernel from
H × PN × SN to SN .

Given a starting point ξ(0), we can compute the t-th iterate ξ(t) by applying the algorithm A
t-times recursively to ξ(0). Similarly, given an initial distribution PI , we get the distribution
of ξ(t) by applying the transition kernel γ t-times recursively to PI :

Definition 17 The transition semi-group (γt)t∈N0 is defined recursively by:

γ0(α, θ, x) := δx, γt(α, θ, x) := γt−1(α, θ, x) · γ(α, θ, ·), t ∈ N .

Similarly, the joint transition semi-group is defined by:

Γ0(α, θ[N], x[N]) := δx[N]
, Γt(α, θ[N], x[N]) := Γt−1(α, θ[N], x[N]) · Γ(α, θ[N], ·), t ∈ N .

Remark 18 (i) γt models the t-fold application of the algorithm: applying γt to the
distribution of ξ(t0) yields the distribution of ξ(t0+t). Thus, the resulting process is
time-homogeneous. Nevertheless, one can still model algorithms that have a param-
eter T (t), which itself models the progression of time, as, for example, in Nesterov’s
accelerated gradient descent (Nesterov, 1983). The prerequisite for this is that the
update of this time-parameter can be written in closed-form, that is, T (t+1) = f(T (t))
for some measurable function f , such that T (t) can be included into the state ξ(t).

(ii) For every (α, θ) ∈ H×P , the process ξ generated by A(α, θ, ·, ·) is a time-homogeneous
Markov process (w.r.t. the natural filtration generated by the iterates) with initial
distribution PI and transition semi-group

(
γt(α, θ, ·)

)
t∈N0

. This can be seen by noting
that, if α and θ are fixed, the equation

ξ(t+1) = A(α, θ, ξ(t), η(t+1))

corresponds to the so-called functional representation of a Markov process.

13

Sucker and Ochs

Through this recursive definition, and as is shown in Lemma 45 in the appendix, we have
that the factorization of Γ extends to the joint transition semi-group

(
Γt
)
t∈N0

, which will
ultimately result in a corresponding factorization of the joint distribution of the processes
ξ1, ..., ξN corresponding to the parameters θ1, ..., θN . By Klenke (2013, Corollary 14.44,
p.299), for every α ∈ H and θ ∈ P there exist a unique probability measure ψα,θ on SN0 ,
such that for any natural numbers 0 = t0 < t1 < ... < tK , it holds that:

ψα,θ ◦ X −1
J = PI ⊗

K−1⊗

k=0

γtk+1−tk(α, θ, ·) , (2)

where J := {t0, ..., tK} and XJ : SN0 → SK+1 denotes the corresponding coordinate pro-
jection. This means that the finite-dimensional distribution of ψα,θ corresponding to the
time-points t0, ..., tK is given by the distribution of the iterates

(
ξ(t0), ..., ξ(tK)

)
generated

by A(α, θ, ·, ·) (with initial distribution PI). Since the distribution of a stochastic pro-
cess is uniquely determined by its finite-dimensional distributions (Kallenberg, 2021, Prop.
4.2, p.84), this implies that, for every (α, θ) ∈ H × P , there is exactly one distribution
on the space of trajectories SN0 , namely ψα,θ, that describes the iterates corresponding to

A(α, θ, ·, ·). Similarly, there exists a unique probability measure Ψα,θ[N]
on
(
SN
)N0 , such

that:

Ψα,θ[N]
◦ X −1

J,[N] = P⊗N
I ⊗

K−1⊗

k=0

Γtk+1−tk(α, θ[N], ·) , (3)

where XJ,[N] :
(
SN
)N0 →

(
SN
)K+1

denotes the corresponding coordinate projections on(
SN
)N0 . As before, Ψα,θ[N]

is the unique measure on
(
SN
)N0 that describes the distri-

bution of the trajectory of ξ[N] = (ξ1, ..., ξN) in SN which is generated by the collection
(A(α, θ1, ·, ·), ...,A(α, θN , ·, ·)). Intuitively, and as will be shown later on, this is (up to
reordering) the same as considering N individual processes ξ1, ..., ξN on S generated by
A(α, ·, ·, ·) on the problem instances θ1, ..., θN . First, however, we show that both ψα,θ and
Ψα,θ[N]

can be “summarized” into a unique kernel:

Theorem 19 Suppose that Assumptions 9 and 11 hold. Then, the map

ψ : (H × P)× B(S)⊗N0 → [0, 1], ((α, θ),B) 7→ ψα,θ(B)

is the unique probability kernel from H ×P to SN0, such that (2) holds. Similarly, the map

Ψ : (H × PN)× B
(
SN
)⊗N0 → [0, 1],

(
(α, θ[N]),B

)
7→ Ψα,θ[N]

(B)

is the unique probability kernel from H × PN to
(
SN
)N0, such that (3) holds.

Proof By construction, we have that ψ(α, θ, ·) is a probability measure on SN0 for each
(α, θ) ∈ H × P . Thus, we only have to show the measurability. Again, this follows by a
monotone-class argument. A detailed proof is given in Appendix B.

14

Markovian Learning-to-0ptimize

PI · γt(α, θ, ·)) PI ⊗
⊗K−1

k=0 γ
tk+1−tk(α, θ, ·, ·) ψ(α, θ)

⊗N
n=1 PI · Γt(α, θ[N], ·))

⊗N
n=1 PI ⊗

⊗K−1
k=0 Γtk+1−tk(α, θ[N], ·, ·) Ψ(α, θ[N])

Figure 3: Visualization of the (joint) transition kernel: The upper row shows how the kernel
γ(α, θ, ·) acts on the initial distribution: The iterative concatenation (upper left)
transforms the initial distribution of ξ(0) on S (dark blue) into the distributions
of ξ(t1) (light blue), ξ(t2) (purple), ξ(t3) (pink), and ξ(t4) (light pink). Similarly,
the iterative product (upper middle) transforms the initial distribution on S into
a distribution on S5, namely the joint distribution of (ξ(0), ξ(t1), ..., ξ(t4)). Then,
this yields the unique distribution ψ(α, θ, ·) on SN0 (upper right) for the whole
trajectory (orange lines). The lower row shows the same thing on the space SN ,
just that the initial distribution now is given by

⊗N
n=1 PI and the corresponding

kernel is Γ(α, θ[N], ·), which acts on all problem instances θ1, ..., θN at once.

Remark 20 Assumption 11 is needed for measurability, while Assumptions 9 is needed for
the existence of ψα,θ and Ψα,θ[N]

.

Theorem 19 states that the distribution of the trajectory on SN0 depends measurably on
the parameters of the problem and the hyperparameters of the algorithm. This allows to
define a new probability space, which describes these three directly. Before doing this,
the next lemma states that the factorization of Γ actually extends to a factorization of
Ψ, that is, the resulting processes (ξ1, ..., ξN) are conditionally independent. Here, for

a lack of a better notation, we will also write cylinder sets A ∈ B
(
SN
)⊗N0 with their

corresponding coordinates A = A1 × ... × AN , where each Ai ∈ B
(
SN0

)
. This is justified

15

Sucker and Ochs

by the fact that
(
SN
)N0 ∼=

(
SN0

)N
and B

(
SN
)⊗N0 ∼= B

(
SN0

)⊗N
. Further, B

(
SN
)⊗N0 is

generated by cylinder sets of the form
(
B0
1 × ...× B0

N

)
× ...×

(
BK
1 × ...× BK

N

)
×∏k>K SN ,

while B
(
SN0

)⊗N
is generated by cylinder sets of the form

(
B0
1 × ...× BK

1 ×∏k>K S
)
× ...×(

B0
N × ...× BK

N ×∏k>K S
)
, which are just a reordering of each other.

Lemma 21 Suppose that Assumptions 9 and 11 hold. Then, for any (α, θ[N]) ∈ H × PN ,

and any set A1 × ...× AN ∈ B
(
SN
)⊗N0, we have the following factorization:

Ψ(α, θ[N],A1 × ...× AN) =

N∏

i=1

ψ(α, θn,An) .

Thus, it holds that:

Ψ(α, θ[N]) ∼=
N⊗

n=1

ψ(α, θn) .

Proof Ψ(α, θ[N]) is uniquely defined by its values on a ∩-stable generator of B
(
SN
)⊗N0 .

As stated above, such a generator is given by cylinder sets of the form:

(
B0
1 × ...× B0

N

)
︸ ︷︷ ︸

=:C0

×...×
(
BK
1 × ...× BK

N

)
︸ ︷︷ ︸

=:CK

×
∏

k>K

SN .

Thus, denoting J := {0, ...,K}, we get:

Ψ(α, θ[N],A1 × ...× AN) = Ψα,θ[N]
{A1 × ...× AN}

=
(
Ψα,θ[N]

◦ X −1
J,[N]

){
C0 × ...× CK

}
=

(
P⊗N

I ⊗
K−1⊗

k=0

Γ(α, θ[N], ·)
)
{
C0 × ...× CK

}

=

∫

SN

P⊗N
I (dx[N])

(
δx[N]

⊗
K−1⊗

k=0

Γ(α, θ[N], ·)
)
{
C0 × ...× CK

}
.

By Lemma 45, this is the same as:

=

∫

SN

P⊗N
I (dx[N])

N∏

i=1

(
δxn ⊗

K−1⊗

k=0

γ(α, θn, ·)
)
{
B0
n × ...× BK

n

}
.

By Fubini’s theorem, this is the same as:

=
N∏

i=1

∫

S
PI (dxn)

(
δxn ⊗

K−1⊗

k=0

γ(α, θn, ·)
)
{
B0
n × ...× BK

n

}

=
N∏

i=1

(
PI ⊗

K−1⊗

k=0

γ(α, θn, ·)
)
{
B0
n × ...× BK

n

}

=

N∏

i=1

(
ψα,θn ◦ X −1

J

) {
B0
n × ...× BK

n

}
=

N∏

i=1

ψα,θn

{
B0
n × ...× BK

n ×
∏

k>K

S

}
.

16

Markovian Learning-to-0ptimize

Since B0
n× ...×BK

n ×∏k>K S is the n-th “coordinate” of the set C0××CK ×∏k>K SN ,
this shows that all finite-dimensional marginals of Ψ(α, θ[N]) coincide with the corresponding

ones of ⊗N
n=1ψ(α, θn). Thus, by the Kolmogorov Extension Theorem (Klenke, 2013, Thm.

14.36, p.295) (uniqueness of the projective limit), we get that

Ψ(α, θ[N]) ∼=
N⊗

n=1

ψ(α, θn) ,

that is, up to reordering, Ψ(α, θ[N]) is just the product of ψ(α, θn), n = 1, ..., N .

Figure 3 visualizes these two constructions: The left column shows how the initial distribu-
tions PI (upper row) and P⊗N

I (lower row) are transformed by the transition semi-group(
γt
)
t∈N0

and
(
Γt
)
t∈N0

, respectively. This gives the distribution of the iterates ξ(t0), ..., ξ(tK) ∈
S and ξ

(t0)
[N] , ..., ξ

(tK)
[N] ∈ SN , respectively. Then, the middle column shows the corresponding

joint distributions of (ξ(t0), ..., ξ(tK)) ∈ SK+1 and (ξ
(t0)
[N] , ..., ξ

(tK)
[N]) ∈

(
SN
)K+1

. Finally, the

right column visualizes ψ and Ψ on SN0 and
(
SN
)N0 , respectively.

Remark 22 Based on Lemma 21, to simplify the argument, we can (and often will) iden-

tify the measure Ψ(α, θ[N]) on
(
SN
)N0 with the measure

⊗N
n=1 ψ(α, θn) on

(
SN0

)N
, and

correspondingly
((
SN
)N0 ,B

(
SN
)⊗N0

)
with

((
SN0

)N
,B
(
SN0

)⊗N
)
.

4.2 Definition of the Probability Space

In the following, we will only be interested in the distribution of the trajectory on SN0 or(
SN
)N0 ∼=

(
SN0

)N
respectively, and how they evolve with α and θ. Hence, we define the

measurable space (Ω,A) as:

Ω := H × PN ×
(
SN
)N0

, A := B(Ω) ,

and endow it with the probability measure P, given by:

P :=
(
PH ⊗ P⊗N

P

)
⊗Ψ .

Further, as before, we denote the coordinate projections by X := (H ,P[N], ξ[N]), that is,

H ∼ PH , P1, ...,PN
iid∼ PP , and ξ[N] := (ξ1, ..., ξN) ∼ (PH ⊗ P⊗N

P) ·Ψ.

Remark 23 Since we define P through the probability kernel Ψ, it is assumed implicitly
that Assumptions 9 and 11 do hold all the time, as they were needed for its construction.

