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Abstract. This paper studies the problem of learning Bayesian networks from continuous obser-5
vational data, generated according to a linear Gaussian structural equation model. We consider an6
ℓ0-penalized maximum likelihood estimator for this problem which is known to have favorable sta-7
tistical properties but is computationally challenging to solve, especially for medium-sized Bayesian8
networks. We propose a new coordinate descent algorithm to approximate this estimator and prove9
several remarkable properties of our procedure: the algorithm converges to a coordinate-wise min-10
imum, and despite the non-convexity of the loss function, as the sample size tends to infinity, the11
objective value of the coordinate descent solution converges to the optimal objective value of the12
ℓ0-penalized maximum likelihood estimator. Finite-sample optimality and statistical consistency13
guarantees are also established. To the best of our knowledge, our proposal is the first coordinate14
descent procedure endowed with optimality and statistical guarantees in the context of learning15
Bayesian networks. Numerical experiments on synthetic and real data demonstrate that our coordi-16
nate descent method can obtain near-optimal solutions while being scalable.17
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1. Introduction.21

1.1. Background and related work. Bayesian networks provide a powerful22

framework for modeling causal relationships among a collection of random variables.23

A Bayesian network is typically represented by a directed acyclic graph (DAG), where24

the random variables are encoded as vertices (or nodes), a directed edge from node i25

to node j indicates that i causes j, and the acyclic property of the graph prevents the26

occurrence of circular dependencies. If the DAG is known, it can be used to predict27

the behavior of the system under manipulations or interventions. However, in large28

systems such as gene regulatory networks, the DAG is not known a priori, making it29

necessary to develop efficient and rigorous methods to learn the graph from data. To30

solve this problem using only observational data, we assume that all relevant variables31

are observed and that we only have access to observational data.32

Three broad classes of methods for learning DAGs from data are constraint-33

based, score-based, and hybrid. Constraint-based methods use repeated conditional34

independence tests to determine the presence of edges in a DAG. A prominent example35

is the PC algorithm and its extensions [20, 21]. While the PC algorithm can be applied36

in non-parametric settings, testing for conditional independencies is generally hard37

∗Submitted to the editors on August 21, 2024.
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[17]. Furthermore, even in the Gaussian setting, statistical consistency guarantees38

for the PC algorithm are shown under the strong faithfulness condition [12], which is39

known to be restrictive in high-dimensional settings [22]. Score-based methods often40

deploy a penalized log-likelihood as a score function and search over the space of DAGs41

to identify a DAG with an optimal score. These approaches do not require the strong42

faithfulness assumption. However, statistical guarantees are not provided for many43

score-based approaches and solving them exactly suffers from high computational44

complexity. For example, learning an optimal graph using dynamic programming45

takes about 10 hours for a medium-size problem with 29 nodes [18]. Several papers46

[13, 25] offer speedup by casting the problem as a convex mixed-integer program, but47

finding an optimal solution with these approaches can still take an hour for a medium-48

sized problem. Finally, hybrid approaches combine constraint-based and score-based49

methods by using background knowledge or conditional independence tests to restrict50

the DAG search space [21, 16].51

Several strategies have been developed to make score-based methods more scalable52

by finding approximate solutions instead of finding optimally scoring DAGs. One53

direction to find good approximate solutions is to resort to greedy-based methods, with54

a prominent example being the Greedy Equivalence Search (GES) algorithm [5]. GES55

performs a greedy search on the space of completed partially directed acyclic graphs56

(an equivalence class of DAGs) and is known to produce asymptotically consistent57

solutions [5]. Despite its favorable properties, GES does not provide optimality or58

consistency guarantees for any finite sample size. Further, the guarantees of GES59

assume a fixed number of nodes with sample size going to infinity and do not allow60

for a growing number of nodes. Another direction is gradient-based approaches [27,61

28], which relax the discrete search space over DAGs to a continuous search space,62

allowing gradient descent and other techniques from continuous optimization to be63

applied. However, the search space for these problems is highly non-convex, resulting64

in limited guarantees for convergence, even to a local minimum. Finally, another65

notable direction is based on coordinate descent ; that is iteratively maximizing the66

given score function over a single parameter, while keeping the remaining parameters67

fixed and checking that the resulting model is a DAG at each update [1, 2, 9, 26]. While68

coordinate descent algorithms have shown significant promise in learning large-scale69

Bayesian networks, to the best of our knowledge, they do not come with convergence,70

optimality, and statistical guarantees.71

1.2. Our contributions. We propose a new score-based coordinate descent al-72

gorithm for learning Bayesian networks from Gaussian linear structural equation mod-73

els. Remarkably, unlike prior coordinate descent algorithms for learning Bayesian net-74

works, our procedure provably i) converges to a coordinate-wise minimum, ii) produces75

optimally scoring DAGs as the sample size tends to infinity despite the non-convex76

nature of the problem, and iii) yields asymptotically consistent estimates that also77

provide finite-sample guarantees that allow for a growing number of nodes. As a78

scoring function for this approach, we deploy an ℓ0-penalized Gaussian log-likelihood,79

which implies that optimally-scoring DAGs are solutions to a highly non-convex ℓ0-80

penalized maximum likelihood estimator. This estimator is known to have strong81

statistical consistency guarantees [23], but solving it is, in general, intractable. Thus,82

our coordinate descent algorithm can be viewed as a scalable and efficient approach to83

finding approximate solutions to this estimator that are asymptotically optimal (i.e.,84

match the optimal objective value of the ℓ0 penalized maximum-likelihood estima-85

tor as the sample size tends to infinity) and have finite-sample statistical consistency86
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guarantees.87

We illustrate the advantages of our method over competing approaches via ex-88

tensive numerical experiments. The proposed approach is implemented in the python89

package micodag, and all numerical results and figures can be reproduced using the90

code in https://github.com/AtomXT/coordinate-descent-for-bayesian-networks.git.91

2. Problem Setup.92

2.1. Preliminaries and Definitions. Consider an unknown DAG whose m93

nodes correspond to observed random variables X ∈ Rm. We denote the DAG by94

G⋆ = (V,E⋆) where V = {1, . . . ,m} is the vertex set and E⋆ ⊆ V × V is the directed95

edge set. We assume that the random variablesX satisfy the linear structural equation96

model (SEM):97

(2.1) X = B⋆TX + ϵ,98

where B⋆ ∈ Rm×m is the connectivity matrix with zeros on the diagonal and B⋆
jk ̸= 099

if (j, k) ∈ E⋆. In other words, the sparsity pattern of B⋆ encodes the true DAG100

structure. Further, ϵ ∼ N (0,Ω⋆) is a random Gaussian noise vector with zero mean101

and independent coordinates so that Ω⋆ is a diagonal matrix. Assuming, without102

loss of generality, that all random variables are centered, each variable Xj in this103

model can be expressed as the linear combination of its parents—the set of nodes104

with directed edges pointing to j—plus independent Gaussian noise. By the SEM105

(2.1) and the Gaussianity of ϵ, the random vector X follows the Gaussian distribution106

P⋆ = N (0,Σ⋆), with Σ⋆ = (I − B⋆)−TΩ⋆(I − B⋆)−1. Throughout, we assume that107

the distribution P⋆ is non-degenerate, or equivalently, Σ⋆ is positive definite. Our108

objective is to estimate the matrix B⋆, or as we describe next, an equivalence class109

when the underlying model is not identifiable.110

Multiple SEMs are generally compatible with the distribution P⋆. To formalize111

this, we need the following definition.112

Definition 2.1. (Graph G(B) induced by B) Let B ∈ Rm×m with zeros on the113

diagonal. Then, G(B) is the directed graph on m nodes where the directed edge from114

i to j appears in G(B) if and only if Bij ̸= 0.115

To see why the model (2.1) is generally not identifiable, note that there are multiple116

tuples (B,Ω) where G(B) is DAG and Ω is a positive definite diagonal matrix with117

Σ⋆ = (I − B)−TΩ(I − B)−1 [23]. As a result, the SEM given by (B,Ω) yields an118

equally representative model as the one given by the population parameters (B⋆,Ω⋆).119

When G⋆ is faithful with respect to the graph G⋆ (see Assumption 7 in Section 4 for120

a formal definition), the sparsest DAGs that are compatible with P⋆ are precisely121

MEC(G⋆), the Markov equivalence class of G⋆ [23]. Next, we formally define the122

Markov equivalence class.123

Definition 2.2. (Markov equivalence class MEC(G)[24]) Let G = (V,E) be a124

DAG. Then, MEC(G) consists of DAGs that have the same skeleton and same v-125

structures as G. The skeleton of G is the undirected graph obtained from G by sub-126

stituting directed edges with undirected ones. Furthermore, nodes i, j, and k form a127

v-structure if (i, k) ∈ E and (j, k) ∈ E, and there is no edge between i and j.128

2.2. ℓ0-Penalized Maximum Likelihood Estimator. Consider n indepen-129

dent and identically distributed observations of the random vector X generated ac-130

cording to (2.1). Let Σ̂ be the sample covariance matrix obtained from these obser-131

vations. Further, consider a Gaussian SEM parameterized by connectivity matrix B132
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and noise variance Ω with D = Ω−1. The parameters (B,D) specify the following133

precision, or inverse covariance, matrix Θ := Θ(B,D) := (I−B)D(I−B)T. The neg-134

ative log-likelihood of this SEM is proportional to ℓn(Θ) = trace(ΘΣ̂) − log det(Θ).135

Naturally, we seek a model that not only has a small negative log-likelihood but is also136

specified by a sparse connectivity matrix containing few nonzero elements. Thus, we137

deploy the following ℓ0-penalized maximum likelihood estimator with a regularization138

parameter λ ≥ 0:139

min
B∈Rm×m,D∈Dm

++

ℓn
(
(I −B)D (I −B)

T
)
+ λ2∥B∥ℓ0 s.t. G(B) is a DAG.(2.2)140

Here, Dm
++ denotes the collection of positive definite m × m diagonal matrices and141

∥B∥ℓ0 denotes the number of non-zeros in B. Note that the ℓ0 penalty is generally142

preferred over the ℓ1 penalty or minimax concave penalty (MCP) for penalizing the143

complexity of the model. In particular, ℓ0 regularization exhibits the important prop-144

erty that equivalent DAGs—those in the same Markov equivalence class—have the145

same penalized likelihood score, while this is not the case for ℓ1 or MCP regularization146

