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Abstract

The single-source capacitated facility location problem with customer preferences (SSCFLPCP) is known
to be strongly NP-hard and computational tests imply that state-of-the-art solvers struggle with
computing exact solutions. In this paper, we contribute two novel preprocessing methods, which reduce
the size of the considered integer programming formulation, and introduce sets of valid inequalities,
which decrease the integrality gap. Each of the introduced results utilises structural synergies between
capacity constraints and customer preferences in the SSCFLPCP. First, we derive two preprocessing
methods, where the first method fixes location variables and the second method fixes allocation
variables. Afterwards, we study cover-based inequalities. Here, we first strengthen the well-known
cover inequalities: when determining covers, we also consider demands of customers not in the cover
that must be assigned to the covered facility if a customer in the cover is assigned to it. We further
strengthen these inequalities by including information on the assignments of customers in a cover if
they are not assigned to the covered facility. Afterwards, we derive a new family of valid inequalities
which expresses the relation of open facilities based on sets of customers covering a facility. We then
discuss solution methods for the corresponding separation problems and, finally, test our results for
two preference types in a computational study. Our results show a clear positive impact of the new
preprocessing methods and inequalities, in particular when preferences coincide with closest assignments.

Keywords: facility location, customer preferences, valid inequalities, preprocessing

1 Introduction
Facility location problems (FLPs) play an essential role in operations research literature (Laporte et al., 2019,
Celik Turkoglu and Erol Genevois, 2020). In their basic version, facilities providing some sort of service for
customers need to be opened at potential sites and customers are assigned to these facilities. The aim is to
minimise the total cost consisting of opening costs for the facilities and costs for assigning the customers.
We refer to this problem as the uncapacitated facility location problem (UFLP). Obviously, each customer is
assigned to the open facility with smallest assignment cost. The class of FLPs is widely applicable to many
real-world problems such as locating health care institutions (Ahmadi-Javid et al., 2017), charging stations
for electrical cars (Ahmad et al., 2022) or the location of bike rental stations (Kang et al., 2023) and many
more (Celik Turkoglu and Erol Genevois, 2020).

There are no limitations on the service a facility can provide in UFLPs. However, such limitations have
to be taken into account for many real-world problems, for example, when locating hospitals (Mestre et al.,
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2015) or bike rental stations (Kang et al., 2023). Often, customers incur a certain demand and facilities
have a certain capacity for serving customers’ demands. Such problems belong to the class of capacitated
facility location problems (CFLPs). It is no longer guaranteed that each customer will be assigned to the
open facility with lowest assignment cost when considering capacities. The problem is called single-source
CFLP if each customer has to be assigned to exactly one open facility.

If customers have an individual agenda regarding the facilities they want to be served at, then their
assignment in the solution to the UFLP or CFLP might be in conflict with their preferences. In reality,
however, customers then deviate to one of their most preferred open facilities. While this yields a
feasible, although possibly worse, solution in the UFLP, it might induce an infeasible solution in the
capacitated version. A real-world application for this class of location problems lies in the location of
health care emergency centers. Here, facilities offer medical services, which are limited due to time
and space. Customers’ demands have to be served at these facilities without violating the facilities’ ca-
pacities. In an emergency, it can be assumed that customers will seek the service of their closest open facility.

We refer to the problem in which each customer has to be assigned to one of their most preferred open
facilities as the (single-source capacitated) facility location problem with customer preferences ((SSC)FLPCP).
In this work, we study the SSCFLPCP, for which determining a feasible solution is already strongly NP-
complete (e.g., Büsing et al. (2022)). Computational tests show that state-of-the-art solvers struggle with
computing exact solutions. We contribute two novel preprocessing methods, which reduce the size of the
considered integer programming formulation, and introduce sets of valid inequalities, which decrease the
integrality gaps. More specifically:

• We propose two preprocessing methods, which fix location and allocation decisions, respectively.

• We propose the concept of implied demand covers, which generalise normal covers by simultaneously
considering preferences of customers and capacities of facilities.

• We study the complexity of finding implied-demand covers.

• We propose and analyse inequalities for the SSCFLPCP based on implied-demand covers, which in-
corporate information on assignments of customers in the cover that are not assigned to the covered
facility.

• We perform a computational study in which our results are tested for the case that preferences coin-
cide with closest assignments as well as perturbed closest assignments. Our results indicate that our
approaches work well for the former case and show potential for the latter one.

With these contributions, we aim to offer results for improving the performance of exact solvers. The
remainder of this article is organized as follows. Section 2 provides an overview over related literature and
adresses the research gap we aim to close with this paper. A formal problem definition is given in Section 3,
in which we also provide an integer linear programming formulation and summarize used notation. Section 4
introduces the novel preprocessing routines, while Section 5 introduces several sets of new valid inequalities
that utilise information from sets of customers covering a facility. In Section 6, we briefly discuss algorithms
for solving the separation problems of our newly developed valid inequalities. Finally, we discuss the results
of our computational study in Section 7.

2 Related work
Facility location problems are thoroughly studied in the literature, see, e.g., Laporte et al. (2019) or Ce-
lik Turkoglu and Erol Genevois (2020) for recent surveys. From the complexity-theoretical point of view,
feasible solutions for UFLP instances can be computed in polynomial time while the computation of a cost-
minimising solution is strongly NP-hard (Mirchandani and Francis, 1990). Conversely to the UFLP, finding
a feasible solution for the single-source capacitated facility location problem is already strongly NP-hard.
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Even if the set of open facilities is already known, it might be hard to find a feasible assignment that meets
the capacity constraints. This can be seen via a reduction from 3-partition (Garey and Johnson, 1979). The
relevance and complexity of FLPs has triggered a large number of scientific articles related to different aspects
such as, exact solution methods (see, e.g., Avella and Boccia (2009), Görtz and Klose (2012) and Fischetti
et al. (2016)), the investigation of their polyhedral structure (see, e.g., Leung and Magnanti (1989), Aardal
et al. (1995), Avella and Boccia (2009) and Avella et al. (2021)), and heuristic solution methods (see, e.g.,
Mirchandani and Francis (1990) and Korte and Vygen (2018)).

Most articles considering facility location problems with customer preferences focus on the uncapacitated
case. The work of Hanjoul and Peeters (1987) is considered to be the first occurrence of preference constraints
in the context of facility location problems. The authors propose an exact algorithm, which utilises a branch-
and-bound procedure, as well as two heuristics for solving the UFLP with customer preferences. Several
articles focus on preprocessing strategies and valid inequalities that are used within exact methods, see, e.g.,
Cánovas et al. (2007), Espejo et al. (2012) and Vasilyev et al. (2013). A semi-Lagrangian relaxation heuristic
approach is proposed by Cabezas and García (2022).

Several articles focus on the special case of closest assignment constraints, see, e.g., Rojeski and ReVelle
(1970), Wagner and Falkson (1975) and Gerrard and Church (1996). Here, customer preferences are defined
by assignment costs, i.e., for any two facilities a customer always prefers the one with less assignment costs.
Since closest assignment constraints are automatically satisfied in cost-minimising solutions to the UFLP,
these articles incorporate additional aspects. These aspects include the consideration of capacities where
splitting demands of customers is allowed and capacities may be expanded (Rojeski and ReVelle (1970)) and
the consideration of price-elastic demand functions, which affect the objective function, and the objective
to maximise the joint surplus of consumers’ producers in order to construct a public facility location model
(Wagner and Falkson, 1975). Gerrard and Church (1996) review constraints for integer linear programming
formulations for enforcing closest assignments and identify applications for facility location problems with
closest assignment constraints.

Adding closest assignment constraints to the classical single-source capacitated facility location problem
yields surprising complexity results. If the assignment costs correspond to distances in an underlying graph,
then an optimal solution can be computed in polynomial time if the graph is a path or cycle (Büsing et al.,
2022). In contrast, the single-source CFLP is strongly NP-hard independent of the structure of assignment
costs. However, less research has been conducted on the capacitated problem compared to its uncapacitated
counterpart.

Most research on capacitated FLPs with customer preferences revolves around a relaxed version of the
problem in which customers are allowed to be assigned to less-preferred open facilities (Casas-Ramírez et al.,
2018, Calvete et al., 2020, Polino et al., 2023). Here, the authors consider variations of a bilevel setting
where the leader opens facilities with the aim to minimise the total sum of opening and assignment costs
and a guarantee that each customer will be served; the follower assigns each customer, for which a ranking
of all potential facilities is known, to the open facilities with the objective to optimise the sum of achieved
preference rankings of the customers. Calvete et al. (2020) compare computational results of this relaxed
problem with results of the SSCFLPCP. Caramia and Mari (2016) and Kang et al. (2023) study a variation
of the capacitated facility location problem with customer preferences in which the capacities installed at
facilities are part of the decision process. Conversely to the previous works, these two articles allow for
customers to split their demands among multiple facilities.

The consideration of capacities in facility location problems induces a knapsack-like structure in the CFLP.
For knapsack problems, cover inequalities are well studied (Crowder et al., 1983, Gu et al., 1999) and they
can be strengthened to so-called extended cover inequalities and lifted cover inequalities (Balas, 1975).
Klabjan et al. (1998) show that the cover inequality separation problem is weakly NP-hard even if the
binary integer program is a knapsack problem. Kaparis and Letchford (2010) present exact and heuristic
separation algorithms. Due to the knapsack-like structure occurring in capacitated facility location problems,
cover inequalities may serve as useful valid inequalities in these problems as well (Aardal et al., 1995).

To the best of our knowledge, there has almost no research been done on the SSCFLPCP; polynomial
time algorithms for special cases suggest further advantages arising from the combination of capacities and
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closest assignments. With this work, we aim to shed light on cover-based valid inequalities in the context of
single-source capacitated facility location problems with customer preferences.

3 Problem definition, notation, and an integer linear programming
formulation

In the single-source capacitated facility location problem with customer preferences (SSCFLPCP), we are
given a set of customers I with demands di ∈ N0 for each i ∈ I and a set of potential facilities J . A
capacity Qj ∈ N0 and opening costs fj ≥ 0 are associated with each potential facility j ∈ J . Assigning a
customer i ∈ I to a facility j ∈ J yields assignment costs cij ≥ 0. Furthermore, each customer has ranked all
potential facilities inducing a complete, weak ordering of all facilities for every customer. To that end, j <i k
indicates that customer i ∈ I strictly prefers potential facility j ∈ J over potential facility k ∈ J , while j =i k
indicates that customer i ∈ I is indifferent about facilities j, k ∈ J , i.e., if neither j <i k nor k <i j holds.
Similarly, j ≤i k indicates that customer i ∈ I either strictly prefers facility j ∈ J over facility k ∈ J or is
indifferent about them.

A solution to the SSCFLPCP consists of a subset F ⊆ J of facilities that are opened and an assign-
ment Λ : I → F of customers to these facilities, which respects the capacity limits of all open facilities.
That is,

∑
i∈Λ−1(j) di ≤ Qj must hold for each j ∈ F with Λ−1(j) the set of customers assigned to facil-

ity j. Furthermore, each customer must be assigned to a facility they prefer most among all open facilities,
i.e., Λ(i) ≤i j holds for all i ∈ I and j ∈ F . The cost of a solution (F,Λ) equals the total opening and
assignment costs, i.e.,

∑
j∈F fj +

∑
i∈I ciΛ(i). The objective of the SSCFLPCP is to find a solution with

minimum cost.
The SSCFLPCP is strongly NP-hard as it contains the single-source capacitated facility location problem

as a special case when each customer is indifferent about all facilities. For ease of readability, we introduce
further notation for preference sets.

Notation In the remainder of this article, we use notations J<
ij = {k ∈ J : k <i j}, J=

ij = {k ∈ J : k =i

j}, J≤
ij = J<

ij ∪ J=
ij , J

≥
ij = J \ J<

ij , and J>
ij = J \ J≤

ij for each customer i ∈ I and facility j ∈ J to indicate
the sets of facilities a customers strictly prefers over j, is indifferent compared to j, prefers at least as much
as j, does not prefer more than j, and prefers less than j, respectively.

We will use formulation (1) as a basis for our study of preprocessing rules and valid inequalities. The
formulation uses decision variables yj ∈ {0, 1}, which indicate whether facility j ∈ J is opened (yj = 1), and
variables xij ∈ {0, 1}, which indicate whether customer i ∈ I is assigned to facility j ∈ J (xij = 1).

min
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

cijxij (1a)

s.t.
∑
j∈J

xij = 1 ∀i ∈ I (1b)

∑
i∈I

dixij ≤ Qjyj ∀j ∈ J (1c)∑
k∈J>

ij

xik + yj ≤ 1 ∀i ∈ I, j ∈ J (1d)

xij ≤ yj ∀i ∈ I, j ∈ J (1e)
xij ∈ {0, 1} ∀i ∈ I, j ∈ J (1f)
yj ∈ {0, 1} ∀j ∈ J (1g)
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Objective function (1a) minimises the sum of total opening costs and the cost of assigning each cus-
tomer. Constraints (1b) guarantee that each customer is assigned to a facility. Constraints (1c) ensure that
the total demand assigned to an open facility respects its capacity and that customers can only be assigned
to open facilities. Constraints (1d), which have first been introduced by Wagner and Falkson (1975), guar-
antee that customer preferences are respected. More specifically, these constraints ensure that, if facility j
is open, then customer i ∈ I cannot be assigned to a facility k ∈ J , which they prefer less than j. Link-
ing constraints (1e) are redundant, but are well known to significantly strengthen the linear programming
relaxation of capacitated facility location problems.