The following lemma summarizes results about regular versions of the conditional distribu-
tions arising from the construction above. Additionally, it is also meant to fix the notation.

Lemma 24 It holds that:

(i) Ψ is a regular version of the conditional distribution of ξ[N], given H and P[N], that
is:

Pξ[N]|H ,P[N]
{A} = Ψ(H ,P[N],A), P(H ,P[N])−a.s.

17

Sucker and Ochs

(ii) PP[N]
⊗Ψ is a regular version of the conditional distribution of (P[N], ξ[N]), given H ,

that is:

P(P[N],ξ[N])|H {A} =
(
PP[N]

⊗Ψ(H , ·)
)
{A}, PH −a.s.

(iii) ψ is a regular version of the conditional distribution of ξn, given H and Pn, that is:

Pξn|H ,Pn
{A} = ψ(H ,Pn,A), P(H ,Pn)−a.s.

(iv) PP ⊗ψ is a regular version of the conditional distribution of (Pn, ξn), given H , that
is, PH −a.s.:

P(Pn,ξn)|H {A} = (PPn ⊗ ψ(H , ·)) {A} = (PP ⊗ ψ(H , ·)) {A} =: P(P,ξ)|H {A} .

Proof Basically, these statements are a direct consequence of the definition of the proba-
bility space and the properties of ψ and Ψ. For more details, see Appendix C.

Remark 25 (i) In the following, we will use solely these regular versions of the condi-
tional distributions and omit the “a.s.”.

(ii) Other regular conditional distributions, for example, a regular version of the condi-
tional distribution of (Pn, ξn), given H and Pn, that is, P(Pn,ξn)|H ,Pn

, follow from
the ones specified in Lemma 24 through sections:

P(Pn,ξn)|H =α,Pn=θ{A} := Pξn|H =α,Pn=θ{Aθ} ,

where Aθ := {z ∈ SN0 : (θ, z) ∈ A}.

(iii) Since X = (H ,P[N], ξ[N]) is defined as the coordinate projections on Ω, we will use
the expressions for the regular version of the conditional probability and conditional
distribution interchangeably depending on which seems to be more easy to read:

P(Pn,ξn)|H =α,Pn=θ{A} = P{(Pn, ξn) ∈ A | H = α,Pn = θ}
= P{(Pn, ξn) ∈ A | H ,Pn}(ω) .

Similarly for expected values.

Corollary 26 Given any (α, θ[N]) ∈ H ×PN , the processes ξ[N] = (ξ1, ..., ξN) are indepen-

dent, and ξi is independent of θj for i ̸= j. That is, for any set A1 × ...× AN ∈
(
SN0

)N
it

holds that:

P
{
ξ[N] ∈ A1 × ...× AN | H = α,P[N] = θ[N]

}
=

N∏

i=1

P {ξn ∈ An | H = α,Pn = θn} ,

that is, Pξ[N]|H ,P[N]
=
⊗N

n=1 Pξn|H ,Pn
.

18

Markovian Learning-to-0ptimize

Proof This follows directly from Lemma 21 and Lemma 24.

Corollary 27 Let f1, ..., fN : SN0 → R≥0 be measurable functions. Then it holds that:

E

{
N∑

n=1

fn(ξn) | H ,P[N]

}
=

N∑

n=1

E {fn(ξn) | H ,Pn} .

Proof By Lemma 24, it holds that:

E

{
N∑

n=1

fn(ξn) | H ,P[N]

}
=

∫

(SN0)N

N∑

n=1

fn(zn) Ψ(H ,P[N], dz[N])

=

N∑

n=1

∫

(SN0)N
fn(zn) Ψ(H ,P[N], dz[N]) .

By Lemma 21 and Fubini’s theorem, this is the same as:

=
N∑

n=1

∫

SN0
fn(zn) ψ(H ,Pn, dzn) ·

N∏

i ̸=n

∫

SN0
ψ(H ,Pi, dzi)

︸ ︷︷ ︸
=1

=

N∑

n=1

∫

SN0
fn(zn) ψ(H ,Pn, dzn) =

N∑

n=1

E {fn(ξn) | H ,Pn} .

where the last step follows from applying Lemma 24 again.

4.3 Stopping the Algorithm

Ultimately, the algorithm is stopped at some point. Typically, this is the case as soon
as some convergence criterion is met. Here, the set of points s ∈ S where A satisfies
the convergence criterion can be represented as a subset C̃ ⊂ S. However, since we are
considering parametric loss functions, we also have to use a parametric set C ⊂ P × S:

Definition 28 The convergence set C ⊂ P × S is defined as:

C := {(θ, s) ∈ P × S : s satisfies the convergence criterion for ℓ(·, θ).}

Since the convergence set is defined in terms of a not further specified convergence criterion,
we need the following assumption:

Assumption 29 The convergence set C is measurable.

Example 30 (i) One could use C := {(θ, s) ∈ P × S : ℓ(s, θ) ≤ ε} for convergence in
terms of the loss function, which is measurable, since ℓ is measurable.

19

Sucker and Ochs

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Trajectories and the convergence set C

50 100 150 200

τ = t

0

50

100

150

200

250

300
Distribution of Stopping Time τ

Figure 4: Visualization of the stopping time τ : In the left plot, the convergence set for each
problem is shown as shaded region. As soon as a trajectory enters this region (red
crosses), the algorithm is stopped. This yields the distribution of τ depending on
the parameter θ, as shown in the right plot.

(ii) If ℓ(s, θ) has a unique minimizer s∗θ, convergence in terms of the iterates could be
written as C := {(θ, s) ∈ P × S : d (s, s∗θ) ≤ ε}. If θ 7→ s∗θ is measurable, C is
measurable, because the distance d is continuous.

(iii) One could use C := {(θ, s) ∈ P×S : ∥∇sℓ(s, θ)∥ ≤ ε} for convergence to a stationary
point. For example, if ∇sℓ is (jointly) continuous, C is measurable.

Usually, the algorithm A is stopped either if it is converged, that is, (P, ξ(t)) ∈ C for some
t ∈ N0, or, if the maximal computational budget is reached, that is, for example, a certain
number of iterations has been performed. Hence, we introduce the following random times

τmax := tmax ∈ N and τconv,n := inf{t ∈ N0 : (Pn, ξ
(t)
n) ∈ C}, n = 1, ..., N . Then, we

combine them into the random times τn:

τn := τmax ∧ τconv,n := min{τmax, τconv,n}, n = 1, ..., N .

The following lemma shows that the random times τn are indeed stopping times (sometimes

also called optional times) in the sense of probability theory, that is, {τn ≤ t} ∈ F (t)
n for

each t ∈ N0, n = 1, ..., N . Intuitively, this tells us that, at time t, the information collected

in F (t)
n is indeed enough to decide whether the algorithm did reach the convergence set:

Proposition 31 Suppose that Assumption 29 holds. Then, for each n ∈ {1, ..., N}, τn is a

stopping time w.r.t. the filtration Fn = (F (t)
n)t∈N0, where F (t)

n := σ(Pn, ξ
(0)
n , ..., ξ

(t)
n).

20

Markovian Learning-to-0ptimize

Proof If τmax and τconv,n are Fn-optional, so is τn by Kallenberg (2021, Lemma 9.1 (i),
p.186). Since τmax is constant, it is Fn-optional by Kallenberg (2021, Lemma 9.1 (v), p.186).
Hence, we only have to show that τconv,n is Fn-optional. By definition, it holds that τconv,n

is a so-called hitting time for the process Yn = (Y
(t)
n)t∈N0 given by Y

(t)
n := (Pn, ξ

(t)
n), that

is, it is of the form

τconv,n = inf
{
t ∈ N0 : Y (t)

n ∈ C
}
.

Then, by Kallenberg (2021, Lemma 9.6 (i)), τconv,n is weakly F̃-optional for every filtration
F̃ such that Yn is adapted to F̃ . In particular, this holds for Fn, because:

F (t)
n = σ(Pn, ξ

(0)
n , ..., ξ(t)n) = σ((Pn, ξ

(0)
n), ..., (Pn, ξ

(t)
n)) = σ(Y (0)

n , ...,Y (t)
n) .

Since in discrete time there is no distinction between weakly optional times and optional
times, the conclusion follows.

5 Generalization Results

In this section, we use the previously constructed probability space to derive the generaliza-
tion results. To this end, in Theorem 33 we give a PAC-Bayesian generalization result for
the case of a bounded parametric function defined on the space of trajectories SN0 . Then,
in Corollary 35 we specialize it to the case of the convergence time, and in Corollary 38 to
the case of the convergence rate. Both results are immediate consequences of Theorem 33.

Lemma 32 Let f : P × SN0 → [0,∞) be a measurable function that is bounded from above
by fmax ∈ R. Then, for every λ ∈ R it holds that:

E

{
exp

(
λ

(
1

N

N∑

n=1

E {f(Pn, ξn) | H ,Pn} − E(P,ξ)|H {f}
)

− λ2

2N
f2max

)}
≤ 1 .

Proof This follows from standard arguments like Jensen’s inequality, Fubini’s theorem,
Hoeffding’s inequality, and the i.i.d. assumption. A detailed proof is given in Appendix D.

For the following result, please recall that α 7→ E(P,ξ)|H =α{f} = (PP ⊗ ψ(α, ·)) [f] is a
measurable function on H, that is, it can be integrated w.r.t. an arbitrary (probability)
measure ρ ∈ M(H). Furthermore, note that, by projecting from SN0 onto the corresponding
coordinate, this result can be applied to single, fixed iterates, too.

Theorem 33 Let f : P × SN0 → [0,∞) be a measurable function that is bounded from
above by fmax ∈ R. Then, for every λ ∈ (0,∞) and ε > 0 it holds that:

PP[N]

{
∀ρ ∈ P (PH) : ρ

[
E(P,ξ)|H {f}

]
≤

1

N

N∑

n=1

ρ
[
E(Pn,ξn)|H ,Pn

{f}
]
+
DKL(ρ ∥ PH) + λ2

2N f
2
max − log(ε)

λ

}
≥ 1− ε .

21

Sucker and Ochs

Proof Abbreviate f̄ := E(P,ξ)|H {f} and f̂ := 1
N

∑N
n=1 E(Pn,ξn)|H ,Pn

{f}. Then, since
Lemma 32 holds for any λ ∈ R, we get that:

E(P[N],H)

{
exp

(
λ
(
f̄ − f̂

)
− λ2

2N
f2max

)}
≤ 1 .

By Fubini’s theorem applied to P(P[N],H) = PP[N]
⊗ PH , the variational formulation of

Donsker-Varadhan, and the linearity of the integral, this is the same as:

EP[N]

{
exp

(
sup

ρ∈P(PH)
λ
(
ρ[f̄]− ρ[f̂]

)
−DKL(ρ ∥ PH)− λ2

2N
f2max

)}
≤ 1 .

Then, for any s ∈ R we get from Markov’s inequality:

PP[N]

{
sup

ρ∈P(PH)
λ
(
ρ[f̄]− ρ[f̂]

)
−DKL(ρ ∥ PH)− λ2

2N
f2max ≥ s

}
≤ exp(−s) .

Using s = log(1/ε) yields:

PP[N]

{
sup

ρ∈P(PH)
λ
(
ρ[f̄]− ρ[f̂]

)
−DKL(ρ ∥ PH)− λ2

2N
f2max ≥ log

(
1

ε

)}
≤ ε .

Restricting to λ > 0, reformulating, and taking the complementary event yields the result.

Remark 34 Under some mild assumptions, by a covering argument, the provided bound
could also be made uniform in λ.

5.1 Guarantees for the Convergence Time

Please recall the definition of τn = τconv,n ∧ τmax. Then, note that τconv,n can be written as
τ̃ ◦ (Pn, ξn), where τ̃ : P × SN0 → N0 ∪ {+∞} is given by:

(θ, (z(t))t∈N0) 7→ inf{k ∈ N0 : (θ, z(k)) ∈ C} = inf
k∈N0

k · (1 + ιC(θ, z
(k))) ,

where ιC(θ, z
(k)) = 0, if (θ, z(k)) ∈ C, and +∞ otherwise. Since C is measurable by Assump-

tion 29, and ιC only takes the values {0,+∞}, the map (θ, (z(t))t∈N) 7→ k · (1 + ιC(θ, z
(k)))

is measurable. Thus, τ̃ is measurable as infimum of countably many measurable functions.
Therefore, the map T : P × SN0 → N0, defined through

T (θ, (z(t))t∈N0) := tmax ∧ τ̃(θ, (z(t))t∈N0) ,

is measurable and bounded by tmax, and we can write τn as T ◦ (Pn, ξn). Hence, defining
the average expected convergence time as τ̄ := E(P,ξ)|H {T}, we get the following result:

Corollary 35 Suppose that Assumption 29 holds. Then, for every λ ∈ (0,∞) and ε > 0 it
holds that:

PP[N]

{
∀ρ ∈ P (PH) :

ρ [τ̄] ≤ 1

N

N∑

n=1

ρ [E {τn | H ,Pn}] +
DKL(ρ ∥ PH) + λ2

2N t
2
max − log(ε)

λ

}
≥ 1− ε .