[23]. Indeed, this lack of score invariance with ℓ1 regularization partially explains the147

unfavorable properties of some existing methods (see Section 5).148

The Markov equivalence class MEC(G(B̂opt)) of the connectivity matrix B̂opt149

obtained from solving (2.2) provides an estimate of MEC(G⋆). van de Geer and150

Bühlmann [23] prove that this estimate has desirable statistical properties; however,151

solving it is, in general, intractable. As stated, the objective function ℓn((I−B)D(I−152

B)T) is non-convex and non-linear function of (B,D). Furthermore, the log det func-153

tion in the likelihood ℓn is not amenable to standard mixed-integer programming154

optimization techniques. To circumvent the aforementioned challenges, Xu et al.155

[25] derive the following equivalent optimization model via the change of variables156

Γ← (I −B)D1/2:157

(2.3) min
Γ∈Rm×m

f(Γ) s.t. G (Γ− diag (Γ)) is a DAG.158

Here f(Γ) :=
∑m

i=1−2 log(Γii) + tr(ΓΓTΣ̂n) + λ2∥Γ − diag(Γ)∥ℓ0 , and diag(Γ) is the159

diagonal matrix formed by taking the diagonal entries of Γ. The optimal solutions of160

(2.2) and (2.3) are directly connected: Letting (B̂opt, D̂opt) be an optimal solution of161

(2.2), then Γ̂opt = (I − B̂opt)(D̂opt)1/2 is an optimal solution of (2.3). Furthermore,162

the sparsity pattern of Γ̂opt − diag(Γ̂opt) is the same as that of B̂opt; in other words,163

the Markov equivalence class MEC(G(B̂opt)) is the same as the Markov equivalence164

class MEC(G(Γ̂opt − diag(Γ̂opt))).165

Xu et al. [25] recast the optimization problem (2.3) as a convex mixed-integer166

program and provide algorithms to solve (2.3) to optimality. However, solving (2.3)167

is, in general, NP-hard, and obtaining optimality certificates may take an hour for a168

problem with 20 nodes [25].169

3. A Coordinate Descent Algorithm for DAG Learning. In this section,170

we develop a cyclic coordinate descent approach to find a heuristic solution to problem171

(2.3). The coordinate descent solver is fast and can be scaled to large-scale problems.172

As we demonstrate in Section 4, it provably converges and produces an asymptotically173

optimal solution to (2.3). Given the quality of its estimates, the proposed coordinate174

descent algorithm can also be used as a warm start for the mixed-integer programming175

framework in [25] to obtain optimal solutions.176
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3.1. Parameter update without acyclicity constraints. Let us first ignore177

the acyclicity constraint in (2.3), and consider solving problem (2.3) with respect178

to a single variable Γuv, for u, v = 1, . . . ,m, with the other coordinates of Γ fixed.179

Specifically, we are solving180

(3.1) min
Γuv∈R

g(Γuv) :=

m∑
i=1

−2 log(Γii) + tr
(
ΓΓTΣ̂

)
+ λ2∥Γ− diag(Γ)∥ℓ0 ,181

with Γij being fixed for i ̸= u, j ̸= v.182

Proposition 3.1. The solution to problem (3.1), for u, v = 1, . . . ,m and v ̸= u183

is given by184

Γ̂uv =

{
−Auv

2Σ̂uu
, if λ2 ≤ A2

uv

4Σ̂uu
,

0, otherwise.
; Γ̂uu =

−Auu +

√
A2

uu + 16Σ̂uu

4Σ̂uu

,185

where Auu =
∑
j ̸=u

ΓjuΣ̂ju +
∑
k ̸=u

ΓkuΣ̂uk and Auv =
∑
j ̸=u

ΓjvΣ̂ju +
∑
k ̸=u

ΓkvΣ̂uk.186

Proof. For any u ∈ V , we have187

tr
(
ΓΓTΣ̂

)
=

m∑
i=1

Γui

ΓuiΣ̂uu +
∑
j ̸=u

ΓjiΣ̂ju

+
∑
k ̸=u

m∑
i=1

Γki

ΓuiΣ̂uk +
∑
j ̸=u

ΓjiΣ̂jk

 .188

We first consider Γuv for u ̸= v. The derivative of g(Γuv) with respect to Γuv is:189

∂g(Γuv)

∂Γuv
=

∂tr(ΓΓTΣ̂)

∂Γuv
= 2Σ̂uuΓuv +

∑
j ̸=u

ΓjvΣ̂ju +
∑
k ̸=u

ΓkvΣ̂uk = 2Σ̂uuΓuv +Auv.190

Setting ∂g(Γuv)/∂Γuv = 0, and defining γ̂uv := −Auv/2Σ̂uu, we obtain191

argmin
Γuv

g(Γuv) = Γ̂uv :=

{
γ̂uv, if g(γ̂uv) ≤ g(0),

0, otherwise.
192

The original objective function g with ℓ0-norm is nonconvex and discontinuous. To193

find the optimal solution, we compare g(γ̂uv) with g(0). Given that g(γ̂uv) represents194

the optimal objective value for any nonzero Γuv, comparing it with g(0) allows us to195

determine the optimal solution. Note that g(γ̂uv) − g(0) = γ̂2
uvΣ̂uu + γ̂uvAuv + λ2.196

Thus, g(γ̂uv) ≤ g(0) is equivalent to λ2 ≤ A2
uv/4Σ̂uu.197

Now we consider the update of Γuv when u = v. We have:198

∂g(Γuu)

∂Γuu
=
−2
Γuu

+ 2Σ̂uuΓuu +
∑
j ̸=u

ΓjuΣ̂ju +
∑
k ̸=u

ΓkuΣ̂uk =
−2
Γuu

+ 2Σ̂uuΓuu +Auu.199

Setting ∂g(Γuu)/∂Γuu = 0, we obtain: Γ̂uu = −Auu + (A2
uu + 16Σ̂uu)

1/2/4Σ̂uu.200

3.2. Accounting for acyclicity and full algorithm description. Algorithm201

3.1 fully describes our procedure. The input to our algorithm is the sample covariance202

Σ̂, regularization parameter λ ∈ R+, a super-structure graph Esuper that is a superset203

of edges that contains the true edges, and a positive integer C. We allow the user to204
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6 T. XU, A. TAEB, S. KÜÇÜKYAVUZ AND A. SHOJAIE

restrict the set of possible edges to be within a user-specified super-structure set of205

edges Esuper. A natural choice of the superstructure is the moral graph, which can206

be efficiently and accurately estimated via existing algorithms such as the graphical207

lasso [7] or neighborhood selection [15]. This superstructure could also be the complete208

graph if a reliable superstructure estimate is unavailable.209

We start by initializing Γ as the identity matrix. Then, for each pair of indices210

u and v ranging from 1 to m, we update Γuv based on specific rules. If u = v211

(a diagonal entry), we update it directly according to Proposition 3.1. Among the212

off-diagonal entries, we only update those within the superstructure. Specifically, if213

u ̸= v, and (u, v) is in the superstructure, we check if setting Γuv to a nonzero value214

violates the acyclicity constraint. (We use the breadth-first search algorithm [e.g.,215

6, 9] to check for acyclicity.) If it does not, we update Γuv as per Proposition 3.1;216

otherwise, we set Γuv to 0. We refer to a full sequence of coordinate updates as a217

full loop. The loop is repeated until convergence, when the objective values no longer218

improve after a complete loop. We keep track of the support of Γs encountered during219

the algorithm. When the occurrence count of a particular support of Γs reaches a220

predefined threshold, C, a spacer step [4, 11] is initiated, during which we update221

every nonzero coordinate iteratively. Note that in the spacer step, we use γ̂uv, which222

is the optimal update without considering the sparsity penalty, i.e., we use λ2 = 0.223

The use of spacer steps stabilizes the behavior of updates and ensures convergence.224

After finishing the spacer step, we reset the counter of the support of the current225

solution.226

Algorithm 3.1 Cyclic coordinate descent algorithm with spacer steps

1: Input: Sample covariance Σ̂, regularization parameter λ ∈ R+, super-structure
Esuper, positive integer C.

2: Initialize: Γ0 ← I; t← 1.
3: while objective function f(Γt) continue decreasing do
4: for u = 1 to m do
5: Γt

uu = Γ̂uu, where Γ̂uu is calculated from Proposition 3.1 using the recently
updated Γt.

6: for v = 1 to m such that (u, v) ∈ Esuper do
7: If Γt

uv ̸= 0 violates acyclicity constraints, set Γt
uv = 0.

8: If Γt
uv ̸= 0 would not violate acyclicity constraints, set Γt

uv = Γ̂uv.
9: t← t+ 1

10: Count[support(Γt)]← Count[support(Γt)] + 1.
11: if Count[support(Γt)] = Cm2 then
12: Γt+1 ← SpacerStep(Γt) (Algorithm 3.2)

Count[support(Γt)] = 0.
t← t+ 1.