4 Preprocessing
In this section, we introduce preprocessing methods that allow to fix or eliminate variables from formula-
tion (1). Combining arguments related to maximum capacities of facilities and customer preferences, they
are specific for the SSCFLPCP. Similar ideas could, however, be used for related problems with capacity
constraints in which assignment decisions cannot be (fully) controlled by a central decision maker. The first
procedure was observed by Cánovas et al. (2007) for the uncapacitated version with strict preferences and
is based on the fact that any open facility j ∈ J must always serve all customer who prefer j over all other
facilities.

Proposition 1 (Cánovas et al. (2007)). Consider an arbitrary facility j ∈ J and a customer i ∈ I. If there
is no facility customer i prefers over j or is indifferent to, customer i must be assigned to facility j if the
facility is open, i.e., inequality yj ≤ xij holds.

This preprocessing is also valid for the uncapacitated problem. When considering capacities, we can
further strengthen this result. As Proposition 2 states, a facility that cannot accommodate the demand of
all such customers can, therefore, not be opened in any feasible solution.

Proposition 2 (CloseViolatedFacs). Consider an arbitrary facility j ∈ J and the set of customers I(j) =

{i ∈ I : J≤
ij = {j}} that prefer j over all other facilities. If the total demand of these customers exceeds the

capacity of facility j, i.e., if
∑

i∈I(j) di > Qj, then facility j cannot be opened. Consequently, variables yj
and xij are equal to zero for all i ∈ I in any solution.

Notice that closing one or more facilities according to this preprocessing, i.e., forcing the associated
variables to zero, may increase the demand induced by customers preferring a facility most at other facilities
- since the most preferred facilities of some customers are no longer available. Consequently, preprocessing
based on Proposition 2 is applied iteratively, until no new facilities are eliminated.

Cánovas et al. (2007) also observed a property for the uncapacitated problem that allows to fix some
allocation variables between customers and facilities. Their result works for the case that customers are
not indifferent between multiple facilities. In the following, we strengthen their result so that it also allows
indifferent customers.

Proposition 3 (Cánovas et al. (2007)). Consider an arbitrary facility j ∈ J and two customers i, l ∈ I

such that the set of facilities customer l prefers over j or is indifferent to, i.e., J≤
lj , is subset of the union of

facility j with the set of facilities customer i prefers over j, i.e., J≤
lj ⊆ J<

ij ∪ {j}. Then customer l must be
assigned to facility j if customer i is assigned to it, i.e., the inequality xij ≤ xlj holds.

The observations stated in the latter two propositions reveal that assigning one or more customers to a
specific facility may imply the assignment of other customers to the same facility. For the capacitated problem
variant, such a set of implied customers also implies a certain demand at this facility. These concepts of
implied customers and implied demand are crucial for the preprocessing rule stated in Proposition 4 and
several of the valid inequalities proposed in Section 5. We formally introduce them in Definitions 1 and 2.

5



Definition 1 (Implied Customers). The set of customers I(i, j) ⊆ I implied from customer i ∈ I at
facility j ∈ J is the set of customers that must be assigned to facility j ∈ J if customer i ∈ I is assigned to
it, i.e., I(i, j) = {i} ∪ {l ∈ I : J≤

lj ⊆ (J<
ij ∪ {j})}. Similarly, the set of customers I(I ′, j) ⊆ I implied from

customer set I ′ ⊆ I at facility j ∈ J is the set of customers that must be assigned to facility j ∈ J if all
customer i ∈ I ′ are assigned to it, i.e., I(I ′, j) = ∪i∈I′I(i, j).

Definition 2 (Implied Demand). The demand implied from customer i ∈ I at facility j ∈ J is the total
demand of all customers implied by customer i ∈ I at facility j, i.e., D(i, j) =

∑
l∈I(i,j) dl. Similarly, the

demand implied from customer set I ′ ⊆ I at facility j ∈ J is the total demand of all customers implied from
customer set I ′ at facility j, i.e., D(I ′, j) =

∑
l∈I(I′,j) dl.

Proposition 4, which can be seen as an extension of Proposition 3, uses the concept of implied demand
to derive conditions under which a customer can never be assigned to a facility.

Proposition 4 (ImplDem). Consider an arbitrary facility j ∈ J and a customer i ∈ I. If the total demand
implied from customer i at facility j exceeds the capacity of j, i.e., if D(i, j) > Qj, then customer i cannot
be assigned to facility j. Consequently, variable xij is equal to zero in any solution and can be set to zero in
formulation (1).

The preprocessing rule following from Proposition 5 has been proposed by Cánovas et al. (2007). It
considers the case when the sets of facilities two customers i and l prefer over a given facility j are identical.
If there are no facilities to which i and l are indifferent to compared to j, then either both of these customers
are assigned to j or none of them.

Proposition 5 (Cánovas et al. (2007)). Consider an arbitrary facility j ∈ J and two customers i, l ∈ I. If
both customers prefer the same facilities over j, i.e., if J<

ij = J<
lj , and there does not exist a facility k ∈ J ,

k ̸= j, that either i or l is indifferent to with respect to j, i.e., if J=
ij = J=

lj = {j}, then either both customers
i and l are assigned to j or none of them. Consequently, the equation xij = xlj holds and can be added to
formulation (1).

Note that this result is a direct implication of Proposition 3. We study the performance of the various
preprocessing methods in Section 7. We will see that method ImplDem (Proposition 4) performs best if
preferences coincide with closest assignments. If preferences coincide with perturbed closest assignments, all
introduced methods fix variables or add constraints - yet they do not yield an improvement of the optimality
gap.

5 Cover-based inequalities
In this section, we propose several sets of valid inequalities for the SSCFLPCP that are based on utilising
the combination of customer preferences and capacity constraints of facilities. One basic concept used in
these inequalities are customer sets whose (implied) demand cannot be served by a particular facility, i.e.,
(implied-demand) covers that are formally introduced in Definition 3.

Definition 3 ((Implied-Demand) Cover). A cover for a facility j ∈ J is a set of customers I ′ ⊆ I whose
demand exceeds the capacity of j, i.e., for which

∑
i∈I′ di > Qj holds. An implied-demand cover for

a facility j ∈ J is a set of customers Ĩ ⊆ I whose implied demand exceeds the capacity of j, i.e., for
which D(Ĩ , j) > Qj holds.

From this definition, we can immediately observe the following relation between covers and implied-
demand covers which will be helpful to derive relations between different inequalities introduced below.

Corollary 1. Consider an arbitrary facility j ∈ J . Then, for every cover I ′ for j there exists an implied-
demand cover Ĩ for j such that Ĩ ⊆ I ′.
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An (implied-demand) cover I ′ ⊆ I is called minimal if there does not exist a customer i ∈ I ′ such
that I ′ \ {i} is still an (implied-demand) cover. It is well known that a classical minimal cover can be found
in polynomial time. The special case of a minimum cover, i.e., a minimal cover with a minimum number
of elements, can be identified by solving a 0 – 1 – knapsack problem. As a special case with cost of one for
each item, minimum covers can be computed in polynomial time by ordering the items by their weight and
adding them starting from the heaviest to the lightest until there is no capacity left. As Theorem 1 shows,
finding a minimum implied-demand cover is, on the contrary, NP-complete in the strong sense.

Theorem 1. Finding a minimum implied-demand cover Ĩ ⊆ I for a facility j ∈ J is strongly NP-complete.
A minimal implied-demand cover can be computed in polynomial time.

Proof. In order to prove the first statement of the theorem, we show that the decision version of the minimum
implied-demand cover problem is strongly NP-complete via a reduction from minimum set cover. Given a
minimum set cover instance I consisting of a set of elements U = {1, 2, . . . , n} to which we refer to as the
universe and a collection S of m subsets of universe U , the goal is to decide whether there is a sub-collection
of S of size K ∈ Z≥0 whose union equals the universe. W.l.o.g. we assume that collection S does not contain
subsets s1, s2 with s1 ⊆ s2 and that each element of the collection S contains at least two elements.

We transform I into an instance I ′ of the minimum implied-demand cover problem as follows. Introduce
one customer i for each element u ∈ U in the universe and one customer k for each element s ∈ S. Denote the
set of customers with I and set the cost and weight of a customer i ∈ I to one, i.e., it is ci = di = 1. Define
the set of facilities as J = ∪i∈I{ji} ∪ {j}. Note that in this setting, we are interested in a minimum implied
demand cover for facility j. Hence, it suffices to define J<

ij and J=
ij for all customers i ∈ I. The set of facilities

a customer i corresponding to an element u ∈ U prefers over j is defined as J<
ij = {ji} and J=

ij = {j}. The
set of facilities a customer k corresponding to a subset s ∈ S prefers over j is defined as J<

kj =
⋃

e∈s J
<
ej∪{jk}

and J=
kj = {j}. Note that all customers corresponding to elements s ∈ S imply the assignment of all customers

corresponding to items occurring in considered set s to j. We set the lower bound for the demands, that
is, the smallest number of customers violating the capacity of facility j, to Qj + 1 = K + |U |. The goal is
to decide whether there is a set Ī ⊆ I containing K customers whose assignment is not implied by other
customers in set Ī; these K customers correspond to a minimum implied-demand cover Ĩ. Instance I ′ can
clearly be constructed in polynomial time.

It remains to prove that there is a minimum cover for instance I of size K if and only if there is a
solution Ī ⊆ I for instance I ′ containing K customers whose assignment is not implied by other customers
in set Ī.

Suppose there is a minimum set cover for instance I of size K and denote this sub-collection with S′.
From this, we construct our solution for instance I ′ of the minimum implied-demand cover problem as
follows. Assign all customers i corresponding to elements in set S′ ∪ U to facility j and denote this set
with Ī. Then, facility j, with a capacity of Qj = K + |U | − 1, serves a demand of K + |U |; thus, the set
of customers corresponding to S′ defines an implied-demand cover. Due to the construction of instance I ′,
set Ī consists of non-implied customers as well as all customers implied by them. In particular, all customers
corresponding to an element in universe U are implied by one of the K customers corresponding to elements
in collection S′. In total, this yields an implied-demand cover of size (K + |U |)− |U | = K.

Conversely, suppose Ī corresponds to a solution for instance I ′ consisting of K non-implied customers.
First, we observe that all customers corresponding to an element in universe U are added to the cover.
Suppose there is at least one such customer not added to the cover. In order to still satisfy the constraint
regarding the lower bound on the demand, we have to assign at least K + 1 customers who correspond to
items in collection S. Then, we add at least K + |U | units to the objective function but can only deduct
less or equal to |U | − 1 units. This yields an objective value of z(I ′) ≥ K + |U | − (|U | − 1) = K + 1 > K,
a contradiction to our assumption. Second, we observe that all customers corresponding to elements in U
are implied by at least one customer in set Ī corresponding to an element in set S each. Suppose at least
one customer corresponding to an element in universe U is added to cover Ī and is not implied by another
customer in Ī. In this case, the solution has an objective value of z(I ′) ≥ (K+ |U |)− (|U |− 1) = K+1 > K
- a contradiction to the solution having objective value K. Given these results, we construct a solution for
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instance I as follows. Add all customers in set Ī that correspond to sets in collection S to the minimum
cover. Thus, the constructed minimum cover has size K and it follows immediately that all elements in U
are covered by at least one set in the minimum cover. Hence, the constructed solution is a minimum cover
for instance I and our claim follows.

We can compute a minimal implied demand cover Ĩ for a facility j by first adding all customers to cover Ī
and then removing customers that are not implied by any other customer one by one from Ī until the budget
constraint would be violated. Define the minimal implied-demand cover as the set of customers not implied
by another customer in set Ī.

Theorem 1 shows that the occurrence of customers in several sets of implied customers adds a new
complexity to the problem of finding implied-demand covers. Note that the problem of finding a minimum
implied-demand cover is closely related to knapsack problems with partial order (KPO) (Johnson and Niemi,
1983). However, in minimum implied-demand covers, we are interested in minimising the number of non-
implied customers; in KPOs, this property is not measured.

Next, we analyse classical cover inequalities and introduce extensions which incorporate implied-demands.

5.1 Cover inequalities
Cover inequalities are known to be valid for the capacitated facility location problem due to the knapsack
structure of the capacity constraints (1c). As the considered user preferences do not impact their validity,
classic cover inequalities (2) are also valid for the SSCFLPCP.∑

i∈I′

xij ≤ |I ′| − 1 ∀j ∈ J, I ′ ⊆ I :
∑
i∈I′

di > Qj (2)

We denote this set of inequalities with C. It is not difficult to see that the same arguments as for in-
equalities (2) can be used to to show validity of inequalities (3) that instead consider an implied-demand
cover I ′ ⊆ I for facility j ∈ J :

∑
i∈I′

xij ≤ |I ′| − 1 ∀j ∈ J, I ′ ⊆ I : D(I ′, j) > Qj (3)

We denote this set of inequalities with IC. Corollary 1 implies that for each inequality (2) there exists at
least one inequality (3) whose set of left-hand side variables is a (potentially identical) subset of the one of
the former. Thus, Corollary 2 holds.

Corollary 2. Inequalities (3) imply inequalities (2).

It is well known, that classical cover inequalities can be strengthened to so-called extended or lifted cover
inequalities. Next, we use analogous ideas to lift implied-demand cover inequalities (3). To ease notation and
arguments in the proofs of the following two theorems, we first define the concepts of a customer’s individual
and overall largest contribution to the total demand implied by a set of customers.

Definition 4 (Individual and Maximum Contribution). For each set of customers I ′ ⊆ I, every cus-
tomer i ∈ I ′ and facility j ∈ J , we denote by ri(I

′, j) = D(I ′, j)−D(I ′ \ {i}, j) the individual contribution of
customer i ∈ I ′ to the demand implied by I ′ for facility j ∈ J . Furthermore, rmax(I

′, j) = maxi∈I′ ri(I
′, j)

is used to denote the largest individual contribution of any customer from I ′.

With this concept at hand, we define extended implied-demand cover inequalities as follows.

