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AN ASYMPTOTICALLY OPTIMAL COORDINATE DESCENT
ALGORITHM FOR LEARNING BAYESIAN NETWORKS FROM
GAUSSIAN MODELS*

TONG XU, ARMEEN TAEB?!, SIMGE KUCUKYAVUZS, AND ALI SHOJAIEY

Abstract. This paper studies the problem of learning Bayesian networks from continuous obser-
vational data, generated according to a linear Gaussian structural equation model. We consider an
lo-penalized maximum likelihood estimator for this problem which is known to have favorable sta-
tistical properties but is computationally challenging to solve, especially for medium-sized Bayesian
networks. We propose a new coordinate descent algorithm to approximate this estimator and prove
several remarkable properties of our procedure: the algorithm converges to a coordinate-wise min-
imum, and despite the non-convexity of the loss function, as the sample size tends to infinity, the
objective value of the coordinate descent solution converges to the optimal objective value of the
£o-penalized maximum likelihood estimator. Finite-sample optimality and statistical consistency
guarantees are also established. To the best of our knowledge, our proposal is the first coordinate
descent procedure endowed with optimality and statistical guarantees in the context of learning
Bayesian networks. Numerical experiments on synthetic and real data demonstrate that our coordi-
nate descent method can obtain near-optimal solutions while being scalable.

Key words. Directed acyclic graphs, fp-penalization, Non-convex optimization, Structural
equation models
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1. Introduction.

1.1. Background and related work. Bayesian networks provide a powerful
framework for modeling causal relationships among a collection of random variables.
A Bayesian network is typically represented by a directed acyclic graph (DAG), where
the random variables are encoded as vertices (or nodes), a directed edge from node i
to node j indicates that i causes j, and the acyclic property of the graph prevents the
occurrence of circular dependencies. If the DAG is known, it can be used to predict
the behavior of the system under manipulations or interventions. However, in large
systems such as gene regulatory networks, the DAG is not known a priori, making it
necessary to develop efficient and rigorous methods to learn the graph from data. To
solve this problem using only observational data, we assume that all relevant variables
are observed and that we only have access to observational data.

Three broad classes of methods for learning DAGs from data are constraint-
based, score-based, and hybrid. Constraint-based methods use repeated conditional
independence tests to determine the presence of edges in a DAG. A prominent example
is the PC algorithm and its extensions [20, 21]. While the PC algorithm can be applied
in non-parametric settings, testing for conditional independencies is generally hard
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[17]. Furthermore, even in the Gaussian setting, statistical consistency guarantees
for the PC algorithm are shown under the strong faithfulness condition [12], which is
known to be restrictive in high-dimensional settings [22]. Score-based methods often
deploy a penalized log-likelihood as a score function and search over the space of DAGs
to identify a DAG with an optimal score. These approaches do not require the strong
faithfulness assumption. However, statistical guarantees are not provided for many
score-based approaches and solving them exactly suffers from high computational
complexity. For example, learning an optimal graph using dynamic programming
takes about 10 hours for a medium-size problem with 29 nodes [18]. Several papers
[13, 25] offer speedup by casting the problem as a convex mixed-integer program, but
finding an optimal solution with these approaches can still take an hour for a medium-
sized problem. Finally, hybrid approaches combine constraint-based and score-based
methods by using background knowledge or conditional independence tests to restrict
the DAG search space [21, 16].

Several strategies have been developed to make score-based methods more scalable
by finding approximate solutions instead of finding optimally scoring DAGs. One
direction to find good approximate solutions is to resort to greedy-based methods, with
a prominent example being the Greedy Equivalence Search (GES) algorithm [5]. GES
performs a greedy search on the space of completed partially directed acyclic graphs
(an equivalence class of DAGs) and is known to produce asymptotically consistent
solutions [5]. Despite its favorable properties, GES does not provide optimality or
consistency guarantees for any finite sample size. Further, the guarantees of GES
assume a fixed number of nodes with sample size going to infinity and do not allow
for a growing number of nodes. Another direction is gradient-based approaches [27,
28], which relax the discrete search space over DAGs to a continuous search space,
allowing gradient descent and other techniques from continuous optimization to be
applied. However, the search space for these problems is highly non-convex, resulting
in limited guarantees for convergence, even to a local minimum. Finally, another
notable direction is based on coordinate descent; that is iteratively maximizing the
given score function over a single parameter, while keeping the remaining parameters
fixed and checking that the resulting model is a DAG at each update [1, 2, 9, 26]. While
coordinate descent algorithms have shown significant promise in learning large-scale
Bayesian networks, to the best of our knowledge, they do not come with convergence,
optimality, and statistical guarantees.

1.2. Our contributions. We propose a new score-based coordinate descent al-
gorithm for learning Bayesian networks from Gaussian linear structural equation mod-
els. Remarkably, unlike prior coordinate descent algorithms for learning Bayesian net-
works, our procedure provably i) converges to a coordinate-wise minimum, ii) produces
optimally scoring DAGs as the sample size tends to infinity despite the non-convex
nature of the problem, and iii) yields asymptotically consistent estimates that also
provide finite-sample guarantees that allow for a growing number of nodes. As a
scoring function for this approach, we deploy an ¢p-penalized Gaussian log-likelihood,
which implies that optimally-scoring DAGs are solutions to a highly non-convex £y-
penalized maximum likelihood estimator. This estimator is known to have strong
statistical consistency guarantees [23], but solving it is, in general, intractable. Thus,
our coordinate descent algorithm can be viewed as a scalable and efficient approach to
finding approximate solutions to this estimator that are asymptotically optimal (i.e.,
match the optimal objective value of the ¢y penalized maximum-likelihood estima-
tor as the sample size tends to infinity) and have finite-sample statistical consistency
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COORDINATE DESCENT FOR LEARNING BAYESIAN NETWORKS 3

guarantees.

We illustrate the advantages of our method over competing approaches via ex-
tensive numerical experiments. The proposed approach is implemented in the python
package micodag, and all numerical results and figures can be reproduced using the
code in https://github.com/AtomXT/coordinate-descent-for-bayesian-networks.git.

2. Problem Setup.

2.1. Preliminaries and Definitions. Consider an unknown DAG whose m
nodes correspond to observed random variables X € R". We denote the DAG by
G* = (V,E*) where V = {1,...,m} is the vertex set and E* CV x V is the directed
edge set. We assume that the random variables X satisfy the linear structural equation
model (SEM):

(2.1) X =DB"X+e,

where B* € R™*" is the connectivity matrix with zeros on the diagonal and By, #0
if (j,k) € E*. In other words, the sparsity pattern of B* encodes the true DAG
structure. Further, e ~ N(0,Q*) is a random Gaussian noise vector with zero mean
and independent coordinates so that 2* is a diagonal matrix. Assuming, without
loss of generality, that all random variables are centered, each variable X; in this
model can be expressed as the linear combination of its parents—the set of nodes
with directed edges pointing to j—plus independent Gaussian noise. By the SEM
(2.1) and the Gaussianity of €, the random vector X follows the Gaussian distribution
P* = N(0,X%), with ¥* = (I — B*)""Q*(I — B*)~*. Throughout, we assume that
the distribution P* is non-degenerate, or equivalently, ¥* is positive definite. Our
objective is to estimate the matrix B*, or as we describe next, an equivalence class
when the underlying model is not identifiable.

Multiple SEMs are generally compatible with the distribution P*. To formalize
this, we need the following definition.

DEFINITION 2.1. (Graph G(B) induced by B) Let B € R™*™ with zeros on the
diagonal. Then, G(B) is the directed graph on m nodes where the directed edge from
i to j appears in G(B) if and only if B;; # 0.

To see why the model (2.1) is generally not identifiable, note that there are multiple
tuples (B, ) where G(B) is DAG and ( is a positive definite diagonal matrix with
¥ = (I —-B)""Q — B)™' [23]. As a result, the SEM given by (B,) yields an
equally representative model as the one given by the population parameters (B*, Q*).
When G* is faithful with respect to the graph G* (see Assumption 7 in Section 4 for
a formal definition), the sparsest DAGs that are compatible with P* are precisely
MEC(G*), the Markov equivalence class of G* [23]. Next, we formally define the
Markov equivalence class.

