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Abstract

Section 2 of the Voting Rights Act (VRA) prohibits voting practices that minimize or can-
cel out minority voting strength. While this section provides no clear framework for avoiding
minority vote dilution and creating minority-majority districts, the Supreme Court proposed
the Gingles test in the 1986 case Thornberg v Gingles. Mathematical optimization models are
increasingly employed to analyze the first prong of the Gingles test: compactness and numeros-
ity. This paper proposes mixed integer programming (MIP) formulations and techniques to
explore the maximum number of Black-majority congressional districts for multiple states of
the United States. Furthermore, we generalize the diameter-based compactness criterion of
Garfinkel and Nemhauser (Management Science, 1970) and provide a framework for optimizers
to capture compactness in constraints rather than the objective function. To alleviate the solv-
ing process, we propose fixing procedures and symmetry-breaking constraints. Our proposed
MIP formulations provide (i) an upper bound on the number of Black-majority districts and
(ii) lower bounds for the diameter of districts. We finally run a state-of-the-art districting
package, GerryChain, to provide feasible bounds for the optimum number of Black-majority
districts and their diameters. This provides the best existing optimality gaps that can be closed
by both districters and optimizers in the future.

Keywords: political redistricting; diameter-bounded districts; Black-majority districts; mixed
integer programming;

1 Introduction

The earliest legal debates surrounding Alabama’s redistricting process are dated decades ago. In
July 1957, the City of Tuskegee’s borders were redrawn so that African-Americans were excluded
from the legal borders of the city (See Figure 1). This led to the case Gomillion v Lightfoot, in which
Charles Gomillion claimed that the new city boundaries were unconstitutional. This case and other
related issues ignited the Selma to Montgomery protest in March of 1965. These marches from the
Civil Rights Era resulted in the Voting Rights Act (VRA) (Duchin and Walch, 2021). Section 2
of the Voting Rights Act (VRA) prohibits voting practices that minimize or cancel out minority
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voting strength. While the section provides no clear framework for avoiding minority vote dilution
and creating minority-opportunity districts, the Supreme Court proposed the Gingles test during
the Thornberg v Gingles case in 1986. Motivated by the recent amicus curiae brief of Hirsch et al.
(2022), which suggests mathematical optimization, not sampling methods, for finding remedial maps
to enforce VRA, we propose multiple mixed integer programming (MIP) formulations to explore the
possibility of creating Black-majority districts respecting the first prong of Gingles: compactness
and numerosity.

Figure 1: (Left): The redrawn map of Tuskegee in Macon county of Alabama shows the exclusion of
Tuskegee Institute (one of the Historically Black Colleges and Universities) from the new boundaries;
(Right): the traditional black belt of Alabama (The Alabama Bicentennial Commission, 2024).

In 2020, 28% of Alabama’s population was African-American, despite this, the congressional
districting plan included only one Black-majority district out of Alabama’s seven congressional
districts. In November 2021, multiple parties argued that the 2020 districting plan suppressed Black
votes and did not comply with the VRA. On January 24th, 2022, a three-judge court unanimously
ruled in favor of the plaintiff and found the 2020 districting plan unconstitutional as it violates
the VRA. The case was then appealed to the Supreme Court. On June 8th, 2023, the Supreme
Court, in a 5-4 decision, agreed the districting plan violated the VRA and required the state of
Alabama to form an additional Black-majority district. Ignoring this ruling, Alabama proposed
another districting plan with one Black-majority district, which was immediately rejected by a
federal three-judge panel. The federal court has decided to appoint an independent expert to draw
the new districts instead of letting the state legislature make another attempt to form a two-district
plan. This is only a snapshot of the legal proceedings from 2020 to 2023.

Political redistricting is the decennial process of redrawing boundaries of US political districts
in which the following essential criteria are respected: (i) population balance, (ii) contiguity, and
(iii) compactness. Furthermore, the Gingles test states that a minority-majority district can be
created if at least the following conditions (called “Gingles prongs”) are satisfied: (i) compactness
and numerosity (e.g., if the minority group makes up more than 50% of the citizen voting-age pop-
ulation), (ii) political cohesion, and (iii) sufficiency of White majority votes to defeat the preferred
candidate of minorities (Hebert et al., 2010). This paper explores MIP approaches to capture the
first prong of Gingles (i.e., compactness and numerosity.) While Lublin et al. (2020) specify that a
district can be considered a minority-majority district with only 40 to 50 percent of total votes, we
consider a threshold of 50% for numerosity purposes following Bartlett v Strickland case in which
the Court held that only reaching the 50% threshold can qualify a minority population to form a
minority-majority district (Hebert et al., 2010).
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Since 1965, operations researchers have started developing mathematical optimization models
to capture three basic criteria of redistricting: (i) population balance, (ii) contiguity, and (iii) com-
pactness. Compactness is usually considered in the objective function of optimization formulations
of the districting problems. However, Garfinkel and Nemhauser (1970) incorporate compactness as
a constraint for the first time in their redistricting MIP formulation. They claim that compactness
is not generally as important as other redistricting criteria to be incorporated in the objective func-
tion. Instead, they minimize the maximum population deviation from the mean population in their
optimization problem. This is consistent with Duchin and Walch (2021) that believe “compactness
is over-emphasized as a cure for gerrymandering.” Furthermore, Gurnee and Shmoys (2021) em-
phasize that “fairness is a far more important consideration, and therefore we want to encourage
practitioners to treat compactness as a constraint rather than an objective.”

Garfinkel and Nemhauser (1970) incorporate the following distance-based measure for creating
compact districts as a constraint in their MIP formulation with exponentially many variables: two
land parcels cannot belong to the same district if their distance is more than a threshold, say
s. We revisit the distance-based compactness criterion of Garfinkel and Nemhauser (1970) and
propose a cut-based MIP reformulation (with exponentially many constraints) of their formulation
(with exponentially many variables). We also propose procedures and algorithms for finding all the
possible values of s for states with Black-majority opportunity districts. Similarly, Mehrotra et al.
(1998) employs radius as the compactness measure in their heuristic branch-and-price framework.
Specifically, they eliminate the districting plans for which the distance of a land parcel from the
center of its district is greater than three.

To assess the appropriateness of the distance-based compactness measure, we compare it with
other measures based on five compactness criteria of Young (1988):

1. Data availability and simplicity;

2. Threshold: there is no specific numerical threshold for determining a compact districting plan;

3. Shape: the shape of land parcels should not impact a compactness measure;

4. Size: the population of a district should not impact a compactness measure;

5. Boundaries: a compactness measure should consider the shape of a state’s boundaries.

Table 1 summarizes the five metrics of Young (1988) for (i) the population-distance measures that
are widely employed by operations researchers (e.g., moment of inertia (Hess et al., 1965; Swamy
et al., 2019; Validi et al., 2022) and total population flow (Zhang et al., 2024b)), (ii) cut edges (Becker
and Solomon, 2021; Validi and Buchanan, 2022; Shahmizad and Buchanan, 2023; Ludden et al.,
2023), (iii) Polsby-Popper (Belotti et al., 2023), and (iv) diameter/radius of a district (Garfinkel
and Nemhauser, 1970; Mehrotra et al., 1998). Table 1 shows that the diameter/radius measure
satisfies at least four criteria of compactness proposed by Young (1988).

As we consider compactness as a set of constraints, we can optimize an objective function rather
than compactness. This paper explores the maximum number of Black-majority districts in a state
with respect to different feasible values of s. We also propose multiple fixing procedures and a set
of symmetry-breaking constraints to alleviate the running time of the proposed MIP formulation.
We finally break the proposed optimization MIP formulation into multiple feasibility MIP formu-
lations to increase the lower bounds for the s values. We have no claim on the appropriateness
of the generated maps in this paper. Furthermore, we focus on only the Black population as a
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Table 1: Comparisons between compactness measures employed in the operations research literature
based on the criteria of Young (1988).

Measures
Criteria

Data & Simplicitity Threshold Shape Size Boundaries
Population-distance X X X × ×
Number of cut edges X X X X ×

Polsby-Popper × X X X X
Diameter/radius X X X X ×

minority group in this paper. Our models can be easily employed for other minority groups. Our
contributions are summarized as follows:

1. We propose a new cut-based MIP formulation that captures connectivity and compactness in
constraints and lets districters optimize other districting measures in the objective function;

2. We provide valid upper bounds and lower bounds for the optimum number of Black-majority
districts and the optimum diameter of districts, respectively;

3. We propose a set of variable fixing procedures and a set of symmetry-breaking constraints to
alleviate the solving process of the proposed MIP;

4. We improve the proposed lower bound of the diameter by running a set of feasibility variants
of the proposed MIP formulation; and

5. We run a state-of-the-art districter, i.e., GerryChain, to generate feasible maps that, along
with the bounds in item 4, provide the best existing optimality gaps for the number of Black-
majority districts and their diameters.

Outline. Section 2 provides a background on the political redistricting problem and optimization
methods employed for solving different variants of it. Section 3 explains the notation, data, and
computational setup on which we run our computational experiments. Section 4 proposes a new cut-
based MIP formulation that maximizes the number of Black-majority districts in objective function
while capturing connectivity and compactness in constraints. Section 5 provides procedures for
finding an upper bound on the optimum number of Black-majority districts and a lower bound on
the optimum diameter of a district in a state. Section 6 proposes computational enhancements for
the MIP formulation in Section 4 and employs the formulation to improve the proposed dimeter’s
lower bound in Section 5. Section 7 reports feasible maps by running a state-of-the-art non-exact
redistricting solver (i.e., GerryChain) and provides feasible lower bounds and upper bounds for the
number of Black-majority districts and the diameter of districts, respectively. We conclude the
paper in Section 8.