Theorem 2 (EIC). Let I ′ ⊆ I be an implied-demand cover for facility j ∈ J and E ̸= ∅ be a set of customers
not implied by I ′, i.e., E ⊆ I \ I(I ′, j). Then, the extended implied-demand cover inequality (EIC)∑

i∈I′

xij +
∑
i∈E

xij ≤ |I ′| − 1 (4)
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is valid and dominates implied-demand cover inequality (3) defined on I ′ and j if there exists a se-
quence (s1, . . . , s|E|) of E such that rsℓ(I ′ ∪ {s1, . . . sℓ}, j) ≥ rmax(I

′, j) holds for all ℓ ∈ {1, . . . , |E|}.

Proof. We show the theorem by contradiction. Assume, that the theorem holds for the first ℓ− 1 customers
from the considered sequence of E, i.e., inequality∑

i∈I′

xij +
∑

i∈{s1,...,sℓ−1}

xij ≤ |I ′| − 1 (5)

is valid but ∑
i∈I′

xij +
∑

i∈{s1,...,sℓ−1}

xij + xsℓ,j ≤ |I ′| − 1

does not hold. Thus, there exists a set I ′′ ⊂ I ′ ∪ {s1, s2, . . . , sℓ} of cardinality at least |I ′| whose im-
plied demand does not exceed the facility’s capacity, i.e., D(I ′′, j) ≤ Qj . Clearly, sℓ ∈ I ′′ as inequal-
ity (5) is assumed to be valid. Thus, the implied demand of subset I ′′ \ {sℓ}, with cardinality of at
most |I ′| − 1, can be at most Qj − rsℓ(I

′′, j). Consider an arbitrary customer a ∈ I ′ ∪ {s1, . . . , sℓ−1}
such that ra(I

′ ∪ {s1, . . . , sℓ−1}, j) = rmax(I
′ ∪ {s1, . . . , sℓ−1}, j). If a /∈ I ′′, then there exists at least

one customer b ∈ I ′ \ I ′′ (otherwise I ′ cannot be a cover) with rb(I
′, j) ≤ rmax(I

′, j). Per assumption
it is rmax(I

′, j) ≤ rsℓ(I
′ ∪ {s1, s2, . . . , sℓ}, j) and it follows that D((I ′′ ∪ {b}) \ {sℓ}, j) ≤ D(I ′′, j) ≤ Qj .

Since |(I ′′ ∪ {b}) \ {sℓ}| ≥ |I ′| this contradicts the original assumption that (5) holds. If, on the other
hand, a ∈ I ′′, then there exists at least one customer b ∈ (I ′ ∪ {s1, . . . , sℓ−1}) \ I ′′ (otherwise I ′ cannot be a
cover) whose individual contribution to set I ′ ∪ {s1, . . . , sℓ−1} is at most rmax(I

′, j). As before, this implies
that the implied demand of set (I ′′∪{b})\{sℓ} (of cardinality at least |I ′|) does not exceed Qj contradicting
validity of inequality (5).

Note that there may be two customers in set E where the assignment of one of the customers to j
implies the assignment of the other customer to j. This may be counter-intuitive as we have to avoid this
property in minimal implied-demand covers. For extended implied-demand covers, it is an advantage to
have two such customers in set E.

Next, we introduce a set of lifted implied-demand cover inequalities that are conceptually similar to those
known for standard covers (Conforti et al., 2014) and dominate extended implied-demand cover inequali-
ties (4).

Theorem 3 (LIC). Consider a facility j ∈ J , an implied-demand cover I ′ ⊆ I for this facility, and
an ordering (s1, . . . , s|I\I(I′,j)|) of all customers not implied by I ′. Then, the lifted implied-demand cover
inequality (LIC)

∑
i∈I′

xij +

|I\I(I′,j)|∑
i=1

αsijxsij ≤ |I ′| − 1 (6)

is valid and dominates inequality (4) obtained for the same sequence of customers not in I ′ if αsij = |I ′|−1−
maxC⊆I′∪{s1,...,si−1}{

∑
k∈C αkj : D(C, j) ≤ Qj − rsi(C ∪ {si}, j), (I ′ ∪ {s1, . . . , si−1}) ∩ I(si, j) ⊆ C} holds

for all i ∈ {1, . . . , |I \ I(I ′, j)|}. Value αsij corresponds to the number of elements in set I ′ ∪ {s1, . . . , si−1}
that can be replaced in the cover by adding element si with i ∈ {1, . . . , |I \ I(I ′, j)|} due to si’s (implied)
demand.

Proof. Following the proof for extended cover inequalities given in Wolsey (2020) we consider ℓ ∈ {1, . . . , |I \
I(I ′, j)|} and let ∑

i∈I′

xij +

ℓ−1∑
i=1

αsijxsij ≤ |I ′| − 1
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be the inequality obtained so far. We observe that the value of αsℓj is irrelevant if xsℓj = 0. If, on the other
hand, customer sℓ is assigned to j it consumes at least rsℓ(I

′ ∪ {s1, . . . , sℓ}, j) units of demand and implies
the assignment of all customers in (I ′∪{s1, . . . , sℓ−1})∩I(sℓ, j) to j; thus, the maximum number of customers
from I ′ ∪ {s1, . . . , sℓ−1} that can still be assigned to j is therefore equal to maxC⊆I′∪{s1,...,sℓ−1}{

∑
k∈C αkj :

D(C, j) ≤ Qj − rsℓ(I
′ ∪ {s1, . . . , sℓ}, j), (I ′ ∪ {s1, . . . , sℓ−1}) ∩ I(sℓ, j) ⊆ C}, and αsℓj can therefore be set

to |I ′| − 1 minus this value. We also observe, that αsℓj ≥ 1 holds if rsℓ(I ′ ∪ {s1, . . . , sℓ}, j) ≥ rmax(I
′, j) and

the resulting lifted implied-demand cover inequality therefore dominates the extended one.

We discuss potential lifting-sequences in Section 6. Next, we study further inequalities that can be derived
due to the presence of both capacity and preference constraints.

5.2 Strengthened implied-demand cover inequalities
We next introduce two additional sets of inequalities (7) and (8) that are based on further observations
concerning customer preferences. Notice that we introduce and discuss these inequalities based on implied-
demand covers. Similar to above, weaker counterparts based on traditional covers are valid too. The first
set of inequalities is defined in Theorem 4.

Theorem 4 (RemElemIC). Consider a facility j ∈ J , an implied-demand cover I ′ ⊆ I for this facility
consisting of at least two customers, i.e., |I ′| ≥ 2, and let l ∈ I ′. Then, implied-demand cover inequality (3)
can be strengthened to valid inequality∑

i∈I′\{l}

xij ≤
∑

k∈J
≤
lj \(∪i∈I′\{l}J

<
ij∪{j})

xlk + (|I ′| − 2) (7)

and we denote this set of inequalities with RemElemIC .

Proof. Note that any considered implied-demand cover I ′ must consist of at least two customers. Suppose
cover I ′ = {k} consists of one customer. If facility j is closed and customer k does not prefer any facility
over j, inequality (7) turns into 0 ≤ 0 + 1 − 2 = −1, which is infeasible; if facility j is open and i assigned
to j, we have 1 ≤ 0 + 1− 2 = −1, which is infeasible.

In the following, we assume that each implied-demand cover consists of at least two customers. Con-
sider an implied-demand cover I ′ ⊆ I for facility j ∈ J and the associated implied-demand cover inequal-
ity

∑
i∈I′ xij ≤ |I ′| − 1. Let l ∈ I ′ be an arbitrary customer from I ′ and recall that every customer must be

assigned to some facility, i.e.,
∑

j∈J xlj = 1. Using the equation J = (J≤
lj \ {j}) ∪ {j} ∪ J>

lj , we can rewrite
the left-hand side of the initial cover inequality as follows:∑

i∈I′

xij = xlj +
∑

i∈I′\{l}

xij = 1− (
∑

k∈J
≤
lk\{j}

xlk +
∑
k∈J>

lk

xlk) +
∑

i∈I′\{l}

xij .

Thus, the initial cover inequality is equivalent to∑
i∈I′\{l}

xij ≤ |I ′| − 2 +
∑

k∈J
≤
lk\{j}

xlk +
∑
k∈J>

lk

xlk

which states that all customer in I ′ \{l} can be assigned to facility j only if customer l is assigned to another
facility.

Observe that customer l cannot be assigned to a facility k ∈ J>
lj if j is open and that the cover inequality

is redundant if j is not open - in which case the left-hand side is equal to zero. Thus, all assignment variables
considering facilities in J>

lj can be removed from the right-hand side leading to the stronger inequality∑
i∈I′\{l}

xij ≤ |I ′| − 2 +
∑

k∈J
≤
lk\{j}

xlk.
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Further notice that the variable term on the right-hand side is only relevant for the validity of the inequality
if all customers in I ′ \ {l} are assigned to facility j. Otherwise the left-hand side value is at most |I ′| − 2.
In this case, no facility that is preferred over j by any of these customers may be open and the previous
inequality can therefore be further strengthened to∑

i∈I′\{l}

xij ≤ |I ′| − 2 +
∑

k∈J
≤
lj \(∪i∈I′\{l}J

<
ij∪{j})

xlk.

The following corollary can be shown by repeating the steps in the proof of Theorem 4 using a standard
cover instead of an implied-demand cover as starting point.

Corollary 3. A set of valid inequalities is obtained from inequalities (7) by considering covers instead of
implied-demand covers. The resulting set of inequalities dominates cover inequalities (2).

Further utilising the idea of removing customers included in an (implied-demand) cover from the left-hand
side of a strengthened cover inequality (7) we can also derive the next result.

Theorem 5 (RemAllIC). Consider a facility j ∈ J , an implied-demand cover I ′ ⊆ I for this facility and
let i ∈ I ′. Then, implied-demand cover inequality (3) can be strengthened to valid inequality

xij ≤
∑

l∈I′\{i}

∑
a∈J

≤
lj \(J

<
ij∪{j})

xla (8)

and we denote this set of inequalities with RemAllIC .

Proof. Note that inequality (8) is valid for implied-demand covers of size one. In this case, the inequality
reduces to xij ≤ 0, which is valid since customer i cannot be assigned to facility j as its implied demand is
too high.

Let
∑

i∈I′ xij ≤ |I ′|−1 be the implied-demand cover inequality associated to implied-demand cover I ′. We
substitute all left-hand side variables xlj corresponding to l ∈ I ′ \{i} for some i ∈ I ′ by 1− (

∑
k∈J

≤
lj \{j}

xlk+∑
k∈J>

lj
xlk) and obtain

xij ≤
∑

l∈I′\{i}

∑
a∈J

≤
lj \({j})

xla +
∑

l∈I′\{i}

∑
a∈J>

lj

xla

Like in the previous proof, no customer l ∈ I ′ \ {i} can be assigned to a facility k ∈ J>
lj if j is open and the

cover inequality is redundant if j is closed. Thus, we can, again, remove the facilities in J>
lj , for l ∈ I ′ \ {i},

from the right hand side. Furthermore, the term on the right-hand side is only relevant for the validity of
the inequality if customer i is assigned to facility j. In this case, no facility that i strictly prefers over j may
be open. The combination of these two arguments leads to the stronger inequality

xij ≤
∑

l∈I′\{i}

∑
a∈J

≤
lj \(J

<
ij∪{j})

xla

Theorem 6 analyses the impact of removing customers included in an (implied-demand) cover one by one
from the left-hand side of a cover-like inequality.
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Theorem 6 (RemOBOIC). Consider a facility j ∈ J , an implied-demand cover I ′ ⊆ I and a customer i ∈
I ′. Let ν = (π(I ′\{i}), i) ∈ I |I| be an ordering of customers in set I ′ and π : (i)i∈I 7→ π((i)i∈I) a permutation.
Then, inequality

xij ≤
|I′|∑
m=2

∑
a∈J

≤
ν(m−1)j

\

(∪ν(|I′|)
i′=ν(m)

J<
i′j∪{j})

xν(m−1)a (9)

is valid and dominates inequalities (7) and (8). We denote this set of inequalities with RemOBOIC .

Proof. We first observe, that inequalities (9) are valid for implied-demand covers of size one in which case
they reduce to xij ≤ 0, which is clearly valid since customer i cannot be assigned to this facility as its implied
demand is too high.

Thus, we restrict our attention to implied-demand covers I ′ ⊆ I at facilities j ∈ J such that |I ′| ≥ 2. In
this case inequality (7) ∑

i∈I′\{l}

xij ≤
∑

k∈J
≤
lj \(∪i∈I′\{l}J

<
ij∪{j})

xlk + (|I ′| − 2)

is valid for any l ∈ I ′, cf. Theorem 4. Next, we use use relation xkj = 1 −
∑

a∈J
≤
kj\{j}

xka −
∑

a∈J>
kj
xka to

substitute xkj for a k ∈ I ′ \ {l}. Rearranging the terms, we obtain∑
i∈I′\{k,l}

xij ≤
∑

a∈J
≤
lj \(∪i′∈I′\{l}J

<
i′j∪{j})

xlk + (|I ′| − 2)− (1−
∑

a∈J
≤
kj\{j}

xka −
∑

a∈J>
kj

xka)

=
∑

a∈J
≤
lj \(∪i′∈I′\{l}J

<
i′j∪{j})

xla + (|I ′| − 3) +
∑

a∈J
≤
kj\{j}

xka +
∑

a∈J>
kj

xka

We observe that the rightmost term
∑

a∈J>
kj
xka can only be non-zero if facility j is closed as these

assignment variables all relate to assigning some customer to a facility customer k prefers less than j. Thus,
we can drop this term from the inequality as the left-hand side

∑
i∈I′\{k,l} xij must be equal to zero if this

rightmost expression is greater than zero. The inequality above is only of interest if all customers i ∈ I ′\{k, l}
are assigned to j. Thus, all facilities such customers strictly prefer over j have to be closed and we may
exclude all assignments of k to such facilities in the term

∑
a∈J

≤
kj\{j}

xka. Then, we can strengthen this term
to

∑
a∈J

≤
kj\(∪i′∈I′\{k,l}J

<
i′j∪{j}) xka, leading to

∑
i∈I′\{k,l}

xij ≤ (|I ′| − 3) +
∑

a∈J
≤
lj \(∪i′∈I′\{l}J

<
i′j∪{j})

xla +
∑

a∈J
≤
kj\(∪i′∈I′\{k,l}J

<
i′j∪{j})

xka

= (|I ′| − 3) +

3∑
m=2

∑
a∈J

≤
ν(m−1)j

\(∪ν(|I′|)
i′=ν(m)

J<
i′j∪{j})

xν(m−1)a

for ν = (l, k, π(I ′ \ {k, l})) an ordering of the customers with customers l, k at the first and second position.
Repeating this procedure for |I ′| − 3 further elements and defining ordering ν according to the order the
respective elements are moved to the right-hand side yields the claim.