DEFINITION 2.2. (Markov equivalence class MEC(G)[24]) Let G = (V,E) be a
DAG. Then, MEC(G) consists of DAGs that have the same skeleton and same v-
structures as G. The skeleton of G is the undirected graph obtained from G by sub-
stituting directed edges with undirected ones. Furthermore, nodes i,j, and k form a
v-structure if (i,k) € E and (j,k) € E, and there is no edge between i and j.

2.2. {p-Penalized Maximum Likelihood Estimator. Consider n indepen-
dent and identically distributed observations of the random vector X generated ac-
cording to (2.1). Let ¥ be the sample covariance matrix obtained from these obser-
vations. Further, consider a Gaussian SEM parameterized by connectivity matrix B
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and noise variance Q with D = Q1. The parameters (B, D) specify the following
precision, or inverse covariance, matrix © := ©(B, D) := (I — B)D(I — B)". The neg-
ative log-likelihood of this SEM is proportional to £,(0) = trace(©%) — log det(©).
Naturally, we seek a model that not only has a small negative log-likelihood but is also
specified by a sparse connectivity matrix containing few nonzero elements. Thus, we
deploy the following £y-penalized maximum likelihood estimator with a regularization
parameter \ > 0:

. _ _ T 2 .
(2.2) BeRminml,nDeDTJrzn (I=B)D(I—B)")+X| Bl st. G(B)isaDAG.

Here, D, denotes the collection of positive definite m x m diagonal matrices and
||Bll¢, denotes the number of non-zeros in B. Note that the ¢y penalty is generally
preferred over the ¢; penalty or minimax concave penalty (MCP) for penalizing the
complexity of the model. In particular, £y regularization exhibits the important prop-
erty that equivalent DAGs—those in the same Markov equivalence class—have the
same penalized likelihood score, while this is not the case for ¢; or MCP regularization
[23]. Indeed, this lack of score invariance with ¢; regularization partially explains the
unfavorable properties of some existing methods (see Section 5).

The Markov equivalence class MEC(G(B°PY)) of the connectivity matrix BoPt
obtained from solving (2.2) provides an estimate of MEC(G*). van de Geer and
Bithlmann [23] prove that this estimate has desirable statistical properties; however,
solving it is, in general, intractable. As stated, the objective function ¢,,((I —B)D(I —
B)™) is non-convex and non-linear function of (B, D). Furthermore, the logdet func-
tion in the likelihood ¢, is not amenable to standard mixed-integer programming
optimization techniques. To circumvent the aforementioned challenges, Xu et al.
[25] derive the following equivalent optimization model via the change of variables
I« (I - B)D'Y?

(2.3) . Iélin F(@) st. G —diag(T)) is a DAG.
e m X m

Here f(T) := >, —2log(T';) + tr(TT™%,,) + A?||T — diag(T) | ¢, and diag(T") is the
diagonal matrix formed by taking the diagonal entries of I". The optimal solutions of
(2.2) and (2.3) are directly connected: Letting (B°Pt, DP*) be an optimal solution of
(2.2), then [°P* = (I — BoPY)(D°P)1/2 is an optimal solution of (2.3). Furthermore,
the sparsity pattern of [opt — diag(f‘)pt) is the same as that of B"pt; in other words,
the Markov equivalence class MEC(G(B")) is the same as the Markov equivalence
class MEC(G(I'°P* — diag(I'°P"))).

Xu et al. [25] recast the optimization problem (2.3) as a convex mixed-integer
program and provide algorithms to solve (2.3) to optimality. However, solving (2.3)
is, in general, NP-hard, and obtaining optimality certificates may take an hour for a
problem with 20 nodes [25].

3. A Coordinate Descent Algorithm for DAG Learning. In this section,
we develop a cyclic coordinate descent approach to find a heuristic solution to problem
(2.3). The coordinate descent solver is fast and can be scaled to large-scale problems.
As we demonstrate in Section 4, it provably converges and produces an asymptotically
optimal solution to (2.3). Given the quality of its estimates, the proposed coordinate
descent algorithm can also be used as a warm start for the mixed-integer programming
framework in [25] to obtain optimal solutions.
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3.1. Parameter update without acyclicity constraints. Let us first ignore
the acyclicity constraint in (2.3), and consider solving problem (2.3) with respect
to a single variable T'y,, for u,v = 1,...,m, with the other coordinates of I" fixed.
Specifically, we are solving

m

. ._ _ - T 2 I
(3.1) nin, (TCyo) = Zl 2log(T;) + tr (FF E) + AT — diag(T)||¢,,

with I';; being fixed for i # u, j # v.

PROPOSITION 3.1. The solution to problem (3.1), for u,v =1,...,m and v # u
is given by

Ay, a2 o A2 A A2 4163
fm{ﬁw’#Ame S P A s B

? uuw T

0, otherwise. 43,

b

where Ay, = Z Fjui:ju =+ Z Fkuiuk and Ay, = E Fjvi]ju =+ Z Fkviuk
jFu k#u jFu k#u

Proof. For any u € V', we have

tr (FI‘TE) = iruz ]_—‘miuu + Zl“ﬂflju + Z f:rkl Puziuk + Zf‘ﬂijk
=1

j#u k#u i=1 jAu
We first consider Ty, for u # v. The derivative of g(I',,) with respect to I',,, is:

99(Tuy)  Otr(ITTY)

8Fuv 8Fuv = 2Euuruv + Z Fjvzju + Z Fkvzuk = 22uul_\uv + Auv-

i7u kA

Setting 0g(Tyy) /0Ty, = 0, and defining 4, := —Auv/Qiuu, we obtain

argmin g(I'y,) = Tyo =
& 9(Tuw) “ 0, otherwise.

: {%m if g(4u0) < 9(0),

The original objective function g with £yp-norm is nonconvex and discontinuous. To
find the optimal solution, we compare g(Ju,) with g(0). Given that g(%.,) represents
the optimal objective value for any nonzero Ty, comparing it with g(0) allows us to
determine the optimal solution. Note that ¢(9uy) — g(0) = 42, Suu + FuvAus + A2.
Thus, ¢(J4s) < g(0) is equivalent to A2 < A2 /4%,,.

Now we consider the update of I'y,, when u = v. We have:

09(Tyn) -2

A N ~ -2 ~
or = T + 22uuruu + E Fjuzju + § Fkuzuk = T + 2Euuruu + Auu
uu uu J;é’u. k;ﬁu uu

Setting 0g(I'yy) /0Ty = 0, we obtain: Lo = —Auu + (A2 + 16fluu)1/2/4f]uu. O

3.2. Accounting for acyclicity and full algorithm description. Algorithm
3.1 fully describes our procedure. The input to our algorithm is the sample covariance
f], regularization parameter A € R, a super-structure graph Fg,per that is a superset
of edges that contains the true edges, and a positive integer C'. We allow the user to
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restrict the set of possible edges to be within a user-specified super-structure set of
edges Egyper- A natural choice of the superstructure is the moral graph, which can
be efficiently and accurately estimated via existing algorithms such as the graphical
lasso [7] or neighborhood selection [15]. This superstructure could also be the complete
graph if a reliable superstructure estimate is unavailable.

We start by initializing I' as the identity matrix. Then, for each pair of indices
u and v ranging from 1 to m, we update I'y, based on specific rules. If u = v
(a diagonal entry), we update it directly according to Proposition 3.1. Among the
off-diagonal entries, we only update those within the superstructure. Specifically, if
u # v, and (u,v) is in the superstructure, we check if setting I, to a nonzero value
violates the acyclicity constraint. (We use the breadth-first search algorithm [e.g.,
6, 9] to check for acyclicity.) If it does not, we update T, as per Proposition 3.1;
otherwise, we set I'y, to 0. We refer to a full sequence of coordinate updates as a
full loop. The loop is repeated until convergence, when the objective values no longer
improve after a complete loop. We keep track of the support of I's encountered during
the algorithm. When the occurrence count of a particular support of I's reaches a
predefined threshold, C, a spacer step [4, 11] is initiated, during which we update
every nonzero coordinate iteratively. Note that in the spacer step, we use 9,,, which
is the optimal update without considering the sparsity penalty, i.e., we use A2 = 0.
The use of spacer steps stabilizes the behavior of updates and ensures convergence.
After finishing the spacer step, we reset the counter of the support of the current
solution.