13: end if
14: end for
15: end for
16: end while
17: Output: Γ̂← Γt and the Markov equivalence class MEC(G(Γ̂− diag(Γ̂)))

4. Statistical and Optimality Guarantees. We provide statistical and opti-227

mality guarantees for our coordinate descent procedure (Algorithm 3.1). Specifically,228

we follow a similar proof strategy as [11] to show that Algorithm 3.1 converges. Re-229
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Algorithm 3.2 SpacerStep

1: Input: Γt

2: for (u, v) ∈ support(Γt) do
3: Set Γt+1

uv ← γ̂uv
4: end for
5: Output: Γt+1

markably, we also prove the surprising result that the objective value attained by230

our coordinate descent algorithm provably converges to the optimal objective value of231

(2.3). Finally, we build on these results and provide finite-sample statistical consis-232

tency guarantees. Throughout, we assume the super-structure Esuper that is supplied233

as input to Algorithm 3.1 satisfies E⋆ ⊆ Esuper where E⋆ denotes the true edge set;234

see [25] for a discussion on how the graphical lasso can yield super-structures that235

satisfy this property with high probability.236

4.1. Convergence and optimality guarantees. Our convergence analysis re-237

quires an assumption on the sample covariance matrix:238

Assumption 1 (Positive definite sample covariance). The sample covariance239

matrix Σ̂ is positive definite.240

Assumption 1 is satisfied almost surely if n ≥ m and the samples of the random241

vector X are generated from an absolutely continuous distribution. Under this mild242

assumption, our coordinate descent algorithm provably converges, as shown next.243

Theorem 4.1 (Convergence of Algorithm 3.1). Let {Γt}∞t=1 be the sequence of244

estimates generated by Algorithm 3.1. Suppose that Assumption 1 holds. Then,245

1. the sequence {support(Γt)}∞t=1 stabilizes after a finite number of iterations;246

that is, there exists a positive integer M and a support set Ê ⊆ {(i, j) : i, j =247

1, 2, . . . ,m} such that support(Γt) = Ê for all t ≥M .248

2. the sequence {Γt}∞t=1 converges to a matrix Γ with support(Γ) = Ê.249

The proof of Theorem 4.1 relies on the following definitions and lemmas, and it250

closely follows the approach outlined in [11]. With a slight abuse of notation, we251

let ℓ(Γ) :=
∑m

i=1−2 log(Γii) + tr(ΓΓTΣ̂n) to be the negative log-likelihood function252

associated with parameter Γ ∈ Rm×m.253

Definition 4.2 (Coordinate-wise (CW) minimum [11]). A connectivity matrix254

ΓCW ∈ Rm×m of a DAG is the CW minimum of problem (2.3) if for every (u, v), u, v =255

1, . . . ,m, ΓCW
uv is a minimizer of g(Γuv) with other coordinates of ΓCW held fixed.256

Lemma 4.3. Let {Γj}∞j=1 be the sequence generated by Algorithm 3.1. Then the257

sequence of objective values {f(Γj)}∞j=1 is decreasing and converges.258

Proof. By Assumption 1, ℓ(Γ) is strongly convex and thus bounded below, and so259

is f(Γ). If Γj is the result of a non-spacer step, then the inequality f(Γj) ≤ f(Γj−1)260

holds trivially. Similarly, we know that if Γj results from a spacer step, then, ℓ(Γj) ≤261

ℓ(Γj−1). Since a spacer step updates only coordinates on the support, it cannot262

increase the support size of Γj−1, i.e., ∥Γj − diag(Γj)∥ℓ0 ≤ ∥Γj−1 − diag(Γj−1)∥ℓ0 ,263

thus f(Γj) ≤ f(Γj−1). Since f(Γj) is non-increasing and bounded below, it must264

converge.265

Lemma 4.4. The sequence {Γt}∞t=1 generated by Algorithm 3.1 is bounded.266
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Proof. By Algorithm 3.1, Γt ∈ G := {Γ ∈ Rm×m | f(Γ) ≤ f(Γ0)}. It suffices267

to show that the set G is bounded. From Proposition 11.11 in [3], if the function f268

is coercive, then the set G is bounded. Since f(Γ) ≥ ℓ(Γ) for every Γ, it suffices to269

show that the function ℓ is coercive. By Assumption 1, we have that the function ℓ is270

strongly convex. The lemma then follows from the classical result in convex analysis271

that strongly convex functions are coercive.272

The following lemma characterizes the limit points of Algorithm 3.1.273

Lemma 4.5. Let Ê be a support set that is generated infinitely often by the non-274

spacer steps of Algorithm 3.1, and let
{
Γl
}
l∈L

be the estimates from the spacer steps275

when the support of the input matrix is Ê. Then:276

1. There exists a positive integer M such that for all l ∈ L with l ≥ M ,277

support(Γl) = Ê.278

2. There exists a subsequence of
{
Γl
}
l∈L

that converges to a stationary solution279

ΓCW, where, ΓCW is the unique minimizer of minsupport(Γ)⊆Ê ℓ(Γ).280

3. Every subsequence of {Γt}t≥0 with support Ê converges to ΓCW.281

Proof. Part 1.) Since spacer steps optimize only over the coordinates in Ê, no282

element outside Ê can be added to the support. Thus, for every l ∈ L we have283

support(Γl) ⊆ Ê. We next show that strict containment is not possible via contra-284

diction. Suppose Supp(Γl) ⊊ Ê occurs infinitely often, and consider some l ∈ L285

where this occurs. By the spacer step of Algorithm 3.1, the previous iterate Γl−1286

has support Ê, implying
∥∥Γl−1

∥∥
0
−

∥∥Γl
∥∥
0
≥ 1. Moreover, from the definition of287

the spacer step, we have ℓ(Γl) ≤ ℓ(Γl−1). Therefore, we get f(Γl−1) − f(Γl) =288

ℓ(Γl−1) − ℓ(Γl) + λ2(∥Γl−1∥0 − ∥Γl∥0) ≥ λ2. Thus, when support(Γl) ⊊ Ê occurs, f289

decreases by at least λ2. Therefore, Γl ⊊ Ê infinitely many times implies that f(Γ)290

is not lower-bounded, which is a contradiction.291

Part 2.) The proof follows the conventional procedure for establishing the con-292

vergence of cyclic coordinate descent (CD) [4, 11]. We obtain Γl by updating every293

coordinate in Ê of Γl−1. Denote the intermediate steps as Γl,1, . . . ,Γl,|Ê|, where294

Γl,|Ê| = Γl. We aim to show that the sequence {Γl,|Ê|}l∈L converges to a point ΓCW,295

and similarly, other sequences {Γl,i}l∈L, i = 1, . . . , |Ê| − 1, also converge to ΓCW.296

By Lemma 4.4, since {Γl,|Ê|}l∈L is a bounded sequence, there exists a converging297

subsequence {Γl′,|Ê|}l′∈L′ with a limit point ΓCW. Without loss of generality, we298

choose the subsequence satisfying l′ > M , ∀l′ ∈ L′. From Part 1 of the lemma,299

{Γl′,1}l′∈L′ , . . . , {Γl′,|Ê|−1}l′∈L′ all have the same support Ê. For {Γl′,|Ê|−1}l′∈L′ , we300

have f(Γl′,|Ê|−1)− f(Γl′,|Ê|) = ℓ(Γl′|Ê|−1)− ℓ(Γl′,|Ê|). If the change from Γl′,|Ê|−1 to301

Γl′,|Ê| is on a diagonal entry, say Γuu, then, after some algebra, we obtain302

ℓ
(
Γl′,|Ê|−1

)
− ℓ

(
Γl′,|Ê|

)
=303

2
(
− log Γl′,|Ê|−1

uu /Γl′,|Ê|
uu + Γl′,|Ê|−1

uu /Γl′,|Ê|
uu − 1

)
+

(
Γl′,|Ê|−1
uu − Γl′,|Ê|

uu

)2

Σ̂uu.304

Since a − 1 ≥ log(a) for a ≥ 0, each of the two terms above is non-negative. From305

Lemma 4.3, as l′ →∞, f(Γl′,|Ê|−1)− f(Γl′,|Ê|) or equivalently ℓ(Γl′,|Ê|−1)− ℓ(Γl′,|Ê|)306

converges to 0 as l′ →∞. Combining this with the fact that ℓ(Γl′,|Ê|−1)−ℓ(Γl′,|Ê|) ≥ 0307

and that each term in the equality for ℓ(Γl′,|Ê|−1) − ℓ(Γl′,|Ê|) is non-negative, we308

conclude that Γl′,|Ê|−1 must converge to Γl′,|Ê| as l′ → ∞. Since Γl′,|Ê| converges309
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to ΓCW, Γl′,|Ê|−1 must also converge to ΓCW. Repeating a similar argument, we310

conclude that Γl′,j converges to ΓCW for all j = 1, 2, . . . , |Ê|.311

If the change from Γl′,|Ê|−1 to Γl′,|Ê| is on an off-diagonal entry, say Γuv with312

u ̸= v, then, after some algebra,313

f
(
Γl′,|Ê|−1

)
− f

(
Γl′,|Ê|

)
= ℓ

(
Γl′,|Ê|−1

)
− ℓ

(
Γl′,|Ê|

)
=

(
Γl′,|Ê|−1
uv − Γl′,|Ê|

uv

)2

Σ̂uu .314

Again, appealing to Lemma 4.3 as before, we can conclude that Γl′,|Ê|−1 converges to315

ΓCW as l′ →∞. Similarly, Γl′,j converges to ΓCW for every j = 1, 2, . . . , |Ê| − 1.316

Consider k, l ∈ L′ with k > l such that for the j-th coordinate in Ê, f(Γk) ≤317

f(Γl,j) ≤ f(Γ̃l,j). Here, Γ̃l,j equals to Γl,j except for the j-th nonzero coordinate in318

Ê. As k, l → ∞, we have, from the above analysis, that there exists a matrix ΓCW319

such that Γk → ΓCW and Γl,j → ΓCW. Thus, ΓCW and liml→∞ Γ̃l,j differ by only320

one coordinate in the j-th position. We conclude that f(ΓCW) ≤ f(liml→∞ Γ̃l,j). In321

other words, ΓCW is coordinate-wise minimum. Furthermore, since the optimization322

problem minsupport(Γ)⊆Ê ℓ(Γ) is strongly convex by Assumption 1, ΓCW is the unique323

minimizer of this optimization problem.324

Part 3.) Consider any subsequence {Γk}k∈K such that support(Γk) = Ê. We will325

show by contradiction that {Γk}k∈K must converge to ΓCW. Suppose {Γk}k∈K has a326

limit point Γ̂ ̸= ΓCW. Then there exist a subsequence {Γk′}k′∈K′ , with K ′ ⊆ K, that327

converges to Γ̂. Therefore, limk′→∞ f(Γk′
) = ℓ(Γ̂)+λ2|Ê|. From part 1 and part 2, we328

have that liml′→∞ f(Γl′) = ℓ(ΓCW)+λ2|Ê|. By Lemma 4.3, we have limk′→∞ f(Γk′
) =329

liml′→∞ f(Γl′). Thus, we conclude that ℓ(Γ̂) = ℓ(ΓCW), which contradicts the fact330

that ΓCW is the unique minimizer of minsupport(Γ)⊆Ê ℓ(Γ). Therefore, we conclude331

that any subsequence with support Ê converges to ΓCW as k →∞.332

Lemma 4.6. Let Γ be a limit point of {Γk}∞k=1 with support(Γ) = Ê. Then we333

have support(Γk) = Ê for infinitely many k’s.334

Proof. We prove this result by contradiction. Assume that there are only finitely335

many k’s such that support(Γk) = Ê. Since there are finitely many possible sup-336

port sets, there is a support E′ ̸= Ê and a subsequence {Γk′} of {Γk} such that337

support(Γk′
) = E′ for all k′, and limk′→∞ Γk′

= Γ. However, by Lemma 4.5, the sub-338

sequence converges to a minimizer ΓCW with support(ΓCW) = E′ and thus ΓCW ̸= Γ.339