It follows immediately that inequality (9) dominates inequalities (7) and (8).

We can also apply this procedure to extended implied-demand cover inequalities. Consider an extended
implied-demand cover I ′, which is an extension of an implied-demand cover Ĩ with Ĩ ⊊ I ′. Then, we
can move at most |Ĩ| − 1 elements from the left-hand side to the right-hand side in order to strengthen
implied-demand cover inequalities (3). Otherwise, assigning no customer in extended implied-demand
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cover I ′ to facility j would result in inequality 0 ≤ −1.

Finally, we consider another approach to utilise information provided by covers.

5.3 Location-centered inequalities
In the following, we study a different approach to derive valid inequalities from (implied-demand) covers.
First, consider a cover I ′ ⊆ I for some facility j ∈ J . From the definition of a cover it is immediate that
facility j can only be opened if at least one customer from I ′ is assigned to a different facility. The latter is,
however, only possible if at least one facility that is preferred by some customer from I ′ over j or to which
such a customer is indifferent is opened too. Thus, the set of inequalities

yj ≤
∑

k∈(∪i∈I′J
≤
ij )\{j}

yk ∀j ∈ J, I ′ ⊆ I :
∑
i∈I′

di > Qj (10)

is valid. We denote this set of inequalities with ImplFac. It is not difficult to see, that the same arguments
as for inequalities (10) can be used to to show validity of inequalities (11) that instead consider an implied-
demand cover I ′ ⊆ I for facility j ∈ J :

yj ≤
∑

k∈(∪i∈I′J
≤
ij )\{j}

yk ∀j ∈ J, I ′ ⊆ I : D(I ′, j) > Qj (11)

For this family of valid inequalities, however, the consideration of implied-demands does not provide an
advantage.

Corollary 4. Inequalities (10) and inequalities (11) are equivalent.

Proof. Consider a valid inequality (10) based on cover C. Define a set C ′ which consists of all non-implied
customers in C. Then, it is C ⊆ I(C ′, j) and set C ′ is an implied-demand cover. The right-hand side of
inequalities (10) and (11) is defined by the preference sets of non-implied customers. Hence, the right-hand
sides of both inequalities coincides.

Conversely, consider an inequality (11) based on implied-demand cover C ′. Build a solution C for
inequalities (10) as follows: Set C = I(C ′, j). Obviously, set C is still a cover. Due to the definition of
implied customers, it is ∪i∈CJ

≤
ij = ∪k∈C′J≤

kj and the value on the right-hand side coincides for implied-
demand cover C ′ and cover C.

We only consider inequalities (10) instead of inequalities (11) since the former inequalities don’t demand
the computation of implied-demand covers - which is likely to be more complex than the computation of
traditional covers. We study the performance of all valid inequalities derived above in Section 7. The exact
and heuristic separation methods needed for the computational study are discussed in the subsequent section.

6 Separation
In order to evaluate the impact of the valid inequalities above, we have to solve the corresponding separation
problems. The considered valid inequalities are summarised in Table 1. Since inequalities C, EC and LC
are already well studied in the literature, we mainly focus on the remaining inequalities. Throughout this
section, we assume that (x̄, ȳ) ∈ [0, 1]|I||J|+|J| is the current solution to the LP relaxation of (1).

6.1 Implied-demand cover inequalities
In the following, we first provide an integer programming formulation that solves the separation problem for
implied-demand cover inequalities. Then, we introduce heuristics for extending an implied demand-cover
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Name Number Inequality I ′ ⊆ I s.t.

C, IC (2), (3)
∑
i∈I′

xij ≤ |I ′| − 1
∑
i∈I′

di > Qj , D(I ′, j) > Qj

EIC (4)
∑

i∈I′∪E

xij ≤ |I ′| − 1 D(I ′, j) > Qj , E ⊆ I as described above

LIC (6)
∑
i∈I′

xij +

|I\I(I′,j)|∑
i=1

αijxij ≤ |I ′| − 1 D(I ′, j) > Qj , αij as described above for i ∈ I

RemElemIC (7)
∑

i∈I′\{l}

xij ≤
∑

k∈J
≤
lj \(∪i∈I′\{l}J

<
ij∪{j})

xlk + (|I ′| − 2) D(I ′, j) > Qj , l ∈ I ′, |I ′| ≥ 2

RemAllIC (8) xij ≤
∑

l∈I′\{i}

∑
a∈J

≤
lj \(J

<
ij∪{j})

xla D(I ′, j) > Qj , i ∈ I ′

RemOBOIC (9) xij ≤
|I′|∑
m=2

∑
a∈J

≤
ν(m−1)j

\(∪ν(|I′|)
i′=ν(m)

J<
i′j∪{j})

xν(m−1)a D(I ′, j) > Qj , i ∈ I ′, ν ∈ I |I
′|

ImplFac (10) yj ≤
∑

k∈(∪i∈I′J
≤
ij )\{j}

yk
∑
i∈I′

di > Qj

Table 1: Valid inequalities for facilities j ∈ J . Classical extended and lifted covers are omitted in this table;
in the following, we refer to them as EC and LC respectively. If inequalities (7), (8) or (9) are constructed
from classical covers, we drop index IC in the name.

inequality to an extended and a lifted one, respectively.

Formulation (12) solves the separation problem for implied-demand cover inequalities for each facility j ∈
J . Here, we consider binary decision variables zi, ui ∈ {0, 1} such that zi = 1 if customer i is either in the
implied-demand cover or implied by an element of it (zi = 0 otherwise) and ui = 1 if customer i is implied
by another customer in the implied-demand cover (ui = 0 otherwise). Then, a customer i ∈ I is in the
implied-demand cover if zi = 1 and ui = 0.

min
∑
i∈I

(1− x̄ij) · (zi − ui) (12a)

s.t.
∑
i∈I

dizi ≥ Qj + 1 (12b)

zi ≤ zk ∀i, k ∈ I : k ∈ I(i, j) (12c)

uk ≤
∑

i∈I:k∈I(i,j)\{i}

(zi − ui) ∀k ∈ I (12d)

zi, ui ∈ {0, 1} ∀i ∈ I (12e)

Here, inequality (12b) guarantees that the found solution is a cover. Inequalities (12c) ensure that implied
demands are considered, i.e., if a customer is considered in the cover, we also consider the demands of all
customers implied by said customer. Constraints (12d) ensure that we only consider values of non-implied
customers in the objective function. In order to better understand this inequality, consider two cases. First,
suppose that a customer k ∈ I is implied by another customer in the implied-demand cover. Let i ∈ I\{k} be
that customer. Then, it is k ∈ I(i, j) and zi = 1 and ui = 0. Hence, the right-hand side of inequality (12d)
is greater or equal to one. Assigning variable uk the value of one decreases the objective value and is
therefore advantageous. Second, suppose that customer k ∈ I is not implied by another customer in the
implied-demand cover. In this case, there is no customer i ∈ I \ {k} with k ∈ I(i, j) and zi = 1 − ui = 1.
Therefore, the right-hand side of inequality (12d) is equal to zero for customer k and it immediately follows
that variable uk is also equal to zero. In conclusion, inequalities (12d) ensure that variable uk is equal to one
if customer k is not an element of the implied-demand cover but implied by at least one customer of it; it is
equal to zero either if its demand is not considered in the implied-demand cover or if it is considered in the
implied-demand cover. Objective function (12a) ensures that the computed cover minimises the right-hand
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side of reformulated inequalities IC.
If the objective value is lower than one, there is a violated implied-demand cover inequality. Otherwise,

current LP solution (x̄, ȳ) does not violate these inequalities. In order to compute a classical cover inequality,
remove inequalities (12d) and set ui = 0 for all customers i ∈ I.

Extended implied-demand cover inequalities Extended implied-demand cover inequalities are sepa-
rated heuristically using a two-phase approach. For each facility j, we first use formulation (12) to identify
a maximally violated implied-demand cover I ′ and compute the individual contributions of each customer
in I ′ to facility j. This can be done in O(|I|2) steps by computing for each customer in I ′ the set of implied
customers, then determining the set of customers only implied by the currently considered customer and
finally computing their individual contribution.

In the second phase, we choose the set of customers in the extended cover in a greedy manner. Here, we
only consider customers of interests, i.e., customers with an individual contribution greater than or equal to
the maximum individual contribution in set I ′. We consider two rules for deciding the next customer to be
added.

1. The customer with smallest individual contribution among all remaining customers of interest is chosen
as the next customer to be added in each iteration.

2. The customer with greatest LP-value among all remaining customers of interest is chosen as the next
customer to be added in each iteration.

The first approach is similar to the standard procedure used to determine traditional extended covers and
coincides with the latter if there are no implications between the customers. This approach has, however,
disadvantages if the implied demand and the value x̄ij of the allocation variable of some customer i ∈ I is
very small. Due to the former property, customer i is added to the extended implied-demand cover. Now,
customer i might block another customer k ∈ I \I ′ with a higher assigned allocation-value from being added.
This wrong choice potentially weakens inequalities EIC.

The second approach aims to prevent this behaviour. Now, customers with higher assigned allocation-
values are preferably added to the extended implied-demand cover. The hope is to increase the left-hand
side in inequalities EIC by focusing on customers with higher allocation-values. Due to Proposition 3, the
assigned allocation value of a customers l ∈ I who prefers less facilities over the considered facility j ∈ J is
greater than of a customer i ∈ I who prefers more facilities over the considered facility if J≤

lj ⊆ J<
ij ∪ {j}.

Hence, the implied demand of customers with greater assigned allocation values is likely to be smaller than
the implied demand of customers with lower assigned allocation value and we partially incorporate the first
approach.

Once the next customer to be added to the extended implied-demand cover is chosen, we update the set
of customers of interest by excluding implied demands of implied customers by customers in the extended
set and repeat this procedure until no new customers are found.

Lifted implied-demand cover inequalities We proceed with a heuristic for solving the separation
problem of inequalities LIC in a similar manner to before. That is, given a LP-solution (x̄, ȳ) for the
relaxation of integer linear program (1), we start by computing a maximum violated implied-demand cover I ′
at a facility j ∈ J by solving separation problem (12) for inequalities IC. For the remaining elements not
in the implied-demand cover - or implied by an element in said cover, i.e., elements in set I \ I(I ′, j), we
compute lifting coefficients. For that, we define a lifting-sequence, denoted with H. Before we define said
sequence, we briefly recall the process of computing the corresponding lifting coefficients.

As pointed out in Theorem 3, each element p ∈ I \ I(I ′, j) in lifting-sequence H is multiplied by a
non-negative factor αpj , which expresses how many elements in set I ′ ∪{1, . . . , p− 1} element p can replace.
This value for customer p and facility j can be computed by solving |I ′|−1−maxC⊆I′∪{1,...,p−1}{

∑
k∈C αkj :

D(C, j) ≤ Qj − rp(C ∪ {p}, j), (I ′ ∪ {1, . . . , p− 1}) ∩ I(p, j) ⊆ C}.
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Note that the maximisation problem includes the constraint that all customers implied by p have to be
considered in set C. Hence, if an element i is in front of an element k with i ∈ I(k, j) in sequence H, we
have to consider element i in set C when computing the lifting coefficient for k. This forced consideration of
customer i might block better solutions to the maximisation problem and there is a chance that this yields
a higher lifting coefficient. In conclusion, we derive the relevant lifting sequence based on the size of the set
of implied customers at the considered facility for each customer in set I \ I(I ′, j). Here, the customer who
implies most customers is considered as the last element in the lifting sequence; the customer implying the
least number of customers is considered as the first element in the sequence.