2 Background

Mathematical models and MIP technology have been employed in designing political districts since
the 1960s, beginning the era of computational redistricting. Weaver and Hess (1963) provide an
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iterative framework to heuristically generate solutions for the problem, which respects the basic
redistricting criteria (i.e., population balance, contiguity, and compactness). Nagel (1964) pro-
poses a procedure for solving the bipartisan redistricting problem; they clarify that their procedure
differs considerably from that of Weaver and Hess (1963) as they simultaneously consider bipartisan
gerrymandering, population balance, and compactness. Their heuristic procedure also guarantees
contiguity, and the user may further specify specific land parcels to keep intact. Hess et al. (1965)
develop a MIP formulation for the nonpartisan districting problem in which population balance
and compactness are captured simultaneously; however, contiguity is imposed in a post-processing
step. Their formulation—coded in FORTRAN IV, solved on an IBM 7040 machine—provided more
compact districts for Delaware (Senate and House of Representatives) than an enacted plan.

Garfinkel and Nemhauser (1970) consider the pairwise distance of land parcels as a compactness
measure (i.e., “distance compactness”) in an implicit enumeration framework that minimizes the
maximum population deviation. Instances with at most 40 counties were solvable in under 10
minutes on an IBM 7094 machine, but an instance with 55 counties was intractable at the time.
Similarly, Mehrotra et al. (1998) employ the idea of bounding the radius of districts to three to
generate compact maps in a heuristic-based column generation framework. They provide a case
study for South Carolina, consisting of 46 counties assigned to six congressional districts, where
optimization required less than 5 minutes.

The redistricting optimization models are usually defined on the contiguity graph (Ricca et al.,
2013) in which the vertex set corresponds to land parcels (e.g., counties and tracts), and its edge
set represents the adjacency of vertices. To capture the diameter of districts, one can think of parti-
tioning the contiguity graph of a state into low-diameter clusters, known as the s-club partitioning
problem (Deogun et al., 1997). The diameter of a graph is defined as the maximum length of the
shortest paths between any pair of vertices in the graph. Figure 2 illustrates a graph partitioned into
subgraphs with diameters of at most two and three. In the minimum s-club partitioning problem,
one seeks to find the minimum number of parts such that the diameters of their induced subgraphs
are at most s. The problem is NP-hard due to the clustering problem being hard. Yezerska
et al. (2019) propose a combinatorial branch-and-bound approach for solving the minimum s-club
partitioning problem. Furthermore, Gschwind et al. (2021) develop a branch-and-price framework
for solving the problem. Recently, Zhang et al. (2024a) propose new MIP formulations and tech-
niques that solve the 2-club and 3-club partitioning problems on most of the benchmark instances
of Yezerska et al. (2019) and Gschwind et al. (2021) to optimality.
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Figure 2: (Left) an optimal 2-club partitioning with size 3; (Right) an optimal 3-club partitioning
with size 2.
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While compactness is a crucial remedy for racial gerrymandering, identifying potential minority-
majority districts is paramount for the formation of plans that comply with Section 2 of the VRA.
So, one might consider both compactness and minority-majority districts as objective functions of
a MIP formulation. Arredondo et al. (2021) propose a two-phase MIP framework for solving the
problem with distinct objectives: (i) phase one constructs the minority districts via a MIP that
considers the upper bound of the population balance in the objective function, and (ii) phase two
completes the districting plan through a MIP with a nonlinear objective function that optimizes
compactness. Recently, Belotti et al. (2023) propose mathematical optimization formulations that
find compact minority-majority districts. They optimize compactness (with respect to the Polsby-
Popper metric) in the objective function and capture the numerosity of minority groups in the
constraints. Furthermore, Cannon et al. (2023) propose a modified Markov chain approach for
maximizing the number of minority-majority districts. They test their approach for the Louisiana
House of Representatives.

There are other important redistricting metrics that are studied from the lens of operations
research in the literature: the number of county splits (Birge, 1983; Shahmizad and Buchanan,
2023; Buchanan et al., 2024), population deviation (Garfinkel and Nemhauser, 1970), efficiency gap,
partisan asymmetry, and competitiveness (Swamy et al., 2023; Dobbs et al., 2024). We note that
these measures can be easily incorporated into the objective function of our proposed diameter-based
compactness setting. Furthermore, there are multiple non-exact methods and approaches for finding
feasible solutions to the redistricting problems: Markov chain Monte Carlo (MCMC) (DeFord
et al., 2020, 2021; Dobbs et al., 2023), local search algorithms (Ricca and Simeone, 2008) and
metaheuristics (Bozkaya et al., 2003; Tomczyk and Kadziński, 2024).

3 Notation, Data and Computational Setup

In this paper, we define contiguity graph G = (V,E) with vertex set V that represents the set of
land parcels (e.g., county and tracts) and edge set E that represents the set of adjacent pairs of
land parcels. We also define n and m as the sizes of vertex set V and edge set E, respectively. Fur-
thermore, k represents the number of districts in a state, which is calculated by the apportionment
after each census. For every land parcel v ∈ V , pv represents the total population of the land parcel.
We also use pVAP

v and pBVAP
v as the total voting-age population and the total Black voting-age pop-

ulation for every land parcel v ∈ V , respectively. We also define f ∈ (0, 1) as the fraction threshold
for forming a Black-majority district. Throughout the paper, we set [k] := {1, . . . , k} and

(
V
2

)
as

the set of all pairs of vertices. For every vertex subset S ⊆ V , G[S] denotes the subgraph induced
by S. For every pair of vertices {u, v} ∈

(
V
2

)
, we define distG(u, v) as the length of a shortest path

between u and v in contiguity graph G. Then, the diameter of contiguity graph G is defined as
diam(G) := max

{u,v}∈(V
2)
{distG(u, v)}.

We run our computational experiments on 17 interesting county-level and tract-level instances
that are summarized in Table 2. Appendix A provides the excluded instances and the reasoning
behind them. We employ the 2020 U.S. Census data that is processed and shared with us by
Daryl DeFord. The data and code are available at our GitHub repository: https://github.c
om/samuel-kroger/Bounding-the-number-and-the-diameter-of-optimal-compact-Black

-majority-districts. All computational results are generated by a machine running Red Hat
Enterprise Linux Workstation x64 version 7.6 with an Intel(R) Core(TM) i7-9800X CPU (3.8Ghz,
19.25MB, 165W) using 1 core with 32GB RAM. All codes are written in Python, and we employ

6

https://github.com/samuel-kroger/Bounding-the-number-and-the-diameter-of-optimal-compact-Black-majority-districts
https://github.com/samuel-kroger/Bounding-the-number-and-the-diameter-of-optimal-compact-Black-majority-districts
https://github.com/samuel-kroger/Bounding-the-number-and-the-diameter-of-optimal-compact-Black-majority-districts


Gurobi 11.0.2 and GerryChain 0.3.1 to solve the MIP models and find feasible redistricting plans.
We also employ GerryChain’s short bursts module to create feasible districting maps with the
largest number of Black-majority districts. The version that we used is available at https:

//github.com/AustinLBuchanan/short bursts.

Table 2: Black-majority redistricting instances at county and tract levels. The last three columns
show the diameter of the contiguity graph, the current percentage of the Black population, and the
number of Black-majority districts in the 2020 enacted plans, respectively.

state parcel k n m state diam. % Black pop. # Black distr.

MS county 4 82 202 13 35.25 1

MS tract 4 878 2,378 32 35.25 1
LA tract 6 1,388 3,861 32 30.07 1
SC tract 7 1,323 3,677 32 24.20 1
AL tract 7 1,437 4,014 34 25.06 1
MD tract 8 1,475 3,993 42 29.16 2
MO tract 8 1,654 4,488 38 10.85 0
TN tract 9 1,701 4,691 53 15.18 1
VA tract 11 2,198 6,064 45 18.41 0
NJ tract 12 2,181 6,061 45 12.86 0
MI tract 13 3,017 7,989 41 13.03 2
NC tract 14 2,672 7,422 52 20.10 0
GA tract 14 2,796 7,762 43 30.27 4
OH tract 15 3,168 8,747 44 11.79 1
IL tract 17 3,265 8,728 52 13.74 2
PA tract 17 3,446 9,641 59 10.34 1
TX tract 38 6,896 18,554 49 12.02 0

4 A Cut-based MIP Formulation

This section provides a MIP formulation for maximizing the number of Black-majority districts and
partitioning the land parcels into connected and compact clusters such that the population balance
(i.e., “one person, one vote” principle) is respected. Due to the successful performance of the labeling
formulation in the districting context and its small size (e.g., see Validi and Buchanan (2022)), we
employ a labeling assignment model to formulate the Black-majority districting problem. For every
district j ∈ {1, . . . , k}, binary decision variable zj (wj) is one if district j is a Black-majority
(non-Black-majority) district. For every district j ∈ {1, . . . , k} and every land parcel v ∈ V , binary
decision variable xvj (yvj) is one if land parcel v is assigned to Black-majority (non-Black-majority)
district j.