22

Markovian Learning-to-0ptimize

Proof Since T is bounded by tmax, one can apply Theorem 33 with f = T and fmax = tmax,
which, by noting that E {τn | H ,Pn} = E(Pn,ξn)|H ,Pn

{T}, directly yields the result.

5.2 Guarantees for the Convergence Rate

The convergence rate of an algorithm is determined by how it contracts a certain criterion
along the iterates, for example, the loss function (convergence rate in terms of function
values) or the distance to the set of minimizers (convergence in terms of the iterates). For
this, we need a corresponding function on the space of sequences:

Definition 36 The contraction function is defined as:

c : P × S × S → R≥0, (θ, x, y) 7→ ℓ(x, θ)

ℓ(y, θ)
· 1{ℓ(y, θ) > 0} .

Abbreviate T := T (θ, (z(t))t∈N). Then, the rate function is defined as:

r : P × SN0 → R≥0, (θ, (z(t))t∈N0) 7→ (c(θ, z(T), z(0)))
1
T · 1{T ≥ 1} ,

and the expected rate function is defined as r̄ := E(P,ξ)|H {r}. Similarly, for some rmax ∈
R≥0, we define the bounded rate function and expected bounded rate function as rb :=
r · 1{r ≤ rmax}, and r̄b = E(P,ξ)|H {rb}.

Remark 37 Note that, in contrast to defining the rate function in terms of the maximum
over the iterations, this definition is applicable in the stochastic case, too.

Since ℓ is measurable, we have that c is measurable. Further, since T is measurable (if C
is) and only takes countably many values, we get that z(T) is measurable. Therefore, also
r is measurable. Hence, rb is measurable and bounded, and we get the following result:

Corollary 38 Suppose that Assumption 29 holds. Then, for every λ ∈ (0,∞) and ε > 0 it
holds that:

PP[N]

{
∀ρ ∈ P (PH) :

ρ [r̄b] ≤
1

N

N∑

n=1

ρ
[
E(Pn,ξn)|H ,Pn

{rb}
]
+
DKL(ρ ∥ PH) + λ2

2N r
2
max − log(ε)

λ

}
≥ 1− ε .

Proof Again, this follows directly from Theorem 33 with f = rb and fmax = rmax.

5.3 Properties of the Trajectory

The last theoretical result concerns the probability to observe a trajectory that obeys a
certain property, for example, to converge with at least a rate of r ≤ rmax. Such properties
can be encoded in a measurable set A ⊂ P × SN0 , and we have to consider the function
f := 1A. Since 1A is measurable and bounded, one could directly apply the results from
above. Yet, in this case, one can compute the integral in closed-form and get tighter results:

23

Sucker and Ochs

Lemma 39 Let A ⊂ P × SN0 be measurable. Then, for any λ ∈ R, it holds that:

E

{
exp

(
− λ

N

N∑

n=1

1A(Pn, ξn)

)}
= E

{(
1−

[
1− exp

(
− λ

N

)]
P(P,ξ)|H {A}

)N
}
.

Proof By the same arguments as before, we get from Lemma 24:

E

{
exp

(
− λ

N

N∑

n=1

1A(Pn, ξn)

)}
= E

{(
E(P,ξ)|H

{
exp

(
− λ

N
1A

)})N
}
.

Then, for any α ∈ H, the inner integral is given by:

E(P,ξ)|H =α

{
exp

(
− λ

N
1A

)}
= P(P,ξ)|H =α {Ac}+ exp

(
− λ

N

)
P(P,ξ)|H =α {A}

= 1− P(P,ξ)|H =α {A}+ exp

(
− λ

N

)
P(P,ξ)|H =α {A}

= 1−
[
1− exp

(
− λ

N

)]
P(P,ξ)|H =α {A} ,

which concludes the proof.

The term inside the power is the Laplace transform of a Bernoulli random variable with pa-
rameter P(P,ξ)|H {A}. Generalization bounds for Bernoulli-random variables were already
presented, for example, by Catoni (2007), whose approach will be applied in the following.

Lemma 40 (Catoni (2007)) Define the function

Φa(p) := −1

a
log (1− [1− exp(−a)] p) .

Then it holds that:

(i) Φa is an increasing one-to-one mapping of the unit-interval onto itself,

(ii) Φa is strictly convex for a > 0 and strictly concave for a < 0,

(iii) Φ−1
a is given by: Φ−1

a (q) := 1−exp(−aq)
1−exp(−a) .

Proof This follows by standard arguments. The details are provided in Appendix E.

This yields the following corollary, which is needed to apply the PAC-Bayesian argument:

Corollary 41 Let A ⊂ P × SN0 be measurable. Then, for any λ ∈ R it holds that:

E

{
exp

(
λ

[
Φ λ

N

(
P(P,ξ)|H {A}

)
− 1

N

N∑

n=1

1A(Pn, ξn)

])}
= 1 .

In particular, it holds that:

EP[N]

{
EH

{
exp

(
λ

[
Φ λ

N

(
P(P,ξ)|H {A}

)
− 1

N

N∑

n=1

P(Pn,ξn)|H ,Pn
{A}

])}}
≤ 1 .

24

Markovian Learning-to-0ptimize

Proof The first statement follows directly by combining Lemma 39 and Lemma 40. The
second statement then follows from Fubini’s theorem and Jensen’s inequality. More details
are given in Appendix F.

As before, this yields the following PAC-Bayesian generalization bound. For completeness,
we provide a proof in Appendix G.

Theorem 42 (Catoni (2007)) Let A ⊂ P × SN0 be measurable. Then, for λ ∈ (0,∞), it
holds that:

PP[N]

{
∀ρ ∈ P(PH) : ρ[P(P,ξ)|H {A}] ≤

Φ−1
λ
N

(
1

N

N∑

n=1

ρ
[
P(Pn,ξn)|H ,Pn

{A}
]
+
DKL(ρ ∥ PH) + log

(
1
ε

)

λ

)}
≥ 1− ε .

Remark 43 By a union bound with confidence level 1− ε
3 , Corollary 35, Corollary 38 and

Theorem 42 can be applied at once, because:

PP[N]
{A ∩ B ∩ C} = 1− PP[N]

{Ac ∪ Bc ∪ Cc}

≥ 1−
(
PP[N]

{Ac}+ PP[N]
{Bc}+ PP[N]

{Cc}
)
≥ 1− ε .

This tells us that, with confidence level 1 − ε, we can estimate the probability to converge
with a rate of at least r+, an upper bound on the actual convergence rate, and the expected
convergence time all at once. Generally, however, without adjusting the confidence level ε,
this is false, and one cannot expect that all three bounds do hold at once.

6 Numerical Results

We consider the following five experiments: a strongly convex and smooth quadratic prob-
lem, a convex and smooth image processing problem, the convex and non-smooth LASSO
problem, the non-convex and non-smooth problem of training a neural network, and a
non-convex and non-smooth stochastic empirical risk minimization problem. The training
procedure is mostly the same as the one by Sucker et al. (2024). The main difference here

is that we replace ℓtrain(α, θ, ξ
(0), s) =

∑s
i=1 1{ℓ(ξ(i−1), θ) > 0} ℓ(ξ(i),θ)

ℓ(ξ(i−1),θ)
by

ℓtrain(α, θ, ξ
(t)) = 1{ℓ(ξ(t), θ) > 0}ℓ(ξ

(t+1), θ)

ℓ(ξ(t), θ)
· 1Cc(ξ(t), θ) ,

where C ⊂ P ×S is the convergence set. Thus, we fix s = 1 and the algorithm “observes” a
loss only as long as it did not reach the convergence set. This effectively solves the problem
mentioned by Sucker et al. (2024) that the algorithm might observe a “full loss” in the case
of convergence.
For completeness, we briefly summarize the training procedure: In the outer loop, we
sample a loss-function randomly from the training set. Then, in the inner loop, we train the
algorithm on this loss-function with ℓtrain, that is, in each iteration the algorithm computes

25

Sucker and Ochs

a new point and observes the loss ℓtrain, which is used to update its hyperparameters. This
finally yields some hyperparameters α0. Then, starting from α0, we construct the discrete
prior distribution PH over points α1, ..., αnsample

∈ H, by a sampling procedure. Finally,
we perform the (closed-form) PAC-Bayesian optimization step, which yields the posterior
ρ∗ ∈ P(PH). In the end, for simplicity, we set the hyperparameters to

α∗ = argmax
i=1,...,nsample

ρ∗{αi} .

In the description below, we use x(t), t ∈ N0, to denote the iterates of the algorithm in the
optimization space, that is, x(t) = ΠS(ξ

(t)), and, typically, we have x(t) ∈ Rd, d ∈ N.

6.1 Quadratics

In this subsection, we consider strongly convex quadratic functions with varying strong con-
vexity, varying smoothness and varying right-hand side, that is, each optimization problem
is of the form:

min
x∈Rd

1

2
∥Ax− b∥2 , A ∈ Rd×d, b ∈ Rd .

Thus, the parameters are given by θ = (A, b) ∈ Rd2+d =: P , while the optimization variable
is x ∈ Rd, and we use d = 200. We control the strong-convexity and smoothness of ℓ
by sampling them randomly in the intervals [m−,m+], [L−, L+] ⊂ (0,+∞), and define the

matrix Aj , j = 1, ..., N , as a diagonal matrix with entries ajii =
√
mj + i ·

√
Lj−

√
mj

d ,
i = 1, ..., d. While, in principle, this is restrictive, we do not use this knowledge explicitly,
and, later on, achieve a similar performance in the image-processing and LASSO problems,
which both include a non-diagonal quadratic term. Finally, we define the convergence set
as

Cquad := {(θ, s) ∈ P × S : ℓ(s, θ) < 10−8 or ∥∇ℓ(s, θ)∥ < 10−6} .

Since the given class of functions is L+-smooth and m−-strongly convex, we use heavy-ball
with friction (HBF) (Polyak, 1964) as baseline. Its update is given by x(t+1) = x(t) −
β1∇f(x(t)) + β2

(
x(t) − x(t−1)

)
, where the optimal worst-case convergence rate is attained

for β1 =
(

2√
L++

√
µ−

)2
, β2 =

(√
L+−√

µ−√
L++

√
µ−

)2
(Nesterov, 2018). On the other hand, the

learned algorithm A performs an update of the form x(t+1) = x(t) + β(t) · d(t), where β(t)
and d(t) are predicted by separate blocks of a neural network. For more details on the
architecture we refer to the Appendix H. The upper plot of Figure 5 shows that the learned
algorithm outperforms HBF by orders of magnitude. The median is shown as dotted line,
while the mean is shown in dashed line. The shaded region indicates the area up to the
quantile q = 0.95, that is, 95% of the test data. We can observe that the mean is not
representative for the typical performance of the algorithm, and is strongly influenced by a
few problem instances for which the learned algorithm does not work as good. In the lower
right plot, the convergence time is shown. We can see that most of the problems reach
the stopping criterion before tmax = 500 iterations, and, on average, the learned algorithms
needs less than 300 iterations to solve the problem. Further, the provided PAC-bound yields
a reasonable estimate of the true (average) convergence time. Similarly, the lower left plot

26

Markovian Learning-to-0ptimize

0 200 400 600 800 1000

nit

10−8

10−6

10−4

10−2

100

102

104

106

`(
ξ
(i

)
n
,θ
n

)

Loss over Iterations

Learned

HBF

ntrain

0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98

r(ξn, θn)

0

5

10

15

20

25

Conv. Rate

PAC-bound

rmax

200 250 300 350 400 450 500

τn

0

5

10

15

20

25

30

35

Conv. Time

PAC-bound

tmax

Figure 5: Quadratic: The top figure shows the loss over the iterations, where HBF is
shown in blue and the learned algorithm in pink. The mean and median are
shown as dashed and dotted lines, respectively, while the shaded region represents
the test data up to the quantile q = 0.95, that is, 95% of the test data. We can
see from the figure that the learned algorithm reaches the convergence criterion
way faster than HBF. The lower left plot shows the convergence rate of the
learned algorithm. Here, the dashed line represent the empirical mean and the
PAC-bound, respectively, and we can see that the bound is not vacuous, but also
not really tight. Similarly, the lower right figure shows the convergence time
of the learned algorithm. Again, the dashed lines represent the empirical mean
and the corresponding PAC-bound, which, in this case, is reasonably tight.

shows the estimated convergence rate: On average, the learned algorithm contracts the
loss by a factor of less than 0.9 per iteration. However, while the given PAC-bound is not
vacuous, it is also not tight.