In order to compute the desired coefficients αpj for a customer p ∈ I \ I(I ′, j) in sequence H and a
facility j ∈ J , we compute maxC⊆I′∪{1,...,p−1}{

∑
k∈C αkj : D(C, j) ≤ Qj − rp(C ∪ {p}, j), (I ′ ∪ {1, . . . , p −

1}) ∩ I(p, j) ⊆ C} via an integer linear program. For that, introduce binary decision variables zi ∈ {0, 1}
indicating whether customer i ∈ C ∪ {1, 2, . . . , p − 1} can be assigned to facility j (zi = 1) or not (zi = 0).
Binary decision variables uk ∈ {0, 1} indicate whether customer k ∈ I(C ∪ {1, 2, . . . , p− 1}, j) is implied by
a customer i ∈ C ∪ {1, 2, . . . , p − 1} (uk = 1) or not (uk = 0). Based on lifting-sequence H, we solve the
following integer linear program for each element p ∈ H.

max
∑

i∈I′∪{1,2,...,p−1}

αijzi (13a)

s.t.
∑

i∈I(I′∪{1,2,...,p−1},j)\
I(p,j)

diui ≤ Qj −D(p, j) (13b)

zi ≤ uk ∀i ∈ I ′ ∪ {1, 2, . . . , p− 1}, k ∈ I(i, j) (13c)
zi = 1 ∀i ∈ (I ′ ∪ {1, 2, . . . , p− 1}) ∩ I(p, j) (13d)
zi, uk ∈ {0, 1} ∀i ∈ I ′ ∪ {1, 2, . . . , p− 1}, k ∈ I(I ′ ∪ {1, 2, . . . , p− 1}, j) (13e)

Objective function (13a) sums up the weighted value of all decision variables in sequence H that are
considered before element p and the goal is to find a solution that maximises this sum. Constraint (13b)
combined with constraints (13c) limit the number of variables zi that can be set to one. That is, they ensure
that the joint implied demand of customers from set (C ∪ {1, 2, . . . , p − 1}) \ I(p, j) that are considered
in the lifted cover does not exceed the remaining capacity of facility j after assigning customer p to j.
Constraints (13d) ensure that each customer in set C ∪ {1, 2, . . . , p − 1} that is implied by customer p is
considered in the lifted cover as well. Given a solution (z∗, u∗) with objective value c(z∗, u∗) to this integer
linear program, set coefficient αpj = |I ′| − 1− c(z∗, u∗).

Next, we introduce solution approaches for the separation problems of the strengthened implied-demand
cover inequalities.

6.2 Strengthened implied-demand cover inequalities
In the following, we consider methods to solve the separation problems for inequalities RemElemIC ,
RemAllIC as well as RemOBOIC and their versions without implied demands. We start with inequalities
RemElemIC .

Instead of inequalities (7) for RemElemIC , we consider reformulation 1 ≤
∑

i∈I′\{l}(1 − xij) +∑
k∈J

≤
lj \(∪i∈I′\{l}J

<
ij∪{j} xlk. The separation problem for finding a (maximum) violated reformulated inequal-

ity RemElemIC for a facility j ∈ J is stated in (14). Here, binary decision variables zi ∈ {0, 1} indicate
whether the demand of customer i ∈ I is considered in the implied demand cover (zi = 1) or not (zi = 0).
Binary decision variables ui ∈ {0, 1} state whether customer i is implied by a customer in the cover (ui = 1)
or not (ui = 0). We model the decision regarding which customer is to be considered on the right-hand side
of inequalities (7) through binary decision variables ŵi, wik, w̃k ∈ {0, 1} for i ∈ I and k ∈ J . Variable ŵi

indicates whether customer i ∈ I is considered on the right-hand side (ŵi = 1) or not (ŵi = 0). Variable wik
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indicates whether customer i is considered on the right-hand side and prefers a facility k, that is not strictly
preferred by a customer remaining on the left-hand side, over j (wik = 1) or not (wik = 0). Variable w̃k

indicates whether there is another customer in the cover besides the customer on the right-hand side who
strictly prefers facility k over j (w̃k = 1) or not (w̃k = 0).

min
∑
i∈I

(1− x̄ij) · (zi − ui − ŵi) +
∑
i∈I

∑
k∈J

x̄ik · wik (14a)

s.t.
∑
i∈I

di · zi ≥ Qj + 1 (14b)

zi ≤ zk ∀i ∈ I, k ∈ I(i, j) (14c)

uk ≤
∑

i∈I:k∈I(i,j)\{i}

(zi − ui) ∀k ∈ I (14d)

∑
i∈I

ŵi = 1 (14e)

ŵi + ui ≤ zi ∀i ∈ I (14f)

ŵi ≤ wik + w̃k ∀i ∈ I, k ∈ J≤
ij \ {j} (14g)

w̃k ≤
∑

i∈I:k∈J<
ij

(zi − ui − ŵi) ∀k ∈ J (14h)

2 ≤
∑
i∈I

(zi − ui) (14i)

zi, ui, ŵi, wik, w̃k ∈ {0, 1} ∀i ∈ I, k ∈ J. (14j)

In the objective function (14a), we add 1 − x̄ij to the objective value for each non-implied customer i ∈
I in computed cover that is on the left-hand side of the inequality. Furthermore, we add value x̄lk for
customer l ∈ I that is considered on the right-hand side of the inequality and all facilities only customer l
prefers over j, i.e., facilities k ∈ J≤

lj \ (∪i∈I′\{l}J
<
ij ∪ {j}). Constraint (14b) combined with constraints (14c)

ensure that the implied-demand of the computed cover violates the capacity of facility j. Constraints (14d)
indicate whether a customer is a non-implied customer in the cover or an implied customer. Constraint (14e)
ensures that exactly one customer is considered on the right-hand side. Constraints (14f) guarantee that a
customer can either be implied or considered on the right-hand side or none of both if the corresponding
customer is considered in the cover. Inequalities (14g) and (14h) enforce that only assignment values x̄lk of
the customer l on the right-hand side to facilities k this customer prefers over j are considered in the sum
on the right-hand side of inequality (7) - without those facilities at least one of the remaining customers on
the left-hand side strictly prefers over j. Last but not least, constraint (14i) ensure that the implied-demand
cover consists of at least two customers.

There is a violated inequality if the objective value is strictly lower than one. When solving the
separation problem of inequalities RemElem without implied-demands, remove constraints (14c) and (14d)
and set ui = 0 for all i ∈ I.

We can formulate the separation problem for finding a maximum violated inequality RemAllIC by
reformulating inequalities (8) in a similar manner to inequalities (7). Then, we aim to solve integer linear
program (15) for each facility j ∈ J . Here, we consider decision variables zi, ui, ŵi, wik, w̃k ∈ {0, 1} for i ∈ I
and k ∈ J . Just like in formulation (14), decision variable zi ∈ {0, 1} indicates whether the demand of
customer i ∈ I is considered in the implied demand cover (zi = 1) or not (zi = 0) and decision variable ui ∈
{0, 1} indicates whether customer i ∈ I is implied by a customer in the cover (ui = 1) or not (ui = 0). Similar
to above, binary decision variable ŵi ∈ {0, 1} indicates whether customer i ∈ I is considered on the left-hand
side (ŵi = 1) or not (wi = 0). Decision variable wik indicates whether customer i ∈ I is considered on the
right-hand side in inequality RemAllIC and prefers facility k ∈ J over j while the customer remaining on
the left-hand side does not strictly prefer k over j (wik = 1) or not (wik = 0). Decision variable w̃k ∈ {0, 1}
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indicates whether facility k ∈ J is strictly preferred by the customer remaining on the left-hand side of
inequality RemAllIC (w̃k = 1) or not (w̃k = 0).

min
∑
i∈I

(1− x̄ij) · ŵi +
∑
i∈I

∑
k∈J

≤
ij\{j}

x̄ik · wik (15a)

s.t.
∑
i∈I

di · zi ≥ Qj + 1 (15b)

zi ≤ zk ∀i ∈ I, k ∈ I(i, j) (15c)

uk ≤
∑

i∈I:k∈I(i,j)\{i}

(zi − ui) ∀k ∈ I (15d)

∑
i∈I

ŵi = 1 (15e)

ŵi + ui + wik ≤ zi ∀i ∈ I, k ∈ J≤
ij \ {j} (15f)

zi ≤ ŵi + ui + wik + w̃k ∀i ∈ I, k ∈ J≤
ij \ {j} (15g)

w̃k ≤
∑

i∈I:k∈J<
ij

ŵi ∀k ∈ J (15h)

zi, ui, ŵi, wik, w̃k ∈ {0, 1} ∀i ∈ I, k ∈ J. (15i)

Constraints (15b) – (15e) coincide with constraints (14b) – (14e) in formulation (14). However, con-
straint (15e) indicates that a customer stays on the left-hand side in inequality (15) instead of being the only
customer pulled to the right-hand side.

In the objective function (15a), we consider value 1 − x̄ij of the customer i ∈ I on the left-hand side
of the corresponding valid inequality and add assignment values x̄ik for all customers i ∈ I considered on
the right-hand side and facilities k ∈ J≤

ij \ {j}, which the customer on the left-hand side not strictly prefers
over j. Constraints (15f) ensure that a customer i ∈ I can be either on the left-hand side of considered valid
inequality or can be an implied customer or their assignment to facility k ∈ J is of interest if their demand
is considered in the implied-demand cover or they are not considered in the cover at all. Constraints (15g)
enforce that a customer i ∈ I whose demand is considered in the implied-demand cover is either considered
on the left-hand side of the valid inequality or is an implied customer or their assignment to facility k ∈ J≤

ij is
considered or facility k is strictly preferred by the customer on the left-hand side. Constraints (15h) allow the
assignment of value one to variable w̃k for k ∈ J if facility k is strictly preferred by the customer considered
on the left-hand side of valid inequality RemAllIC .

There is a violated inequality if the objective value is strictly lower than one. When considering the
separation problem of inequalities RemAll without implied demands, remove constraints (15c) and (15d)
and set ui = 0 for all i ∈ I.

Due to the problem’s increased complexity, we solve the separation problem for inequalities RemOBOIC

heuristically through a modification of the solution for inequalities RemAllIC . Given a feasible solution (x̄, ȳ)
for the relaxation of formulation (1), the procedure is as follows for each facility j ∈ J .

1. Compute a maximum violated inequality RemAllIC for a given LP-solution (x̄, ȳ). Denote the found
cover with I ′ ⊆ I. Let l ∈ I ′ be the customer on the left-hand side of the inequality.

2. Sort the items on the right-hand side in inequality RemAllIC , i.e., the customers in set I ′ \ {l},
according to the sum of the assignments to facilities each customer likes less than j in LP-solution (x̄, ȳ).
Sort them in increasing order.

3. In order to construct a valid inequality RemOBOIC , consider the customer with smallest assignment
of allocation values in that ordering and denote them with i, that is, the customer where most of their
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demand is assigned to facilities they prefer over j. This will be the customer where we only consider
the assignment to preferred facilities none of the remaining customers in found cover prefer over j. For
the second customer in considered ordering, who we denote with i′, we only consider the assignment to
preferred facilities none of the customers in I ′\{i, i′} prefer over j. This continues until all assignments
of customers in the order are considered in the objective function.

4. Check whether this newly constructed valid inequality is violated.

If we don’t consider implied demands, we solve the separation problem of inequalities RemAll in step 1.
The remaining steps coincide with the separation for inequalities RemOBOIC .

6.3 Location-centered inequalities
Finally, we study the separation problem of inequalities ImplFac based on classical covers. To identify a
violated inequality of type (10), we are interested in finding the most violated one, i.e., the inequality that
minimises

∑
k∈(∪i∈I′J

≤
ij )\{j}

ȳk − ȳj with I ′ a cover. If this minimum is non-negative, we know that there are
no violated inequalities.

In order to compute such a most violated inequality, we solve integer linear program (16) for each
facility j ∈ J . For that, introduce variables zi for each customer i ∈ I, which indicate whether customer i is
considered in the cover or the assignment of i is implied by a customer in the cover (zi = 1) or not (zi = 0).
Furthermore, introduce variables vk for each k ∈ J , which indicate if at least customer i ∈ I with k ∈ J≤

ij \{j}
is added to the cover (vk = 1) or not (vk = 0).

min
∑

k∈J\{j}

ȳkvk (16a)

s.t.
∑
i∈I

dizi ≥ Qj + 1 (16b)

zi ≤ vk ∀i ∈ I, k ∈ J≤
ij \ {j} (16c)

vk, zi ∈ {0, 1} ∀i ∈ I, k ∈ J (16d)

Inequality (16b) enforces that the computed set is indeed a cover. Inequalities (16c) ensure that the
allocation value of a facility is counted in the objective function if the facility is preferred by at least one
customer in the computed cover. Objective function (16a) minimises the total sum of all values assigned to
allocation variables in the relaxation of integer linear program (1) which are preferred by customers in the
computed cover.

6.4 Complexity of separating cover-based inequalities
In the following, we discuss the complexity of the separation problems for the inequalities introduced in this
article. Note that all results proving strong NP-hardness depend on solutions for the relaxation of (1) which
are not extreme points. In this work, we do not further explore the complexity for extreme points and leave
these problems for future work. We start with the analysis of inequalities IC.

Implied-demand cover inequalities Observe first that the CFLP is a special case of the SSCFLPCP
in which each customer is indifferent between all available facilities; here, the implied demand of each
customer coincides with their own demand. In this case, the separation problem corresponds to the problem
of separating classical cover inequalities and is known to be weakly NP-hard (Klabjan et al., 1998). This
relation provides a lower bound on the complexity of separating inequalities IC. Theorem 1, however, suggests
a higher complexity for computing minimum implied-demand covers - note, though, that the separation
problem is a special case of computing a minimum implied-demand cover and is not necessarily strongly
NP-hard itself. In Proposition 6, we show that there are optimal LP solutions for which the separation
problem is strongly NP-hard.
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Proposition 6. Let j ∈ J be a facility. There exists an optimal solution (x̄, ȳ) ∈ [0, 1]|I||J|+|J| for the linear
relaxation of (1) for which finding an implied-demand cover I ′ ⊆ I such that inequality

∑
i∈I′ xij ≤ |I ′| − 1

is maximum violated is strongly NP-hard.

We prove this result via a reduction from minimum set cover. For the sake of readability, we refer to
the Appendix for the proof of this proposition. Next, we study the computational complexity of deriving an
extended implied-demand cover from a given implied-demand cover.