By maximizing the following objective function, we seek to explore the maximum possible num-
ber of Black-majority districts. We emphasize that maximizing the number of Black-majority
districts is not necessarily an appropriate objective in practice; however, the main goal of this pa-
per is exploring the maximum number of Black-majority districts with respect to basic criteria of
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political redistricting.

max

k∑
j=1

zj . (1a)

The following constraints partition the land parcels into k non-empty districts.

k∑
j=1

(xvj + yvj) = 1 ∀v ∈ V (1b)

zj + wj = 1 ∀j ∈ [k] (1c)

zj ≤
∑
v∈V

xvj ∀j ∈ [k] (1d)

wj ≤
∑
v∈V

yvj ∀j ∈ [k] (1e)

x, y ∈ {0, 1}n×k; z, w ∈ {0, 1}k. (1f)

Constraints (1b) imply that each land parcel must belong to exactly one district. Constraints (1c)
imply that every district is either a Black-majority or a non-Black-majority district. Constraints (1d)
(constraints (1e)) imply that if a district is selected as a Black-majority (non-Black-majority) dis-
trict, then it must contain at least one land parcel. Let P0 be the set of nonnegative and continuous
points that satisfy constraints (1b)-(1e). Then, the following lemma shows that P0 is an integral
polytope.

Lemma 1. Let P0 := {(x, y, z, w) ∈ R(nk)2×k2

+ | (x, y, z, w) satisfies constraints (1b)-(1e)}. Then,
P0 is an integral polytope.

Proof. The proof follows by the fact that the coefficient matrix of constraints (1b)-(1e) is totally
unimodular. In particular, (i) the matrix contains elements that only belong to the set {−1, 0, 1};
(ii) each column of the matrix has at most two non-zero elements; and (iii) the rows of the matrix
can be partitioned into two sets such that the non-zero elements of every vector belong to different
parts. The result follows from Corollary 2.8 of Wolsey and Nemhauser (1999).

Remark 1. The integrality property in Lemma 1 is preserved even if there are more than two types
of districts (e.g., Asian-, Hispanic-, or Native-American-majority districts).

The labeling model (1b)-(1e) suffers from symmetry. The following symmetry-breaking con-
straints are usually added to labeling formulations to alleviate the symmetry issue.

zk ≤ zk−1 ≤ · · · ≤ z2 ≤ z1. (1g)

Constraints (1g) imply that the (i + 1)-th Black-majority (non-Black-majority) district cannot be
formed if the i-th Black-majority (non-Black-majority) district is not created, where i ∈ [k − 1].
Remark 2 presents a set of implied symmetry constraints. In Section 6.2, we present further
symmetry-breaking constraints.

Remark 2. Constraints w1 ≤ · · · ≤ wk−1 ≤ wk are implied by constraints (1c) and (1g).
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Proof. Let (x̂, ŷ, ŵ, ẑ) be a point that satisfies constraints (1b)-(1g). By constraints (1c) and (1g),
we have

1− ŵk ≤ 1− ŵk−1 ≤ · · · ≤ 1− ŵ2 ≤ 1− ŵ1.

So, we have ŵ1 ≤ · · · ≤ ŵk−1 ≤ ŵk.

The following lemma shows that adding the symmetry-breaking constraints (1g) to constraints (1b)-
(1e) maintains the integrality property.

Lemma 2. Let P1 := {(x, y, z, w) ∈ R(nk)2×k2

+ | (x, y, z, w) satisfies constraints (1b)-(1e) and (1g)}.
Then, P1 is an integral polytope.

Proof. By the contradiction, suppose there is a fractional extreme point q̂ = (x̂, ŷ, ẑ, ŵ) of P1.
However, q̂ can be written as a convex combination of a subset of the extreme points of the convex
hull P0 that respect the orderings in (1g). This contradicts the definition of q̂ as an extreme
point.

Population balance requirements are federally mandated for all states. According to the Appor-
tionment Clause of Article I of Section 2, a state’s districts must have a roughly equal population.
While the law does not specify an exact population deviation, one percent is typically utilized in
the computational redistricting literature (Altman and McDonald, 2018). For every land parcel
v ∈ V , we recall that pv denotes its population. Then, we define the following lower and upper
bounds for the population of each district with respect to the one percent deviation.

L :=

⌈∑
v∈V pv

k
× 0.995

⌉
and U :=

⌊∑
v∈V pv

k
× 1.005

⌋
.

The following constraints capture the population lower-bounds for the Black-majority and non-
Black-majority districts.

Lzj ≤
∑
v∈V

pvxvj ∀j ∈ [k] (1h)

Lwj ≤
∑
v∈V

pvyvj ∀j ∈ [k]. (1i)

Lemma 3. The population lower-bound inequalities (1h)-(1i) are implied by inequalities (1d)-(1e)
if pv/L ≥ 1 for every land parcel v ∈ V .

Proof. Let (x̂, ŷ, ẑ, ŵ) ∈ R(nk)2×k2

+ be a nonnegative point that satisfies constraints (1b)-(1e) and
the population lower-bound inequalities. For every district j ∈ [k], we have

ẑj ≤
∑
v∈V

x̂vj ≤
∑
v∈V

(pv/L)x̂vj ,

ŵj ≤
∑
v∈V

ŷvj ≤
∑
v∈V

(pv/L)ŷvj .

Here, the first inequality holds by constraints (1d) and constraints (1e). The second inequality
holds by the assumption.

9



Theorem 1. Let

R := {(x, y, z, w) ∈ R(nk)2×k2

+ | (x, y, z, w) satisfies constraints (1b)-(1g) and (1h)-(1i)}.

Then, R is an integral polytope if pv/L ≥ 1 for every land parcel v ∈ V .

Proof. The proof follows by Lemmata 1, 2 and 3.

Constraints (1j)-(1k) impose the population upper-bounds for the Black-majority redistricting
problem. ∑

v∈V
pvxvj ≤ Uzj ∀j ∈ [k] (1j)∑

v∈V
pvyvj ≤ Uwj ∀j ∈ [k]. (1k)

Unfortunately, we lose the integrality of the formulation after adding the population upper-bound
inequalities. This is consistent with the hardness of the redistricting problem due to the population
balance constraints (Validi and Buchanan, 2022).

For every land parcel v ∈ V , we recall that pVAP
v and pBVAP

v denote the voting-age population
and Black voting-age population, respectively. We also recall that f ∈ (0, 1) is the fraction threshold
for forming a Black-opportunity district, varying between 0.40 to 0.50 (Lublin et al., 2020). In this
paper, we fix the value of f to 0.5 as we seek to find Black-majority (not Black-opportunity) districts.
Constraints (1l)-(1m) capture the “numerosity” criterion of the Gingles prongs for Black-majority
districts. While Lawless and Günlük (2024) employ big-M to capture the numerosity of minorities
in their MIP formulation (see their constraints (3)), we note that employing both x and y variables
in the MIP formulation (1) enables us to eliminate the necessity of using big-M to capture the
following numerosity constraints.

∑
v∈V

pBVAP
v xvj ≥ f

∑
v∈V

pVAP
v xvj ∀j ∈ [k] (1l)∑

v∈V
(pVAP

v − pBVAP
v )yvj ≥ (1− f)

∑
v∈V

pVAP
v yvj ∀j ∈ [k]. (1m)

Contiguity and compactness are state-based criteria required for congressional redistricting by
23 and 18 states, respectively. In operations research, contiguity is usually imposed by a set of
either flow variables and constraints (Shirabe, 2005, 2009) or cutting planes (Oehrlein and Haunert,
2017). In this paper, we employ specific cutting plains that simultaneously capture contiguity and
compactness. The cutting planes are called length-bounded separator cuts. We provide a definition
of length-bounded a, b-separators as follows.

Definition 1 (Length-s a, b-separator (Salemi and Buchanan, 2020)). A vertex subset C ⊆ V \{a, b}
in a graph G = (V,E) is called a length-s a, b-separator if the distance between vertices a and b in
the graph G− C is greater than s.

Intuitively, an a, b-separator is a set of vertices whose removal eliminates all paths from a to b,
whereas a length-s a, b-separator eliminates paths of length 1, 2, . . . , s. Figure 3 provides an illus-
tration for a, b-separators and length-s a, b-separators.
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Figure 3: (Left): {2, 5, 8} is a 4,6-separator; (Right): {5} is a length-3 4,6-separator.

Given s as the maximum allowable pairwise distance in a district’s contiguity graph, we provide
the following connectivity and compactness constraints. Constraints (1n) (constraints (1o)) imply
that if land parcels a and b are assigned to a Black-majority (non-Black-majority) district, then at
least one land parcel from every length-s a, b-separator must also belong to the Black-majority (non-
Black-majority) district. Similar to Salemi and Buchanan (2020), we use (a, b, C) as a shorthand
to denote distinct vertex pair {a, b} ∈

(
V
2

)
and all length-s a, b-separators C ⊆ V .

xaj + xbj ≤ zj +
∑
c∈C

xcj ∀(a, b, C), ∀j ∈ [k] (1n)

yaj + ybj ≤ wj +
∑
c∈C

ycj ∀(a, b, C), ∀j ∈ [k]. (1o)

The complexity of integer separation for constraints (1n)-(1o). Since there are exponen-
tially many constraints of types (1n) and (1o), they need to be added on-the-fly. Algorithm 1
provides a polytime integer separation procedure for generating these inequalities.