Algorithm 3.1 Cyclic coordinate descent algorithm with spacer steps

1: Input: Sample covariance f], regularization parameter A € R, super-structure
Egyper, positive integer C'.
2: Initialize: IO « I; ¢t «+ 1.
3: while objective function f(I'*) continue decreasing do
4: for u=1tom do
5: rt., = f‘uu, where Iy, is calculated from Proposition 3.1 using the recently
updated I't.
6: for v =1 to m such that (u,v) € Egyper do
7: If Tt # 0 violates acyclicity constraints, set I, = 0. R
8: If T, # 0 would not violate acyclicity constraints, set I'f,| = I'y,,.
9: t—t+1
10: Count[support(I')] < Count[support(T'*)] + 1.
11: if Count[support(I'*)] = Cm? then
12: I'*+! < SpacerStep(Tt) (Algorithm 3.2)
Count[support(I'*)] = 0.
tt+1.
13: end if
14: end for

15:  end for
16: end while R R
17: Output: I' + I'" and the Markov equivalence class MEC(G(T" — diag(I')))

4. Statistical and Optimality Guarantees. We provide statistical and opti-
mality guarantees for our coordinate descent procedure (Algorithm 3.1). Specifically,
we follow a similar proof strategy as [11] to show that Algorithm 3.1 converges. Re-
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Algorithm 3.2 SpacerStep

Input: It

for (u,v) € support(I'*) do
Set TEHL < 4,

end for

Output: I''t!

markably, we also prove the surprising result that the objective value attained by
our coordinate descent algorithm provably converges to the optimal objective value of
(2.3). Finally, we build on these results and provide finite-sample statistical consis-
tency guarantees. Throughout, we assume the super-structure Egyper that is supplied
as input to Algorithm 3.1 satisfies E* C Egyper Where E* denotes the true edge set;
see [25] for a discussion on how the graphical lasso can yield super-structures that
satisfy this property with high probability.

4.1. Convergence and optimality guarantees. Our convergence analysis re-
quires an assumption on the sample covariance matrix:

AssUMPTION 1 (Positive definite sample covariance).  The sample covariance
matriz X is positive definite.

Assumption 1 is satisfied almost surely if n > m and the samples of the random
vector X are generated from an absolutely continuous distribution. Under this mild
assumption, our coordinate descent algorithm provably converges, as shown next.

THEOREM 4.1 (Convergence of Algorithm 3.1). Let {T'*}3°, be the sequence of
estimates generated by Algorithm 3.1. Suppose that Assumption 1 holds. Then,

1. the sequence {support(T'*)}$2, stabilizes after a finite number of iterations;
that is, there exists a positive integer M and a support set E C {(i,7) 24,5 =
1,2,...,m} such that support(I't) = E for all t > M.

2. the sequence {I'"}>°, converges to a matriz T' with support(T') = E.

The proof of Theorem 4.1 relies on the following definitions and lemmas, and it
closely follows the approach outlined in [11]. With a slight abuse of notation, we
let £(T) := 37 —2log(T'y;) + tr(IT™3,) to be the negative log-likelihood function
associated with parameter I' € R™*™,

DEFINITION 4.2 (Coordinate-wise (CW) minimum [11]). A connectivity matric
W e R™*™ of ¢ DAG is the CW minimum of problem (2.3) if for every (u,v),u,v =
L,...,m, TSV is a minimizer of g(Tyuy) with other coordinates of TV held fized.

LEMMA 4.3. Let {T 521 be the sequence generated by Algorithm 3.1. Then the

sequence of objective values { f(I'7)}32

521 1s decreasing and converges.

Proof. By Assumption 1, ¢(T') is strongly convex and thus bounded below, and so
is f(T'). If IV is the result of a non-spacer step, then the inequality f(I'V) < f(I'V~1)
holds trivially. Similarly, we know that if I'/ results from a spacer step, then, £(I'V) <
¢(T7=1). Since a spacer step updates only coordinates on the support, it cannot
increase the support size of IV=1 i.e., [|[TY — diag(I'V)|lg, < |77 — diag(T7 1) |4,
thus f(IV) < f(I’~1). Since f(I'Y) is non-increasing and bounded below, it must
converge. O

LEMMA 4.4. The sequence {I''}:2, generated by Algorithm 3.1 is bounded.

This manuscript is for review purposes only.
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Proof. By Algorithm 3.1, Tt € G := {I' € R™*™ | f(I') < f(I'°)}. It suffices
to show that the set G is bounded. From Proposition 11.11 in [3], if the function f
is coercive, then the set G is bounded. Since f(I') > ¢(T") for every T, it suffices to
show that the function / is coercive. By Assumption 1, we have that the function ¢ is
strongly convex. The lemma then follows from the classical result in convex analysis
that strongly convex functions are coercive. ]

The following lemma characterizes the limit points of Algorithm 3.1.

LEMMA 4.5. Let E be a support set that is generated infinitely often by the non-
spacer steps of Algorithm 3.1, and let {I‘l}leL be the estimates from the spacer steps

when the support of the input matriz is E. Then:
1. There exists a positive integer M such that for all | € L with | > M,
support(I') = E.
2. There exists a subsequence of {I‘l}leL that converges to a stationary solution
W where, TV is the unique minimizer of minsupport(r‘)gE LT).
3. FEvery subsequence of {I''};>0 with support E converges to TV,

Proof. Part 1.) Since spacer steps optimize only over the coordinates in E, no
element outside £ can be added to the support. Thus, for every [ € L we have
support(I') C E. We next show that strict containment is not possible via contra-
diction. Suppose Supp(T?) < E occurs infinitely often, and consider some [ € L
where this occurs. By the spacer step of Algorithm 3.1, the previous iterate I''~!
has support E, implying HFl_lHO — ||FZHO > 1. Moreover, from the definition of
the spacer step, we have ¢(I'') < ¢(I'""'). Therefore, we get f(I''"!) — f(I'V) =
(I — oY) + X2 lo — T lo) > A2, Thus, when support(I'") C E occurs, f
decreases by at least A\2. Therefore, I'" C F infinitely many times implies that f )
is not lower-bounded, which is a contradiction.

Part 2.) The proof follows the conventional procedure for establishing the con-
vergence of cyclic coordinate descent (CD) [4, 11]. We obtain I by updating every
coordinate in E of T'~1. Denote the intermediate steps as bt o THEL where
B = ! We aim to show that the sequence {FME'}lEL converges to a point T°W,
and similarly, other sequences {I'“*};cp,i = 1,..., |E\ — 1, also converge to I'CW.
By Lemma 4.4, since {THIEY ¢ is a bounded sequence, there exists a converging
subsequence {Fl/’|E|}l/e o with a limit point V. Without loss of generality, we
choose the subsequence satisfying " > M, VI’ € L. From Part 1 of the lemma,
{I‘l/’l}lley, ce {Fl/’|E"1}l/€L/ all have the same support E. For {I‘mE'*l}l/eLx, we
have f(D!IEI=1y — p(DVIEN = gDV IEI=1y — ¢(DIE | If the change from TVIEI-1 to
Il is on a diagonal entry, say Iy, then, after some algebra, we obtain

/ (Fz/,|E|—1) _ (Fz’,\E\) _

2 (—log LI T8  DUI DA 1) 4 (LU0 T 5,

Since a — 1 > log(a) for a > 0, each of the two terms above is non-negative. From
Lemma 4.3, as I’ — oo, f(Fl/’|E|_1) - f(l"l/’|E|) or equivalently E(I‘“'E'_l) - E(FZI"E‘)
converges to 0 as I’ — oo. Combining this with the fact that 6(1"1/"@"1) —€(I‘l/"E|) >0
and that each term in the equality for E(Fl/"E"l) - g(rl',\ﬁ“l) is non-negative, we
conclude that T1Z1=1 must converge to VBl as I — oo. Since TVHIEI converges
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to PCW, DVIEI=L must also converge to IV, Repeating a similar argument, we
conclude that 7 converges to T°W for all j = 1,2,..., |E|

If the change from IEISL 4o TVIED s on an off-diagonal entry, say I'y, with
u # v, then, after some algebra,

7| £ 7)1 7 7| T 7 £ 7| T 2 ~
f (Fl ,|E\71> _ (Fl ,|E\> .y (Fl ,\E|71> iy (Fl ,|E\> _ (FL;)|E|71 _ sz,}|E|) S

Again, appealing to Lemma 4.3 as before, we can conclude that rH1E-1 converges to
W as I — co. Similarly, I’/ converges to IV for every j = 1,2, ..., |E‘| —1.