Extended implied-demand cover inequalities When considering traditional covers, it is straight-
forward to compute the corresponding extended cover, for which the corresponding extended cover inequality
is maximally violated: add all items with greater weight than the maximum weight in the cover. This exten-
sion appears to be more difficult when considering implied-demand covers. Here, the choice of a customer
to be added to the extended cover as well as their position in the sequence, cf. Theorem 2, defines the set
of customers considered in an extended cover. Proposition 7 shows that there are solutions for the relaxed
formulation of (1) for which the extension of a given implied-demand cover to an extended implied-demand
cover, with maximally violated corresponding extended implied-demand cover inequality, is indeed more
difficult.

Proposition 7. Let I ′ ⊆ I be an implied-demand cover for a facility j ∈ J and suppose the goal is to
find a (maximally) violated extended implied-demand cover inequality based on I ′. There exists an optimal
solution (x̄, ȳ) ∈ [0, 1]|I||J|+|J| for the linear relaxation of (1) for which finding an extended implied-demand
cover maximising the total violation is strongly NP-hard.

We prove this result via a reduction from exact cover by 3-sets. The proof is given in the Appendix.
Next, we analyse the strengthened implied-demand cover inequalities.

Strengthened implied-demand cover inequalities In the following, we study the complexity
of strengthening a given maximally violated (implied-demand) cover to maximally violated inequali-
ties RemElemIC , RemAllIC and RemOBOIC .

First, consider inequalities RemElemIC or RemAllIC and let I ′ be an implied-demand cover which
maximally violates implied-demand cover inequality IC. We can easily derive maximally violated inequal-
ities RemElemIC and RemAllIC from I ′. For the former inequalities, determine the customer i ∈ I ′

for which the difference between one minus the assignment value to facility j minus the sum of assign-
ments to facilities they either prefer or are indifferent to regarding j, without facility j or those facilities
strictly preferred by at least one customer in I ′ \ {i} over j, i.e., the sum of assignments to facilities in
set J≤

ij \ (∪l∈I′\{i}J
<
lj ∪{j}), is greatest. Let this customer be the one considered on the right-hand side of in-

equality (7). This yields a maximally violated inequality of type RemElemIC based on an implied-demand
cover I ′ and also holds for inequalities RemElem. When computing a maximally violated inequality of
type RemAllIC based on a given implied-demand cover I ′, determine the customer i ∈ I for which the
difference between the right-hand side according to inequality (8), ignoring facilities strictly preferred by i,
minus the assignment value of i to j is smallest. This will be the customer staying on the left-hand side of
inequality (8) based on implied-demand cover I ′. These considerations also hold for inequalities RemAll.

Second, consider inequalities RemOBOIC . If inequalities RemOBOIC are to be constructed from an
implied-demand cover I ′, the computation of a maximally violated inequality is no longer easy. There are
solutions for the linear relaxation of integer linear program (1), which are not extreme points, for which it
is strongly NP-hard to determine a maximally violated inequality from a given (implied-demand) cover I ′.

Proposition 8. Let I ′ ⊆ I be an (implied-demand) cover for a facility j ∈ J . There exists an optimal
solution (x̄, ȳ) ∈ [0, 1]|I||J|+|J| for the linear relaxation of (1) for which determining the order in which
customers in I ′ are to be considered on the right-hand side of inequality RemOBOIC in order to find a
(maximum) violated inequality is strongly NP-hard.

This result can be shown via a reduction from minimum set cover. The proof is given in the Appendix.
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Location-centered inequalities Last but not least, we analyse the complexity of solving the separation
problem for inequalities ImplFac. There are solutions for formulation (16) for which it is strongly NP-hard
to determine whether there is an (implied-demand) cover which violates inequality (11).

Proposition 9. Let j ∈ J be a facility. There exists an optimal solution (x̄, ȳ) ∈ [0, 1]|I||J|+|J| for the linear
relaxation of (1) for which finding a maximum violated inequality yj ≤

∑
k∈(∪i∈I′J

≤
ij )\{j}

yk with I ′ ⊆ I an
(implied-demand) cover is strongly NP-hard.

We prove this result via a reduction from 3-Sat. For the sake of readability, we refer to the Appendix for
the proof of this proposition.

Given this analysis of the computational complexity for solving the separation problems of the inequal-
ities discussed in Section 5, we proceed with the computational study. Here, we test the computational
performance of all approaches derived above.

7 Computational study
In this section, we report on the results of our computational study. Our goal is to analyse the impact of
(a) the preprocessing introduced in Section 4 and (b) the valid inequalities introduced in Section 5. This
study focuses on the potential of the introduced preprocessing and valid inequalities to reduce the size
of the formulation and decrease the integrality gaps. In order to study the impact on the computational
performance, further research on heuristics for the occurring separation problems is needed.

7.1 Set-up
In our tests, we consider 20 instances developed for the classical capacitated facility location problem with
metric assignment costs (Avella and Boccia, 2009), which can be currently accessed at Università degli Studi
di Brescia (2015). Each of the considered instances consists of 300 customers and 300 facilities.

We consider two preference types. In the first type, preferences correspond to the assignment costs and a
customer i ∈ I prefers a facility j ∈ J over a facility k ∈ J if the assignment costs of i to j are lower than the
costs of assigning i to k. In this study, preferences are determined by underlying metric costs. In the second
preference type, we slightly perturb the first preference type. Like before, facilities with small assignment
costs are generally preferred over facilities with great assignment costs. Yet, a customer’s preference ordering
regarding facilities with similar assignment costs might deviate from the preference ordering according to
lowest assignment costs. In order to determine the second preference ordering, we follow the procedure
introduced by Cánovas et al. (2007). In the former preference type, instances occur in which customers
are indifferent between several potential facilities; in the latter preference type, each customer has a strict
preference ordering of the potential facilities. Note that feasible instances for the capacitated facility location
problem might turn infeasible when considering customer preferences due to more restrictive assignment
rules. Among the instances studied here, only instance i300 − 5 is infeasible if preferences correspond to
closest assignments. We exclude this case from our study. In conclusion, we study 19 instances for the
case that preferences correspond to closest assignments and 20 instances when considering perturbed closest
assignments as preferences.

All algorithms have been implemented in python 3.10.4 and all experiments have been performed on a
Linux machine (Rocky Linux 8.9 Green Obsidian) with CPU clock 2.1 GHz and 3 GB RAM. We use Gurobi
version 10.0.0 with default settings to solve integer linear programs if not stated otherwise.

7.2 Preprocessing
We first analyse the impact of the preprocessing methods introduced in Section 4 on the computational
performance.
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Figure 1: Percentages of allocation variables fixed to zero by methods CloseViolatedFacs, ImplDem and their
combination.

7.2.1 Decision variables

Figure 1 shows the percentage of allocation variables fixed to zero by methods CloseViolatedFacs and Im-
plDem as well as their combination. The percentage of fixed location variables by CloseViolatedFacs corre-
sponds to the percentage of fixed assignment variables; thus, we only focus on assignment variables.

Method CloseViolatedFacs performs weakest for both preference types and the percentage of fixed vari-
ables is not visibly affected by the preference type. Method ImplDem on its own as well as its combination
with method CloseViolatedFacs perform similar within the same preference type. If preferences correspond
to closest assignments, more than 50% of all allocation variables can be fixed for nearly all instances. If pref-
erences correspond to perturbed closest assignments, the performance decreases visibly and is only slightly
better than method CloseViolatedFacs.

The similarity between the computational results of method ImplDem as well as its combination with
method CloseViolatedFacs is due to the following. Suppose a facility j has to be closed since it can not serve
the demands of all customers that prefer it most. Then, the implied demand of any customer at facility j
includes the demand of customers that prefer j most. Hence, no customer can be assigned to j even if j’s
location variable is not specifically set to zero. This does not make Proposition 2 useless, though: this
similarity only holds for decisions made in the first iteration of applying preprocessing CloseViolatedFacs.
Method CloseViolatedFacs is, however, reiterated multiple times since closing one facility changes the set of
customers who prefer a facility most for the remaining facilities. This potentially leads to facilities closed in
CloseViolatedFacs which can not be found by preprocessing ImplDem. This impact, however, is not strong
in the considered instances. Note that we first apply CloseViolatedFacs and afterwards ImplDem. By first
closing violated facilities, we decrease the number of operations in ImplDem.

The drop in the performance of method ImplDem and its combination with CloseViolatedFacs between
the two preference types is likely due to a decrease in the size of implied customer sets when considering
perturbed closest assignments. Method ImplDem depends highly on these sets, which occur naturally when
preferences correspond to metric assignment costs.

In conclusion, method CloseViolatedFacs is not affected by the choice of preferences but does not perform
strongly in the first place; method ImplDem is affected by the choice of preferences and its impact is much
stronger when considering preferences corresponding to assignment costs.

7.2.2 Additional constraints

In the following, we analyse the impact of the combined preprocessing methodes introduced by Cánovas
et al. (2007) both on their own and after applying methods CloseViolatedFacs or ImplDem. According
to Cánovas et al. (2007), further constraints are added to the integer programming formulation if (a) a
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Added constraints based on maximally contained preference sets
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Figure 2: Percentages of added implication constraints derived from maximally contained customers of all
potential constraints, cf. Proposition 3.

customer prefers a facility most, cf. Proposition 1; (b) the preference set of a customer i ∈ I regarding
a facility j ∈ J is maximally contained in the preference set of another customer k ∈ I \ {i}, i.e., there
is no third customer l ∈ I \ {i, k} with J≤

ij \ {j} ⊂ J≤
lj \ {j} ⊂ J≤

kj \ {j}, cf. Proposition 3; or (c) if two
customers have coinciding preference sets, cf. Proposition 5. Since method (a) does not tell us much about
the interaction about the impact, we focus on the analysis of methods (b) and (c).

Figure 2 depicts the percentage of additional constraints due to (b). More specifically, the graphic shows
the values resulting from dividing the total number of added constraints by the number of potential con-
straints in the model before applying (b). We observe a slight increase in the percentage of added constraints
when applying Cánovas et al. (2007) after applying CloseViolatedFacs or ImplDem. This observation is in-
dependent of the preference type although it’s more visible if preferences correspond to closest assignments.

This indicates that we add more constraints of type (b) to formulation (1) when combining the methods
by Cánovas et al. (2007) with the newly derived methods. This behaviour is most likely due to the
percentage of location or allocation variables fixed to zero by methods CloseViolatedFacs and ImplDem: it
changes the preference sets of customers due to closed facilities and decreases the number of potentially
available relations regarding maximally contained preference sets. Closing some facilities implies that the
number of maximally contained preferences might increase; neglecting customers that are never to be as-
signed to a facility implies a decrease of the denominator for determining the percentages of added constraints.

Figure 3 shows the percentage of additionally considered constraints due to (c). More specifically, the
graphic shows the values resulting from dividing the number of added inequalities by the number of potential
inequalities in the model before applying (c). This method has no visible advantage when considering
perturbed closest assignments. If preferences correspond to closest assignments, applying CloseViolatedFacs
before applying Cánovas et al. (2007) yields a slight raise in the relative number of added constraints.
Applying ImplDem first, however, yields to a drop in the relative number of added constraints.

An explanation for the raise in the percentage of considered constraints after applying CloseViolatedFacs
is that keeping certain facilities closed can turn more preference sets equal; furthermore, closing facilities
decreases the denominator when computing the values depicted in the graphic. The decrease of the
percentages after applying method ImplDem is likely due to neglecting customers whose implied demand
can not be served at a considered facility. Especially in the case of preferences corresponding to closest
assignments, there seems to be a correlation between the number of implied customers and the ranking of a
facility: if a customer prefers a facility less, it is likely that their implied demand at that facility is violating
the facility’s capacity and the respective assignment variable is fixed to zero. Moreover, if a customer prefers
a certain facility less it is likely that their preference set coincides with the preference set of a customer who
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Figure 3: Percentages of added constraints derived from customers sharing the same preference sets regarding
a facility j ∈ J of all potential constraints, cf. Proposition 5.

likes the respective facility equally less.

Lastly, note that Cánovas et al. (2007) also introduce a fourth preprocessing method in which they
modify preference constraint (1d) in the integer linear program so that all customers with disjunct sets of
facilities they like less than the considered facility are summed up on the left-hand side of the inequality. We
restrain from considering this approach for two reasons. First, we don’t propose an extension of this method
in this work; we only propose extensions for preprocessing methods (a), (b), (c). Hence, the incorporation of
this method will not give us any information on the impact of our extensions. Second, it is computationally
expensive to compute sets of customers with disjunct sets of facilities they like less than the considered
facility. Cánovas et al. (2007) propose a transformation of the problem into an undirected graph with the
aim to compute cliques. However, the inequalities introduced in this paper are already difficult to solve and
we prioritise them in the available computational time.

We conclude that combining Cánovas et al. (2007) with our newly developed preprocessing methods
does not yield a clear advantage if preferences coincide with perturbed closest assignments. If preferences
coincide with closest assignments, only CloseViolatedFacs yields a relative increase of additionally considered
constraints from Cánovas et al. (2007); for the combination with method ImplDem, no clear statement is
possible. In the following, we discuss the solution process in Gurobi depending on the various preprocessing
combinations.

7.2.3 Impact of the preprocessing methods on Gurobi’s performance

In the following, we discuss whether the preprocessing methods from Section 4 have a positive impact on
the performance when solving the linear programming formulations of the considered instances with Gurobi.
We first analyse the time needed to build the model in Gurobi and to perform the preprocessing methods
from Section 4 up to the point that Gurobi starts its optimisation, including its own preprocessing; we
refer to this whole process as build-up time. Afterwards, we compare the optimality gaps of the various
approaches achieved by Gurobi within one hour minus the build-up time and determine the best-performing
preprocessing methods depending on the considered preference type.