27

Sucker and Ochs

6.2 Image Processing

In this subsection, we consider a (gray-scale) image denoising/deblurring problem with
a smooth approximation to the L1-norm of the image derivative as regularizer, that is,
problems of the form:

min
x∈Rd

1

2
∥Ax− b∥2+λ

d∑

i,j=1

√
(Dhx)

2
i,j + (Dwx)2i,j + ε2 λ ∈ R, A,Dh, Dw ∈ Rd×d, b ∈ Rd .

The matrix A describes the “blurring” of the image, while Dh and Dw are the discrete image
derivatives in h- and w-direction, respectively, which are used to penalize local changes in
the image. We use images of height Nh = 200 and width Nw = ⌊0.75 ·Nh⌋ = 150. Thus, the
dimension d of the optimization space is given by d = 30000. Further, as parameters θ we
use the observed image and the regularization parameter, that is, θ = (b, λ) ∈ Rd+1 =: P .
Throughout, we use ε = 0.01. For computational efficiency, the matrices A,Dh, Dw are
implemented through the convolution of the image x with a corresponding kernel (with
reflective boundary conditions). Additionally, after blurring an image with A, we add cen-
tered Gaussian noise εi,j with standard deviation σ = 25

256 to each pixel. The regularization
parameters λi ∈ R, i = 1, ..., N , are sampled uniformly from the interval [0.05, 0.5]. Finally,
we define the convergence set as

Cimg = {(θ, s) ∈ P × S : ∥∇ℓ(s, θ)∥ < 10−4} .
Since the problem is smooth and convex, yet not strongly convex, the baseline algorithm
is given by the accelerated gradient descent algorithm due to Nesterov (1983). Its update

is given by first computing y(t+1) = x(t) +
β
(t)
1 −1

β
(t+1)
1

(x(t) − x(t−1)) followed by setting x(t+1) =

y(t)−β2∇f(y(t+1)). We use the optimal choices β
(t+1)
1 = 1

2

(
1 +

√
1 + 4(β

(t)
1)2

)
and β2 =

1
L .

Here, the smoothness constant L is given by the largest eigenvalue of ATA+ λ
εD

TD, where

D ∈ R2d×d is given by “stacking” Dh and Dw, that is, D =
(
Dh Dw

)T
. On the other hand,

the learned algorithm A performs an update of the form x(t+1) = x(t) + ∥∇xℓ(x(t),θ)∥
L d

(t)
1 +

∥x(t) − x(t−1)∥d(t)2 − 1
L∇xℓ(x

(t), θ), where the directions d
(t)
1 and d

(t)
2 are predicted by a

neural network. For more details on the architecture we refer to Appendix I. The results of
this experiment are summarized in Figure 6. We can see that, on a typical problem from
this distribution, the algorithm clearly outperforms NAG, and reaches the convergence set
in about 500 iterations. However, as the mean (dashed line) strongly deviates from the
remaining 95% of the test problems (shaded area), we observe that the learned algorithm
does not converge for all of the problems. This is also validated by the lower right plot, which
shows the convergence time: For about 10 out of 250 problems (4%), the algorithm does
not reach the convergence set before tmax = 3000. Furthermore, the lower left plot shows,
unfortunately, that the PAC-bound for the convergence rate is vacuous here. This might be
due to the fact that the rate function already yields a value close to rmax. Thus, the PAC-
bound, which has to be greater or equal, will exceed rmax easily. Therefore, we actually
expect this behavior to happen whenever the actual rate is close to rmax. Nevertheless,
with more training data the bound would get more tight, and, additionally, we still have
the guarantee for the convergence time, which is actually quite tight here.

28

Markovian Learning-to-0ptimize

0 1000 2000 3000 4000 5000 6000

nit

10−8

10−6

10−4

10−2

100

102

104
`(
ξ
(i

)
n
,θ
n

)
−
`(
ξ
∗ N

A
G
,θ
n

)

Loss over Iterations

Learned

NAG

ntrain

0.80 0.85 0.90 0.95 1.00

r(ξn, θn)

0

5

10

15

20

25

30

Conv. Rate

PAC-bound

rmax

0 500 1000 1500 2000 2500 3000

τn

0

10

20

30

40

50

Conv. Time

PAC-bound

tmax

Figure 6: Image processing: The top figure shows the loss over the iterations, where NAG
is shown in blue and the learned algorithm in pink. The mean and median are
shown as dashed and dotted lines, respectively, while the shaded region represents
the test data up to the quantile q = 0.95, that is, 95% of the test data. The lower
left plot shows the convergence rate of the learned algorithm. The dashed lines
represent the empirical mean and the PAC-bound, and we can see that the bound
is vacuous here. Similarly, the lower right figure shows the convergence time
of the learned algorithm. Again, the dashed lines represent the empirical mean
and the corresponding PAC-bound, which, in this case, is quite tight.

29

Sucker and Ochs

6.3 LASSO

In this subsection, we consider the Lasso problem (Tibshirani, 1996), that is, a non-smooth
problem of the form:

min
x∈Rd

1

2
∥Ax− b∥22 + λ∥x∥1 A ∈ Rp×d, b ∈ Rp ,

with p ≤ d. Hence, the optimization variable is given by x ∈ Rd, and we use the same
matrix A ∈ Rp×d with dimensions d = 70 and p = 35 for all problem instances, where
we sample each entry uniformly in [−0.5, 0.5]. Thus, the parameters θ are given by the
right-hand side and the regularization parameter, that is, θ = (b, λ) ∈ Rp+1 =: P . For
this, the regularization parameter λ is sampled uniformly from [5, 10], while the right-hand
side is sampled from a multivariate normal distribution. Since the problem is convex and
non-smooth, we use the FISTA algorithm (Beck and Teboulle, 2009) as baseline, which
performs an extrapolation step followed by a proximal gradient step, that is, abbreviating
h(x) := 1

2∥Ax − b∥2 and g(x) := λ∥x∥1, the update is given by first computing y(t) =

x(t) + β
(t)
1

(
x(t) − x(t−1)

)
followed by setting x(t+1) = proxβg

(
y(t) − β∇h(y(t))

)
. Here, the

proximal mapping can be computed in closed-form yielding the soft-thresholding operator

x̂i = 1{|x̄i| > βλ} ·
(
x̄i − βλ x̄i

|x̄i|

)
, i = 1, ..., d. We choose β = 1/L, where L is the

largest eigenvalue of ATA, while β
(t)
1 is set to β

(t)
1 := (β

(t)
2 − 1)/β

(t+1)
2 with β

(t+1)
2 = (1 +√

1 + 4(β
(t)
2)2)/2. Since the problem is non-smooth, the gradient norm cannot be used as

stopping criterion. Thus, we define the convergence set as

Classo :=
{
(θ, s) ∈ P × S : ∥ΠS(s)− proxβg (ΠS(s)− β∇h(ΠS(s))) ∥ < 10−6

}
.

On the other hand, the learned algorithm A performs an update of the form x(t+1) =

proxβg

(
x(t) + 1

L

(
d
(t)
1 −∇h(x(t)) + ∥x(t) − x(t−1)∥ · d(t)1

))
, where d

(t)
1 and d

(t)
2 are predicted

by a neural network. For more details on the architecture we refer to the Appendix J. The
results are summarized in Figure 7: The upper plot shows that, on a typical example, the
learned algorithm reaches the convergence criterion in about 200 iterations, and outperforms
FISTA be many orders of magnitude. However, since the mean (dashed line) strongly
deviates from the other 95% of the test problems (shaded region), we can observe that
there are single problem instances on which the algorithm does not perform as good. The
two lower plots show the convergence rate and time, respectively, together with the predicted
PAC-bounds. In both cases, they are reasonable tight.

6.4 Training a Neural Network

In this subsection, we consider the problem of training a neural network on a regression
problem, that is, A is trained to predict the parameters β ∈ Rp of a neural network N(β, ·),
which then is used to predict a function g : R → R. Hence, the optimization variable is given
by β ∈ Rp. We assume that the neural network should learn a function g : R → R from
noisy observations yj = g(xj) + ε with ε ∼ N (0, 1). For this, we construct polynomials gi,
i = 1, ..., N , of degree d = 5 by sampling points {xi,j}Kj=1 (here: K = 50) uniformly in [−2, 2]
and the coefficients (ci,0, ..., ci,5) of gi uniformly in [−5, 5]. For every function gi : R → R

30

Markovian Learning-to-0ptimize

0 200 400 600 800 1000

nit

10−11

10−8

10−5

10−2

101

104

`(
ξ
(i

)
n
,θ
n

)
−
`(
ξ
∗ F

IS
T

A
,θ
n

)

Loss over Iterations

Learned

FISTA

ntrain

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

r(ξn, θn)

0

5

10

15

20

Conv. Rate

PAC-bound

rmax

100 200 300 400 500

τn

0

5

10

15

20

25

30

35

40

Conv. Time

PAC-bound

tmax

Figure 7: LASSO-Problem: The top figure shows the loss over the iterations, where FISTA
is shown in blue and the learned algorithm in pink. The mean and median are
shown as dashed and dotted lines, while the shaded region represents the test
data up to the quantile q = 0.95, that is, 95% of the test data. We can see that,
on a typical problem from this distribution, the learned algorithm reaches the
stopping criterion in less than 200 iterations, and outperforms FISTA by several
orders of magnitude. However, as the mean indicates, there are problem instances
on which also the learned algorithm is rather slow. As the lower left plot shows,
the learned algorithm strongly contracts the loss, on average, by a factor of 0.8
in each iteration. Similarly, the lower right figure shows that, typically, the
learned algorithm reaches the convergence set in about 200 iterations. In both
cases, the predicted PAC-bound is reasonable tight.

the neural network is trained on the data set θi := {Xi, Yi} with Xi = (xi,1, ..., xi,K) ∈
RK and Yi = (yi,1, ..., yi,K) ∈ RK . Hence, the data set will serve as the parameter θ

31

Sucker and Ochs

of the loss function, such that the parameter space P can be identified as the space of
these data sets, that is, P = RK×2. Since the mean square error is the standard choice
for training models on regression tasks, the loss is given by ℓ(β, θi) := c(N(β,Xi), Yi) :=
1
K

∑K
j=1(N(β, xi,j) − yi,j)

2, and for N we use a fully-connected two layer neural network
with ReLU-activation functions. To have more features in the input layer, the input x
is transformed into the vector (x, x2, ..., x5). Hence, the parameters β ∈ Rp are given by
the weights A1 ∈ R50×5, A2 ∈ R1×50 and biases b1 ∈ R50, b2 ∈ R of the two fully-connected
layers. Therefore, the optimization space is of dimension p = (5 ·50)+(1 ·50)+50+1 = 351.
As baseline we use Adam (Kingma and Ba, 2015) as it is implemented in PyTorch (Paszke
et al., 2019), which is a widely used optimization algorithm for training neural networks.
For tuning, we perform a grid search over 100 step-size parameters in [10−4, 10−2], such
that its performance is best for the given ntrain = 200 iterations, which yields the value
κ = 0.008. Note that, originally, Adam was introduced for stochastic optimization, while
we use it in the “full-batch setting” here, that is, without stochasticity. We define the
convergence set as

Cnn := {(θ, s) ∈ P × S : ∥∇ℓ(s, θ)∥ < 0.75 and ℓ(s, θ) < 0.75} .

These numbers are based on the fact that, over 104 iterations, Adam was not able to decrease
the gradient norm below 0.5, and, since we add standard normal noise, the expected loss of
the ground truth takes the value 1.0, that is, a loss below 1.0 can be regarded as overfitting.
The learned algorithm simply performs the update x(t+1) = x(t)+d(t), where d(t) is predicted
by a neural network. For more details on the architecture, we refer to the Appendix K. The
upper plot of Figure 8 shows that the learned algorithm clearly outperforms Adam, reaching
the ground-truth loss already after about 25 iterations. At the same time, Adam is not able
to reach it within 400 iterations (on average), as the mean is still above 1.0. The lower left
plot shows that the learned algorithm contracts the loss in each iteration, on average, by a
factor of 0.9, and the lower right plot shows that it typically needs about 100 iterations to
reach the convergence set. However, one can also observe that there is a significant amount
of problems that do not reach the convergence set in 200 iterations, and that do not have
a “fast convergence rate”. These two findings are strongly correlated, because, if the loss
plateaus but does not reach the convergence set, the estimated rate-function deteriorates.
In this case, that is, a non-smooth and non-convex problem, it might be due to the fact that
our definition of the convergence set is somewhat arbitrary. Nevertheless, in both cases, the
provided PAC-bound is reasonably tight.