Algorithm 1 IntegerSeparation(G, s, k, (x∗, y∗, z∗, w∗))

1: for j ∈ [k] with z∗j = 1 or w∗j = 1 do
2: define Vj := {i ∈ V | x∗ij = 1} and Gj := G[Vj ]
3: let b ∈ Vj be a vertex in the smallest component of Gj

4: solve the single source shortest path problem in Gj with source vertex b
5: for each component G′ of Gj that does not contain vertex b do
6: let a ∈ V (G′) with maximum distG(a, b)
7: let C be the minimal a, b-separator by Fischetti et al. (2017) (in O(m))
8: minimalize C (in O(mn))
9: add cut xaj + xbj ≤ zj +

∑
c∈C xcj

10: add cut yaj + ybj ≤ wj +
∑

c∈C ycj

11: let Gb be the component that contains vertex b
12: let {u, v} be a vertex pair with the largest distGb

(u, v) and distGb
(u, v) > s

13: let C be a minimal u, v-separator in graph Gb by Salemi and Buchanan (2020) (in O(mn))
14: add cut xuj + xvj ≤ zj +

∑
c∈C xcj

15: add cut yuj + yvj ≤ wj +
∑

c∈C ycj

11



The minimal set C obtained by line 7 is minimalized in line 8. By “minimalizing set C” in line 8,
we mean that we convert the minimal a, b-separator, obtained in line 7, to a length-s a, b-separator.
The following proposition shows the time complexity of Algorithm 1.

Proposition 1. Algorithm 1 runs in O(mn).

Proof. The time complexity of Algorithm 1 is determined by the complexities of lines 8 and 13 with
a total time complexity of O(mn). We note that the total time complexity of line 13 is O(m).

During our computational experiments, we found out that adding the separator cuts for any
pair of vertices {u, v} with distGb

(u, v) > s improves our computational performance. Hence, we
add the separator cuts for any pair of vertices with distGb

(u, v) > s in our code, which increases
the time complexity to O(mn3).

Conflict constraints. Inequalities (1n)-(1o) can be added upfront when a pair of vertices {a, b} ∈(
V
2

)
cannot belong to the same district; i.e., distG(a, b) > s. We define power graph Gs := (V,Es)

with Es := {{u, v} ∈
(
V
2

)
: distG(u, v) ≤ s}. Let Ḡs be the complement of Gs with C be the set of

its maximal cliques. Then, the following conflict constraints can be added upfront.

∑
q∈Q

xqj ≤ zj ∀ maximal clique Q ∈ C, ∀j ∈ [k] (1p)

∑
q∈Q

yqj ≤ wj ∀ maximal clique Q ∈ C, ∀j ∈ [k]. (1q)

The following proposition shows that inequalities (1p) and (1q) are at least as strong as tradi-
tional strengthening inequalities in the redistricting literature.

Proposition 2. For every land parcel v ∈ V and every district j ∈ [k], constraints xvj ≤ zj and
yvj ≤ wj are implied by constraints (1p) and (1q), respectively.

Proof. Let (x̂, ŷ, ẑ, ŵ) ∈ R(nk)2×k2

+ be a nonnegative point that satisfies constraints (1p)-(1q). For
every land parcel v ∈ V , there exists a maximal clique Qv that contains vertex v. So, for every
land parcel v ∈ V and every district j ∈ [k], we have

x̂vj ≤
∑
q∈Qv

x̂qj ≤ ẑj

ŷvj ≤
∑
q∈Qv

ŷqj ≤ ŵj .

The first inequalities hold as v ∈ Qv. The second inequalities hold by constraints (1p) and (1q).

5 Bounds on the number of Black-majority districts and s

This section proposes an upper bound on the number of Black-majority districts and a lower bound
on the s values discussed in Section 4.
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5.1 An upper bound on the number of Black-majority districts

The MIP model (1) allows every district to be a Black-majority district; however, one can provide an
upper bound on the number of Black-majority districts and specify a range for the Black-majority
districts. This section proposes a MIP formulation that finds an upper bound on the number of
Black-majority districts (i.e., kb). This upper bounding procedure decreases the number of x and z
variables by n(k− kb) and k− kb, respectively. In other words, the procedure fixes (1− kb/k)× 100
percent of x and z variables to zero. As we have at most kb Black-majority districts, we will have
at least k − kb non-Black-majority districts that result in k − kb one fixing of w variables (i.e.,
(1− kb/k)× 100 percent of w variables are fixed to one). To find kb, we solve a truncated version
of the MIP model (1) by removing the connectivity and compactness constraints from the MIP
formulation (1). So, the proposed MIP formulation is valid for the Black-majority redistricting
problem regardless of the compactness criterion.

max

k∑
j=1

zj (2a)

Lzj ≤
∑
v∈V

pvxvj ≤ Uzj ∀j ∈ [k] (2b)∑
v∈V

pBVAP
v xvj ≥ f

∑
v∈V

pVAP
v xvj ∀j ∈ [k] (2c)

xvj ≤ zj ∀v ∈ V, ∀j ∈ [k] (2d)

zk ≤ zk−1 ≤ · · · ≤ z2 ≤ z1 ≤ 1 (2e)

x ∈ {0, 1}n×k. (2f)

Here, objective function (2a) maximizes the number of Black-majority districts. Constraints (2b)
impose the population balance constraints. Constraints (2c) impose the numerosity condition of
the Gingles prongs. Constraints (2d) imply that if a land parcel is assigned to a Black-majority
district, then the district must be selected as a Black-majority district. Constraints (2e) are im-
posed for symmetry-breaking purposes. We note that the integrality of z variables is implied by
constraints (2d)-(2f).

Our computational results for solving the MIP model (2) in a time limit of 3,600 seconds are
summarized in Table 3. This table reports an upper bound on the number of Black-majority
districts (kb), the solving times (in seconds) of the model, and the zero fixing percentage of x and z
variables resulting from solving the MIP model. Two observations from Table 3 are of interest: (i)
at least half of the x and z variables are fixed to zero at both county and tract levels after solving
the MIP model (2), and (ii) all the county level instances and most of the tract level instances are
solved in less than a minute.

5.2 A valid lower bound for s

We recall that compactness constraints (1n)-(1o) of the MIP model (1) depend on the value of s;
i.e., the diameter of a district’s induced subgraph in a contiguity graph G. This section discusses
valid values for the lower bound of s that will provide a starting point for our MIP-based lower
bounding procedure in Section 6. To calculate a valid lower bound of s (i.e., `s), we first define
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Table 3: Computational results for solving the MIP model (2) within a time limit of 7,200 seconds.
The last two columns show the percentages of zero fixing for x and z variables and one fixing for w
variables.

state parcel k n m obj. (kb) time x & z fixed (%) w 1-fix (%)
MS county 4 82 202 1.00 0.04 75.00 75.00
MS tract 4 878 2,378 2.00 0.98 50.00 50.00
LA tract 6 1,388 3,861 3.00 3.53 50.00 50.00
SC tract 7 1,323 3,677 2.00 3.09 71.43 71.43
AL tract 7 1,437 4,014 2.00 8.24 71.43 71.43
MD tract 8 1,475 3,993 4.00 7.15 50.00 50.00
MO tract 8 1,654 4,488 1.00 3.74 87.50 87.50
TN tract 9 1,701 4,691 2.00 7.29 77.78 77.78
VA tract 11 2,198 6,064 2.00 8.56 81.82 81.82
NJ tract 12 2,181 6,061 1.00 5.45 91.67 91.67
MI tract 13 3,017 7,989 2.00 32.50 84.62 84.62
NC tract 14 2,672 7,422 3.00 20.20 78.57 78.57
GA tract 14 2,796 7,762 7.00 138.12 50.00 50.00
OH tract 15 3,168 8,747 2.00 94.76 86.67 86.67
IL tract 17 3,265 8,728 3.00 204.64 82.35 82.35
PA tract 17 3,446 9,641 2.00 55.61 88.24 88.24
TX tract 38 6,896 18,554 3.00 3,829.72 92.11 92.11

power graph Gs = (V,Es) with

Es :=

{
{u, v} ∈

(
V

2

)
: distG(u, v) ≤ s

}
, (3)

where
(
V
2

)
and distG(u, v) are the set of all pairs of vertices and the distance between vertices u and

v in contiguity graph G, respectively. Furthermore, let α(Gs) be the independence number of the
power graph Gs. We note that if α(Gs) > k, then it is impossible to partition the vertices of the
contiguity graph G into k districts. Figure 4 illustrates a districting instance in which α(Gs) > k.
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Figure 4: An illustration for the s lower bounding idea on a 3 × 3 contiguity graph with pv = 1
for every vertex v ∈ V , L = 1, U = 3, and k = 3: (Left) a feasible redistricting plan with s = 2;
(Right) an infeasible redistricting plan with s = 1 that fails to respect the number of districts
(k = 3) because α(Gs) = α(G) = 5 > 3 = k.

Proposition 3 proves that the MIP fromulation (1) is infeasible if α(Gs) > k.

Proposition 3. The MIP formulation (1) with integer values of k and s is infeasible if α(Gs) > k.

Proof. Let I ⊆ V be a maximum independent set of the power graph Gs with size α(Gs) > k.
Inequalites (1n)-(1o) of the MIP model (1) can be written as follows for the vertex set I because
the length-s separator set is empty for any pair of vertices in I.

xaj + xbj ≤ zj ∀{a, b} ∈
(
I

2

)
, ∀j ∈ [k]

yaj + ybj ≤ wj ∀{a, b} ∈
(
I

2

)
, ∀j ∈ [k].

These constraints, along with assignment constraints (1b), imply that exactly k vertices of set I
must be assigned to k parts (districts). This means that |I| − k vertices cannot be assigned to any
district (partition). So, the MIP model (1) is infeasible by the Pigeonhole principle.