Consider k,l € L' with k > [ such that for the j-th coordinate in E, f(rk) <
f(IhI) < f(f‘lJ) Here, [ equals to '™ except for the j-th nonzero coordinate in
E. As k,1 — oo, we have, from the above analysis, that there exists a matrix TW
such that TF — TSW and ' — TV, Thus, IV and lim;_,., "7 differ by only
one coordinate in the j-th position. We conclude that f(TCW) < f(lim;_,o I'"7). In
other words, T'°W is coordinate-wise minimum. Furthermore, since the optimization
problem minsummrt(lﬂ)g 5 (') is strongly convex by Assumption 1, I'°W is the unique
minimizer of this optimization problem.

Part 3.) Consider any subsequence {I'*},¢ x such that support(I'¥) = E. We will
show by contradiction that {T'*},.cx must converge to T°V. Suppose {I'’*}rcx has a
limit point I' # TCW. Then there exist a subsequence {I'¥ Vg, with K’ C K, that
converges to I'. Therefore, limy o0 f(I¥) = ¢(I') +A2|E|. From part 1 and part 2, we
have that limy_, f(I') = £(TW)+X2| E|. By Lemma 4.3, we have limy o f(I'¥) =
limy 00 f(I'). Thus, we conclude that ¢(I') = ¢(T'°W), which contradicts the fact
that TSV is the unique minimizer of ming, oy i {(I). Therefore, we conclude

FCW

that any subsequence with support E converges to as k — oo. 0

LEMMA 4.6. Let T' be a limit point of {T*}2 | with support(T') = E. Then we
have support(T*) = E for infinitely many k’s.

Proof. We prove this result by contradiction. Assume that there are only finitely
many k’s such that support(I'¥) = E. Since there are finitely many possible sup-
port sets, there is a support E’ # E and a subsequence {I'*'} of {T'*} such that
support(I*) = E for all &, and limy_,oo T¥" = I'. However, by Lemma 4.5, the sub-
sequence converges to a minimizer IV with support(I'“V) = E’ and thus TV # T
This is a contradiction. ]

We are now ready to complete the proof of Theorem 4.1.

Proof of Theorem 4.1. Let T be a limit point of {I'*} with the largest support
size and denote its support by E. By Lemma 4.6, there is a subsequence {I'"" }.cg of
{I'*} such that support(I'") = EVr € R, and lim,_,oc I'" = T'. By Lemma 4.5, there
exists an integer M such that for every » > M and r + 1 is a spacer step, we have
support(I'") = support(I'"*1). Without loss of generality, we choose the subsequence
that » > M,¥Vr € R. We will demonstrate by contradiction that any coordinate
(u,v) in E cannot be dropped infinitely often in {I'*}. To this end, assume that
(u,v) & {support(I'")},~ys infinitely often. Let {I"'}, cp/, where R’ C R, be the
subsequence with support(I'™ 1) = E\ {(u,v)},Vr’ € R'. Since ' > M and the
support has been changed, ' + 1 is not a spacer step. Therefore, using Proposition
3.1, we have f(I'"") — f(I"'*1) > A2 — A2 /4%, > 0. By Lemma 4.3, we have
lim o0 f(I™) = f(I"'F1) = 0. Thus, A? = A2, /45, where Ay, = 3., 7,5, +

> ktu I} $... By Proposition 3.1, in step / + 1, we have [[7:1] = A/vV/Zyu > 0,
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which contradicts the definition of {I'"" }, ¢ /. Therefore, no coordinate in £ can be
dropped infinitely often. Moreover, no coordinate can be added to E infinitely often
as F is the largest support. As a result, the support converges to E. With stabilized
support E , by Lemma 4.5, we have that {I'*} converges to the limit TV with support
E. From Algorithm 3.1 and Proposition 3.1, we have I'y, is a minimizer of f(Ty,)
with respect to the coordinate (u,v) and others fixed. Therefore, IV is the CW
minimum. 0

Our analysis for optimality guarantees requires an assumption on the population
model. For the set E C {(i,7) : 4,7 = 1,2...,m}, consider the optimization problem

m

(4.1) I'}; = argmin Z —2log(T;) + tr (TTTY*)  s.t.  support(T) C E.
FGRWLXWL i:l

ASSUMPTION 2. There exists constants R,k > 0 such that opmin(I'}y) > K and
Omax(T%) < R for every E where the graph (V,E) is a DAG, where 0pn(-) and
Omin(-) are the smallest and largest eigenvalues respectively.

We further define dyax := max; |{j : (4,7) € Esuper }|-

THEOREM 4.7. Let I',T°Pt be the solution of Algorithm 3.1 and an optimal so-
lution of (2.3), respectively. Suppose Assumption 2 holds and let the regularization
parameter be chosen so that \> = O(logm/n) where m and n denote the number of
nodes and number of samples, respectively. Then,

1. f(T) = f(T°P") =p 0 as n — oo,
2. if n/log(n) > O(m?logm), with probability greater than 1 —1/O(n), we have
that: 0 < f(T') — f(T°PY) < O(y/d2,,,m*logm/n).
In other words, the objective value of the coordinate descent solution converges in
probability to the optimal objective value as n — oo. Further, assuming the sample
size m is sufficiently large, with high probability, the difference in objective value is
bounded by O(\/d2,,,m*logm/n).

maxr

Our proof relies on the following lemmas. Throughout, we let F be the support
of T ie., B ={(i,5),Tsj # 0}.

LEMMA 4.8. Let I',I°Pt be the solution of Algorithm 3.1 and optimal solution of
(2.3), respectively. Then, i) for any u,v = 1,2,...,m, Ayy + Mo Sun = 2(2F)W
where Ay, is defined in Proposition 3.1. i) if Lo #0, then (f]f),w =0, and i) the
matriz TTTS has ones on the diagonal.

Proof. For u,v = 1,...,m, by the definition of A,,, Ay, + M oS uu = Q(XA}I‘)W,
proving item i. Since any solution from Algorithm 3.1, I satisfies Proposition 3.1, for
any (u,v) € E’, (4fluuf‘uu +Au)? =A%+ 16840 and Ayy = —20 00 Sun. Combining
the previous relations, we conclude that (31'),, = 0. Therefore, for any (u,v) € E,
we have I'y, # 0 and (if)uv = 0, resulting in fuv(if)uv = 0. This proves item
ii. Plugging A,, into the previous relations, we arrive at fuu(f]f)uu = 1. Thus,
(ffTXA))“ = Z;nzl f”(f‘Ti)ﬂ = f“(fo])“ = 1, proving item iii. 1]

LEMMA 4.9. Let E C {(4,5) : 4,j = 1,2,...,m} be any set where the graph
indezed by tuple (V, E) is a DAG. Consider the estimator:

m

(4.2) T'g = argmin Z —2log(T;) + tr (FI‘Ti) s.t. support(T') C E.

This manuscript is for review purposes only.
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Suppose that 4mi||E — $* |2 < min{873 /mi2,1/2mk} and that ¥ is positive definite.
Then, |[Tg — T4 r < 4m&||S — 2% ..

Proof. The proof follows from standard convex analysis and Brouwer’s fixed point
theorem; we provide the details below. Since I" follows a DAG structure, the objective
of (4.2) can be written as: —2logdet(T") +||I'S'/2||%. The KKT conditions state that
there exists () Wlth support(Q) N E =  such that the optimal solution I'p of (4.2)
satisfies —2F L1 Q+20kS = 0 and bupport(FE) CE. Let A=1Ig-— I's;. By
Taylor series expansion, I'p' = (T + A)~! = T8~ 4+ T5 TATEL ™ + R(A), where
R(A) = 2T S0 (—AT%)*. For any matrix M € R™*™_ define the operator I*
with T*(M) := 2I% T MT% ™! + 2M¥*. Let K be the subspace K = {M € R™*™
support(M) C E} and let Pg be the projection operator onto subspace K that zeros
out entries of the input matrix outside of the support set E. From the optimality
condition of (4.1), we have Px[2I% ! — 2I'%,¥*] = 0. Then, the optimality condition
of (4.2) can be rewritten as:

(4.3) P [u*(A) FA(S - ) + R(A) + H,

Since 'y € K and T'%, € K, we have that A € K. We use Brouwer’s theorem to obtain
a bound on ||A||r. We define an operator J as K — K:

J(8) =6 — (Pxl'Px) (ch [H*P,C(é) +R() + Hy +20(5 — z*)D .