Remark 44 Another definition that one could use is given by the procedure of early stop-
ping, that is, one stops the algorithm as soon as the validation loss deviates from the training
loss by a certain amount. Through this, one could get a guarantee for how long the network
has to be trained until it starts to overfit to the training data.

6.5 Stochastic Empirical Risk Minimization

Lastly, we consider the problem of stochastic empirical risk minimization. For this, we use
the same problem and setup as in Subsection 6.4 for training a neural network. However,
this time, in each iteration the algorithm only has access to a randomly selected minibatch

32

Markovian Learning-to-0ptimize

0 50 100 150 200 250 300 350 400

nit

100

101

102

103

104
`(
ξ
(i

)
n
,θ
n

)

Loss over Iterations

Learned

Adam

ntrain

c(g(x), yobs)

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

r(ξn, θn)

0

10

20

30

40

50

60

70

Conv. Rate

PAC-bound

rmax

25 50 75 100 125 150 175 200

τn

0

10

20

30

40

50

60

70

Conv. Time

PAC-bound

tmax

Figure 8: Training the neural network: The top figure shows the loss over the iterations,
where Adam is shown in blue and the learned algorithm in pink. The mean and
median are shown as dashed and dotted lines, respectively, while the shaded region
represents the test data up to the quantile q = 0.95, that is, 95% of the test data.
As can be seen, the learned algorithm reaches the ground-truth loss after about
25 iterations, and clearly outperforms Adam. The lower left plot shows the
convergence rate of the learned algorithm, and we can see that it varies strongly.
This is due to the fact that the loss plateaus quickly, but does not necessarily
reach the convergence set, which can also be observed in the lower right figure,
as there are about 70 problem instances, where the learned algorithm does not
reach the convergence criterion in the given 200 iterations. However, on average,
the learned algorithm reaches the convergence set in about 100 iterations.

(of size m = 5) instead of the full-batch setting considered before. Therefore, we have to
deal with a stochastic, non-convex, and non-smooth optimization problem. Since we cannot

33

Sucker and Ochs

access the full gradient anymore, we define the convergence set as

Cstoch := {(θ, s) ∈ P × S : ℓ(s, θ) < 0.75} .
As before, the value 0.75 is chosen due to our construction of the data set. As baseline, Adam
is used again, where we perform a grid-search over 100 step-sizes in the interval [10−6, 10−1]
in such a way that its average performance is best after ntrain = 2500 iterations, which
yields the value of κ = 5 · 10−3. Here, the (empirical) average is taken over 25 problem
instances, where we perform 10 runs per problem instance. As learned algorithm, we use
a “preconditioned” version of Adam, that is, we add additional, learned parameters to
enhance its performance. More details about the architecture are given in the Appendix L.
The upper plot of Figure 9 shows the empirical risk over the iterations, where we have
performed one run per problem. The plot shows that the learned algorithm still outperforms
Adam, yet, not as clearly as in the full-batch case. The lower right plot shows that, on
average, the learned algorithm reaches the convergence set in about 1000 iterations, and
we can see that the provided PAC-bound is reasonably tight. Here, the median shows that
more than 50% of the problems actually need less than 500 iterations, while the median
of Adam (in the upper plot) indicates that the median convergence time for Adam is at
about 2000 iterations. Thus, on a majority of instances, the learned algorithm needs way
less iterations to reach the convergence set. On the other hand, however, the lower left
plot shows that the provided bound for the convergence rate is vacuous. This again can
be attributed to the fact that the algorithm has to perform many iterations to reach the
convergence set, which in turn yields a value (for the convergence rate) close to 1.0, which
then gives a vacuous PAC-bound.

7 Conclusion

The goal of this paper was to model optimization algorithms in learning-to-optimize more
faithfully, so that it is possible to give generalization guarantees for (nearly) any kind
of statistics that one wants to have for such an algorithm. In particular, this involves
convergence rates and stopping times of the algorithm, which both depend on the trajectory
of the algorithm instead of single iterates. Therefore, we introduced a probabilistic model
for the distribution of the trajectory of an abstract, iterative optimization algorithm. Based
on this model, we then provided generalization bounds for the convergence rate and the
convergence time of the learned algorithm. However, both results are non-asymptotic: The
stopping time has to be finite and the provided rate function is only an approximation to
a “true” convergence rate, which, by construction of the algorithm, would be valid for any
iterate. While the provided framework does, theoretically, allow for non-asymptotic results
as it allows accessing the whole trajectory of the algorithm, they might not be within reach
for practical generalization results, simply because of the fact that asymptotic events are
inherently non-observable.

Acknowledgments and Disclosure of Funding

M. Sucker and P. Ochs acknowledge funding by the German Research Foundation under
Germany’s Excellence Strategy – EXC number 2064/1 – 390727645.

34

Markovian Learning-to-0ptimize

0 1000 2000 3000 4000 5000

nit

100

101

102

103

104
`(
ξ
(i

)
n
,θ
n

)

Loss over Iterations

Learned

Adam

ntrain

c(g(x), yobs)

0.875 0.900 0.925 0.950 0.975 1.000 1.025 1.050 1.075

r(ξn, θn)

0

20

40

60

80

Conv. Rate

PAC-bound

rmax

0 500 1000 1500 2000 2500

τn

0

10

20

30

40

50

60

70

Conv. Time

PAC-bound

tmax

Figure 9: Stochastic empirical risk minimization: The top figure shows the loss (emp. risk)
over the iterations, where Adam is shown in blue and the learned algorithm in
pink. The mean and median are shown as dashed and dotted lines, respectively,
while the shaded region represents the test data up to the quantile q = 0.95,
that is, 95% of the test data. Here, the learned algorithm reaches the ground-
truth faster than Adam, an its performance varies way less. The lower left
plot shows the convergence rate of the learned algorithm and we can see that,
unfortunately, the provided PAC-bound is vacuous. This is due to the fact that
the loss plateaus quickly, while the algorithm still needs many iterations to reach
the convergence set. However, the lower right figure shows that, on average,
the learned algorithm reaches the convergence set in about 1000 iterations and
the PAC-bound provides a good estimate for this.

35

Sucker and Ochs

Appendix A. Extension of Factorization to Joint Semi-Group

Lemma 45 For every (α, θ[N], x[N]) ∈ H ×PN × SN , K ∈ N, t0 < t1 < ... < tK ∈ N0, and

any set
(
Bt0
1 × ...× Bt0

N

)
× ...×

(
BtK
1 × ...× BtK

N

)
with Btk

j ∈ B(S), it holds that:

(
δx[N]

⊗
K−1⊗

k=0

Γtk+1−tk(α, θ[N], ·)
){(

Bt0
1 × ...× Bt0

N

)
× ...×

(
BtK
1 × ...× BtK

N

)}

=

N∏

n=1

(
δxn ⊗

K−1⊗

k=0

γtk+1−tk(α, θn, ·)
)
{
Bt0
n × ...× BtK

n

}

Proof Inserting Btk
j = S if necessary, w.l.o.g. we can restrict to the case tk = k, that is,

tk+1− tk = 1. Then, we prove the result by induction. Thus, first, consider the case K = 1:
(
δx[N]

⊗ Γ(α, θ[N], ·)
){(

B0
1 × ...× B0

N

)
×
(
B1
1 × ...× B1

N

)}

= δx[N]

[
1B0

1×...×B0
N
Γ(α, θ[N], ·,B1

1 × ...× B1
N)
]
.

By the factorization of Γ and Fubini’s theorem this can be written as:

= δx[N]

[
N∏

n=1

1B0
n
γ(α, θn, ·,B1

n)

]
=

N∏

n=1

δxn

[
1B0

n
γ(α, θn, ·,B1

n)
]

=
N∏

n=1

(
δxn ⊗ γ(α, θn, ·)

{
B0
n × B1

n

})
.

Thus, let the statement be true for K ∈ N and consider the case K + 1. Since we have the

recursive definition
⊗K−1

k=0 Γ(α, θ[N], ·) =
(⊗K−2

k=0 Γ(α, θ[N], ·)
)
⊗ Γ(α, θ[N], ·), the statement

follows directly from the factorization of Γ, the induction hypothesis, and Fubini’s theorem:
(
δx[N]

⊗
K⊗

k=0

Γ(α, θ[N], ·)
){(

B0
1 × ...× B0

N

)
× ...×

(
BK+1
1 × ...× BK+1

N

)}

=

(
δx[N]

⊗
K−1⊗

k=0

Γ(α, θ[N], ·)
)[

1B0
1×...×BK

N
Γ(α, θ[N], ·,BK+1

1 × ...× BK+1
N)

]

=

(
δx[N]

⊗
K−1⊗

k=0

Γ(α, θ[N], ·)
)[

N∏

n=1

1B0
n×...×BK

n
γ(α, θ[N], ·,BK+1

n)

]

=

N∏

n=1

(
δxn ⊗

K−1⊗

k=0

γ(α, θn, ·)
)[

1B0
n×...×BK

n
γ(α, θ[N], ·,BK+1

n)
]

=

N∏

n=1

(
δxn ⊗

K⊗

k=0

γ(α, θn, ·)
)
{
B0
n × ...× BK+1

n

}
.

36

Markovian Learning-to-0ptimize

Appendix B. Proof of Theorem 19

Proof By construction, we have that ψ(α, θ, ·) is a probability measure on SN0 for each
(α, θ) ∈ H × P . Therefore, we only have to show measurability. Again, we do this by a
monotone-class argument. For this, define the following two classes of sets:

D := {A ∈ B(SN0) : (α, θ) 7→ ψα,θ(A) is measurable}
C := {A0 × ...× AK ×

∏

k>K

S : K ∈ N0, A0, ...,AK ∈ B(S)} .

The first step of the proof is to show that C ⊂ D:

ψ

(
(α, θ),A0 × ...× AK ×

∏

k>K

S

)
= ψα,θ

{
A0 × ...× AK ×

∏

k>K

S

}

=
(
ψα,θ ◦ X −1

{0,...,K}

){
A0 × ...× AK

}
=

(
PI ⊗

K−1⊗

k=0

γ1(α, θ, ·)
)
{A0 × ...× AK}

=

(
PI ⊗

K−1⊗

k=0

γ(α, θ, ·)
)
{A0 × ...× AK} .

Since γ is a probability kernel from H × P × S to S, by Kallenberg (2021, Lemma 3.3
(i), p.58) it holds that PI ⊗⊗K−1

k=0 γ(α, θ, ·) is a probability kernel from H × P to SK+1.

Thus, the map (α, θ) 7→ PI ⊗⊗K−1
k=0 γ(α, θ, ·) is measurable. Therefore, the map (α, θ) 7→

ψ
(
(α, θ),A0 × ...× AK ×∏k>K S

)
is measurable. Hence, we get that

C ⊂ D .

Further, since C is the class of cylinder sets, it is clearly ∩-stable, that is, it is a π-system.
The second step of the proof is to show that D is a λ-system. Since SN0 ∈ C ⊂ D, we
have SN0 ∈ D. Hence, take A,B ∈ D with A ⊃ B. By definition of D, we have that both
(α, θ) 7→ ψα,θ(A) and (α, θ) 7→ ψα,θ(B) are measurable. However, this implies that the map
(α, θ) 7→ ψα,θ(A \ B) = ψα,θ(A) − ψα,θ(B) is measurable, where the (point-wise) equality
follows from ψα,θ being a probability measure for each (α, θ) ∈ H × P . Therefore, we have
that A \ B ∈ D, and D is closed under proper differences. Finally, take A1,A2, ... ∈ D with
An ↑ A. Then, since ψα,θ is a measure for each (α, θ) ∈ H × P , we have the equality:

ψ(α, θ,A) = ψα,θ(A) = lim
n→∞

ψα,θ(An) = lim
n→∞

ψ(α, θ,An) .

By definition of D, we have that (α, θ) 7→ ψ(α, θ,An) is measurable for each n ∈ N. Thus,
the map (α, θ) 7→ ψ(α, θ,A) is the pointwise limit of measurable functions, and therefore
measurable itself. Hence, we have A ∈ D, such that D is a λ-system. Then, by Theorem 8
we get that

σ(C) ⊂ D .