This is a contradiction.340

We are now ready to complete the proof of Theorem 4.1.341

Proof of Theorem 4.1. Let Γ be a limit point of {Γk} with the largest support342

size and denote its support by Ê. By Lemma 4.6, there is a subsequence {Γr}r∈R of343

{Γk} such that support(Γr) = Ê,∀r ∈ R, and limr→∞ Γr = Γ. By Lemma 4.5, there344

exists an integer M such that for every r ≥ M and r + 1 is a spacer step, we have345

support(Γr) = support(Γr+1). Without loss of generality, we choose the subsequence346

that r > M, ∀r ∈ R. We will demonstrate by contradiction that any coordinate347

(u, v) in Ê cannot be dropped infinitely often in {Γk}. To this end, assume that348

(u, v) ̸∈ {support(Γr)}r>M infinitely often. Let {Γr′}r′∈R′ , where R′ ⊆ R, be the349

subsequence with support(Γr′+1) = Ê \ {(u, v)},∀r′ ∈ R′. Since r′ > M and the350

support has been changed, r′ + 1 is not a spacer step. Therefore, using Proposition351

3.1, we have f(Γr′) − f(Γr′+1) ≥ λ2 − A2
uv/4Σ̂uu > 0. By Lemma 4.3, we have352

limr′→∞ f(Γr′)− f(Γr′+1) = 0. Thus, λ2 = A2
uv/4Σ̂uu, where Auv =

∑
j ̸=u Γ

r′

jvΣ̂ju +353 ∑
k ̸=u Γ

r′

kvΣ̂uk. By Proposition 3.1, in step r′ + 1, we have |Γr′+1
uv | = λ/

√
Σ̂uu > 0,354
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which contradicts the definition of {Γr′}r′∈R′ . Therefore, no coordinate in Ê can be355

dropped infinitely often. Moreover, no coordinate can be added to Ê infinitely often356

as Ê is the largest support. As a result, the support converges to Ê. With stabilized357

support Ê, by Lemma 4.5, we have that {Γk} converges to the limit ΓCW with support358

Ê. From Algorithm 3.1 and Proposition 3.1, we have Γuv is a minimizer of f(Γuv)359

with respect to the coordinate (u, v) and others fixed. Therefore, ΓCW is the CW360

minimum.361

Our analysis for optimality guarantees requires an assumption on the population362

model. For the set E ⊆ {(i, j) : i, j = 1, 2 . . . ,m}, consider the optimization problem363

(4.1) Γ⋆
E = argmin

Γ∈Rm×m

m∑
i=1

−2 log(Γii) + tr (ΓΓTΣ⋆) s.t. support(Γ) ⊆ E.364

365

Assumption 2. There exists constants κ̄, κ > 0 such that σmin(Γ
⋆
E) ≥ κ and366

σmax(Γ
⋆
E) ≤ κ̄ for every E where the graph (V,E) is a DAG, where σmin(·) and367

σmin(·) are the smallest and largest eigenvalues respectively.368

We further define dmax := maxi |{j : (j, i) ∈ Esuper}|.369

Theorem 4.7. Let Γ̂, Γ̂opt be the solution of Algorithm 3.1 and an optimal so-370

lution of (2.3), respectively. Suppose Assumption 2 holds and let the regularization371

parameter be chosen so that λ2 = O(logm/n) where m and n denote the number of372

nodes and number of samples, respectively. Then,373

1. f(Γ̂)− f(Γ̂opt)→P 0 as n→∞,374

2. if n/ log(n) ≥ O(m2 logm), with probability greater than 1−1/O(n), we have375

that: 0 ≤ f(Γ̂)− f(Γ̂opt) ≤ O(
√

d2maxm
4 logm/n).376

In other words, the objective value of the coordinate descent solution converges in377

probability to the optimal objective value as n → ∞. Further, assuming the sample378

size n is sufficiently large, with high probability, the difference in objective value is379

bounded by O(
√
d2maxm

4 logm/n).380

Our proof relies on the following lemmas. Throughout, we let Ê be the support381

of Γ̂, i.e., Ê = {(i, j), Γ̂ij ̸= 0}.382

Lemma 4.8. Let Γ̂, Γ̂opt be the solution of Algorithm 3.1 and optimal solution of383

(2.3), respectively. Then, i) for any u, v = 1, 2, . . . ,m,Auv + 2ΓuvΣ̂uu = 2(Σ̂Γ)uv384

where Auv is defined in Proposition 3.1. ii) if Γ̂uv ̸= 0, then (Σ̂Γ̂)uv = 0, and iii) the385

matrix Γ̂Γ̂TΣ̂ has ones on the diagonal.386

Proof. For u, v = 1, . . . ,m, by the definition of Auv, Auv + 2ΓuvΣ̂uu = 2(Σ̂Γ)uv,387

proving item i. Since any solution from Algorithm 3.1, Γ̂ satisfies Proposition 3.1, for388

any (u, v) ∈ Ê, (4Σ̂uuΓ̂uu +Auu)
2 = A2

uu +16Σ̂uu and Auv = −2Γ̂uvΣ̂uu. Combining389

the previous relations, we conclude that (Σ̂Γ̂)uv = 0. Therefore, for any (u, v) ∈ Ê,390

we have Γ̂uv ̸= 0 and (Σ̂Γ̂)uv = 0, resulting in Γ̂uv(Σ̂Γ̂)uv = 0. This proves item391

ii. Plugging Auu into the previous relations, we arrive at Γ̂uu(Σ̂Γ̂)uu = 1. Thus,392

(Γ̂Γ̂TΣ̂)ii =
∑m

j=1 Γ̂ij(Γ̂
TΣ̂)ji = Γ̂ii(Γ̂

TΣ̂)ii = 1, proving item iii.393

Lemma 4.9. Let E ⊆ {(i, j) : i, j = 1, 2, . . . ,m} be any set where the graph394

indexed by tuple (V,E) is a DAG. Consider the estimator:395

Γ̂E = argmin
Γ∈Rm×m

m∑
i=1

−2 log(Γii) + tr
(
ΓΓTΣ̂

)
s.t. support(Γ) ⊆ E.(4.2)396
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Suppose that 4mκ̄∥Σ̂−Σ⋆∥2 ≤ min{8κ̄3/mκ̄2, 1/2mκ} and that Σ̂ is positive definite.397

Then, ∥Γ̂E − Γ⋆
E∥F ≤ 4mκ̄∥Σ̂− Σ⋆∥2.398

Proof. The proof follows from standard convex analysis and Brouwer’s fixed point399

theorem; we provide the details below. Since Γ follows a DAG structure, the objective400

of (4.2) can be written as: −2 log det(Γ)+∥ΓΣ̂1/2∥2F . The KKT conditions state that401

there exists Q with support(Q) ∩ E = ∅ such that the optimal solution Γ̂E of (4.2)402

satisfies −2Γ̂−1
E + Q + 2Γ̂EΣ̂ = 0 and support(Γ̂E) ⊆ E. Let ∆ = Γ̂E − Γ⋆

E . By403

Taylor series expansion, Γ̂−1
E = (Γ⋆

E + ∆)−1 = Γ⋆
E
−1 + Γ⋆

E
−T∆Γ⋆

E
−1 +R(∆), where404

R(∆) = 2Γ⋆
E
−1 ∑∞

k=2(−∆Γ⋆
E)

k. For any matrix M ∈ Rm×m, define the operator I⋆405

with I⋆(M) := 2Γ⋆
E
−TMΓ⋆

E
−1 + 2MΣ⋆. Let K be the subspace K = {M ∈ Rm×m :406

support(M) ⊆ E} and let PK be the projection operator onto subspace K that zeros407

out entries of the input matrix outside of the support set E. From the optimality408

condition of (4.1), we have PK[2Γ
⋆
E
−1 − 2Γ⋆

EΣ
⋆] = 0. Then, the optimality condition409

of (4.2) can be rewritten as:410

PK

[
I⋆(∆) + 2∆(Σ̂− Σ⋆) +R(∆) +Hn

]
= 0.(4.3)411

Since Γ̂E ∈ K and Γ⋆
E ∈ K, we have that ∆ ∈ K. We use Brouwer’s theorem to obtain

a bound on ∥∆∥F . We define an operator J as K → K:

J(δ) = δ − (PKI⋆PK)
−1

(
PK

[
I⋆PK(δ) +R(δ) +Hn + 2δ(Σ̂− Σ⋆)

])
.