Here, the operator Pxl*Px is invertible since o, (I*) = amin(FEfl)Q > 5—12 No-
tice that any fixed point § of J satisfies the optimality condition (4.3). Furthermore,
since the objective of (4.2) is strictly convex, we have that the fixed point must
be unique. In other words, the unique fixed point of J is given by A. Now con-
sider the following compact set: B, = {d € R™*™ : support(d) Q E,||6||lF < r}
for r = 4mk||¥ — $*|2. By the assumption, r < min{8%%/ms?, 5}. Then, for
every 6 € B,, we have that I0T%]lr < mRr < 1/2 and addltlonally, IR0 |F <
2m||T 13/ omin TE) 16113 =1 H5F* S 2mi3/kr’ L < Ami3/kr?. Since ||H,|p <
2m|Tgl2)|E — £*(|2 and [|G(E)|lr < EHllHallr + IRO)|F + 26(5 — £*)|| ¢] we con-
clude that [|J(0)|r < 4mR2T2 + 4mmz§{ﬁ’1} [ — £*|l2 < r. In other words, we have
shown that J maps B, onto itself. Appealing to Brouwer’s fixed point theorem,
we conclude that the fixed point must also lie inside B,. Thus, we conclude that
[Allp <7 O

LEmMMA 4.10. With probability greater than 1—-1/O(n), we have that: ||E e <
O(y/mlog(n)/n), |£llec < 282, omin(£) = £%/2, |[Dlloc < 28 and oyin(l) > r/2.

Proof. From standard Gaussian concentration results that when n/log(n)
O(m), with probability greater than 1 — O(1/n), we have that ||X — X*|2 <
(v/mlog(n)/n). By Assumption 2, with probability greater than 1 — O(1/n),
is positive definite, with ||X]s < 2&% and omin(X) > k2 — O(y/mlog(n)/n)
£2/2. Furthermore, appealing to Lemma 4.9 and that n/log(n) > O(m?), ||T —
Itllr < O(y/m?log(n)/n). Thus Do < [T%M2 + & < 2k and Omin(D) > & —
O(y/mlog(n)/n) > k/2.

Proof of Theorem 4.7. Part 1). First,

vV QI

O

0 < f() = F(TP") < f(I) — log det(S) — —log det(ITTE) + A — diag (L) o,
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where the second inequality follows from f(I'°P*) > ming{— logdet(©) + tr(O%)} =
log det(f)) +m; the equality follows from appealing to item i. of Lemma 4.8 to conclude
that f(I') = —log det(I'T™) 4+ m + A\2||T" — diag(T)]Jo-

Our strategy is to show that as n — oo, INADY converges to a matrix with ones on
the diagonal and whose off-diagonal entries induce a DAG. Thus, log det(T" FTZ)
log [T, 1 =0 as n — oo. Since A* — 0 as n — oo and T — diag(I)|lo < m?2, we can

then conclude the desired result. For any u,v =1,2,...,m:
(44) (TS = Y Fui(E0)wi = Ty (B0 vu + Dun(E0)wp + Y Fug (50 ws,
=1 1€ Fyy

where Fy, := {i | i # u,i # v, (u,i) € E, (v,i) & E} Here, the second equality is
due to item ii. of Lemma 4.8; note that if fui(if)m # 0, then ¢ € Fy, as otherwise
either T'y; = 0 or (ﬁ)f)m = 0. We consider the two possible settings for (u,v),u # v:
Setting I) (u,v) € E which implies that (v,u) & E as I specifies a DAG, ‘and Setting
1) (u,v), (v,u) ¢ E. (Note that (u,v),(v,u) € E is not possible since T' specifies a
DAG.)

Setting I: Since (u,v) € F and (v,u) € E, we have

(f‘f‘Ti)vu = Z fvl(if‘)uz = Z fm' (;Auz +f‘uiiuu) = Z %fleuz

1€ Fyuy 1€EFyy 1EFyy

Here, the first equality follows from appealing to (4.4), and noting that Lpw =0
and that (if)uv = 0 according to item ii. of Lemma 4.8; the second equality follows
from item iii. of Lemma 4.8; the final equality follows from noting that Iy = 0 for
i € Fy,.

For each i € F,,, Figure 1 (left) represents the relationships between the nodes
u, v, i. Here, the directed edge from u to v from the constraint (u,v) € Eis represented
by a split line, the directed edge from v to i from the constraint i € F,, is represented
by a solid line, and the directed edge that is disallowed due to the constraint ¢ € F,,
is represented via a cross-out solid line.

Since there is a directed path from w to i, to avoid a cycle, a directed path
from 4 to u cannot exist. Thus, adding the edge from u to ¢ to E does not violate
acyclicity and the fact that it is missing is due to A2 > A2,/(43,,) according to
Proposition 3.1. Then, appealing to Lemma 4.10, we conclude that with probability
greater than 1 — O(1/n): |IT"S)oul < Yiep,. 31Tuil2A(Buw)? < 4XRdmax. In
other words, in this setting, [(TT"%),,| — 0 as n — co.

Setting II: Since (u,v), (v,u) & E, we have

f‘uiAvi
(4.5) = > o

Here, the first equality follows from plugging zero for Lwo in (4.4) and appealing to
1tem 1. of Lemma 4.8; the second equality follows from plugging in zero for I'y; and
['py. Since I' specifies a DAG, there cannot simultaneously be a directed path from

This manuscript is for review purposes only.



518
519

COORDINATE DESCENT FOR LEARNING BAYESIAN NETWORKS 13

to v and from v to u. Thus, either directed edges (u, v) or (v, u) can be added without
creating a cycle. We consider the three remaining sub-cases below:

Setting I1.1. Adding (u,v) to F violates acyclicity but adding (v,u) does not.

For each i € Fy,, Figure 1 (middle) represents the relations between nodes u, v,
and i. Here, due to the condition of Setting II, nodes v and v are not connected by
an edge, so this is displayed by a solid crossed-out undirected edge. Furthermore,
the directed edge from w to ¢ from the constraint ¢ € F, is represented via a solid
directed edge, the directed edge v to ¢ that is disallowed due to the constraint ¢ € F,
is represented via a cross-out solid line. Finally, the directed edge u to v that is
disallowed due to acyclicity is represented via a crossed-out dashed line.

Since adding the directed edge (u,v) to E creates a cycle, then we have the
following implications: i. adding (v, u) to F does not violate acyclicity (as both edges
u — v and v — wu cannot simultaneously create cycles) and ii. there must be a
directed path from v to w. Implication i. allows us to conclude that 'y, must be
equal to zero due to the condition 43,,A% > A2, from Proposition 3.1. Combining
implication ii. and the fact that there is a directed edge from w to 7 in E allows us
to conclude that there cannot be a directed path from 4 to v as we would be creating
a direct path from u to itself. Thus, the fact that the directed edge (v,%) is not in
E, or equivalently that [y = 0, is due to 430,522 > A2, according to Proposition 3.1.
From (4.5) and Lemma 4.10, we conclude with probablhty greater than 1 — O(1/n),
|(CLTS)00| < 4RA(1 + dmdx) In other words, in this setting, |(TT*%),,| — 0 as
n — oQ.

Setting I1.2. Adding (u,v) or (v,u) to E would not violate acyclicity.

For each i € Fy,, Figure 1 (right) represents the relations between the nodes u, v,
and ¢ . Here, due to the condition of Setting II, nodes u and v are not connected
by an edge, so this is displayed by a solid crossed-out undirected edge. Furthermore,
the directed edge from wu to ¢ from the constraint ¢ € F, is represented via a solid
directed edge, the directed edge v to ¢ that is disallowed due to the constraint ¢ € F,
is represented via a cross-out solid line.

In this setting, recall that the directed edges u to v and v to u are not present
in the estimate E. Since neither of these two edges violates acyclicity according to
the condition of this setting, we conclude that 43,,A% > A2 . There cannot be a
path from i to v because then there would exist a path from u to v, which contradicts
the scenario that an edge from v to uw does not create a cycle. As a result, an edge
from v to i does not create a cycle and f‘m- = 0 is due to 421”,)\2 > A%i according to
Proposition 3.1. Thus, from (4.5) and Lemma 4.10, we conclude that, with probability
greater than 1—O(1/n), [(TT7Y) | < 48A(1+dimax). In other words, [(TT75),,| — 0
as n — 0o.