However, since C is the class of cylinder sets, which, by definition, is a ∩-stable generator of
the product σ-algebra on SN0 , we have that σ(C) = B(SN0). Thus, the map (α, θ) 7→ ψα,θ(A)

37

Sucker and Ochs

is measurable for each A ∈ B(SN0). It follows that ψ is a probability kernel from H × P to
SN0 . Since ψα,θ is unique, also ψ : H × P → SN0 is unique. This concludes the proof for ψ,
and the statement for Ψ follows by the same argument.

Appendix C. Proof of Lemma 24

Proof

(i) We have to show that for any B ∈ B
(
SN
)⊗N0 and A ∈ B

(
H × PN

)
it holds that:

E(H ,P[N]) {1AΨ(·, ·,B)} = P(H ,P[N],ξ[N]) {A× B} .

Since P(H ,P[N],ξ[N]) = P (coordinate projections), this holds by construction of P.

(ii) Since P(H ,P[N]) = PH ⊗ PP[N]
= PH ⊗ P⊗N

P , this follows directly from (i).

(iii) We have to show that for any B ∈ B (S)⊗N0 and A ∈ B (H × P) it holds that:

E(H ,Pn) {1Aψ(·, ·,B)} = P(H ,Pn,ξn) {A× B} .

Since B(H ×P) is generated by the cylinder sets, it suffices to consider A of the form
A = C× D. Here, one gets:

E(H ,Pn) {1C×Dψ(·, ·,B)} =

∫

H
PH (dα) 1C(α)

∫
PPn(dθn) 1D(θn)ψ(α, θn,B) .

By inserting 1 =
∏N

i ̸=n 1P (θi)ψ
(
α, θi, S

N0
)
and using Lemma 21, this is the same as:

P
{

H ∈ C, P[N] ∈ P × ...× D× ...× P, ξ[N] ∈ SN0 × ...× B× ...× SN0

}

= P {H ∈ C, Pn ∈ D, ξn ∈ B} .

(iv) Since P(H ,Pn) = PH ⊗ PPn = PH ⊗ PP , this follows directly from (iii).

Appendix D. Proof of Lemma 32

Proof By Lemma 21 and Corollary 27 it holds that:

E

{
exp

(
λ

(
1

N

N∑

n=1

E {f(Pn, ξn) | H ,Pn} − E(P,ξ)|H {f}
)

− λ2

2N
f2max

)}

= E

{
exp

(
λ

(
E

{
1

N

N∑

n=1

f(Pn, ξn)
∣∣∣ H ,P[N]

}
− E(P,ξ)|H {f}

)
− λ2

2N
f2max

)}
.

38

Markovian Learning-to-0ptimize

Since the other terms are constant w.r.t. Ψ, this is the same as:

= E

{
exp

(
E

{
λ

(
1

N

N∑

n=1

f(Pn, ξn)− E(P,ξ)|H {f}
)

− λ2

2N
f2max

∣∣∣ H ,P[N]

})}
.

By Jensen’s inequality, this can be bounded by:

≤ E

{
E

{
exp

(
λ

(
1

N

N∑

n=1

f(Pn, ξn)− E(P,ξ)|H {f}
)

− λ2

2N
f2max

) ∣∣∣ H ,P[N]

}}
.

Since we take the (total) expectation on the outside, this is the same as:

= E

{
E

{
exp

(
λ

(
1

N

N∑

n=1

f(Pn, ξn)− E(P,ξ)|H {f}
)

− λ2

2N
f2max

) ∣∣∣ H

}}
.

Since fmax is a constant, and by the properties of the exponential function, this can be
written as:

= E

{
exp

(
− λ2

2N
f2max

)
E

{
N∏

n=1

exp

(
λ

N

(
f(Pn, ξn)− E(P,ξ)|H {f}

)) ∣∣∣ H

}}
.

By Lemma 21 and Fubini’s theorem, this is the same as:

= E

{
exp

(
− λ2

2N
f2max

) N∏

n=1

E
{
exp

(
λ

N

(
f(Pn, ξn)− E(P,ξ)|H {f}

)) ∣∣∣ H

}}

= E

{
exp

(
− λ2

2N
f2max

) N∏

n=1

E(Pn,ξn)|H

{
exp

(
λ

N

(
f − E(P,ξ)|H {f}

))}
}
.

Since the parameters are i.i.d., this is the same as:

= E

{
exp

(
− λ2

2N
f2max

) N∏

n=1

E(P,ξ)|H

{
exp

(
λ

N

(
f − E(P,ξ)|H {f}

))}
}
.

By Hoeffding’s lemma, this can be bounded by:

≤ E

{
exp

(
− λ2

2N
f2max

) N∏

n=1

exp

(
λ2

8N2
(2fmax)

2

)}
≤ 1 .

This concludes the proof.

39

Sucker and Ochs

Appendix E. Proof of Lemma 40

Proof That Φ is one-to-one can be observed by just plugging in the formula for Φ−1
a , which

then also shows (iii). The first derivative of Φa is given by:

∂

∂p
Φa(p) =

1

a

1− exp(−a)
1− [1− exp(−a)]p .

The only way that this term could be negative is given when 1−exp(−a) is negative. In this
case, the whole second term has to be negative, as the denominator is positive. However,
since 1 − exp(−a) can only be negative, when a is, this shows that ∂

∂pΦa(p) is positive.
Thus, Φa is increasing. Similarly, the second derivative of Φa is given by:

∂2

∂p2
Φa(p) =

1

a

(
1− exp(−a)

1− [1− exp(−a)]p

)2

.

This term is strictly negative/positive, when a is, and therefore shows (ii).

Appendix F. Proof of Corollary 41

Proof By Lemma 39 and Lemma 40, for every λ ∈ R we have the equality:

E

{
exp

(
λ

N

N∑

n=1

1A (Pn, ξn)

)}
= E

{
exp

(
−λΦ λ

N

(
P(P,ξ)|H {A}

))}
,

The directly yields the first statement. Further, one gets from Fubini’s theorem:

EP[N]

{
EH

{
exp

(
λ

[
Φ λ

N

(
P(P,ξ)|H {A}

)
− 1

N

N∑

n=1

P(Pn,ξn)|H ,Pn
{A}

])}}

= E

{
exp

(
λ

[
Φ λ

N

(
P(P,ξ)|H {A}

)
− 1

N

N∑

n=1

P(Pn,ξn)|H ,Pn
{A}

])}

= E

{
exp

(
λ

[
Φ λ

N

(
P(P,ξ)|H {A}

)
− 1

N

N∑

n=1

E {1A(Pn, ξn) | H ,Pn}
])}

.

By Lemma 27, this is the same as:

= E

{
exp

(
λ

[
Φ λ

N

(
P(P,ξ)|H {A}

)
− E

{
1

N

N∑

n=1

1A(Pn, ξn) | H ,P[N]

}])}

= E

{
exp

(
E

{
λ

[
Φ λ

N

(
P(P,ξ)|H {A}

)
− 1

N

N∑

n=1

1A(Pn, ξn) | H ,P[N]

]})}
.

40

Markovian Learning-to-0ptimize

By Jensen’s inequality, this can be bounded by:

≤ E

{
E

{
exp

(
λ

[
Φ λ

N

(
P(P,ξ)|H {A}

)
− 1

N

N∑

n=1

1A(Pn, ξn)

]) ∣∣∣ H ,P[N]

}}

= E

{
exp

(
λ

[
Φ λ

N

(
P(P,ξ)|H {A}

)
− 1

N

N∑

n=1

1A(Pn, ξn)

])}
= 1 .

Appendix G. Proof of Theorem 42

Proof Abbreviate p := P(P,ξ)|H {A} and p̂ := 1
N

∑N
n=1 P(Pn,ξn)|H ,Pn

{A}. Then, by
Corollay 41 it holds that:

EP[N]

{
EH

{
exp

(
λ
[
Φ λ

N
(p(H))− p̂(H)

])}}
≤ 1 .

Therefore, by the Donsker-Varadhan variational formulation, we have:

1 ≥ EP[N]

{
exp

(
sup

ρ∈P(PH)
λρ
[
Φ λ

N
◦ p− p̂

]
−DKL(ρ ∥ PH)

)}

= EP[N]

{
exp

(
sup

ρ∈P(PH)
λ
(
ρ
[
Φ λ

N
◦ p
]
− ρ [p̂]

)
−DKL(ρ ∥ PH)

)}
.

Since λ > 0, Φ is convex by Lemma 40. Thus, applying Jensen’s inequality yields:

≥ EP[N]

{
exp

(
sup

ρ∈P(PH)
λ
(
Φ λ

N
(ρ [p])− ρ [p̂]

)
−DKL(ρ ∥ PH)

)}

Then, Markov’s inequality yields:

PP[N]

{
sup

ρ∈P(PH)
λ
(
Φ λ

N
(ρ [p])− ρ [p̂]

)
−DKL(ρ ∥ PH) ≥ log

(
1

ε

)}
≤ ε ,

from which the conclusion follows.

41

Sucker and Ochs

References

Pierre Alquier. User-friendly introduction to PAC-Bayes bounds. arXiv preprint
arXiv:2110.11216, 2021.

Pierre Alquier and Benjamin Guedj. Simpler PAC-Bayesian bounds for hostile data. Ma-
chine Learning, 107(5):887–902, 2018.

Pierre Alquier, James Ridgway, and Nicolas Chopin. On the properties of variational ap-
proximations of Gibbs posteriors. Journal of Machine Learning Research, 17(1):8374–
8414, 2016.

Ron Amit, Baruch Epstein, Shay Moran, and Ron Meir. Integral probability metrics PAC-
Bayes bounds. Advances in Neural Information Processing Systems, 35:3123–3136, 2022.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

Luc Bégin, Pascal Germain, François Laviolette, and Jean-Francis Roy. PAC-Bayesian
bounds based on the Rényi divergence. In Artificial Intelligence and Statistics, pages
435–444. PMLR, 2016.

Pascal Bianchi, Walid Hachem, and Sholom Schechtman. Convergence of constant step
stochastic gradient descent for non-smooth non-convex functions. Set-Valued and Varia-
tional Analysis, pages 1–31, 2022.

Leon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale
machine learning. Siam Review, 60(2):223–311, 2018.

Olivier Bousquet and André Elisseeff. Algorithmic stability and generalization performance.
Advances in Neural Information Processing Systems, 13, 2000.

Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of Machine
Learning Research, 2:499–526, 2002.

Gregery T Buzzard, Stanley H Chan, Suhas Sreehari, and Charles A Bouman. Plug-and-
play unplugged: Optimization-free reconstruction using consensus equilibrium. SIAM
Journal on Imaging Sciences, 11(3):2001–2020, 2018.

Camille Castera and Peter Ochs. From learning to optimize to learning optimization algo-
rithms. arXiv preprint arXiv:2405.18222, 2024.

Olivier Catoni. Statistical learning theory and stochastic optimization: Ecole d’Eté de Prob-
abilités de Saint-Flour, XXXI-2001, volume 1851. Springer Science & Business Media,
2004.

Olivier Catoni. PAC-Bayesian supervised classification: The thermodynamics of statistical
learning. Lecture Notes-Monograph Series, 56:i–163, 2007.

42

Markovian Learning-to-0ptimize

Stanley H Chan, Xiran Wang, and Omar A Elgendy. Plug-and-play ADMM for image
restoration: Fixed-point convergence and applications. IEEE Transactions on Computa-
tional Imaging, 3(1):84–98, 2016.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang
Wang, and Wotao Yin. Learning to optimize: A primer and a benchmark. arXiv preprint
arXiv:2103.12828, 2021.

Xiaohan Chen, Jialin Liu, Zhangyang Wang, and Wotao Yin. Theoretical linear conver-
gence of unfolded ISTA and its practical weights and thresholds. Advances in Neural
Information Processing Systems, 31, 2018.

Xinshi Chen, Yufei Zhang, Christoph Reisinger, and Le Song. Understanding deep archi-
tecture with reasoning layer. Advances in Neural Information Processing Systems, 33:
1240–1252, 2020.

Regev Cohen, Michael Elad, and Peyman Milanfar. Regularization by denoising via fixed-
point projection. SIAM Journal on Imaging Sciences, 14(3):1374–1406, 2021.

Damek Davis and Dmitriy Drusvyatskiy. Stochastic model-based minimization of weakly
convex functions. SIAM Journal on Optimization, 29(1):207–239, 2019.

Damek Davis and Dmitriy Drusvyatskiy. Graphical convergence of subgradients in non-
convex optimization and learning. Mathematics of Operations Research, 47(1):209–231,
2022.