Here, the operator PKI⋆PK is invertible since σmin(I⋆) = σmin(Γ
⋆
E
−1)2 ≥ 1

κ2 . No-412

tice that any fixed point δ of J satisfies the optimality condition (4.3). Furthermore,413

since the objective of (4.2) is strictly convex, we have that the fixed point must414

be unique. In other words, the unique fixed point of J is given by ∆. Now con-415

sider the following compact set: Br = {δ ∈ Rm×m : support(δ) ⊆ E, ∥δ∥F ≤ r}416

for r = 4mκ̄∥Σ̂ − Σ⋆∥2. By the assumption, r ≤ min{8κ̄3/mκ2, 1
2κ̄}. Then, for417

every δ ∈ Br, we have that: ∥δΓ⋆
S∥F ≤ mκ̄r ≤ 1/2 and additionally, ∥R(δ)∥F ≤418

2m∥Γ⋆
E∥22/σmin(Γ

⋆
E)∥δ∥22 1

1−∥δΓ⋆
E∥2
≤ 2mκ̄2

2/κr
2 1
1−rκ̄ ≤ 4mκ̄2

2/κr
2. Since ∥Hn∥F ≤419

2m∥Γ⋆
E∥2∥Σ̂−Σ⋆∥2 and ∥G(δ)∥F ≤ 1

κ2 [∥Hn∥F + ∥R(δ)∥F + 2∥δ(Σ̂−Σ⋆)∥F ] we con-420

clude that ∥J(δ)∥F ≤ 4mκ̄2r2

κ3 + 4mmax{κ̄,1}
κ2 ∥Σ̂ − Σ⋆∥2 ≤ r. In other words, we have421

shown that J maps Br onto itself. Appealing to Brouwer’s fixed point theorem,422

we conclude that the fixed point must also lie inside Br. Thus, we conclude that423

∥∆∥F ≤ r.424

Lemma 4.10. With probability greater than 1−1/O(n), we have that: ∥Σ̂−Σ⋆∥2 ≤425

O(
√
m log(n)/n), ∥Σ̂∥∞ ≤ 2κ̄2, σmin(Σ̂) ≥ κ2/2, ∥Γ̂∥∞ ≤ 2κ̄ and σmin(Γ̂) ≥ κ/2.426

Proof. From standard Gaussian concentration results that when n/ log(n) ≥427

O(m), with probability greater than 1 − O(1/n), we have that ∥Σ̂ − Σ⋆∥2 ≤ O428

(
√
m log(n)/n). By Assumption 2, with probability greater than 1 − O(1/n), Σ̂429

is positive definite, with ∥Σ̂∥∞ ≤ 2κ̄2 and σmin(Σ̂) ≥ κ2 − O(
√
m log(n)/n) ≥430

κ2/2. Furthermore, appealing to Lemma 4.9 and that n/ log(n) ≥ O(m3), ∥Γ̂ −431

Γ⋆
Ê
∥F ≤ O(

√
m3 log(n)/n). Thus ∥Γ̂∥∞ ≤ ∥Γ⋆

Ê
∥2 + κ̄ ≤ 2κ̄ and σmin(Γ̂) ≥ κ̄ −432

O(
√
m log(n)/n) ≥ κ/2.433

Proof of Theorem 4.7. Part 1). First,434

0 ≤ f(Γ̂)− f(Γ̂opt) ≤ f(Γ̂)− log det(Σ̂)−m = − log det(Γ̂Γ̂TΣ̂) + λ2∥Γ̂− diag(Γ̂)∥0,435
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where the second inequality follows from f(Γ̂opt) ≥ minΘ{− log det(Θ) + tr(ΘΣ̂)} =436

log det(Σ̂)+m; the equality follows from appealing to item i. of Lemma 4.8 to conclude437

that f(Γ̂) = − log det(Γ̂Γ̂T) +m+ λ2∥Γ̂− diag(Γ̂)∥0.438

Our strategy is to show that as n→∞, Γ̂Γ̂TΣ̂ converges to a matrix with ones on439

the diagonal and whose off-diagonal entries induce a DAG. Thus, log det(Γ̂Γ̂TΣ̂) →440

log
∏m

i=1 1 = 0 as n→∞. Since λ2 → 0 as n→∞ and ∥Γ̂− diag(Γ̂)∥0 ≤ m2, we can441

then conclude the desired result. For any u, v = 1, 2, . . . ,m:442

(Γ̂Γ̂TΣ̂)uv =

m∑
i=1

Γ̂ui(Σ̂Γ̂)vi = Γ̂uu(Σ̂Γ̂)vu + Γ̂uv(Σ̂Γ̂)vv +
∑

i∈Fuv

Γ̂ui(Σ̂Γ̂)vi,(4.4)443

where Fuv := {i | i ̸= u, i ̸= v, (u, i) ∈ Ê, (v, i) ̸∈ Ê}. Here, the second equality is444

due to item ii. of Lemma 4.8; note that if Γ̂ui(Σ̂Γ̂)vi ̸= 0, then i ∈ Fuv as otherwise445

either Γ̂ui = 0 or (Σ̂Γ̂)vi = 0. We consider the two possible settings for (u, v), u ̸= v:446

Setting I) (u, v) ∈ Ê which implies that (v, u) ̸∈ Ê as Γ̂ specifies a DAG, and Setting447

II) (u, v), (v, u) ̸∈ Ê. (Note that (u, v), (v, u) ∈ Ê is not possible since Γ̂ specifies a448

DAG.)449

Setting I: Since (u, v) ∈ Ê and (v, u) ̸∈ Ê, we have450

(Γ̂Γ̂TΣ̂)vu =
∑

i∈Fvu

Γ̂vi(Σ̂Γ̂)ui =
∑

i∈Fvu

Γ̂vi

(
1

2
Aui + Γ̂uiΣ̂uu

)
=

∑
i∈Fvu

1

2
Γ̂viAui.451

Here, the first equality follows from appealing to (4.4), and noting that Γ̂vu = 0452

and that (Σ̂Γ̂)uv = 0 according to item ii. of Lemma 4.8; the second equality follows453

from item iii. of Lemma 4.8; the final equality follows from noting that Γ̂ui = 0 for454

i ∈ Fvu.455

For each i ∈ Fvu, Figure 1 (left) represents the relationships between the nodes456

u, v, i. Here, the directed edge from u to v from the constraint (u, v) ∈ Ê is represented457

by a split line, the directed edge from v to i from the constraint i ∈ Fvu is represented458

by a solid line, and the directed edge that is disallowed due to the constraint i ∈ Fvu459

is represented via a cross-out solid line.460

Since there is a directed path from u to i, to avoid a cycle, a directed path461

from i to u cannot exist. Thus, adding the edge from u to i to Ê does not violate462

acyclicity and the fact that it is missing is due to λ2 > A2
ui/(4Σ̂uu) according to463

Proposition 3.1. Then, appealing to Lemma 4.10, we conclude that with probability464

greater than 1 − O(1/n): |(Γ̂Γ̂TΣ̂)vu| ≤
∑

i∈Fvu

1
2 |Γ̂vi|2λ(Σ̂u,u)

1/2 ≤ 4λκ̄dmax. In465

other words, in this setting, |(Γ̂Γ̂TΣ̂)vu| → 0 as n→∞.466

Setting II: Since (u, v), (v, u) ̸∈ Ê, we have467

(Γ̂Γ̂TΣ̂)uv = Γ̂uu

(
1

2
Avu + Γ̂vuΣ̂vv

)
+

∑
i∈Fuv

Γ̂ui

(
1

2
Avi + Γ̂viΣ̂vv

)
468

=
∑

i∈Fuv

∪{u}

Γ̂uiAvi

2
.(4.5)469

Here, the first equality follows from plugging zero for Γ̂uv in (4.4) and appealing to470

item i. of Lemma 4.8; the second equality follows from plugging in zero for Γ̂vi and471

Γ̂vu. Since Γ̂ specifies a DAG, there cannot simultaneously be a directed path from u472
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to v and from v to u. Thus, either directed edges (u, v) or (v, u) can be added without473

creating a cycle. We consider the three remaining sub-cases below:474

Setting II.1. Adding (u, v) to Ê violates acyclicity but adding (v, u) does not.475

For each i ∈ Fuv, Figure 1 (middle) represents the relations between nodes u, v,476

and i. Here, due to the condition of Setting II, nodes u and v are not connected by477

an edge, so this is displayed by a solid crossed-out undirected edge. Furthermore,478

the directed edge from u to i from the constraint i ∈ Fuv is represented via a solid479

directed edge, the directed edge v to i that is disallowed due to the constraint i ∈ Fuv480

is represented via a cross-out solid line. Finally, the directed edge u to v that is481

disallowed due to acyclicity is represented via a crossed-out dashed line.482

Since adding the directed edge (u, v) to Ê creates a cycle, then we have the483

following implications: i. adding (v, u) to Ê does not violate acyclicity (as both edges484

u → v and v → u cannot simultaneously create cycles) and ii. there must be a485

directed path from v to u. Implication i. allows us to conclude that Γ̂vu must be486

equal to zero due to the condition 4Σ̂vvλ
2 > A2

vu from Proposition 3.1. Combining487

implication ii. and the fact that there is a directed edge from u to i in Ê allows us488

to conclude that there cannot be a directed path from i to v as we would be creating489

a direct path from u to itself. Thus, the fact that the directed edge (v, i) is not in490

Ê, or equivalently that Γ̂vi = 0, is due to 4Σ̂vvλ
2 > A2

vi according to Proposition 3.1.491

From (4.5) and Lemma 4.10, we conclude with probability greater than 1 −O(1/n),492

|(Γ̂Γ̂TΣ̂)uv| ≤ 4κ̄λ(1 + dmax). In other words, in this setting, |(Γ̂Γ̂TΣ̂)uv| → 0 as493

n→∞.494

Setting II.2. Adding (u, v) or (v, u) to Ê would not violate acyclicity.495

For each i ∈ Fuv, Figure 1 (right) represents the relations between the nodes u, v,496

and i . Here, due to the condition of Setting II, nodes u and v are not connected497

by an edge, so this is displayed by a solid crossed-out undirected edge. Furthermore,498

the directed edge from u to i from the constraint i ∈ Fuv is represented via a solid499

directed edge, the directed edge v to i that is disallowed due to the constraint i ∈ Fuv500

is represented via a cross-out solid line.501

In this setting, recall that the directed edges u to v and v to u are not present502

in the estimate Ê. Since neither of these two edges violates acyclicity according to503

the condition of this setting, we conclude that 4Σ̂vvλ
2 > A2

vu. There cannot be a504

path from i to v because then there would exist a path from u to v, which contradicts505

the scenario that an edge from v to u does not create a cycle. As a result, an edge506

from v to i does not create a cycle and Γ̂vi = 0 is due to 4Σ̂vvλ
2 > A2

vi according to507

Proposition 3.1. Thus, from (4.5) and Lemma 4.10, we conclude that, with probability508

greater than 1−O(1/n), |(Γ̂Γ̂TΣ̂)uv| ≤ 4κ̄λ(1+dmax). In other words, |(Γ̂Γ̂TΣ̂)uv| → 0509

as n→∞.510

Setting II.3. Adding (v, u) violates acyclicity but adding (u, v) does not.511

In this case, even if (Γ̂Γ̂TΣ̂)uv does not converge to zero, we have by the setting512

assumption that adding (u, v) to Ê does not violate DAG constraint. Since Ê specifies513

a DAG, the off-diagonal nonzero entries of the matrix Γ̂Γ̂TΣ̂ specifies a DAG as well.514

Putting Settings I–II together, we have shown that as n → ∞, the nonzero515

entries in the off-diagonal of Γ̂Γ̂TΣ̂ specify a DAG. Furthermore, according to item516

i. of Lemma 4.8, the diagonal entries of this matrix are equal to one. As stated517

earlier, this then allows us to conclude that − log det(Γ̂Γ̂TΣ̂) → 0 as n → ∞, and518

consequently that f(Γ̂)− f(Γ̂opt)→ 0.519
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u v

i

×
u v

i

×
×

×
u v

i

×
×

Fig. 1: Left: scenario for Setting I, middle: scenario for setting II.1, and right: scenario
for setting II.2; solid directed edges represent directed edges that are assumed to be
in the estimate Ê, crossed out solid directed edges represent directed edges that are
assumed to be excluded in the estimate Ê, crossed out solid undirected edges indicate
that the corresponding nodes are not connected in Ê, and crossed out dotted directed
edge indicates that the edge is not present in Ê as adding it would create a cycle.