Using Proposition 3, we propose Algorithm 2 to provide a valid lower bound for s. Algorithm 2
determines `s by computing the independence number for power graphs of G, iteratively. If the
independence number of the power graph is greater than k, then MIP model (1) is infeasible by
Proposition 3. Algorithm 2 employs a binary search to find a lower bound on the value of s. In
line 2 of the algorithm, we start the algorithm with a feasible lower bound of diam(G) for which
α(Gdiam(G)) = 1 < 2 ≤ k. Furthermore, we solve the maximum independent set problem in line 6.
Although finding a maximum independent set is an NP-hard problem (Garey and Johnson, 1979),
our computational results show the efficacy of the Gurobi solver in solving the problem for all
interesting instances. Table 4 summarizes the computational results for Algorithm 2. The lower
bound of s (i.e., `s), the number of iterations till finding `s, and the running time of the algorithm
are reported in this table. Interestingly, the proposed algorithm finds `s in less than 10 minutes for
all instances at the county and tract level, except for TX.

Finally, Table 5 wraps up this section by summarizing the computational results provided in
Sections 5.1 and 5.2. We employ these results in the subsequent sections of the paper.
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Algorithm 2 LowerBounding-s (G, k)

1: s` ← 1
2: su ← diam(G)
3: s← 1
4: while su 6= s` do
5: s← b(s` + su)/2c
6: create power graph Gs and calculate α(Gs)
7: if α(Gs) > k then
8: s` ← s+ 1
9: else

10: su ← s

11: return s

Table 4: Computational results for the lower bounding Algorithm 2 for finding `s in interesting
instances of the problem: “iter” shows the number of iterations and “time” illustrates the time
spent for running the algorithm.

state land parcel k n m `s iter time (s)
MS county 4 82 202 6 3 0.14
MS tract 4 878 2,378 15 5 25.40
LA tract 6 1,388 3,861 14 5 69.42
SC tract 7 1,323 3,677 13 5 59.78
AL tract 7 1,437 4,014 14 5 72.76
MD tract 8 1,475 3,993 14 5 82.20
MO tract 8 1,654 4,488 14 5 91.08
TN tract 9 1,701 4,691 14 6 90.44
VA tract 11 2,198 6,064 13 6 152.75
NJ tract 12 2,181 6,061 12 6 165.62
MI tract 13 3,017 7,989 14 5 413.54
NC tract 14 2,672 7,422 13 6 237.69
GA tract 14 2,796 7,762 14 5 314.85
OH tract 15 3,168 8,747 13 5 338.88
IL tract 17 3,265 8,728 13 6 478.99
PA tract 17 3,446 9,641 13 6 383.96
TX tract 38 6,896 18,554 12 6 3,045.12

6 Improving Diameter’s Lower Bound

This section proposes solving the feasibility variants of the MIP formulation (1) to increase the lower
bound `s for every feasible number of Black-majority districts. To accelerate the solving process of
the feasibility variants of MIP formulation (1), we first propose variable fixing procedures and a set
of symmetry-breaking constraints. It turns out that even our proposed variable fixing procedures
may increase the lower bound for some instances at the tract level.
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Table 5: A summary of results for kb and `s of all interesting instances of the problem.

state parcel k n m kb `s
MS county 4 82 202 1 6
MS tract 4 878 2,378 2 15
LA tract 6 1,388 3,861 3 14
SC tract 7 1,323 3,677 2 13
AL tract 7 1,437 4,014 2 14
MD tract 8 1,475 3,993 4 14
MO tract 8 1,654 4,488 1 14
TN tract 9 1,701 4,691 2 14
VA tract 11 2,198 6,064 2 13
NJ tract 12 2,181 6,061 1 12
MI tract 13 3,017 7,989 2 14
NC tract 14 2,672 7,422 3 13
GA tract 14 2,796 7,762 7 14
OH tract 15 3,168 8,747 2 13
IL tract 17 3,265 8,728 3 13
PA tract 17 3,446 9,641 2 13
TX tract 38 6,896 18,554 3 12

6.1 Variable fixing procedures

In Section 5.1, we introduced a MIP formulation that fixes at least 50% of x, z, and w variables.
This section proposes more variable fixing procedures for x to reduce the size of the MIP formula-
tion (1). These procedures detect land parcels that cannot belong to a Black-majority district. For
illustration purposes, Figure 5 shows Tishomingo County (at the right top corner of the 2020 map of
Mississippi) with a small BVAP percentage of 2.42%. As this county is surrounded by counties with
small BVAP percentages, it is intuitively unlikely that one can develop a Black-majority district
that includes Tishomingo County. Motivated by this observation, we propose a series of MIPs in
three phases (Phase 1, Phase 2, and Phase 3) to determine whether a land parcel may be assigned
to a feasible Black-majority district.

These MIP formulations differ by the inclusion of contiguity and compactness constraints and
are listed as follows:

1. The MIP model of Phase 1 imposes (i) population balance and (ii) the numerosity criterion
of the Gingles prongs;

2. The MIP model of Phase 2 imposes (i) population balance, (ii) the numerosity criterion of
the Gingles prongs, and (iii) contiguity; and

3. The MIP model of Phase 3 imposes (i) population balance, (ii) the numerosity criterion of
the Gingles prongs, (iii) contiguity, and (iv) a subset of compactness constraints.

Despite the differences in the MIP formulations of these phases, they all follow a similar fixing
concept: if land parcel v cannot join any compact Black-majority district, then xvj ≤ 0 is a valid
inequality for any district j ∈ [kb].
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Figure 5: Mississippi’s Black population percentages at the county level.

6.1.1 The MIP model of Phase 1

For every land parcel v ∈ V , the following MIP formulation checks if v can belong to a Black-
majority district with respect to (i) population balance and (ii) the numerosity criterion of the
Gingles prongs. We define Vv := {u ∈ V : distG(u, v) ≤ s} and Gv := G[Vv] for every land parcel
v ∈ V . We recall that G[Vv] is the subgraph induced by Vv, and distG(u, v) denotes the distance
between vertices u and v in the contiguity graph G. For every land parcel u ∈ Vv, binary decision
variable tu is one if u belongs to the same Black-majority district that contains land parcel v. The
MIP formulation has no objective function as our main concern is its feasibility.1

(Phase 1) L ≤
∑
u∈Vv

putu ≤ U (4a)

∑
u∈Vv

pBVAP
u tu ≥ f

∑
u∈Vv

pVAP
u tu (4b)

tv = 1 (4c)

tu ∈ {0, 1} ∀u ∈ Vv \ {v}. (4d)

Constraint (4a) ensures that the Black-majority district, which contains land parcel v, respects
population balance. Constraint (4b) enforces that the Black-majority district has a sufficient BVAP.

1Our experiments with the feasibility problem (i.e., MIP formulation (4) with no objective function) yielded better
computational results rather than including an objective function (e.g., max

∑
u∈Vv

tu) to the MIP formulation).

18



Constraint (4c) guarantees that the Black-majority district includes land parcel v.

6.1.2 The MIP model of Phase 2

To fix more variables, we incorporate contiguity constraints into MIP formulation (4). Let F 1
0 be

the set of vertices that cannot belong to a Black-majority district based on Phase 1 (i.e., their
corresponding Black-majority assignment decision variables are fixed to zero after solving MIP
formulation (4)). To impose contiguity, we employ a set of flow-based decision variables and con-
straints introduced by Shirabe (2005, 2009). This requires the bi-directed variant of the contiguity
graph G, where D = (V,A) is the bi-directed variant of G with A := {(u, v) ∪ (v, u) : {u, v} ∈ E}.
For every vertex v ∈ V , let δ−(v) and δ+(v) be the set of incoming and outgoing arcs of vertex v,
respectively. For every directed edge (i, j) ∈ A, we define gij as the nonnegative flow on arc (i, j).
Furthermore, we define Mv := |Vv| − |Vv ∩ F 1

0 | for every v ∈ V . For every vertex v ∈ V \ F 1
0 , the

MIP of Phase 2 is provided as follows.

(Phase 2) constraints (4a)− (4d) (5a)

tu = 0 ∀u ∈ Vv ∩ F 1
0 (5b)

g(δ−(u))− g(δ+(u)) = tu ∀u ∈ Vv \ {v} (5c)

g(δ−(u)) ≤ (Mv − 1)tu ∀u ∈ Vv \ {v} (5d)

g(δ−(v)) = 0 (5e)

gij ≥ 0 ∀(i, j) ∈ A(G[Vv]). (5f)

Phase 2 includes constraints (4a)-(4d) from Phase 1. Constraints (5b) do not allow the model to
choose land parcels that are fixed in Phase 1. Constraints (5c) ensure that the net incoming flow
to a land parcel is one if it is selected in the district and zero otherwise. Constraints (5d) imply
that a land parcel cannot have incoming flow if it is not selected in the district. Constraint (5e)
ensures that land parcel v gets no incoming flow.

6.1.3 The MIP model of Phase 3

In this phase, we include compactness-seeking constraints to fix more decisions. Let F 2
0 be the set

of vertices that cannot belong to a compact (with respect to s value) Black-majority district based
on the MIP formulation of Phase 2. We recall power graph Gs := (V,Es) with Es := {{u, v} ∈(
V
2

)
: distG(u, v) ≤ s} from conflict constraints in Section 4. Let Ḡs be the complement of Gs with

C be the set of the maximal cliques of Ḡs. For every vertex v ∈ V \ (F 1
0 ∪ F 2

0 ), the following MIP
formulation checks if v can belong to a compact Black-majority district with respect to the value
of s.