Alexandre Défossez, Leon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence
proof of Adam and Adagrad. Transactions on Machine Learning Research, 2022. ISSN
2835-8856.

Monroe D Donsker and SR Srinivasa Varadhan. Asymptotic evaluation of certain Markov
process expectations for large time, i. Communications on Pure and Applied Mathematics,
28(1):1–47, 1975.

Gintare Karolina Dziugaite and Daniel M. Roy. Computing nonvacuous generalization
bounds for deep (stochastic) neural networks with many more parameters than training
data. In Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelli-
gence, UAI 2017, Sydney, Australia, August 11-15, 2017. AUAI Press, 2017.

Gintare Karolina Dziugaite and Daniel M Roy. Data-dependent PAC-Bayes priors via
differential privacy. Advances in neural information processing systems, 31, 2018.

Gintare Karolina Dziugaite, Kyle Hsu, Waseem Gharbieh, Gabriel Arpino, and Daniel Roy.
On the role of data in PAC-Bayes bounds. In International Conference on Artificial
Intelligence and Statistics, pages 604–612. PMLR, 2021.

Pascal Germain, Alexandre Lacasse, François Laviolette, and Mario Marchand. PAC-
Bayesian learning of linear classifiers. In Proceedings of the 26th Annual International
Conference on Machine Learning, pages 353–360, 2009.

43

Sucker and Ochs

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proceed-
ings of the 27th international conference on international conference on machine learning,
pages 399–406, 2010.

Benjamin Guedj. A primer on PAC-Bayesian learning. In Proceedings of the second congress
of the French Mathematical Society, volume 33, 2019.

Maxime Haddouche and Benjamin Guedj. PAC-Bayes generalisation bounds for heavy-
tailed losses through supermartingales. arXiv preprint arXiv:2210.00928, 2022.

Maxime Haddouche and Benjamin Guedj. Wasserstein PAC-Bayes learning: Exploiting
optimisation guarantees to explain generalisation, 2023.

Xin He, Kaiyong Zhao, and Xiaowen Chu. AutoML: A survey of the state-of-the-art.
Knowledge-Based Systems, 212:106622, 2021.

Jean Honorio and Tommi Jaakkola. Tight bounds for the expected risk of linear classifiers
and PAC-Bayes finite-sample guarantees. In Artificial Intelligence and Statistics, pages
384–392. PMLR, 2014.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning
in neural networks: A survey. IEEE transactions on pattern analysis and machine intel-
ligence, 44(9):5149–5169, 2021.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated machine learning: meth-
ods, systems, challenges. Springer Nature, 2019.

O. Kallenberg. Foundations of Modern Probability. Probability theory and stochastic mod-
elling. Springer, 2021. ISBN 9783030618728.

Ali Kavis, Kfir Yehuda Levy, and Volkan Cevher. High probability bounds for a class of
nonconvex algorithms with AdaGrad stepsize. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=dSw0QtRMJkO.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations, ICLR 2015, 2015.

Achim Klenke. Wahrscheinlichkeitstheorie. Springer Spektrum, 2013.

Erich Kobler, Alexander Effland, Karl Kunisch, and Thomas Pock. Total deep variation:
A stable regularizer for inverse problems. arXiv preprint arXiv:2006.08789, 2020.

John Langford and Rich Caruana. (Not) bounding the true error. In T. Dietterich, S. Becker,
and Z. Ghahramani, editors, Advances in Neural Information Processing Systems, vol-
ume 14. MIT Press, 2001.

John Langford and John Shawe-Taylor. PAC-Bayes and margins. Advances in neural
information processing systems, 15, 2002.

Guy Lever, François Laviolette, and John Shawe-Taylor. Tighter PAC-Bayes bounds
through distribution-dependent priors. Theoretical Computer Science, 473:4–28, 2013.

44

https://openreview.net/forum?id=dSw0QtRMJkO

Markovian Learning-to-0ptimize

Jialin Liu, Xiaohan Chen, Zhangyang Wang, Wotao Yin, and HanQin Cai. Towards con-
stituting mathematical structures for learning to optimize. In International Conference
on Machine Learning, pages 21426–21449. PMLR, 2023.

Ben London. A PAC-Bayesian analysis of randomized learning with application to stochastic
gradient descent. Advances in Neural Information Processing Systems, 30, 2017.

David McAllester. Simplified PAC-Bayesian margin bounds. In Learning theory and Kernel
machines, pages 203–215. Springer, 2003a.

David McAllester. PAC-Bayesian stochastic model selection. Machine Learning, 51(1):5–21,
2003b.

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha Sohl-
Dickstein. Understanding and correcting pathologies in the training of learned optimizers.
In Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 4556–4565. PMLR, 2019.

Luke Metz, C Daniel Freeman, James Harrison, Niru Maheswaranathan, and Jascha Sohl-
Dickstein. Practical tradeoffs between memory, compute, and performance in learned
optimizers. In Conference on Lifelong Learning Agents, pages 142–164. PMLR, 2022.

Michael Moeller, Thomas Mollenhoff, and Daniel Cremers. Controlling neural networks
via energy dissipation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3256–3265, 2019.

Yurii Nesterov. A method for solving the convex programming problem with convergence
rate O(1/k2). Proceedings of the USSR Academy of Sciences, 269:543–547, 1983.

Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

Yuki Ohnishi and Jean Honorio. Novel change of measure inequalities with applications
to PAC-Bayesian bounds and Monte Carlo estimation. In International Conference on
Artificial Intelligence and Statistics, pages 1711–1719. PMLR, 2021.

Emilio Parrado-Hernández, Amiran Ambroladze, John Shawe-Taylor, and Shiliang Sun.
PAC-Bayes bounds with data dependent priors. Journal of Machine Learning Research,
13(1):3507–3531, 2012.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In Advances in Neural Infor-
mation Processing Systems, volume 32. Curran Associates, Inc., 2019.

Fabian Pedregosa and Damien Scieur. Average-case acceleration through spectral density
estimation. In International Conference on Machine Learning, pages 7553–7562. PMLR,
2020.

45

Sucker and Ochs

Maŕıa Pérez-Ortiz, Omar Rivasplata, John Shawe-Taylor, and Csaba Szepesvári. Tighter
risk certificates for neural networks. Journal of Machine Learning Research, 22(227):
1–40, 2021.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

Omar Rivasplata, Ilja Kuzborskij, Csaba Szepesvári, and John Shawe-Taylor. PAC-Bayes
analysis beyond the usual bounds. Advances in Neural Information Processing Systems,
33:16833–16845, 2020.

Borja Rodŕıguez-Gálvez, Ragnar Thobaben, and Mikael Skoglund. More PAC-Bayes
bounds: From bounded losses, to losses with general tail behaviors, to anytime valid-
ity. Journal of Machine Learning Research, 25(110):1–43, 2024.

Ernest Ryu, Jialin Liu, Sicheng Wang, Xiaohan Chen, Zhangyang Wang, and Wotao Yin.
Plug-and-play methods provably converge with properly trained denoisers. In Interna-
tional Conference on Machine Learning, pages 5546–5557. PMLR, 2019.

Damien Scieur and Fabian Pedregosa. Universal average-case optimality of Polyak mo-
mentum. In International Conference on Machine Learning, pages 8565–8572. PMLR,
2020.

Matthias Seeger. PAC-Bayesian generalisation error bounds for Gaussian process classifi-
cation. Journal of Machine Learning Research, 3:233–269, 2002.

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Stochastic
convex optimization. In COLT, volume 2, page 5, 2009.

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Learnability,
stability and uniform convergence. Journal of Machine Learning Research, 11:2635–2670,
2010.

Suhas Sreehari, S Venkat Venkatakrishnan, Brendt Wohlberg, Gregery T Buzzard,
Lawrence F Drummy, Jeffrey P Simmons, and Charles A Bouman. Plug-and-play pri-
ors for bright field electron tomography and sparse interpolation. IEEE Transactions on
Computational Imaging, 2(4):408–423, 2016.

Michael Sucker, Jalal Fadili, and Peter Ochs. Learning-to-optimize with PAC-Bayesian
guarantees: Theoretical considerations and practical implementation. arXiv preprint
arXiv:2404.03290, 2024.

Yu Sun, Brendt Wohlberg, and Ulugbek S Kamilov. An online plug-and-play algorithm for
regularized image reconstruction. IEEE Transactions on Computational Imaging, 5(3):
395–408, 2019.

Afonso M Teodoro, José M Bioucas-Dias, and Mário AT Figueiredo. Scene-adapted plug-
and-play algorithm with convergence guarantees. In 2017 IEEE 27th International Work-
shop on Machine Learning for Signal Processing (MLSP), pages 1–6. IEEE, 2017.

46

Markovian Learning-to-0ptimize

Matthieu Terris, Audrey Repetti, Jean-Christophe Pesquet, and Yves Wiaux. Enhanced
convergent pnp algorithms for image restoration. In 2021 IEEE International Conference
on Image Processing (ICIP), pages 1684–1688. IEEE, 2021.

Niklas Thiemann, Christian Igel, Olivier Wintenberger, and Yevgeny Seldin. A strongly
quasiconvex PAC-Bayesian bound. In International Conference on Algorithmic Learning
Theory, pages 466–492. PMLR, 2017.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 58(1):267–288, 1996.

Tom Tirer and Raja Giryes. Image restoration by iterative denoising and backward projec-
tions. IEEE Transactions on Image Processing, 28(3):1220–1234, 2018.

Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. Arti-
ficial intelligence review, 18:77–95, 2002.

Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gomez Col-
menarejo, Misha Denil, Nando Freitas, and Jascha Sohl-Dickstein. Learned optimizers
that scale and generalize. In International conference on machine learning, pages 3751–
3760. PMLR, 2017.

Zhonglin Xie, Wotao Yin, and Zaiwen Wen. Ode-based learning to optimize. arXiv preprint
arXiv:2406.02006, 2024.

Bo Xin, Yizhou Wang, Wen Gao, David Wipf, and Baoyuan Wang. Maximal sparsity with
deep networks? Advances in Neural Information Processing Systems, 29, 2016.

Quanming Yao, Mengshuo Wang, Yuqiang Chen, Wenyuan Dai, Yu-Feng Li, Wei-Wei Tu,
Qiang Yang, and Yang Yu. Taking human out of learning applications: A survey on
automated machine learning. arXiv preprint arXiv:1810.13306, 2018.

47

Sucker and Ochs

Appendix H. Architecture for the Experiment on Quadratic Functions

d
(t)
1

d
(t)
2

d
(t)
1 ⊙ d

(t)
2 C

o
n
v
2
d
(
3
,
1
0
,
1
,
b
i
a
s
=
F
)

C
o
n
v
2
d
(
1
0
,
1
0
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
1
0
,
1
0
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
1
0
,
1
0
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
1
0
,
1
0
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
1
0
,
1
0
,
1
,
b
i
a
s
=
F
)

C
o
n
v
2
d
(
1
0
,
1
,
1
,
b
i
a
s
=
F
)

d(t)

n
(t)
1

n
(t)
2

n
(t)
3

n
(t)
4

L
i
n
e
a
r
(
4
,
8
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
8
,
8
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
8
,
8
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
8
,
8
,
b
i
a
s
=
F
)

L
i
n
e
a
r
(
8
,
1
,
b
i
a
s
=
F
)

β(t)

x(t)

x(t+1) := x(t) + β(t) · d(t)

Figure 10: Update step of A for quadratic problems: The directions d
(t)
1 , d

(t)
2 and d

(t)
1 ⊙ d(t)2

are inserted as different channels into the Conv2d-block, which performs 1 × 1
“convolutions”, that is, the algorithm acts coordinate-wise on the input. The

scales n
(t)
1 , ..., n

(t)
4 get transformed separately by the fully-connected block.

Here, the step-size β(t) is computed by a fully-connected block (without bias) and ReLU

activation functions based on the the inputs n
(t)
1 = log(1 + ∥∇ℓ(ξ(t), θ)∥), n(t)2 = log(1 +

∥x(t)−x(t−1)∥), n(t)3 = log(1+ ℓ(ξ(t), θ)) and n
(t)
4 = log(1+ ℓ(ξ(t−1), θ)). On the other hand,

the direction d(t) is computed by a 1 × 1-convolutional block, where the input-channels

are given by the normalized gradient d1 := ∇ℓ(ξ(t),θ)

∥∇ℓ(ξ(t),θ)∥ , the normalized momentum term

d2 := x(t)−x(t−1)

∥x(t)−x(t−1)∥ , and their pointwise product d1 ⊙ d2, and we use 10 channels in each

hidden layer.