Setting I1.3. Adding (v, u) violates acyclicity but adding (u, v) does not.

In this case, even if (IT'T E)m, does not converge to zero, we have by the setting
assumption that adding (u,v) to E does not violate DAG constraint. Since F specifies
a DAG, the off-diagonal nonzero entries of the matrix I'T™Y specifies a DAG as well.

Putting Settings I-II together, we have shown that as n — oo, the nonzero
entries in the off-diagonal of INADY specify a DAG. Furthermore, according to item
i. of Lemma 4.8, the diagonal entries of this matrix are equal to one. As stated
earlier, this then allows us to conclude that —logdet(I’ [TY) — 0 as n — oo, and
consequently that f(T') — f(T'°P%) — 0.

This manuscript is for review purposes only.
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Fig. 1: Left: scenario for Setting I, middle: scenario for setting I1.1, and right: scenario
for setting II.2; solid directed edges represent directed edges that are assumed to be
in the estimate E7 crossed out solid directed edges represent directed edges that are
assumed to be excluded in the estimate E, crossed out solid undirected edges indicate
that the corresponding nodes are not connected in E, and crossed out dotted directed
edge indicates that the edge is not present in E as adding it would create a cycle.

Part 2) Using the proof of Theorem 4.7 part i), we can immediately conclude that
the matrix I'T™, can be decomposed as the sum N + A. Here, the off-diagonal
entries of NV specify a DAG, with ones on the diagonal and under the assumption
on n, with probability greater than 1 — O(1/n), ||Allcc < 4R(1 + dmax)X with ze-
ros on the diagonal of A. Consequently, |Allo < 4mi%(1 + dmax)A. Furthermore,
by Lemma 4.10, we get oumin(TTTE,) > 0min(D)20min(X) > £%/4. The reverse tri-
angle inequality yields omin(N) > /4 — 4mk2(1 + dmax)A. Consider any matrix
N with |N;; — Nyj| < |A;;|. Using the reverse triangle inequality again, we get
Omin(N) > £* — 8mE2(1 + dmax)A with probability greater than 1 — O(1/n). By the
assumption on the sample size, N is invertible, and so we can use first-order Tay-
lor series expansion to obtain —logdet(N + A) = —logdet(N) — tr(N~'A). Since
log det(N) = 0, we obtain the bound —logdet(N +A) < —tr(N~1A) < [[N712]|Al«
with || - ||, denoting the nuclear norm. Thus, —logdet(N + A) < [N~ 2l|All <

4m? R (14 dimax) X :
ﬁ(m”AHQ < 54/£;m€%2T1+drgax)A' As X = O(logm/n), by the assumption on the

sample size, f(I') — f(I°P%) < O(\/d2,,,m*logm/n). O

4.2. Statistical consistency guarantees. Recall from Section 2.1 that there
is typically multiple SEMs that are compatible with the distributions P*. Each
equivalent SEM is specified by a DAG; this DAG defines a total ordering among
the variables. Associated to each ordering 7 is a unique structural equation model
that is compatible with the distribution P*. We denote the set of parameters of
this model as (B*(n),Q*(x)). For the tuple (B*(w),Q*(r)), we define I*(7) :=
(I—B*(m))Q*(r)~*/2. Welet TI = {ordering 7 : support(B*(r)) C Esuper}- Through-
out, we will use the notation s* = || B*||4, and 5 := 3 (x) = || B*(7)|l¢, -

ASSUMPTION 3. (Sparsity of every equivalent causal model) There exists some
constant & such that for any m € 11, || B5(7)|le, < a+/n/logm.

ASSUMPTION 4. (Beta-min condition) There exist constants 0 <1y <1 and 0 <
ng < 1—m, such that for any m € 11, the matriz B*(r) has at least (1 —mn1)||B*(7)]|¢,

coordinates k # j with \B;J(Wﬂ > /logm/n(y/m/s* vV 1) /no.

ASSUMPTION 5. (Sufficiently large noise variances) For every m € II, O(1) >
min, [V (m)]j; > O(y/s* logm/n).

ASSUMPTION 6. (Sufficiently sparse B* and super-structure Eg,per) For every i =
L2,...,m, | Blle, < an/log(m) and [{], (j,i) € Esuper}| < an/log(m).
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Here, Assumptions 3-4 are similar to those in [23]. Assumption 5 is used to
characterize the behavior of the early stopped estimate and is thus new relative to
[23]. Assumption 6 ensures that the number of parents for every node both in the
true DAG and the super-structure is not too large.

Next, we present our theorem on the finite-sample consistency guarantees of the
coordinate descent algorithm. Throughout, we assume that we have obtained a so-
lution after the algorithm has converged. We let GAP denote the difference between
the objective value of the coordinate descent output and the optimal objective value
of (2.3). We let T' be a minimizer of (2.3).

THEOREM 4.11. Let I',T°P® be the solution of Algorithm 3.1 and the optimal so-
lution of (2.3), respectively. Suppose Assumptions 2-6 are satisfied with constants
a,a,no sufficiently small. Let ag := min{4/m,0.05}. Then, for \> < logm/n, if
n/log(n) > O(m?logm), with probability greater than 1 — 2ay, there exists a 7w such

that R
L [T = TP} < O(y/dZm? logm/n),

2. |0 = T*(n)||% = O(/d2,,.,m*logm/n), and ||T* ()]s, = s*.

max

The proof relies on the following results.

PROPOSITION 4.12. (Theorem 3.1 of [23]) Suppose Assumptions 2-6 hold with
constants o, &, mo sufficiently small. Let T°P* be any optimum of (2.3) with the con-
straint that support(I') C Egyper. Let m°P' be the associated ordering of T'°P* and

(3°pt, QOPt) be the associated connectivity and noise variance matriz satisfying [ort —

(I — Bc’pt)l@’pt_lm. Then, for ag = (4/m) A 0.05 and N> < logm/n, we have, with
a probability greater than 1 — aq, ||B°P* — B*(m)||3 + [|Q°PY — Q*(7°PY)[|F, = O(A%s*),
and || B*(7) ||, < s*.

COROLLARY 4.13 (Corollary 6 of [25]). With the setup in Proposition 4.12,

Proof of Theorem 4.11. The proof is similar to that of [25] and we provide a
short description for completeness. For notational simplicity, we let T'* := f‘*(ﬂ)
where 7 is the permutation satisfying Proposition 4.12 and T'* defined earlier. From
Theorem 4.7, we have that 0 < f(I') — f(I'P*) < O(/d2,,,m*logm/n). Let GAP =
O( d?naxm4 logm/n). For a matrix I' € R™*™, let (1) = Y, —2log(Ty;) +
tr(IT™3,). Suppose that [|T]¢, > [T, Then, ((T) — ¢(T°P*) < GAP. On the
other hand, suppose ||T'||¢, < ||I‘°pt||1g0 Then, ¢(T )—E(I‘Opt) < GAP + X?|Tl¢, <
2GAP. So, we conclude the bound 4(T") — f(f‘or’t) < 2GAP.

For notational simplicity, we will consider a vectorized objective. Let T C
{1,...,m?} be indices corresponding to  diagonal elements of an m x m matrix being
vectorlzed With abuse of notation, let F FOpt and I'* be the vectorized form of their
corresponding matrices. Then, Taylor series expansion yields

2 _ 16max{1, [|B*(m)||3, |2 (m) "2 |5 1A%

F min{1, min; (Q*(7),;)3}

port — ()| <

é(f‘) . E(f\opt) _ (1—1* B fwopt) ( )( pt) + VE(F*) (f‘ - fwopt)
+1/2(F — 1°PH) TV (f)(r ropty,

Here, entries of T lie between I' and f“’pt, and entries of ' lie between I'°Pt and T'*.
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Some algebra then gives:
1/2(0 = DPYTV2YT)(E = ToP) <[O(T) — (0P + VT |l [T = TP,
A+ |5 = TPy [P = T* gy Kanax (V2(D)).