(Phase 3) constraints (5a)− (5f) (6a)

tu = 0 ∀u ∈ Vv ∩ F 2
0 (6b)∑

q∈Q
tq ≤ 1 ∀ maximal clique Q ∈ C (6c)

tu ∈ {0, 1} ∀u ∈ Vv. (6d)

Figure 6 shows the results of applying the three phases for fixing variables in Mississippi at
the tract level with s = 15. Comparing Figure 6 to Figure 5, observe that for land parcels with
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low-density BVAP, many Black-majority assignment variables may be safely fixed to zero. Table 6

Figure 6: A tract-level map of MS showing parcels that are fixed using formulations (4), (5), and (6)
with s = 15.

provides computational results of the three-phase fixing procedure for MS at the county level. For
MS at the county instance, we start running the fixing procedure from s = `s and continue running
the experiments for larger s values till no fixing is obtained. For MS at the county level, we start
running the fixing procedure from s = 6. One can observe that the fixing percentage decreases at
both county and tract levels as the s value increases. At the tract level, an interesting observation is
that the fixing procedure may increase the lower bound of s (i.e., `s) for some states. For example,
Table 7 shows that the value of `s, which was originally 14 by running Algorithm 2 for MO at the
tract level, is increased to 28 after applying the three-phase fixing procedure. We observe a similar
increase of `s for MI (from 14 to 15), NC (from 14 to 16), OH (14 to 18), and TX (from 12 to 16) at
the tract level. Due to space limitations, the rest of the tract-level results for the three-phase fixing
procedure are provided in Appendix B. We impose a 10-second time limit for every MIP process at
each iteration of the three-phase fixing procedure.

6.2 Symmetry breaking constraints

The MIPs of the political districting problems usually suffer from symmetry as they are specific
cases of the partitioning problem. In Section 4, we propose a set of symmetry-breaking constraints
for breaking the symmetry between Black-majority districts (i.e., zk ≤ · · · ≤ z1) and discuss an
implied set of symmetry-breaking constraints for non-Black-majority districts (i.e., w1 ≤ · · · ≤ wk).
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Table 6: Results for the three-phase fixing procedure of x variables at the county level for MS. Here,
` base
s and ` fix

s represent the lower bounds obtained by Algorithm 2 in Section 5 and the three-phase
fixing procedure, respectively.

state k n m s # fixed % fixed time ` base
s ` fix

s

MS 4 82 202

6 12 14.63 0.17

6 6

7 7 14.63 0.20
8 2 8.54 0.22
9 1 1.22 0.23

10 1 1.22 0.30
11 1 1.22 0.49
12 1 1.22 0.44
13 1 1.22 0.39

Table 7: Results for the three-phase fixing procedure of x variables for Missouri at the tract level.
Here, ` base

s and ` fix
s represent the lower bounds obtained by Algorithm 2 in Section 5 and the

three-phase fixing procedure, respectively.
state k n m s # fixed % fixed time ` base

s ` fix
s

MO 8 1,654 4,488

14 1,654 100.00 0.00

14 28

15 1,654 100.00 0.00
16 1,654 100.00 0.00
17 1,654 100.00 0.00
18 1,654 100.00 0.00
19 1,654 100.00 11.48
20 1,654 100.00 227.16
21 1,654 100.00 369.77
22 1,654 100.00 641.00
23 1,654 100.00 836.26
24 1,654 100.00 1,303.61
25 1,654 100.00 1,605.74
26 1,654 100.00 2,003.66
27 1,654 100.00 2,234.26
28 138 8.34 6,392.45
29 71 4.29 3,801.05
30 18 1.09 3,024.75
31 1 0.06 2,671.90

This section proposes a new set of symmetry-breaking constraints based on the following facts given
a specific s ∈ [`s, us]: (i) zkb+1 = · · · = zk = 0; (ii) wkb+1 = · · · = wk = 1; and (iii) no vertex
pair of an independent set of a power graph Gs can belong to a similar district (see Figure 7 for
an illustration). Proposition 4 proposes a set of super valid symmetry-breaking constraints for the
MIP formulation (4).

Proposition 4 (Symmetry-breaking Constraints). Let s ∈ [`s, us] and I as an independent set of
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Figure 7: A maximum independent set (white land parcels) for the power graph of MS with s = 6.
The gray land parcels are reachable from the white parcel, and the black parcels are not reachable
from the white land parcel.

Gs and define q := min{|I|, k − kb}. Then, constraints

yvi,k−i+1 +

min{i,kb}∑
j=1

xvi,j = 1 ∀i ∈ {1, 2, . . . , q} (7)

are super valid for formulation (1).

Proof. By the contradiction. Suppose that no optimal solution of the MIP formulation (1) satisfies
constraints (7). Let (x∗, y∗, z∗, w∗) be an optimal solution of formulation (1). Then, (x∗, y∗, z∗, w∗)
does not satisfy at least one constraint (say for i∗ ∈ {1, 2, . . . , q}) of type (7). Then, we have either
of the following cases:

1. y∗vi∗ ,k−i∗+1 = 1 and
∑min{i∗,kb}

j=1 x∗vi∗ ,j = 1. Then, (x∗, y∗, z∗, w∗) does not satisfy con-
straints (1b). This is a contradiction.

2. y∗vi∗ ,k−i∗+1 = 0 and
∑min{i∗,kb}

j=1 xvi∗ ,j = 0. Then, we have either of the following cases:

• vi∗ belongs to a non-Black majority district ` 6= k− i∗+ 1 based on the optimal solution
(x∗, y∗, z∗, w∗). Then, we can switch the districts to obtain another optimal solution
(x̂, ŷ, ẑ, ŵ). This is a contradiction.

• vi∗ belongs to a Black majority district ` 6∈ {1, . . . ,min{i∗, kb}} based on the optimal
solution (x∗, y∗, z∗, w∗). We note that ` ≤ kb as z∗j = 0 for every j > kb. So, ` ∈
[i∗ + 1, kb] and this happens only if i∗ = min{i∗, kb} < kb. By the symmetry-breaking
constraints (1g), there is a district q ∈∈ {1, . . . , i∗} with z∗q = 1. Then, we can switch
the labels of districts ` and q and get a new optimal solution (x̂, ŷ, ẑ, ŵ). This is a
contradiction.
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We finally note that our proposed symmetry-breaking constraints decrease the MIP solution
time from 11,880.99 to 9.81 seconds to obtain the optimum objective value of one for MS at the
county level with s = 6.

6.3 Improving bounds on s by feasibility MIPs

This section proposes a procedure in which we solve a series of feasibility variants of the MIP
formulation (1) for specific values of kb and s to increase the lower bounds obtained in the previous
sections. In better words, we start solving the feasibility MIP from kb = 1 and s = `s and continue
till a feasible solution is obtained or the 1-hour time limit is reached. For MS at the county level,
the MIP formulation finds a feasible solution for kb = 1 and s = 6 in the first iteration, which proves
the optimality of 6 in less than 5 seconds. Furthermore, the MIP feasibility approach increases the
lower bound of s for the following tract-level instances:

• LA from 14 to 16 in less than 90 seconds when kb = 3;

• SC from 13 to 16 in less than 100 seconds when kb = 2;

• TN from 14 to 33 in less than 15 seconds when kb = 2;

• VA from 13 to 22 in less than 400 seconds when kb = 2;

• MI from 15 to 17 in less than 90 seconds when kb = 2;

• NC from 16 to 17, 16 to 18, and 16 to 25 in less than 3,000 seconds when kb = 1, kb = 2, and
kb = 3, respectively;

• GA from 14 to 16 in less than 2,000 seconds when kb = 7;

• OH from 18 to 19 and 18 to 26 in less than 500 seconds when kb = 1 and kb = 2, respectively;

• TX from 16 to 17 in less than 200 seconds when kb ∈ {1, 2, 3}.

We note that due to the large sizes of tract-level instances for IL, PA, and TX, the feasibility
variant of MIP formulation (1) is run only for the Black-majority districts with x and z variables.
Table 8 summarizes the s lower bounds that are obtained by Algorithm 2 (base), the three-phase
fixing procedures (fix), and the feasibility MIP (feas). Due to space limitations, the details of our
computational experiments are provided on our GitHub repository.

7 Optimality Gaps

This section provides feasible districting plans with Black-majority districts that are obtained by
GerryChain, a state-of-the-art districter that can maximize the number of Black-majority districts
employing short bursts. In the short burst approach, one (i) runs an unbiased random walk for a
small number of steps and then (ii) restarts the random walk from the best plan encountered in
the last burst (Cannon et al., 2023). We employ the feasible solutions obtained by 10,000 iterations
of GerryChain to assess a best existing optimality gap for s. Due to space limitations, a detailed
report of our experiments with the GerryChain short bursts module is available at our GitHub
repository.
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Table 8: Lower bounds of s (i.e., `s) that are obtained by Algorithm 2 (base), the three-phase
fixing procedures (fix), and the feasibility MIP (feas). Asterisks denote the lower bounds that are
obtained by the restricted feasibility MIP with only x and z variables.

state parcel k n m ` base
s ` fix

s kb ` feas
s

MS county 4 82 202 6 6 1 6

MS tract 4 878 2,378 15 15
1 15
2 15

LA tract 6 1,388 3,861 14 14
1 14
2 14
3 16

SC tract 7 1,323 3,677 13 13
1 13
2 16

AL tract 7 1,437 4,014 14 14
1 15
2 15

MD tract 8 1,475 3,993 14 14

1 14
2 14
3 14
4 14

MO tract 8 1,654 4,488 14 28 1 28

TN tract 9 1,701 4,691 14 14
1 14
2 33

VA tract 11 2,198 6,064 13 13
1 13
2 22

NJ tract 12 2,181 6,061 12 12 1 12

MI tract 13 3,017 7,989 14 15
1 15
2 17

NC tract 14 2,672 7,422 13 16
1 17
2 18
3 25

GA tract 14 2,796 7,762 14 14

1 14
2 14
3 14
4 14
5 14
6 14
7 16

OH tract 15 3,168 8,747 13 18
1 19
2 26

IL tract 17 3,265 8,728 13 13
1 13∗

2 13∗

3 13∗

PA tract 17 3,446 9,641 13 13
1 13∗

2 13∗

TX tract 38 6,896 18,554 12 16
1 17∗

2 17∗

3 17∗
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Figure 8: MS maps at the county level with one Black-majority district (in gray): (Left) an optimal
map with s = 6 obtained by MIP formulation (1); (Right) a feasible map with s = 7 obtained by
short bursts of GerryChain.