Part 2) Using the proof of Theorem 4.7 part i), we can immediately conclude that520

the matrix Γ̂Γ̂TΣ̂n can be decomposed as the sum N + ∆. Here, the off-diagonal521

entries of N specify a DAG, with ones on the diagonal and under the assumption522

on n, with probability greater than 1 − O(1/n), ∥∆∥∞ ≤ 4κ̄(1 + dmax)λ with ze-523

ros on the diagonal of ∆. Consequently, ∥∆∥∞ ≤ 4mκ̄2(1 + dmax)λ. Furthermore,524

by Lemma 4.10, we get σmin(Γ̂Γ̂
TΣ̂n) ≥ σmin(Γ̂)

2σmin(Σ̂) ≥ κ4/4. The reverse tri-525

angle inequality yields σmin(N) ≥ κ4/4 − 4mκ̄2(1 + dmax)λ. Consider any matrix526

N̄ with |N̄ij − Nij | ≤ |∆ij |. Using the reverse triangle inequality again, we get527

σmin(N̄) ≥ κ4 − 8mκ̄2(1 + dmax)λ with probability greater than 1−O(1/n). By the528

assumption on the sample size, N̄ is invertible, and so we can use first-order Tay-529

lor series expansion to obtain − log det(N + ∆) = − log det(N) − tr(N̄−1∆). Since530

log det(N) = 0, we obtain the bound − log det(N +∆) ≤ −tr(N̄−1∆) ≤ ∥N̄−1∥2∥∆∥⋆531

with ∥ · ∥⋆ denoting the nuclear norm. Thus, − log det(N + ∆) ≤ ∥N̄−1∥2∥∆∥⋆ ≤532

m
σmin(N̄)

∥∆∥2 ≤ 4m2κ̄2(1+dmax)λ
κ4/4−8mκ̄2(1+dmax)λ

. As λ = O(logm/n), by the assumption on the533

sample size, f(Γ̂)− f(Γ̂opt) ≤ O(
√

d2maxm
4 logm/n).534

4.2. Statistical consistency guarantees. Recall from Section 2.1 that there535

is typically multiple SEMs that are compatible with the distributions P⋆. Each536

equivalent SEM is specified by a DAG; this DAG defines a total ordering among537

the variables. Associated to each ordering π is a unique structural equation model538

that is compatible with the distribution P⋆. We denote the set of parameters of539

this model as (B̃⋆(π), Ω̃⋆(π)). For the tuple (B̃⋆(π), Ω̃⋆(π)), we define Γ̃⋆(π) :=540

(I−B̃⋆(π))Ω̃⋆(π)−1/2. We let Π = {ordering π : support(B̃⋆(π)) ⊆ Esuper}. Through-541

out, we will use the notation s⋆ = ∥B⋆∥ℓ0 and s̃ := s̃⋆(π) = ∥B̃⋆(π)∥ℓ0 .542

Assumption 3. (Sparsity of every equivalent causal model) There exists some543

constant α̃ such that for any π ∈ Π, ∥B̃⋆
:j(π)∥ℓ0 ≤ α̃

√
n/ logm.544

Assumption 4. (Beta-min condition) There exist constants 0 ≤ η1 < 1 and 0 <545

η20 < 1−η1, such that for any π ∈ Π, the matrix B̃⋆(π) has at least (1−η1)∥B̃⋆(π)∥ℓ0546

coordinates k ̸= j with |B̃⋆
kj(π)| >

√
logm/n(

√
m/s⋆ ∨ 1)/η0.547

Assumption 5. (Sufficiently large noise variances) For every π ∈ Π, O(1) ≥548

minj [Ω̃
⋆(π)]jj ≥ O(

√
s⋆ logm/n).549

Assumption 6. (Sufficiently sparse B⋆ and super-structure Esuper) For every i =550

1, 2, . . . ,m, ∥B⋆
:,i∥ℓ0 ≤ αn/ log(m) and |{j, (j, i) ∈ Esuper}| ≤ αn/ log(m).551
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Here, Assumptions 3-4 are similar to those in [23]. Assumption 5 is used to552

characterize the behavior of the early stopped estimate and is thus new relative to553

[23]. Assumption 6 ensures that the number of parents for every node both in the554

true DAG and the super-structure is not too large.555

Next, we present our theorem on the finite-sample consistency guarantees of the556

coordinate descent algorithm. Throughout, we assume that we have obtained a so-557

lution after the algorithm has converged. We let GAP denote the difference between558

the objective value of the coordinate descent output and the optimal objective value559

of (2.3). We let Γ̂ be a minimizer of (2.3).560

Theorem 4.11. Let Γ̂, Γ̂opt be the solution of Algorithm 3.1 and the optimal so-561

lution of (2.3), respectively. Suppose Assumptions 2-6 are satisfied with constants562

α, α̃, η0 sufficiently small. Let α0 := min{4/m, 0.05}. Then, for λ2 ≍ logm/n, if563

n/ log(n) ≥ O(m2 logm), with probability greater than 1− 2α0, there exists a π such564

that565

1. ∥Γ̂− Γ̂opt∥2F ≤ O(
√

d2maxm
4 logm/n),566

2. ∥Γ̂− Γ̃⋆(π)∥2F = O(
√
d2maxm

4 logm/n), and ∥Γ̃⋆(π)∥ℓ0 ≍ s⋆.567

The proof relies on the following results.568

Proposition 4.12. (Theorem 3.1 of [23]) Suppose Assumptions 2–6 hold with569

constants α, α̃, η0 sufficiently small. Let Γ̂opt be any optimum of (2.3) with the con-570

straint that support(Γ) ⊆ Esuper. Let πopt be the associated ordering of Γ̂opt and571

(B̂opt, Ω̂opt) be the associated connectivity and noise variance matrix satisfying Γ̂opt =572

(I − B̂opt)K̂opt−1/2
. Then, for α0 := (4/m) ∧ 0.05 and λ2 ≍ logm/n, we have, with573

a probability greater than 1− α0, ∥B̂opt − B̃⋆(π)∥2F + ∥Ω̂opt − Ω̃⋆(πopt)∥2F = O(λ2s⋆),574

and ∥B̃⋆(π)∥ℓ0 ≍ s⋆.575

Corollary 4.13 (Corollary 6 of [25]). With the setup in Proposition 4.12,

∥∥∥Γ̂opt − Γ̃⋆(π)
∥∥∥2
F
≤ 16max{1, ∥B̃⋆(π)∥2F , ∥Ω̃⋆(π)−1/2∥2F }λ2s⋆

min{1,minj(Ω̃⋆(π)jj)3}
.

576

Proof of Theorem 4.11. The proof is similar to that of [25] and we provide a577

short description for completeness. For notational simplicity, we let Γ⋆ := Γ̃⋆(π)578

where π is the permutation satisfying Proposition 4.12 and Γ̃⋆ defined earlier. From579

Theorem 4.7, we have that 0 ≤ f(Γ̂)− f(Γ̂opt) ≤ O(
√
d2maxm

4 logm/n). Let GAP =580

O(
√
d2maxm

4 logm/n). For a matrix Γ ∈ Rm×m, let ℓ(Γ) :=
∑m

i=1−2 log(Γii) +581

tr(ΓΓTΣ̂n). Suppose that ∥Γ̂∥ℓ0 ≥ ∥Γ̂opt∥ℓ0 . Then, ℓ(Γ̂) − ℓ(Γ̂opt) ≤ GAP. On the582

other hand, suppose ∥Γ̂∥ℓ0 ≤ ∥Γ̂opt∥ℓ0 . Then, ℓ(Γ̂) − ℓ(Γ̂opt) ≤ GAP + λ2∥Γ̂∥ℓ0 ≤583

2GAP. So, we conclude the bound ℓ(Γ̂)− ℓ(Γ̂opt) ≤ 2GAP.584

For notational simplicity, we will consider a vectorized objective. Let T ⊆585

{1, . . . ,m2} be indices corresponding to diagonal elements of an m×m matrix being586

vectorized. With abuse of notation, let Γ̂, Γ̂opt, and Γ⋆ be the vectorized form of their587

corresponding matrices. Then, Taylor series expansion yields588

ℓ(Γ̂)− ℓ(Γ̂opt) = (Γ⋆ − Γ̂opt)T∇2ℓ(Γ̄)(Γ̂− Γ̂opt) +∇ℓ(Γ⋆)T(Γ̂− Γ̂opt)

+ 1/2(Γ̂− Γ̂opt)T∇2ℓ(Γ̃)(Γ̂− Γ̂opt).
589

Here, entries of Γ̃ lie between Γ̂ and Γ̂opt, and entries of Γ̄ lie between Γ̂opt and Γ⋆.590
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Some algebra then gives:591

1/2(Γ̂− Γ̂opt)T∇2ℓ(Γ̃)(Γ̂− Γ̂opt) ≤[ℓ(Γ̂)− ℓ(Γ̂opt)] + ∥∇ℓ(Γ⋆)∥ℓ2∥Γ̂− Γ̂opt∥ℓ2
+ ∥Γ̂− Γ̂opt∥ℓ2∥Γ̂opt − Γ⋆∥ℓ2κmax(∇2ℓ(Γ̄)).