Figure 4 shows the build-up times for the various preprocessing combinations and both preference types.
First, note that the build-up times for both preference types are very similar and they take at most 13
minutes for all instances and all methods. The build-up times for method CloseViolatedFacs are the fastest;
method Cánovas et al. (2007) as well as method CloseViolatedFacs combined with Cánovas et al. (2007) need
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Figure 4: Build-up times for different preprocessing methods and preference types

the largest amount of time. For the case that preferences correspond to closest assignments the remaining
preprocessing approaches yield similar build-up times of at most seven minutes; if preferences correspond
to perturbed closest assignments, methods ImplDem as well as CloseViolatedFacs combined with ImplDem
yield second-best results of at most six minutes. Interestingly, the build-up time for applying methods
CloseViolatedFacs and ImplDem does not increase compared to just applying ImplDem.

The short build-up times for methods CloseViolatedFacs and ImplDem are most likely do to the few
operations that have to be performed. The lack in the increase of the build-up times when combining
methods CloseViolatedFacs and ImplDem is likely due to the operations we don’t have to perform in
the latter method after fixing the location values to zero after performing the former method. The
long build-up times for methods Cánovas et al. (2007) and CloseViolatedFacs combined with Cánovas
et al. (2007) is likely due to the needed comparisons of all customers and all facilities for Cánovas et al. (2007).

Figure 5 depicts the remaining optimality gap in percent achieved by Gurobi after one hour and after
performing the various preprocessing combinations. This time includes the corresponding build-up times.
Within Gurobi, we set the number of threads to one; besides this, we do not modify any other default
parameters.

First, note that all instances are hard to solve by applying plain Gurobi. Here, Gurobi manages preferences
corresponding to perturbed closest assignments better than preferences corresponding to closest assignments.
Second, note that there is a difference in the performance of the various preprocessing methods depending
on the preference type. If preferences correspond to closest assignments, approaches involving method
ImplDem perform best. The approach combining ImplDem with Cánovas et al. (2007), in particular, nearly
halves the median achieved by applying plain Gurobi. Plain Gurobi and method CloseViolatedFacs perform
worst. Approaches involving method Cánovas et al. (2007) yield comparable results to plain Gurobi even
though their build-up times are greater than the build-up times of the remaining approaches. If preferences
correspond to perturbed closest assignments, all approaches yield similar results and the impact of the
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Figure 5: Remaining optimality gaps in percent for different preprocessing methods and preference types.
The white dotted line depicts the level of the lowest median amongst all approaches.

methods introduced in Section 4 does not seem to be relevant. Yet, plain Gurobi works better with this
preference type compared to the former type. Furthermore, under consideration of the interquartile range
and the lowest and highest values, plain Gurobi performs best.

The poor performance of the introduced preprocessing methods and their combinations if preferences
correspond to perturbed closest assignments is likely due to the small impact of the preprocessing, which
is outweighted by the built-up time needed. There might be two reasons for the smaller impact. First, as
mentioned before, a lot of structure disappears when considering perturbed preferences, as seen for method
ImplDem in Figure 1.

In conclusion, applying ImplDem combined with Cánovas et al. (2007) as preprocessing yields the best
performance if preferences correspond to closest assignments. Otherwise, none of our approaches yields clear
improvement. Hence, for the case of perturbed closest assignments, future work might revolve around new
preprocessing ideas. Next, we consider the valid inequalities from Section 5.

7.3 Valid inequalities
In the following, we evaluate the relevance of valid inequalities (I)C, E(I)C, L(I)C as well as inequalities
RemElem, RemAll, RemOBO with and without implied-demands and ImplFac, cf. Table 1. We
consider the performance of each of these inequalities on their own and, for selected inequalities, their
combinations. Here, we utilise the findings from the analysis of the preprocessing approaches from before
and consider the best-performing preprocessing approaches for each preference type. Hence, if preferences
correpond to closest assignments, we consider preprocessing ImplDem combined with Cánovas et al. (2007).
Otherwise, we do not consider any preprocessing from Section 4.
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Figure 6: Reduction of the integrality gaps for the valid inequalities discussed in Section 5. Due to lack of
memory, no bounds could be computed for instances i300− {10, 14, 18} with methods C, EC and LC.

Before we discuss the results of our computational tests, we briefly describe the setting. We measure the
performance of the considered inequalities through the reduction of the integrality gap. In order to compute
this value, we start by considering a solution for the relaxation of integer linear program (1), which provides
a lower bound on the optimal integer solution. We gradually add violated inequalities to integer program (1);
these inequalities are found by solving the separation problem for the considered inequality-family. If we
don’t find further violated inequalities, we compute new lower bounds. This iteration ends when there is no
improvement in the computed lower bound anymore. We denote this final lower bound with x∗

LP ′ . Denote the
best known IP-solution computed in the previous subsection with x∗

IP and the lower bound corresponding to
the solution of the relaxation of formulation (1) with x∗

LP . Then, we measure the reduction of the integrality
gap through r = (1− (x∗

IP − x∗
LP ′)/(x∗

IP − x∗
LP )) · 100.

To assess the impact of our inequalities without side effects, we deactivate Gurobi’s presolve and heuristics.
Furthermore, we provide one hour for the process of computing the reduction of the integrality gap and refer
to Section 6 for further information on solution approaches for the separation problems to be solved in this
section. If we combine inequalities, the ordering of the combination is reflected in the name. Furthermore, we
distribute the given time equally among all considered inequalities in the combination. If no more violated
inequalities are detected within the given time interval, we distribute the remaining time equally amongst
the separation of the remaining inequalities. As an example, suppose four inequalities are combined. Then,
we determine and add violated inequalities for the first inequality for 15 minutes. Based on the formulation
after 15 minutes, we detect and add violated inequalities for the second inequality for 15 minutes. If no further
violated inequalities are found after 10 minutes, each of the remaining two inequalities will be considered
for 17.5 minutes.
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Figure 7: Reduction of the integrality gaps for the valid inequalities discussed in Section 5. Due to timeouts
or lack of memory, some bounds could not be computed for some instances for methods C, EC, LC and EIC
- Impl.Dem.; furthermore, bounds for RemElemIC could only be computed for 50% of the considered
instances, in the remaining instances, no improvement was done - this is not depicted in the graphic.

7.3.1 Reduction of the integrality gap

Figure 6 depicts the reduction of the integrality gap for the inequalities discussed in Section 5 in case that
preferences correspond to closest assignments. The graphic on the left-hand-side shows the results of cover
inequalities and their extensions; the graphic on the right-hand-side shows the computational results for the
remaining inequalities.

First, note that the traditional cover inequalities do not have a high impact. Moreover, for inequali-
ties C, EC and LC no bounds could be computed for instances i300−{10, 14, 18}. On the contrary, strength-
ened cover-based inequalities RemOBO and RemOBOIC as well as the combination of RemOBOIC with
ImplFac and RemAllIC perform best. Their median is at least seven times higher than the median re-
ceived from applying traditional cover inequalities. Second, the idea of implied-demand covers yields a
visible improvement for nearly all inequalities and none of the inequalities depending on implied-demand
covers run into memory problems. Third, note that inequalities ImplFac, which do not rely on customer
assignments, perform better than cover inequalities and their extensions but worse than nearly all of the
strengthened cover inequalities. Lastly, combining the best-performing valid inequalities does not yield clear
improvements.

While the classical cover inequalities and their extensions do not seem to perform well, strengthening
them yields strong results and their effectiveness in a branch-and-cut approach should be tested in future
work. Furthermore, considering implied-demand covers eases the computations and allows for more
instances to be solved.

Figure 7 shows the reduction of the integrality gap for the inequalities discussed in Section 5 if preferences
correspond to perturbed closest assignments. Like before, the graphic on the left-hand-side corresponds to
the cover inequalities and their extensions, the graphic on the right-hand-side corresponds to the strengthened
cover-based inequalities.
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Figure 8: Found violated inequalities and time needed for computing the integrality gap.

First, note that traditional cover inequalities have close to no impact. Furthermore, none of the strength-
ened cover-based inequalities has a strong impact compared to their performance in the former preference
type. Here, inequalities RemOBO and ImplFac perform best and combining the inequalities does not
yield improvements. Second, note that the consideration of implied-demand covers does not offer much
improvement. In some cases, considering implied-demand covers worsens the performance. Third, note that
not all approaches managed to yield results for all inequalities: due to timeouts or lack of memory, meth-
ods C, EC and LC did not yield bounds for instances i300− {1, 2, 4, 7, 8, 9, 10, 15, 18, 19}; approach EIC -
Impl.Dem. was not able to return bounds for instance i300 − 5, approach RemElemIC did not succeed
for instances i300− {1, 2, 3, 4, 5, 7, 8, 9, 10}.

These computations underline that the choice of preference constraints has a strong impact on the
performance of the inequalities discussed in Section 5. Furthermore, they reveal that the structures utilised
by inequalities ImplFac are less affected by changes in the preference constraints. Yet, they lead to a
higher complexity when considering inequalities RemElemIC . Lastly, note that while the computational
results look dire in case that preferences correspond to perturbed closest assignments, the strengthened cover-
inequalities have a positive potential. If we compare their performance to the performance of traditional
cover inequalities, we manage to close the integrality gap by a lot. However, as mentioned before, these
results emphasise the need for new approaches to deal with general preference constraints.

7.3.2 Found violated inequalities and time needed

Lastly, we take a closer look at the number of detected violated inequalities during the process of computing
the reduction of the integrality gap as well as the time needed to detect all violated inequalities. As
mentioned before, we let Gurobi compute the reduction of the integrality gap for one hour.

Figure 8 shows the number of violated inequalities found during the computation of the reduction of the
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Figure 9: Found violated inequalities and time needed for computing the integrality gap.

integrality gaps as well as the time needed to find these inequalities for the case that preferences correspond
to closest assignments. First, note that a lot of violated inequalities are detected for all strengthened cover-
based approaches except for RemElem and ImplFac. In comparison, only a few violated cover inequalities
and their extensions are not found. Second, note that the number of detected violated inequalities decreases
for most of the strengthened cover-based inequalities when considering implied-demand covers. Third, all
strengthened cover-based inequalities except for RemElem and ImplFac don’t finish within the given time
while the computations for the traditional cover inequalities and their extensions finish after 2 000 seconds
at the latest. Yet, there is a slight raise in the number of violated inequalities detected for strengthened
cover-based inequalities. Here, considering implied-demand covers yields a raise in the running time.

The raise in the number of detected strengthened cover-based inequalities, except for ImplFac, is
responsible for the improved value of the reduction of the integrality gap. Since not all violated inequalities
are found within the time limit, these inequalities have further potential. All violated inequalities are found
for the remaining inequalities. Here, it is worth mentioning the performance of inequalitis ImplFac. While
not a lot of violated inequalities ImplFac are detected, these inequalities yield a noteworthy increase of the
reduction of the integrality gap compared to traditional cover inequalities - for which a similar number of
violated inequalities is found. The poor performance of the traditional cover inequalities and their extensions
might be due to the presence of the preference constraints. These new constraints do not allow to add
just any customer to the cover - conversely to cover inequalities occurring in traditional capacitated facility
location problems. Hence, considering preference constraints seem to weaken the impact of cover inequalities.

Figure 9 depicts the number of violated inequalities found during the computation of the reduction of the
integrality gaps as well as the time needed to find these inequalities for the case that preferences correspond to
perturbed closest assignments. Here, the number of found violated inequalities is more homogeneous across
the considered inequalities compared to the previous preference type. The running times for computing the
reduction of the integrality gaps behaves similar to the former preference type. Yet, there is a raise in the
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time needed if preferences correspond to perturbed closest assignments.
The computational results suggest that strengthened cover-based inequalities are stronger than tradi-

tional cover inequalities. Since none of the strengthened cover-based inequalities, besides RemElem and
ImplFac detect all violated inequalities within one hour, their potential might be even higher.

In general, future work might work on fast solution methods for solving strengthened cover-based inequal-
ities that did not terminate within one hour. Furthermore, valid inequalities utilising different underlying
structures should be explored.

8 Conclusion
In this paper, we study preprocessig methods and valid inequalities for the single-source capacitated facility
location problem with customer preferences (SSCFLPCP). While (capacitated) facility location problems are
already well studied, less research has been conducted on the SSCFLPCP. Considering customer preferences,
however, is important in settings, where customers can choose a facility which serves their demand.

The main contributions in this work are two novel preprocessing methods, which reduce the size of the
considered integer programming formulation, the introduction of the concept of implied-demand covers,
which generalise normal covers by simultaneously considering preferences of customers and capacities of
facilities, a study of the complexity of finding implied-demand covers as well as new, cover-based valid
inequalities, which decrease the integrality gaps. More specifically, the first preprocessing method fixes
location variables if the corresponding facility is not capable of serving the customers who prefer it most.
The second preprocessing method fixes allocation variables if a facility is not able to serve the demand of a
customer assigned to it as well as the demands of customers who strictly prefer the same facilities over the
considered facility as the assigned customer. We propose and analyse inequalities for the SSCFLPCP based
on implied-demand covers, which incorporate information on assignments of customers in the cover that are
not assigned to the covered facility. We discuss solution approaches for the separation problems belonging to
our new inequalities. All of our new inequalities are also valid, yet weaker, for traditional covers. Finally, we
test the computational potential of our findings in a computational study. Here, we discover that the choice
of preferences has a great impact on the performance of our preprocessing and valid inequalities. While
our approaches work well if preferences coincide with closest assignments, their impact is much smaller if
preferences coincide with perturbed closest assignments. Yet, within computations for the latter preference
type, our approaches perform better than traditional cover inequalities.