Table 9 illustrates the optimality gaps for the number of Black-majority districts (i.e., kb) and
the diameter of districts (i.e., s). For MS at the county level, our proposed MIP formulation
provides an optimal map with kb = 1 and s = 6; however, GerryChain provides a feasible map with
kb = 1 and s = 7. Figure 8 illustrates the county-level maps that are obtained by the proposed
MIP and GerryChain. At the tract level, we obtain optimality gaps between 6.25 (for MS) and
44.00 (for GA) percentages. Furthermore, it is not surprising that us value increases as the value
of kb increases. The most considerable jump is the increase of us from 21 to 25 for GA at the tract
level. Furthermore, we observe that the short bursts module of GerryChain returns no feasible map
with Black-majority districts for LA, MO, VA, NJ, NC, OH, and TX at the tract level. These
observations are encouraging for optimizers to close the gap by providing either more quality maps
or more efficient bounds.
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Table 9: Lower (`s) and upper (us) bounds for s obtained by our proposed procedures and 10,000
iterations of GerryChain’s short bursts, respectively. The asterisk denotes the optimality of s.

state parcel k n m kb `s us s-gap (%)
MS county 4 82 202 1 6* 7 14.29

MS tract 4 878 2,378
1 15 16 6.25
2 15 - -

LA tract 6 1,388 3,861
1 14 - -
2 14 - -
3 16 - -

SC tract 7 1,323 3,677
1 13 20 35.00
2 16 - -

AL tract 7 1,437 4,014
1 15 24 37.50
2 15 - -

MD tract 8 1,475 3,993

1 14 22 36.36
2 14 22 36.36
3 14 23 39.13
4 14 - -

MO tract 8 1,654 4,488 1 28 - -

TN tract 9 1,701 4,691
1 14 17 17.64
2 33 - -

VA tract 11 2,198 6,064
1 13 - -
2 22 - -

NJ tract 12 2,181 6,061 1 12 - -

MI tract 13 3,017 7,989
1 15 21 28.57
2 17 - -

NC tract 14 2,672 7,422
1 17 - -
2 18 - -
3 25 - -

GA tract 14 2,796 7,762

1 14 20 30.00
2 14 20 30.00
3 14 21 33.33
4 14 25 44.00
5 14 - -
6 14 - -
7 16 - -

OH tract 15 3,168 8,747
1 17 - -
2 26 - -

IL tract 17 3,265 8,728
1 13 18 27.78
2 13 18 27.78
3 13 - -

PA tract 17 3,446 9,641
1 13 19 31.58
2 13 - -

TX tract 38 6,896 18,554
1 17 - -
2 17 - -
3 17 - -
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8 Conclusion

This paper proposes a redistricting MIP formulation that captures a compactness measure (i.e.,
the diameter of districts) in constraints and provides opportunities for optimizers to optimize other
redistricting measures in the objective function of their MIP formulations. We consider maximizing
the number of Black-majority districts in the objective function of our proposed MIP formulation
to explore the possibility of creating the maximum number of reasonably compact Black-majority
districts. Furthermore, we propose fixing procedures and symmetry-breaking constraints to speed
up the computational performance of our MIP formulation. Our computational experiments show
that the proposed MIP formulation can find a districting map for MS at the county level with
one Black-majority district and a diameter of 6 (both optimum) in a matter of seconds, while a
state-of-the-art districting optimization package (i.e., GerryChain) finds only one Black-majority
districts and a diameter of 7 after 10,000 iterations. At the tract level, our proposed MIP formulation
provides bounds on the number of Black-majority districts and the diameters of their corresponding
maps. The optimality gap between our bounds and the feasible maps found by GerryChain suggests
a huge opportunity for exact and non-exact optimizers to close the gaps either by producing quality
feasible maps or increasing infeasibility bounds.
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Matteo Fischetti, Markus Leitner, Ivana Ljubić, Martin Luipersbeck, Michele Monaci, Max Resch,
Domenico Salvagnin, and Markus Sinnl. Thinning out Steiner trees: a node-based model for
uniform edge costs. Mathematical Programming Computation, 9(2):203–229, 2017.

Michael R Garey and David S Johnson. Computers and intractability, volume 174. Freeman San
Francisco, 1979.

Robert S Garfinkel and George L Nemhauser. Optimal political districting by implicit enumeration
techniques. Management Science, 16(8):B–495, 1970.

Timo Gschwind, Stefan Irnich, Fabio Furini, and Roberto Wolfler Calvo. A branch-and-price frame-
work for decomposing graphs into relaxed cliques. INFORMS Journal on Computing, 33(3):
1070–1090, 2021.

Wes Gurnee and David B Shmoys. Fairmandering: A column generation heuristic for fairness-
optimized political districting. In SIAM Conference on Applied and Computational Discrete
Algorithms (ACDA21), pages 88–99. SIAM, 2021.

J Gerald Hebert, Martina E Vandenberg, and Paul Smith. The realist’s guide to redistricting:
Avoiding the legal pitfalls, 2010.

SW Hess, JB Weaver, HJ Siegfeldt, JN Whelan, and PA Zitlau. Nonpartisan political redistricting
by computer. Operations Research, 13(6):998–1006, 1965.

Sam Hirsch, Jessica Amunson, and Mary Marshall. Brief of computational redistricting experts as
Amici curiae in support of appellees and respondents, 2022.

28

https://www.sciencedirect.com/science/article/pii/S0305054823002332
https://www.sciencedirect.com/science/article/pii/S0305054823002332
https://doi.org/10.1287/ijoo.2023.0029
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Appendices

Appendix A. Excluded instances

Table 10: States excluded from this paper with the reason for their omission.

Land parcel Reason for exclusion States

County/tract One-district state AK, DE, ND, SD, VT, WY

County

Not connected HI

Containing a county v with pv > U

AZ, CA, CO, CT, FL, GA, IA, IL, IN, KY, MA,

MD, MI, MN, MO, NC, NJ, NY, OH, OK, OR,

PA, RI, TN, TX, UT, VA, WA, WI

No Black-majority district by MIP (2) AL, AR, ID, KS, LA, ME, MT, NE, NH, NM, SC, WV

Tract

Not connected CA, FL, HI, NY, RI

No Black-majority district by MIP (2) AR, AZ, CO, CT, IA, ID, IL, IN, KS, KY, MA, ME,

MN, MT, NH, NM, OK, OR, UT, WA, WV
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Appendix B. Three-phase fixing results for tract-level instances

Table 11: Results for the three-phase fixing procedure of x variables for Mississippi at the tract
level.

state k n m s # fixed % fixed time ` base
s ` fix

s

MS 4 878 2,378

15 100 11.39 56.49

15 15
16 45 5.13 59.60
17 10 1.14 42.82
18 0 0.00 42.49

Table 12: Results for the three-phase fixing procedure of x variables for Louisiana at the tract level.
state k n m s # fixed % fixed time ` base

s ` fix
s

LA 6 1,388 3,861

14 122 8.79 465.78

14 14
15 59 4.25 340.96
16 11 0.79 355.90
17 1 0.07 316.43
18 0 0.00 296.42

Table 13: Results for the three-phase fixing procedure of x variables for South Carolina at the tract
level.

state k n m s # fixed % fixed time ` base
s ` fix

s

SC 7 1,323 3,677

13 456 34.47 470.14

13 13

14 303 22.90 298.56
15 245 18.52 329.55
16 175 13.23 337.84
17 132 9.98 386.45
18 100 7.56 376.78
19 69 5.22 501.28
20 26 1.97 468.49
21 4 0.30 488.87
22 0 0.00 488.87
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Table 14: Results for the three-phase fixing procedure of x variables for Alabama at the tract level.
state k n m s # fixed % fixed time ` base

s ` fix
s

AL 7 1,437 4,014

14 638 44.40 695.32

14 14

15 340 23.66 679.53
16 207 14.41 547.71
17 89 6.19 523.89
18 23 1.60 442.13
19 1 0.07 442.89
20 0 0.00 436.91