By the convexity of £(-), for any ', V2/(T") = 3 ® I. Thus appealing to Lemma 4.10,
with probability greater than 1 — O(1/n), omin(V24()) > k?/2. Letting 7 :=
A(|[TP = T4, fimax (V2U(T)) + [ VA(T*)|l¢,) /52, with probability greater than 1 —
O(1/n): |0 —ToPY2 < 45 26(T") — £(I°P*) + 475 2|I" — T°Pt||,, 7. Note that for
non-negative Z, W, 11, the inequality Z? < I1Z + W implies Z < (I + II2 + 4W) /2.
Using this fact, in conjunction with the previous bound, we obtain with probability
greater than 1—O(1/n) the bound [|[I' 9P|y, < T+1 (724165 2[¢(T) —£(T°P")])1/2,
We next bound 7. From Corollary 4.13, we have control over the term [[T°P* — T'*||,,
in 7. It remains to control . (V24(T)) and [|[VE(T*)|ls,. Let T' € R™ . Sup-
pose that for every j € T, I'; > v. Then, some calculations yield the bound
V() = Sl + %Imz =3I+ % m2- We have that for every j € T,
[9P% > I'% — |[[°Pt — T*[|,,. From Corollary 4.13, Assumption 5, and that Av/s* < 1,
we then have f‘;’pt >17%/2> 1/2((2;)’1/2. Since the entries of I' are between those of
I'* and T°P* and by Lemma 4.10, 0max(V24(T)) < Opmax(3) + 8 min, Q5 = O(1). To
control V{(I'*), we first note that E[V{(T'*)] = 0. Therefore, ||[VL(I™*)]|e, = || VL(IT*) —
E[VE(I™)][le,. Since V(™) —E[VE(I™)] = A((XA) —X*) @ I)T*, letting K* = (%)~ we
get | VA(I*)—E[VAT)]|IZ, = tr((3n—X*) (80 —Z%)"K*) < S-S 3 K. < ml[E-
SBIE* |2 < O(m*log(n)/n). Thus, [VLT*) = E[VAT)][l,, < O(myIogn/y/n).
Upper bounding 7 and then ultimately using that to upper-bound ||[I'—=T°PY||,,, we con-
clude that ||T" — fol[’tH%2 < O(\/d2,,.m*logm/n). Combining this bound with Propo-
sition 4.12, we get the first result of the theorem. The second result follows straight-
forwardly from triangle inequality: ||’ — T'*||2 < 2| — T°Pt||2, 4 2[|ToPt — T*[|2, <

O(\/d2 . m*logm/n). 0

The result of Theorem 4.7 guarantees that the estimate from our coordinate descent
procedure is close to the optimal solution of (2.3), and that it accurately estimates
certain reordering of the population model. For accurately estimating the edges of the
population Markov equivalence class MEC(G*), we need the faithfulness condition and
a strictly stronger version of the beta-min condition[23], dubbed the strong beta-min
condition.

ASSUMPTION 7. (Faithfulness)The DAG G* is faithful with respect to the data
generating distribution P*, that is, every conditional independence relationship en-
tailed in P* is encoded G*.

ASSUMPTION 8. (Strong beta-min condition) There exist constant 0 < ng < 1/s*,
such that for any w € II, the matriz B*(m) has all of its nonzero coordinates (k,j)

satisfy |B,’;](7r)\ > /s*logm/n/no.

THEOREM 4.14. Suppose \? < s*logm/n, the sample size satisfies n/log(n) >
O(m?logm), and assumptions of Theorem 4.11 hold, with Assumption 4 replaced by
Assumption 8. Then, with probability greater than 1 — 2ayq, there exists a member
of the population Markov equivalence class with associated parameter I'y,.. such that
Hf - F:HBCH%‘ < O( V dgnaa:”n4 logm/n)

Appealing to Remark 3.2 of van de Geer and Biithlmann [23], under assumptions of
Theorem 4.11, as well as Assumption 8, the graph encoded by any optimal connec-
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tivity matrix BOPt of this optimization problem encodes, with probability 1 — «ag, a
member of the Markov equivalence class of the population directed acyclic graph.
Let (Bf ec; 2%0c) be the associated connectivity matrix and noise matrix of this pop-

ulation model. Furthermore, define I'%,,. = (I — B;leC)leeC*l/z. The proof of the
theorem relies on the following lemma in [25].

LEMMA 4.15 (Lemma 7 of [25]). Under the conditions of Theorem 4.14, we have
with probability greater than 1 — 2ag, ||T°P* — T%..||% = O(m?/n).

Proof of Theorem 4.1/. First, by Lemma 4.15, with probability greater than 1 —
200, |0 =T} [|% < 2||T=T0P |2 42| TPt —T% . ||% < GAP+O(m?/n). Since the GAP
is on the order O(y/d2,, . m*logm/n), we get |’ — T%ecl|% < O(/d2,,.m*logm/n).0
We remark that without the faithfulness condition (see Assumption 7), we can guar-
antee that the estimate from our coordinate descent procedure is close to a member of
what is known as the minimal-edge I-MAP. The minimal-edge I-MAP is the sparsest
set of directed acyclic graphs that induce a structural equation model compatible with
the true data distribution. Under faithfulness, the minimal-edge I-MAP coincides with
the population Markov equivalence class [23].

5. Experiments. In this section, we illustrate the utility of our method on syn-
thetic and real data and compare its performance with competing methods. We dub
our method CD-¢; as it is a coordinate descent method using ¢y penalized loss func-
tion. The competing methods we compare against include Greedy equivalence search
(GES) [5], Greedy Sparsest Permutation (GSP) [19], and the mixed-integer convex
program (MICODAG) [25]. We also compare our method with other coordinate de-
scent algorithms (CCDr-MCP) [1, 2, 9], which use a minimax concave penalty instead
of ¢y norm and are implemented as an R package sparsebn. All experiments are per-
formed with a MacBook Air (M2 chip) with 8GB of RAM and a 256GB SSD, using
Gurobi 10.0.0 as the optimization solver.

As the input super-structure Eguper, We supply an estimated moral graph, com-
puted using the graphical lasso procedure [8]. To make our comparisons fair, we
appropriately modify the competing methods so that Eg,per can also be supplied as
input. Note that we count the number of support after each update in Algorithm
3.1. Converting the graph into a string key at each iteration is inefficient. Therefore,
in the implementation, we count the support only after each full loop, setting the
threshold to C' instead of C'm?2. Throughout this paper, C is set to 5.

We use the metric depdag to evaluate the estimation accuracy as the underlying
DAG is generally identifiable up to the Markov equivalence class. The metric dcpdag
is the number of different entries between the unweighted adjacency matrices of the
estimated completed partially directed acyclic graph (CPDAG) and the true CPDAG.
A CPDAG has a directed edge from a node i to a node j if and only if this directed
edge is present in every DAG in the associated Markov equivalence class, and it has
an undirected edge between nodes i and j if the corresponding Markov equivalence
class contains DAGs with both directed edges from i to j and from j to .

The time limit for the integer programming method MICODAG is set to 50m.
If the algorithm does not terminate within the time limit, we report the solution
time (in seconds) and the achieved relative optimality gap, computed as RGAP =
(upper bound — lower bound)/lower bound. Here, the upper bound and lower bound
refer to the objective value associated with the best feasible solution and best lower
bound, obtained respectively by MICODAG. A zero value for RGAP indicates that
an optimal solution has been found.
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Unless stated otherwise, we use the Bayesian information criterion (BIC) to choose
the parameter A. In our context, the BIC score is given by —2n> " log(I';) +

ntr(IT*Y) + klog(n), where k is the number of nonzero entries in the estimated
parameter I'. From theoretical guarantees in [25], A% should be on the order log(m)/n.
Hence, we choose A with the smallest BIC score among \?> = clogm/n, for ¢ =
1,2,...,15.

Setup of synthetic experiments: For all the synthetic experiments, once we specify
a DAG, we generate data according to the SEM (2.1), where the nonzero entries of
B* are drawn uniformly at random from the set {—0.8, —0.6,0.6,0.8} and diagonal
entries of Q* are chosen uniformly at random from the set {0.5,1,1.5}.

5.1. Comparison with benchmarks. We first generate datasets from twelve
publicly available networks sourced from [14] and the Bayesian Network Repository
(bnlearn). These networks have different numbers of nodes, ranging from m = 6 to
m = 70. We generate 10 independently and identically distributed datasets for each
network according to the SEM described earlier with sample size n = 500.