48

Markovian Learning-to-0ptimize

Appendix I. Architecture for the Image Processing Experiment

λ

n
(t)
1

n
(t)
2

∆ℓ(t)

∆h(t)

∆r(t)

g(t)

s
(t)
1

s
(t)
2

s
(t)
3

s
(t)
4

L
i
n
e
a
r
(
1
1
,
3
0
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
3
0
,
2
0
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
2
0
,
1
0
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
1
0
,
4
,
b
i
a
s
=
F
)

s1

s2

s3

s4

s1 · d(t)1

s2 · d(t)2

s3 · d(t)3

s4 · d(t)4

C
o
n
v
2
d
(
4
,
1
5
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
1
5
,
1
5
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
1
5
,
1
5
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
1
5
,
2
,
1
,
b
i
a
s
=
F
)

d
(t)
out,1

d
(t)
out,2

x(t)

x(t+1)

Figure 11: Algorithmic update for the image processing problem: Based on the given eleven
features, the first block computes four weights s1, ..., s4, which are used to

perform a weighting of the different directions d
(t)
1 , ..., d

(t)
4 , which are used in

the second block. This second block consists of a 1x1-convolutional blocks,

which computes two update direction d
(t)
out,1 and d

(t)
out,1. Then, we update

x(t+1) := x(t) + ∥∇ℓ(x(t),θ)∥
L d

(t)
out,1 − 1

L∇ℓ(x(t), θ) + ∥x(t) − x(t−1)∥d(t)out,2.

The update of the learned algorithm reads:

x(t+1) := x(t) +
∥∇ℓ(x(t), θ)∥

L
d
(t)
out,1 −

1

L
∇ℓ(x(t), θ) + ∥x(t) − x(t−1)∥d(t)out,2 .

Here, the directions d
(t)
out,1 and d

(t)
out,2 are predicted by a 1x1 convolutional block with ReLU-

activation functions. These are predicted based on the reweighted directions d
(t)
1 , ..., d

(t)
4 ,

which are given as the normalized gradient, the normalized momentum, the normalized
gradient of the data-fidelity term, and the normalized gradient of the regularization term.
Here, the weights s1, ..., s4 for the reweighting are predicted by a fully-connected block with

ReLU-activation functions based on the features n
(t)
1 = log(1+∥∇ℓ(ξ(t), θ)∥), n(t)2 = log(1+

∥x(t)−x(t−1)∥), ∆ℓ(t) := ℓ(x(t), θ)−ℓ(x(t−1), θ), ∆r(t) := r(x(t), θ)−r(x(t−1), θ), where r is the
regularization term, ∆h(t) := h(x(t), θ)−h(x(t−1), θ), where h is the data-fidelity term, g(t) :=

maxi=1,...,n |∇ℓ(ξ(t), θ)|i, the scalarproducts s
(t)
1 , ..., s

(t)
4 between the (normalized) gradient

and the (normalized) momentum, between the (normalized) gradient of the regularization
term and the (normalized) momentum, between the (normalized) gradient of the data-
fidelity term and the (normalized) momentum, between the (normalized) gradient of the
regularization term and the (normalized) gradient of the data-fidelity term, and, finally, the
regularization parameter λ.

49

Sucker and Ochs

Appendix J. Architecture for the LASSO Experiment

n
(t)
1,>

n
(t)
1,0

n
(t)
2,>

n
(t)
2,0

n
(t)
3,>

n
(t)
3,0

∆ℓ(t)

∆g(t)

∆h(t)

s
(t)
>

s
(t)
0

λ

L
i
n
e
a
r
(
1
2
,
3
0
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
3
0
,
2
0
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
2
0
,
1
0
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
1
0
,
8
,
b
i
a
s
=
F
)

s1

s2

s3

s4

s5

s6

s7

s8

s1 · d(t)1,>

s2 · d(t)1,0

s3 · d(t)2,>

s4 · d(t)2,0

s5 · d(t)3,>

s6 · d(t)3,0

s7 · d(t)4,>

s8 · d(t)4,0

C
o
n
v
2
d
(
8
,
2
0
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
2
0
,
2
0
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
2
0
,
2
0
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
2
0
,
2
,
1
,
b
i
a
s
=
F
)

d
(t)
out,1

d
(t)
out,2

x(t)

x(t+1)

Figure 12: Algorithmic update for the LASSO problem: Based on the given twelve features,
the first block computes eight weights, which are used to perform a weighting of
the different directions, which are used in the second block. This second block
then predicts two directions dout,1, dout,2, where dout,1 only acts on the non-
zero entries, and dout,2 acts on the zero entries. These are used in the update

x(t+1) := proxβg

(
x(t) +

(
d
(t)
out,1,> −∇ℓ(x(t)) + ∥x(t) − x(t−1)∥ · d(t)out,2,0

)
/L
)
.

Since in the LASSO problem the algorithm has to identify the support of the solution,
that is, the coordinates which are non-zero, we also treat the zero and non-zero entries of

x(t) (and derived quantities) separately. Here, we denote the non-zero entries by x
(t)
> and

the zero entries by x
(t)
0 , and similarly for all other quantities. First, we compute weights

s1, ..., s8 with a fully-connected block with ReLU-activation functions. The used features are

n
(t)
1 = log(1+∥∇ℓ(ξ(t), θ)∥), n(t)2 = log(1+∥x(t)−x(t−1)∥), n(t)3 = log(1+∥p(t)∥), where p(t) =

proxβg
(
x(t) − β∇ℓ(x(t), θ)

)
, ∆ℓ(t) := ℓ(x(t), θ) − ℓ(x(t−1), θ), ∆g(t) := g(x(t)) − g(x(t−1)),

∆h(t) := h(x(t), θ)− h(x(t−1), θ), the scalar products s
(t)
> and s

(t)
0 between the (normalized)

gradient and (normalized) momentum, and the regularization parameter λ. Then, these

weights are used to perform a reweighting of the given directions d
(t)
1 , ..., d

(t)
4 , given by the

normalized gradient, the normalized momentum, the normalized residual x(t)−p(t), and the
coordinate-wise product between (normalized) gradient and (normalized) momentum. Af-
terwards, these reweighted directions get fed into a 1x1-convolutional block, which predicts

the two directions d
(t)
out,1 and d

(t)
out,2, which are used to compute the final update with the

proximal mapping, given by

x(t+1) := proxβg

(
x(t) +

(
d
(t)
out,1,> −∇ℓ(x(t)) + ∥x(t) − x(t−1)∥ · d(t)out,2,0

)
/L
)
.

50

Markovian Learning-to-0ptimize

Appendix K. Architecture for Training the Neural Network

n
(t)
1

n
(t)
2

∆ℓ(t)

g(t)

s(t)

t

L
i
n
e
a
r
(
6
,
3
0
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
3
0
,
2
0
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
2
0
,
1
0
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
1
0
,
4
,
b
i
a
s
=
F
)

s1

s2

s3

s4

g

m

s1 · g ⊙ d
(t)
1

s2 · d(t)1

s3 · d(t)2

s4 · m ⊙ d
(t)
2

C
o
n
v
2
d
(
4
,
2
0
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
2
0
,
2
0
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
2
0
,
2
0
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
2
0
,
1
,
1
,
b
i
a
s
=
F
)

d
(t)
out

x(t)

x(t+1)

Figure 13: Algorithmic update for training the neural network: Based on the given six fea-
tures, the first block computes four weights s1, ..., s4, which are used to perform

a weighting of the different directions g⊙ d(t)1 , d
(t)
1 , d

(t)
2 , m⊙ d(t)2 , which are used

in the second block. This second block consists of a 1x1-convolutional blocks,

which compute an update direction d
(t)
out. Then, we update x(t+1) := x(t) + d

(t)
out.

To compute the weights s1, ..., s4 with the first block, we use the features n1
(t) = log(1 +

∥∇ℓ(ξ(t), θ)∥), n2(t) = log(1 + ∥x(t) − x(t−1)∥), ∆ℓ(t) := ℓ(x(t), θ) − ℓ(x(t−1), θ), g(t) :=
maxi=1,...,n |∇ℓ(x(t), θ)i|, the scalar product s(t) between the (normalized) gradient and the
(normalized) momentum, and the iteration counter t. Then, these weights are used to

perform a weighting of the directions d
(t)
1 , d

(t)
2 , g ⊙ d

(t)
1 and m ⊙ d

(t)
2 , where g and m are

additional learned vectors of size n, which we use as diagonal preconditioning. Here, d
(t)
1 is

the normalized gradient and d
(t)
2 is the normalized momentum term. These directions get

fed into a 1×1-convolutional block, which predicts the direction d
(t)
out that is used to update

the iterate as x(t+1) = x(t) + d
(t)
out.

51

Sucker and Ochs

Appendix L. Architecture for Stochastic Empirical Risk Minimization

n
(t)
1

n
(t)
2

t

ℓ
(t)
stoch

L
i
n
e
a
r
(
3
,
1
5
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
1
5
,
1
5
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
1
5
,
4
,
b
i
a
s
=
F
) s1

s2

s3

s4

s1 · d(t)1

s2 · d(t)1 ⊙ d
(t)
2

s3 · d(t)2

d
(t)
1

d
(t)
2

C
o
n
v
2
d
(
3
,
1
5
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
1
5
,
1
5
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
1
5
,
2
,
1
,
b
i
a
s
=
F
)

p
(t)
1

p
(t)
2

x(t+1)

x(t)β1β2εκ

Figure 14: Algorithmic update for stochastic empirical risk minimization: Based on the
given four features, the first block computes four weights s1, ..., s4, where s1, ..., s3
are used to perform a weighting of the different directions d

(t)
1 , d

(t)
2 , and d

(t)
1 ⊙

d
(t)
2 , which get fed into the second block, and s4 is used afterwards as a step-

size. The second block consists of a 1x1-convolutional layers, that is, they act

coordinate-wise, and computes two vectors p
(t)
1 , p

(t)
2 , which are used as diagonal

“preconditioners” for the update of Adam.

First, we compute the same features as Adam, that is, m(t) = β1m
(t−1)+(1−β1)∇̂ℓ(x(t), θ),

v(t) = β2v
(t−1) + (1 − β2)∇̂ℓ(x(t), θ) ⊙ ∇̂ℓ(x(t), θ), where ∇̂ℓ(x(t), θ) denotes the stochastic

gradient. Then, as for Adam, we set m̂(t) = m(t)

1−βt
1
and v̂(t) = v(t)

1−βt
2
, and split m̂(t) and

v̂(t) into the corresponding (logarithmically transformed) norms n
(t)
1 , n

(t)
2 and unit-vectors

d
(t)
1 , and d

(t)
2 , respectively. The norms, together with the current (stochastic) loss and the

iteration counter t, get fed into a fully-connected block to compute four weights s1, ..., s4.
Then, s4 is used as a step-size in the final update, while s1, ..., s3 get used to weigh the

vectors d
(t)
1 , d

(t)
2 , and d

(t)
1 ⊙d(t)2 before they get fed into the 1×1-convolutional block, which

outputs vectors p1 and p2. These, in turn, are used as a kind of diagonal preconditioner for
the update of Adam, that is, the final output is given by the formula x(t) = x(t−1) − (s4 ·
κ · d1 ⊙ m̂(t))/(0.001 · |d2| ⊙

√
v̂(t) + ε). Here, the constant 0.001 is just there to stabilize

training in the beginning, and for the other constants we use the default values in PyTorch,
that is, we set κ = 0.001, β1 = 0.9, β2 = 0.999, and ε = 1 · 10−8.

52

	Introduction
	Related Work
	Broader Context of Learning-to-Optimize
	Learning-to-Optimize with Guarantees
	PAC-Bayesian Bounds and Bounded Loss Functions
	Minimization of the PAC-Bound and Choice of the Prior
	More Generalization Bounds

	Preliminaries and Notation
	The Probabilistic Model
	The Distribution of the Trajectory on SN0
	Definition of the Probability Space
	Stopping the Algorithm

	Generalization Results
	Guarantees for the Convergence Time
	Guarantees for the Convergence Rate
	Properties of the Trajectory

	Numerical Results
	Quadratics
	Image Processing
	LASSO
	Training a Neural Network
	Stochastic Empirical Risk Minimization

	Conclusion
	Extension of Factorization to Joint Semi-Group
	Proof of Theorem 19
	Proof of Lemma 24
	Proof of Lemma 32
	Proof of Lemma 40
	Proof of Corollary 41
	Proof of Theorem 42
	Architecture for the Experiment on Quadratic Functions
	Architecture for the Image Processing Experiment
	Architecture for the LASSO Experiment
	Architecture for Training the Neural Network
	Architecture for Stochastic Empirical Risk Minimization