Table 15: Results for the three-phase fixing procedure of x variables for Maryland at the tract level.
state k n m s # fixed % fixed time ` base

s ` fix
s

MD 8 1,475 3,993

14 198 13.42 314.87

14 14

15 130 8.81 314.87
16 67 4.54 304.66
17 56 3.80 357.15
18 48 3.25 378.67
19 34 2.31 381.99
20 32 2.17 466.88
21 31 2.10 480.43
22 30 2.03 487.39
23 28 1.90 587.68
24 21 1.42 614.75
25 17 1.15 635.49
26 16 1.08 585.62
27 12 0.81 889.74
28 8 0.54 1,212.77
29 5 0.34 1,524.20
30 1 0.07 1,420.53
31 0 0.00 1,364.92
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Table 16: Results for the three-phase fixing procedure of x variables for Tennessee at the tract level.
state k n m s # fixed % fixed time ` base

s ` fix
s

TN 9 1,701 4,691

14 1,343 78.95 38.73

14 14

15 1,286 75.60 36.14
16 1,270 74.66 29.78
17 1,250 73.49 66.77
18 1,228 72.19 59.95
19 1,209 71.08 124.78
20 1,180 69.37 169.03
21 1,136 66.78 197.34
22 1,059 62.26 242.74
23 965 56.73 321.37
24 888 52.20 409.91
25 796 46.80 488.25
26 712 41.86 578.85
27 652 38.33 504.57
28 616 36.21 594.05
29 577 33.92 683.96
30 542 31.86 787.15
31 512 30.10 787.97
32 472 27.75 952.98
33 414 24.34 1,024.36
34 371 21.81 1,189.47
35 334 19.64 1,275.33
36 304 17.87 1,319.14
37 265 15.58 1,504.31
38 221 12.99 1,895.11
39 163 9.58 2,125.67
40 120 7.05 2,420.92
41 95 5.58 2,246.89
42 75 4.41 2,711.68
43 57 3.35 2,474.11
44 42 2.47 2,896.58
45 22 1.28 3,529.58
46 7 0.41 3,973.20
47 2 0.12 3,801.23
48 0 0.00 4,305.52
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Table 17: Results for the three-phase fixing procedure of x variables for Virginia at the tract level.
state k n m s # fixed % fixed time ` base

s ` fix
s

VA 11 2,198 6,064

13 1,365 62.10 284.89

13 13

14 1,283 58.37 279.60
15 1,162 52.87 459.50
16 1,081 49.18 594.35
17 955 43.45 805.35
18 872 39.67 919.64
19 791 35.99 1,171.79
20 674 30.66 1,480.09
21 555 25.25 1,885.22
22 483 21.97 2,030.59
23 427 19.43 2,162.42
24 363 16.52 2,578.60
25 303 13.79 2,585.15
26 237 10.78 3,071.22
27 190 8.64 3,222.14
28 146 6.64 3,254.63
29 102 4.64 3,755.10
30 68 3.09 3,821.19
31 38 1.73 4,005.55
32 1 0.05 4,482.87
33 0 0.00 4,672.11
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Table 18: Results for the three-phase fixing procedure of x variables for New Jersey at the tract
level.

state k n m s # fixed % fixed time ` base
s ` fix

s

NJ 12 2,181 6,061

12 1,853 84.96 138.54

12 12

13 1,691 77.53 222.13
14 1,537 70.47 317.48
15 1,380 63.27 430.47
16 1,271 58.28 532.78
17 1,158 53.09 762.78
18 1,054 48.33 1,000.93
19 949 43.51 1,305.67
20 880 40.35 1,401.94
21 830 38.06 1,566.73
22 797 36.54 1,812.97
23 763 34.98 2,151.16
24 660 30.26 2,902.20
25 522 23.93 3,546.68
26 336 15.41 3,874.18
27 277 12.70 3,876.91
28 211 9.67 3,945.32
29 138 6.33 4,064.90
30 100 4.59 4,633.14
31 73 3.35 4,628.49
32 46 2.11 4,935.96
33 24 1.10 4,956.61
34 5 0.23 4,818.38
35 0 0.00 5,086.64
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Table 19: Results for the three-phase fixing procedure of x variables for Michigan at the tract level.
state k n m s # fixed % fixed time ` base

s ` fix
s

MI 13 3,017 7,989

14 3,017 100.00 443.20

14 15

15 2,639 87.47 761.21
16 2,106 69.80 1,283.50
17 1,909 63.27 1,593.33
18 1,716 56.88 2,096.85
19 1,592 52.77 3,113.22
20 1,494 49.52 3,478.95
21 1,388 46.01 4,466.98
22 1,270 42.09 5,272.72
23 1,143 37.89 5,892.18
24 994 32.95 7,277.84
25 836 27.71 7,194.58
26 720 23.86 7,377.45
27 581 19.26 8,291.18
28 379 12.56 9,536.25
29 258 8.55 10,297.87
30 150 4.97 10,413.86
31 54 1.79 10,477.02
32 6 0.20 9,115.45
33 0 0.00 8,400.27
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Table 20: Results for the three-phase fixing procedure of x variables for North Calorlina at the
tract level.

state k n m s # fixed % fixed time ` base
s ` fix

s

NC 14 2,672 7,422

13 2,672 100.00 55.07

14 16

14 2,672 100.00 444.16
15 2,672 100.00 1,290.53
16 2,342 87.65 2,046.44
17 1,830 68.49 4,071.87
18 1,037 38.81 8,966.52
19 762 28.52 8,732.58
20 630 23.58 7,292.84
21 545 20.40 5,768.35
22 439 16.43 5,100.45
23 348 13.02 5,380.70
24 249 9.32 5,243.85
25 188 7.04 5,552.53
26 158 5.91 5,853.85
27 115 4.30 5,845.93
28 83 3.11 5,888.18
29 53 1.98 5,864.96
30 32 1.20 6,197.21
31 23 0.86 6,257.99
32 12 0.45 6,239.49
33 5 0.19 6,737.23
34 0 0.00 6,978.24

Table 21: Results for the three-phase fixing procedure of x variables for Georgia at the tract level.
state k n m s # fixed % fixed time ` base

s ` fix
s

GA 14 2,796 7,762

14 769 27.50 680.66

14 14

15 583 20.85 801.69
16 421 15.06 1,117.22
17 293 10.48 1,635.13
18 186 6.65 1,794.78
19 101 3.61 2,086.20
20 43 1.54 2,411.56
21 11 0.39 2,346.62
22 2 0.07 2,391.54
22 0 0.00 2,676.54
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Table 22: Results for the three-phase fixing procedure of x variables for Ohio at the tract level.
state k n m s # fixed % fixed time ` base

s ` fix
s

OH 15 3,168 8,747

14 3,168 100.00 168.61

14 18

15 3,168 100.00 518.61
16 3,168 100.00 809.12
17 3,168 100.00 1,517.15
18 2,226 70.27 4,401.44
19 1,964 61.99 7,742.47
20 1,652 52.15 12,396.60
21 1,404 44.32 19,691.57
22 1,258 39.71 23,179.93
23 1,105 34.88 23,877.97
24 1030 32.51 24,014.47
25 878 27.71 22,612.05
26 23 0.73 26,729.44
27 6 0.19 20,309.69
28 0 0.00 18,562.97

Table 23: Results for the three-phase fixing procedure of x variables for Illinois at the tract level.
state k n m s # fixed % fixed time ` base

s ` fix
s

IL 17 3,265 8,728

13 2,168 66.40 684.12

13 13

14 2,020 61.87 1,040.60
15 1,850 56.66 1,468.91
16 1,612 49.37 2,218.98
17 1,436 43.98 3,613.57
18 1,298 39.75 5,533.23
19 1,111 34.03 8,136.93
20 985 30.17 8,144.64
21 861 26.37 8,164.84
22 700 21.44 8,563.19
23 578 17.70 8,186.91
24 457 14.00 7,360.04
25 387 11.85 6,503.76
26 322 9.86 7,158.64
27 254 7.78 7,392.11
28 212 6.49 7,726.03
29 78 2.39 8,272.64
30 20 0.61 8,027.02
31 7 0.21 8,815.54
32 2 0.06 9,213.13
33 0 0.00 9,291.57
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Table 24: Results for the three-phase fixing procedure of x variables for Pennsylvania at the tract
level.

state k n m s # fixed % fixed time ` base
s ` fix

s

PA 17 3,446 9,641

13 2,718 78.87 143.49

13 13

14 2,626 76.20 217.91
15 2,547 73.91 239.56
16 2,486 72.14 291.27
17 2,426 70.40 423.18
18 2,375 68.92 418.02
19 2,328 67.56 521.03
20 2,267 65.79 696.30
21 2,189 63.52 983.01
22 2,109 61.20 1,012.36
23 2,035 59.05 1,176.42
24 1,964 56.99 1,481.35
25 1,893 54.93 1,959.91
26 1,827 53.02 2,143.54
27 1,747 50.70 2,779.22
28 1,634 47.42 2,720.94
29 1,481 42.98 3,287.12
30 1,376 39.93 3,524.22
31 1,279 37.12 4,118.11
32 1,197 34.74 5,121.10
33 1,138 33.02 5,446.57
34 1,084 31.46 5,507.93
35 1,037 30.09 5,914.00
36 999 28.99 5,716.39
37 960 27.86 6,874.42
38 917 26.61 7,244.41
39 872 25.30 8,366.82
40 823 23.88 9,227.90
41 760 22.05 9,544.13
42 687 19.94 10,715.47
43 598 17.35 12,717.48
44 502 14.57 13,374.11
45 415 12.04 14,510.65
46 339 9.84 15,324.53
47 277 8.04 16,008.34
48 212 6.15 16,928.79
49 147 4.27 19,051.57
50 58 1.68 24,463.49
51 13 0.38 28,949.15
52 0 0.00 32,020.69
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Table 25: Results for the three-phase fixing procedure of x variables for Texas at the tract level.
state k n m s # fixed % fixed time ` base

s ` fix
s

TX 38 6,896 18,554

12 6,896 100.00 142.14

12 16

13 6,896 100.00 120.82
14 6,896 100.00 386.70
15 6,896 100.00 1,644.88
16 6,848 99.30 5,534.52
17 5,089 73.80 25,584.68
18 3,306 47.94 62,748.45
19 2,603 37.75 86,569.55
20 1,868 27.09 124,357.55
21 1,514 21.95 146,101.26
22 1,212 17.58 162,068.40
23 939 13.62 155,364.26
24 716 10.38 153,727.57
25 518 7.51 158,371.49
26 328 4.76 164,372.57
27 189 2.74 175,875.28
28 86 1.25 180,701.38
29 37 0.54 188,155.75
30 14 0.20 191,318.99
31 3 0.04 192,414.65
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