Table 1 compares the performance of our method CD-{y with the competing ones.
First, consider small graphs (m < 20) for which the integer programming approach
MICODAG achieves an optimal or near-optimal solution with a small RGAP. As
expected, in terms of the accuracy of the estimated model, MICODAG tends to
exhibit the best performance. For these small graphs, CD-¢; performs similarly to
MICODAG but attains the solutions much faster. Next, consider moderately sized
graphs (m > 20). In this case, MICODAG cannot solve these problem instances within
the time limit and hence finds inaccurate models, whereas CD-{; obtains much more
accurate models much faster. Finally, CD-{; outperforms GES, GSP, and CCDr-MCP
in most problem instances. The improved performance of CD-{y over CCDr-MCP
highlights the advantage of using £y penalization over a minimax concave penalty: £,
penalization ensures that DAGs in the same Markov equivalence class have the same
score, while the same property does not hold with other penalties.

Large graphs: We next demonstrate the scalability of our coordinate descent
algorithm for learning large DAGs with over 100 nodes. We consider networks from
the Bayesian Network Repository and generate 10 independent datasets similar to the
previous experiment. Table 2 presents the results where we see that our method CD-

Table 1: Comparison of our method, CD-¢y, with competing methods

MICODAG CCDr-MCP GES GSP CD-4
Network(m) Time RGAP depdag Time depdag Time depdag Time depdag Time depdag
Dsep(6) <1 0 20(£0) <1 20(x0) <1  18(£06) <1  2.0(x0) <1 2.0(x0)
Asia(8) <1 0 22(20.6) <1  20(#0) <1  27(209) <1 4914 <1  2.0(x0)
Bowling(9) 3 0 20(£0) <1 47(F24) <1 24(07) <1 56(£25) <1 2.2(0.4)
IsSmall(15)  >750 080  T.0(E26) <1 29.9(x40) <1 24.9(103) <1 17.2(£7.9) <1  8.0(0)
Rain(14) 151 0 20(£0) <1 95(x20) <1  54(¥37) <1  175(+43) <1 3.3(£2.1)
Cloud(16) 93 0 5.2(206) <1 110(x41) <1  50(£L5) <1  13.7(£30) <1 6.8(+2.3)
Funnel(18) 70 0 20(£0) <1 20(%0) <1 48(265) <1  13.0(29) <1  2.0(x0)
Galaxy(20) 237 0 10(£0) <1 46(£31) <1  15(*16) <1  158(%52) <1  1.0(£0)
Insurance(27) > 1350 340  22.8(+13.5) <1  384(x48) <1 305(x£148) <1  385(£6.7) <1 147(+4.1)
Factors(27) ~ >13350 311  56.1(£84) <1 65.3(£7.6) <1 689(£105) <1  523(x7.4) <1 181(+6.7)
Hailfinder(56) > 2800 245  41.4(+12.6) <1 129(%35) <1 264(£16.2) <1 109.1(£10.2) 1.6  2.6(x1.3)
Hepar2(70) ~ >3500 5415 76.9(+16.5) <1 54.6(£12.0) <1 715(£27.4) <1  66.3(£9.3) 114  5.3(+2.2)

Here, MICODAG, mixed-integer convex program [25]; CCDr-MCP, minimax concave penalized
estimator with coordinate descent [2]; GES, greedy equivalence search algorithm [5]; GSP, greedy
sparsest permutation algorithm [19]; depdag, differences between the true and estimated completed
partially directed acyclic graphs; RGAP, relative optimality gap. All results are computed over ten
independent trials where the average dcpqag values are presented with their standard deviations.
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Fig. 2: Convergence of CD-{; to an optimal solution
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Percentage of differences
Time (seconds)

100 200 300 400 500 100 200 300 400 500 100 200 300 00 500

Left: normalized difference, as a function of sample size n, between the optimal objective value of
(2.3) found using the integer programming approach MICODAG and the objective value obtained
by CD-{y for three different graphs; Middle: normalized difference of objectives of solutions
obtained from MICODAG and GES; Right: comparison of computational cost of CD-£g,
MICODAG, and GES for the DAG with 21 edges. All results are computed and averaged over ten
independent trials.

lo can effectively scale to large graphs and obtain better or comparable performance
to competing methods, as measured by the dcpgag metric.

5.2. Convergence of CD-/; solution to an optimal solution. Theorem 4.7
states that as the sample size tends to infinity, CD-{, identifies an optimally scoring
model. To see how fast the asymptotic kicks in, we generate three synthetic DAGs
with m = 10 nodes where the total number of edges is chosen from the set {7,12,21}.
We obtain 10 independently and identically distributed datasets according to the
SEM described earlier with sample size n = {50,100, 200, 300, 400,500}. In Figure
2(left, middle), we compute the normalized difference (obj™™°? — obj°P) /objP! as
a function of n for the three graphs, averaged across the ten independent trials.
Here, obj™®""°d is the objective value obtained by the corresponding method (CD-(,
or GES), while obj°" is the optimal objective obtained by the integer programming
approach MICODAG. For moderately large sample sizes (e.g., n = 200), CD-{, attains
the optimal objective value, whereas GES does not. In Figure 2 (right), for the
graph with 21 arcs, we see that CD-{y can achieve the same accuracy while being
computationally much faster to solve.

5.3. Real data from causal chambers. Recently, [10] constructed two de-
vices, referred to as causal chambers, allowing us to quickly and inexpensively pro-
duce large datasets from non-trivial but well-understood real physical systems. The
ground-truth DAG underlying this system is known and shown in Figure 3(a). We
collect m = 1000 to n = 10000 observational samples of m = 20 variables at incre-
ments of 1000. To maintain clarity, we only plot a subset of the variables in Figure

Table 2: Comparison of our method, CD-¢y, with competing methods for large graphs

CCDr-MCP GES GSP CD-{y
Network(m) Time depdag Time depdag Time depdag Time depdag
Pathfinder(109) <1  212.9(20.7) <1 275.6(%164) 2.0  212.5(£19.5) 118  81.6(£16.3)
Andes(223) 1.8 117.9(+9.6) <1 165.0(£28.3) 6.6 702.0(+£42.6)  35.1  107.3(+5.9)

Diabetes(413) 104 276.7(+9.7) 3.3  387.1(£22.2) 57.8 1399.8(+19.1) 8819 286.6(15.9)

See Table 1 for the description of the methods. All results are computed over ten independent
trials where the average dcpqag values are presented with their standard deviations.
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Fig. 3: Learning causal models from causal chambers data in [10]

-+~ GES
—— Our method

2000 4000 6000 8000 10000
n

(a) Ground truth (b) GES (c) CD-4 (d) depdag comparison

Here, a. ground-truth DAG described in [10], b-c. the estimated CPDAGs by GES and CD-{, for
sample size n = 10000, d. comparing the accuracy of the CPDAGSs estimated by our method CD-£g
and GES with different sample sizes n; here the accuracy is computed relative to CPDAG of the
ground-truth DAG and uses the metric dcpdag-

3(a, b, ¢). However, the analysis includes all variables. With this data, we obtain
estimates for the Markov equivalence class of the ground-truth DAG using GES and
our method CD-¢y and measure the accuracy of the estimates using the dcpaag metric.

Figures 3(b-c) show the estimated CPDAG for each approach when n = 10000.
Both methods do not pick up edges between the polarizer angles 61,65 and other
variables. As mentioned in [10], this phenomenon is likely due to these effects being
nonlinear. Figure 3(d) compares the accuracy of CD-{y and GES in estimating the
Markov equivalence class of the ground-truth DAG. For all sample sizes n, we observe
that CD-/y is more accurate.

6. Discussion. In this paper, we propose the first coordinate descent procedure
with proven optimality and statistical guarantees in the context of learning Bayesian
networks. Numerical experiments demonstrate that our coordinate descent method
is scalable and provides high-quality solutions.

We showed in Theorem 4.1 that our coordinate descent algorithm converges. It
would be of interest to characterize the speed of convergence. In addition, the compu-
tational complexity of our algorithm may be improved by updating blocks of variables
instead of one coordinate at a time. Finally, an open question is whether, in the con-
text of our statistical guarantees in Theorem 4.7, the sample size requirement can be
relaxed.
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