592

By the convexity of ℓ(·), for any Γ, ∇2ℓ(Γ) ⪰ Σ̂⊗ I. Thus appealing to Lemma 4.10,593

with probability greater than 1 − O(1/n), σmin(∇2ℓ(Γ)) ≥ κ2/2. Letting τ :=594

4(∥Γ̂opt − Γ⋆∥ℓ2κmax(∇2ℓ(Γ̄)) + ∥∇ℓ(Γ⋆)∥ℓ2)/κ2, with probability greater than 1 −595

O(1/n): ∥Γ̂ − Γ̂opt∥2ℓ2 ≤ 4κ−2ℓ(Γ̂) − ℓ(Γ̂opt) + 4τκ−2∥Γ̂ − Γ̂opt∥ℓ2τ . Note that for596

non-negative Z,W,Π, the inequality Z2 ≤ ΠZ +W implies Z ≤ (Π +
√
Π2 + 4W )/2.597

Using this fact, in conjunction with the previous bound, we obtain with probability598

greater than 1−O(1/n) the bound ∥Γ̂−Γ̂opt∥ℓ2 ≤ τ
2 +

1
2 (τ

2+16κ−2[ℓ(Γ̂)−ℓ(Γ̂opt)])1/2.599

We next bound τ . From Corollary 4.13, we have control over the term ∥Γ̂opt − Γ⋆∥ℓ2600

in τ . It remains to control σmax(∇2ℓ(Γ̄)) and ∥∇ℓ(Γ⋆)∥ℓ2 . Let Γ ∈ Rm2

. Sup-601

pose that for every j ∈ T , Γj ≥ ν. Then, some calculations yield the bound602

∇2ℓ(Γ) ⪯ Σ̂ ⊗ I + 2
ν2 Im2 = Σ̂ ⊗ I + 2

ν2 Im2 . We have that for every j ∈ T ,603

Γ̂opt
j ≥ Γ⋆

j − ∥Γ̂opt − Γ⋆∥ℓ2 . From Corollary 4.13, Assumption 5, and that λ
√
s⋆ ≤ 1,604

we then have Γ̂opt
j ≥ Γ⋆

j/2 ≥ 1/2(Ω⋆
j )

−1/2. Since the entries of Γ̄ are between those of605

Γ⋆ and Γ̂opt and by Lemma 4.10, σmax(∇2ℓ(Γ̄)) ≤ σmax(Σ̂) + 8minj Ω
⋆
j = O(1). To606

control ∇ℓ(Γ⋆), we first note that E[∇ℓ(Γ⋆)] = 0. Therefore, ∥∇ℓ(Γ⋆)∥ℓ2 = ∥∇ℓ(Γ⋆)−607

E[∇ℓ(Γ⋆)]∥ℓ2 . Since ∇ℓ(Γ⋆)−E[∇ℓ(Γ⋆)] = ((Σ̂−Σ⋆)⊗ I)Γ⋆, letting K⋆ = (Σ⋆)−1 we608

get ∥∇ℓ(Γ⋆)−E[∇ℓ(Γ⋆)]∥2ℓ2 = tr((Σ̂n−Σ⋆)(Σ̂n−Σ⋆)TK⋆) ≤ ∥Σ̂−Σ⋆∥22∥K⋆∥⋆ ≤ m∥Σ̂−609

Σ⋆∥22∥K⋆∥2 ≤ O(m2 log(n)/n). Thus, ∥∇ℓ(Γ⋆) − E[∇ℓ(Γ⋆)]∥ℓ2 ≤ O(m
√
log n/

√
n).610

Upper bounding τ and then ultimately using that to upper-bound ∥Γ̂−Γ̂opt∥ℓ2 , we con-611

clude that ∥Γ̂− Γ̂opt∥2ℓ2 ≤ O(
√
d2maxm

4 logm/n). Combining this bound with Propo-612

sition 4.12, we get the first result of the theorem. The second result follows straight-613

forwardly from triangle inequality: ∥Γ̂ − Γ⋆∥2F ≤ 2∥Γ̂ − Γ̂opt∥2F + 2∥Γ̂opt − Γ⋆∥2F ≤614

O(
√
d2maxm

4 logm/n).615

The result of Theorem 4.7 guarantees that the estimate from our coordinate descent616

procedure is close to the optimal solution of (2.3), and that it accurately estimates617

certain reordering of the population model. For accurately estimating the edges of the618

population Markov equivalence class MEC(G⋆), we need the faithfulness condition and619

a strictly stronger version of the beta-min condition[23], dubbed the strong beta-min620

condition.621

Assumption 7. (Faithfulness)The DAG G⋆ is faithful with respect to the data622

generating distribution P⋆, that is, every conditional independence relationship en-623

tailed in P⋆ is encoded G⋆.624

Assumption 8. (Strong beta-min condition) There exist constant 0 < η20 < 1/s⋆,625

such that for any π ∈ Π, the matrix B̃⋆(π) has all of its nonzero coordinates (k, j)626

satisfy |B̃⋆
kj(π)| >

√
s⋆ logm/n/η0.627

Theorem 4.14. Suppose λ2 ≍ s⋆ logm/n, the sample size satisfies n/ log(n) ≥628

O(m2 logm), and assumptions of Theorem 4.11 hold, with Assumption 4 replaced by629

Assumption 8. Then, with probability greater than 1 − 2α0, there exists a member630

of the population Markov equivalence class with associated parameter Γ⋆
mec such that631

∥Γ̂− Γ⋆
mec∥2F ≤ O(

√
d2maxm

4 logm/n).632

Appealing to Remark 3.2 of van de Geer and Bühlmann [23], under assumptions of633

Theorem 4.11, as well as Assumption 8, the graph encoded by any optimal connec-634
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tivity matrix B̂opt of this optimization problem encodes, with probability 1 − α0, a635

member of the Markov equivalence class of the population directed acyclic graph.636

Let (B⋆
mec,Ω

⋆
mec) be the associated connectivity matrix and noise matrix of this pop-637

ulation model. Furthermore, define Γ⋆
mec = (I − B⋆

mec)Ω
⋆
mec

−1/2. The proof of the638

theorem relies on the following lemma in [25].639

Lemma 4.15 (Lemma 7 of [25]). Under the conditions of Theorem 4.14, we have640

with probability greater than 1− 2α0, ∥Γ̂opt − Γ⋆
mec∥2F = O(m2/n).641

Proof of Theorem 4.14. First, by Lemma 4.15, with probability greater than 1−642

2α0, ∥Γ̂−Γ⋆
mec∥2F ≤ 2∥Γ̂−Γ̂opt∥2F+2∥Γ̂opt−Γ⋆

mec∥2F ≤ GAP+O(m2/n). Since the GAP643

is on the order O(
√
d2maxm

4 logm/n), we get ∥Γ̂−Γ⋆
mec∥2F ≤ O(

√
d2maxm

4 logm/n).644

We remark that without the faithfulness condition (see Assumption 7), we can guar-645

antee that the estimate from our coordinate descent procedure is close to a member of646

what is known as the minimal-edge I-MAP. The minimal-edge I-MAP is the sparsest647

set of directed acyclic graphs that induce a structural equation model compatible with648

the true data distribution. Under faithfulness, the minimal-edge I-MAP coincides with649

the population Markov equivalence class [23].650

5. Experiments. In this section, we illustrate the utility of our method on syn-651

thetic and real data and compare its performance with competing methods. We dub652

our method CD-ℓ0 as it is a coordinate descent method using ℓ0 penalized loss func-653

tion. The competing methods we compare against include Greedy equivalence search654

(GES) [5], Greedy Sparsest Permutation (GSP) [19], and the mixed-integer convex655

program (MICODAG) [25]. We also compare our method with other coordinate de-656

scent algorithms (CCDr-MCP) [1, 2, 9], which use a minimax concave penalty instead657

of ℓ0 norm and are implemented as an R package sparsebn. All experiments are per-658

formed with a MacBook Air (M2 chip) with 8GB of RAM and a 256GB SSD, using659

Gurobi 10.0.0 as the optimization solver.660

As the input super-structure Esuper, we supply an estimated moral graph, com-661

puted using the graphical lasso procedure [8]. To make our comparisons fair, we662

appropriately modify the competing methods so that Esuper can also be supplied as663

input. Note that we count the number of support after each update in Algorithm664

3.1. Converting the graph into a string key at each iteration is inefficient. Therefore,665

in the implementation, we count the support only after each full loop, setting the666

threshold to C instead of Cm2. Throughout this paper, C is set to 5.667

We use the metric dcpdag to evaluate the estimation accuracy as the underlying668

DAG is generally identifiable up to the Markov equivalence class. The metric dcpdag669

is the number of different entries between the unweighted adjacency matrices of the670

estimated completed partially directed acyclic graph (CPDAG) and the true CPDAG.671

A CPDAG has a directed edge from a node i to a node j if and only if this directed672

edge is present in every DAG in the associated Markov equivalence class, and it has673

an undirected edge between nodes i and j if the corresponding Markov equivalence674

class contains DAGs with both directed edges from i to j and from j to i.675

The time limit for the integer programming method MICODAG is set to 50m.676

If the algorithm does not terminate within the time limit, we report the solution677

time (in seconds) and the achieved relative optimality gap, computed as RGAP =678

(upper bound− lower bound)/lower bound. Here, the upper bound and lower bound679

refer to the objective value associated with the best feasible solution and best lower680

bound, obtained respectively by MICODAG. A zero value for RGAP indicates that681

an optimal solution has been found.682
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Unless stated otherwise, we use the Bayesian information criterion (BIC) to choose683

the parameter λ. In our context, the BIC score is given by −2n
∑m

i=1 log(Γ̂ii) +684

ntr(Γ̂Γ̂TΣ̂) + k log(n), where k is the number of nonzero entries in the estimated685

parameter Γ̂. From theoretical guarantees in [25], λ2 should be on the order log(m)/n.686

Hence, we choose λ with the smallest BIC score among λ2 = c logm/n, for c =687

1, 2, . . . , 15.688

Setup of synthetic experiments: For all the synthetic experiments, once we specify689

a DAG, we generate data according to the SEM (2.1), where the nonzero entries of690

B⋆ are drawn uniformly at random from the set {−0.8,−0.6, 0.6, 0.8} and diagonal691

entries of Ω⋆ are chosen uniformly at random from the set {0.5, 1, 1.5}.692

5.1. Comparison with benchmarks. We first generate datasets from twelve693

publicly available networks sourced from [14] and the Bayesian Network Repository694

(bnlearn). These networks have different numbers of nodes, ranging from m = 6 to695

m = 70. We generate 10 independently and identically distributed datasets for each696

network according to the SEM described earlier with sample size n = 500.697

Table 1 compares the performance of our method CD-ℓ0 with the competing ones.698

First, consider small graphs (m ≤ 20) for which the integer programming approach699

MICODAG achieves an optimal or near-optimal solution with a small RGAP. As700

expected, in terms of the accuracy of the estimated model, MICODAG tends to701

exhibit the best performance. For these small graphs, CD-ℓ0 performs similarly to702

MICODAG but attains the solutions much faster. Next, consider moderately sized703

graphs (m > 20). In this case, MICODAG cannot solve these problem instances within704

the time limit and hence finds inaccurate models, whereas CD-ℓ0 obtains much more705

accurate models much faster. Finally, CD-ℓ0 outperforms GES, GSP, and CCDr-MCP706

in most problem instances. The improved performance of CD-ℓ0 over CCDr-MCP707

highlights the advantage of using ℓ0 penalization over a minimax concave penalty: ℓ0708

penalization ensures that DAGs in the same Markov equivalence class have the same709

score, while the same property does not hold with other penalties.710

Large graphs: We next demonstrate the scalability of our coordinate descent711

algorithm for learning large DAGs with over 100 nodes. We consider networks from712

the Bayesian Network Repository and generate 10 independent datasets similar to the713

previous experiment. Table 2 presents the results where we see that our method CD-714

Table 1: Comparison of our method, CD-ℓ0, with competing methods

MICODAG CCDr-MCP GES GSP CD-ℓ0
Network(m) Time RGAP dcpdag Time dcpdag Time dcpdag Time dcpdag Time dcpdag
Dsep(6) ≤ 1 0 2.0(±0) ≤ 1 2.0(±0) ≤ 1 1.8(±0.6) ≤ 1 2.0(±0) ≤ 1 2.0(±0)
Asia(8) ≤ 1 0 2.2(±0.6) ≤ 1 2.0(±0) ≤ 1 2.7(±0.9) ≤ 1 4.9(±1.4) ≤ 1 2.0(±0)
Bowling(9) 3 0 2.0(±0) ≤ 1 4.7(±2.4) ≤ 1 2.4(±0.7) ≤ 1 5.6(±2.5) ≤ 1 2.2(±0.4)
InsSmall(15) ≥ 750 .080 7.0(±2.6) ≤ 1 29.9(±4.0) ≤ 1 24.9(±10.3) ≤ 1 17.2(±7.9) ≤ 1 8.0(±0)
Rain(14) 151 0 2.0(±0) ≤ 1 9.5(±2.0) ≤ 1 5.4(±3.7) ≤ 1 17.5(±4.3) ≤ 1 3.3(±2.1)
Cloud(16) 93 0 5.2(±0.6) ≤ 1 11.0(±4.1) ≤ 1 5.0(±1.5) ≤ 1 13.7(±3.0) ≤ 1 6.8(±2.3)
Funnel(18) 70 0 2.0(±0) ≤ 1 2.0(±0) ≤ 1 4.8(±6.5) ≤ 1 13.0(±2.9) ≤ 1 2.0(±0)
Galaxy(20) 237 0 1.0(±0) ≤ 1 4.6(±3.1) ≤ 1 1.5(±1.6) ≤ 1 15.8(±5.2) ≤ 1 1.0(±0)
Insurance(27) ≥ 1350 .340 22.8(±13.5) ≤ 1 38.4(±4.8) ≤ 1 30.5(±14.8) ≤ 1 38.5(±6.7) ≤ 1 14.7(±4.1)
Factors(27) ≥ 1350 .311 56.1(±8.4) ≤ 1 65.3(±7.6) ≤ 1 68.9(±10.5) ≤ 1 52.3(±7.4) ≤ 1 18.1(±6.7)
Hailfinder(56) ≥ 2800 .245 41.4(±12.6) ≤ 1 12.9(±3.5) ≤ 1 26.4(±16.2) ≤ 1 109.1(±10.2) 1.6 2.6(±1.3)
Hepar2(70) ≥ 3500 5.415 76.9(±16.5) ≤ 1 54.6(±12.0) ≤ 1 71.5(±27.4) ≤ 1 66.3(±9.3) 11.4 5.3(±2.2)
Here, MICODAG, mixed-integer convex program [25]; CCDr-MCP, minimax concave penalized
estimator with coordinate descent [2]; GES, greedy equivalence search algorithm [5]; GSP, greedy
sparsest permutation algorithm [19]; dcpdag, differences between the true and estimated completed
partially directed acyclic graphs; RGAP, relative optimality gap. All results are computed over ten
independent trials where the average dcpdag values are presented with their standard deviations.
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Fig. 2: Convergence of CD-ℓ0 to an optimal solution
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Left: normalized difference, as a function of sample size n, between the optimal objective value of
(2.3) found using the integer programming approach MICODAG and the objective value obtained
by CD-ℓ0 for three different graphs; Middle: normalized difference of objectives of solutions
obtained from MICODAG and GES; Right: comparison of computational cost of CD-ℓ0,
MICODAG, and GES for the DAG with 21 edges. All results are computed and averaged over ten
independent trials.

ℓ0 can effectively scale to large graphs and obtain better or comparable performance715

to competing methods, as measured by the dcpdag metric.716

5.2. Convergence of CD-ℓ0 solution to an optimal solution. Theorem 4.7717

states that as the sample size tends to infinity, CD-ℓ0 identifies an optimally scoring718

model. To see how fast the asymptotic kicks in, we generate three synthetic DAGs719

with m = 10 nodes where the total number of edges is chosen from the set {7, 12, 21}.720

We obtain 10 independently and identically distributed datasets according to the721

SEM described earlier with sample size n = {50, 100, 200, 300, 400, 500}. In Figure722

2(left, middle), we compute the normalized difference (objmethod − objopt)/objopt as723

a function of n for the three graphs, averaged across the ten independent trials.724

Here, objmethod is the objective value obtained by the corresponding method (CD-ℓ0725

or GES), while objopt is the optimal objective obtained by the integer programming726

approach MICODAG. For moderately large sample sizes (e.g., n = 200), CD-ℓ0 attains727

the optimal objective value, whereas GES does not. In Figure 2 (right), for the728

graph with 21 arcs, we see that CD-ℓ0 can achieve the same accuracy while being729

computationally much faster to solve.730

5.3. Real data from causal chambers. Recently, [10] constructed two de-731

vices, referred to as causal chambers, allowing us to quickly and inexpensively pro-732

duce large datasets from non-trivial but well-understood real physical systems. The733

ground-truth DAG underlying this system is known and shown in Figure 3(a). We734

collect n = 1000 to n = 10000 observational samples of m = 20 variables at incre-735

ments of 1000. To maintain clarity, we only plot a subset of the variables in Figure736

Table 2: Comparison of our method, CD-ℓ0, with competing methods for large graphs

CCDr-MCP GES GSP CD-ℓ0
Network(m) Time dcpdag Time dcpdag Time dcpdag Time dcpdag
Pathfinder(109) ≤ 1 212.9(±20.7) ≤ 1 275.6(±16.4) 2.0 212.5(±19.5) 11.8 81.6(±16.3)
Andes(223) 1.8 117.9(±9.6) ≤ 1 165.0(±28.3) 6.6 702.0(±42.6) 35.1 107.3(±5.9)
Diabetes(413) 10.4 276.7(±9.7) 3.3 387.1(±22.2) 57.8 1399.8(±19.1) 881.9 286.6(±15.9)

See Table 1 for the description of the methods. All results are computed over ten independent
trials where the average dcpdag values are presented with their standard deviations.
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Fig. 3: Learning causal models from causal chambers data in [10]

R

G

B

C̃
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Ĩ1 Ĩ2

Ĩ3
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(d) dcpdag comparison

Here, a. ground-truth DAG described in [10], b-c. the estimated CPDAGs by GES and CD-ℓ0 for
sample size n = 10000, d. comparing the accuracy of the CPDAGs estimated by our method CD-ℓ0
and GES with different sample sizes n; here the accuracy is computed relative to CPDAG of the
ground-truth DAG and uses the metric dcpdag.

3(a, b, c). However, the analysis includes all variables. With this data, we obtain737

estimates for the Markov equivalence class of the ground-truth DAG using GES and738

our method CD-ℓ0 and measure the accuracy of the estimates using the dcpdag metric.739

Figures 3(b-c) show the estimated CPDAG for each approach when n = 10000.740

Both methods do not pick up edges between the polarizer angles θ1, θ2 and other741

variables. As mentioned in [10], this phenomenon is likely due to these effects being742

nonlinear. Figure 3(d) compares the accuracy of CD-ℓ0 and GES in estimating the743

Markov equivalence class of the ground-truth DAG. For all sample sizes n, we observe744

that CD-ℓ0 is more accurate.745

6. Discussion. In this paper, we propose the first coordinate descent procedure746

with proven optimality and statistical guarantees in the context of learning Bayesian747

networks. Numerical experiments demonstrate that our coordinate descent method748

is scalable and provides high-quality solutions.749

We showed in Theorem 4.1 that our coordinate descent algorithm converges. It750

would be of interest to characterize the speed of convergence. In addition, the compu-751

tational complexity of our algorithm may be improved by updating blocks of variables752

instead of one coordinate at a time. Finally, an open question is whether, in the con-753

text of our statistical guarantees in Theorem 4.7, the sample size requirement can be754

relaxed.755
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