This work reveals that there are a lot of open research questions waiting. First, the complexity study of the
separation problems shows that there are optimal solutions to the studied linear relaxation of formulation (1)
for which the separation problems are strongly NP-hard. These solutions are no extreme points, though, and
state-of-the-art solvers, who compute optimal solutions for the relaxation of (1) via the simplex algorithm,
will not find them. Hence, it is yet to be determined to which complexity class the separation problems for
extreme points belong. Second, the computational study shows that there is potential in the strengthened
cover inequalities. This potential is held back by slow methods for solving the separation problems. Here,
it is important to develop faster, well-performing heuristics for solving these problems. This is especially
important if the inequalities are to be used in competitive branch-and-cut approaches. Third, we observe
that our preprocessing methods and inequalities perform worse when preferences coincide with perturbed
closest assignments. Future work might also include the study of preprocessing methods and inequalities
which perform better for this preference type.
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Appendix
In this appendix, we give omitted proofs for the complexity results in Section 6. For implied-demand covers,
the result is as follows.

Proposition 6. Let j ∈ J be a facility. There exists an optimal solution (x̄, ȳ) ∈ [0, 1]|I||J|+|J| for the linear
relaxation of (1) for which finding an implied-demand cover I ′ ⊆ I such that inequality

∑
i∈I′ xij ≤ |I ′| − 1

is maximum violated is strongly NP-hard.
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Proof. We reduce from the strongly NP-hard minimum set cover problem. We consider a minimum set cover
instance I consisting of an universe U = {1, 2, . . . , n} and a collection S of m subsets of universe U and the
goal is to decide whether there is a sub-collection of S of size K ∈ Z≥0 whose union equals the universe.
W.l.o.g., we assume that collection S does not contain subsets s1, s2 with s1 ⊆ s2 and that each element of
the collection S contains at least two elements.

For the reduction, we can transform instance I into an SSCFLPCP-instance I ′ in a similar manner to
the proof of Theorem 1. That is, we introduce one customer i for each element u ∈ U in the universe, one
customer k for each element s ∈ S and denote the set of customers with I. We set the demand of each
customer i ∈ I to one, i.e., it is di = 1. Define the set of facilities as J = ∪i∈I{ji} ∪ {j}. The set of
facilities customer i ∈ I corresponding to an element u ∈ U prefers over j is defined as J<

ij = {ji} and it
is J=

ij = {j}. The set of facilities customer k ∈ I corresponding to an element s ∈ S prefers over j is defined
as J<

kj = ∪e∈sJej
< ∪ {jk} and it is J=

kj = {j}. Set the opening cost of facility j to zero and its capacity
to Qj = K + |U |. Furthermore, set the capacities of facilities a ∈ J \ {j} to one and their opening costs
to (|U | + |S|)2, i.e., it is Qa = 1 and fa = (|U | + |S|)2. We set the assignment costs of a customer i ∈ I to
all facilities a ∈ J≤

ij to one and the remaining assignment costs to two. Then, we extended instance I ′ to a
complete instance of SSCFLPCP. An LP-solution is defined as

ȳk =

{
1 if k = j

(|S| −K)/(|S|+ |U |) otherwise

as well as

x̄ik =


(K + |U |)/(|S|+ |U |) if k = j

(|S| −K)/(|S|+ |U |) if k = i

0 otherwise

for each customer i ∈ I and facility k ∈ J corresponds to a feasible solution for considered SSCFLPCP-
instance as we see next.

• The sum over assignment-variables to facilities for each customer is equal to one, i.e.,
∑

k∈J x̄ik =
(K + |U |)/(|S|+ |U |) + (|S| −K)/(|S|+ |U |) = 1 for all customers i ∈ I.

• The capacity of each facility is not violated, i.e.,
∑

i∈I x̄ij =
∑|S|+|U |

i=1 (K + |U |)/(|S|+ |U |) = K + |U |
for facility j and

∑
i∈I x̄ia = (|S| −K)/(|S|+ |U |) +

∑
i∈I\{a} 0 = (|S| −K)/(|S|+ |U |) ≤ 1 = Qj for

facility a ∈ J \ {j}.

• The preference constraint is met for each customer i ∈ I and facility a ∈ J . Since facility j is fully open,
no customer may be assigned to a facility they like less than j, which is true in the considered solution.
Consider a facility a ∈ J \ {j} which has LP-value ȳa = (|S| −K)/(|S|+ |U |). Suppose i corresponds
to a customer who prefers one facility over j; then, 1− (|S| −K)/(|S|+ |U |) = (K + |U |)/(|S|+ |U |) of
their demand may be assigned to a facility they like less. We can argue in a similar manner that the
preference constraint is not violated for customers who prefer more than one facility over j.

• The constraint connecting the value of the assignment variable and the location variable is also met.

Hence, this constructed solution is feasible. The solution is also of minimum cost. Since opening facility j
is cheap, it will be open in any feasible solution. However, facility j can only serve a demand of K + |U |,
thus leaving the demand to be served at different facilities by |S| − K. Since all remaining facilities have
the same opening costs, opening a few completely or all facilities partially does not have an impact on the
objective value. Since all customers have the same travel-distance to facility j or the facilities they prefer
over j, their assignment does not have an impact on the assignment costs. In conclusion, this solution is of
minimum cost.

Multiplying the cost-parameters of each customer i ∈ I with factor 1 − (K + |U |)/(|S| + |U |) in the
proof of Theorem 1 and looking for a solution with cost of at most K · (1 − (K + |U |)/(|S| + |U |)) turns
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instance I ′ into an instance of the separation problem for inequalities (3).

Note, however, that this result only implies the existence of a LP-solution for which the separation problem
is NP-hard. It is still unknown whether the separation problem is strongly NP-hard if the considered LP
solution is an extreme point.

The complexity of determining an extended implied-demand cover, given a cover, is studied in the fol-
lowing.

Proposition 7. Let I ′ ⊆ I be an implied-demand cover for a facility j ∈ J and suppose the goal is to
find a (maximally) violated extended implied-demand cover inequality based on I ′. There exists an optimal
solution (x̄, ȳ) ∈ [0, 1]|I||J|+|J| for the linear relaxation of (1) for which finding an extended implied-demand
cover maximising the total violation is strongly NP-hard.

Proof. Let (x̄, ȳ) ∈ [0, 1]|J|+|I|·|J| a solution to the LP relaxation of (1). Suppose we are given a implied-
demand cover. In order to find a maximum violated extended implied-demand cover inequality, our goal is to
determine a set E ⊆ I \I(I ′, j) of customers with maximum sum of relaxed assignment values for which there
exists a sequence (1, . . . |E|) of E such that rℓ(I ′ ∪ {1, . . . ℓ}, j) ≥ rmax(I

′, j) holds for all ℓ ∈ {1, . . . , |E|}. For
the sake of simplicity, we consider the corresponding decision problem. That is, we want to decide whether
there is a set E as described above with maximum sum of relaxed assignment values of at least a certain
value.

We prove our claim via a reduction from the NP-complete problem exact cover by 3-sets (Garey and
Johnson, 1979). Consider an instance I of exact cover by 3-sets consisting of a universe U with |U | = 3 · q,
for a q ∈ Z>0, and a collection S of subsets of universe U with |s| = 3 for all s ∈ S. The goal is to decide
whether there is a subcollection S′ ⊆ S that satisfies the following two conditions. First, the intersection
of any two distinct subsets in subcollection S′ is empty; second, the union of the elements in S′ is equal to
set U . W.l.o.g. we assume that collection S does not contain subsets s1, s2 with s1 ⊆ s2.

We transform instance I into an instance I ′ of the separation problem as follows. Introduce one customer
for each element in set U as well as one customer for each element in collection S. We denote this set of
customers with I. Furthermore, we introduce two extra customers ι, ι′, which correspond to implied-demand
cover I ′. We set the demand of each customer i ∈ I to di = 1 and the demand of customers ι, ι′ to dι = dι′ = 4.
Define the set of facilities as J = ∪i∈I{ji} ∪ {jι, jι′} ∪ {j}. Note that in this setting we are interested in a
cover for facility j. Hence, it suffices to define sets J<

ij and J=
ij for all customers i ∈ I and customers ι, ι′.

We set the set of facilities a customer i ∈ I is indifferent to J=
ij = {j} for all customers in set I and set the

set of facilities a customer i ∈ I strictly prefers over j to J<
ij = {ji} if customer i corresponds to an element

in universe U and set J<
ij = ∪e∈sJ

<
ej ∪ {ji} if customer i corresponds to set s ∈ S. Note that a customer

corresponding to elements s ∈ S implies the assignment to j of all other customers corresponding to items
in set s. For customers ι, ι′, define the preference sets as J=

ιj = J=
ι′j = {j} and J<

ιj = {jι}, J<
ι′j = {jι′}.

We set the capacity of facility j to Qj = 7 with opening costs of fj = 7 and the capacity of the remaining
facilities to Qa = 1 if a ∈ J \{j, jι, jι′} with opening costs of fa = 1 and Qa = 4 with opening costs of fa = 4
otherwise.

We set the LP-value regarding the assignment to facility j of each customer i ∈ I to xij = 1/(|U |+ |S|)
and the LP-values of customers ι, ι′ to xιj = xι′j = 3/4. It follows immediately facility j serves a total
demand of 7. We assign the remaining demand of each customer to facilities they strictly prefer over j. This
is indeed possible per construction of the instance. We can construct a full SSCFLPCP-instance in which
this solution corresponds to an actual LP solution in a similar manner to the proof of Theorem 9. We omit
this step for the sake of simplicity.

Per construction, the maximum contribution of a customer in given implied-demand cover I ′ is equal
to 4. Our goal is to find a subset E of customers in I such that (a) there exists a sequence (1, . . . , |E|) of E
such that rℓ(I

′ ∪ {1, . . . , l}, j) ≥ rmax(I
′, j) = 4 holds for all ℓ ∈ {1, . . . , |E|} and (b) the sum of assignment

values of elements in E is above a certain value.
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In conclusion, our goal is to prove that there is an exact cover by 3-sets for instance I of at least q if
and only if there is an extended implied-demand cover with set E having a sum of LP-values regarding the
assignment to facility j of at least q/(|U |+ |S|).

Let S′ be a solution for instance I consisting of at least q sets. We can transform this solution into
a feasible solution for instance I ′ as follows. Add all customers in set I corresponding to an item in
subcollection S′ to set E. Then, the sum of the LP-values regarding the assignment to facility j of customers
in set E is at least q/(|U |+ |S|). Moreover, the individual contribution of each customer in set E is at least
four: each of the customers has a demand of one, each of them implies exactly three customers corresponding
to elements in universe U and no two customers in set E imply the same customers per construction. Since
the individual contribution of customers in set E is independent of one another, we can add them in an
arbitrary sequence.

Conversely, let E be a solution for instance I ′ with sum of LP-values of at least q/(|U |+ |S|). Note that
set E contains only customers corresponding to sets in collection S. Otherwise, the individual contribution
of the customers would be too small. Hence, add the sets corresponding to the customers in set E to the
solution of instance I. It remains to show that the constructed solution covers all customers in universe U
and no two sets in the solution share the same item. The latter claim holds true - otherwise, at least one
of the corresponding customers in set E would have an individual contribution strictly lower than four; in
this case, the customer would not have been considered in set E in the first place. Suppose the solution for
instance I does not cover all elements in universe U . Then, due to the previous argument, at least three
elements in universe U are uncovered. Since at least three customers are uncovered and no two sets in the
solution share the same customer, we cover at most 3 · (q − 1) customers with at most q − 1 sets - since
universe U consists of 3 · q elements. In this case, set E consists of at most q − 1 customers and the sum
of assignment values adds up to at most (q − 1)/(|U |+ |S|). This value is strictly lower than the demanded
value of q/(|U |+ |S|) - a contradiction. Thus, the constructed solution is indeed a feasible solution for
instance I and our claim follows.

For finding an optimal sequence for pulling elements to the right-hand side in inequalities RemOBO,
the following result holds.

Proposition 8. Let I ′ ⊆ I be an (implied-demand) cover for a facility j ∈ J . There exists an optimal
solution (x̄, ȳ) ∈ [0, 1]|I||J|+|J| for the linear relaxation of (1) for which determining the order in which
customers in I ′ are to be considered on the right-hand side of inequality RemOBOIC in order to find a
(maximum) violated inequality is strongly NP-hard.

Proof. We prove our claim via a reduction from minimum set cover and consider the corresponding decision
problems. Given a minimum set cover instance I consisting of an universe U = {1, 2, . . . , n} and a collection S
of m subsets of universe U , the goal is to decide whether there is a sub-collection of S of size K ∈ Z≥0 whose
union equals the universe. W.l.o.g. we assume that collection S does not contain subsets s1, s2 with s1 ⊆ s2
and that each element of collection S contains at least two elements.

We transform I into an instance I ′ of the decision version of the separation problem for inequalities (9).
Introduce one customer i for each element u ∈ U in the universe and one customer k for each element s ∈ S.
Denote the set of customers with I and set the demand of each customer i ∈ I to one, i.e., it is di = 1.
Define the set of facilities as J = ∪i∈I{ji} ∪ {j}. The set of facilities a customer i ∈ I corresponding to an
element u ∈ U prefers over j is defined as J<

ij = {ji} and J=
ij = {j}. The set of facilities a customer k ∈ I

corresponding to a subset s ∈ S prefers over j is defined as J<
kj = ∪e∈sJ

<
ej ∪ {jk} and J=

kj = {j}. All
customers corresponding to elements in collection S imply the assignment of customers corresponding to
universe-items occurring in the considered subset to j and we don’t have any implication cycles. Like in
the proof of Proposition 6, we set the opening cost of facility j to zero, i.e., fj = 0, and its capacity
to Qj = |U | + K. Set the opening costs of facilities a ∈ J \ {j} to fa = (|U |2 + |S|2) and the capacities
to one, i.e., Ca = 1. We set the assignment costs of each customer to facility j as well as to each facility
they prefer over j to one. We set the assignment costs to all remaining facilities to two. Then, instance I ′

corresponds to a full instance of the SSCFLPCP.
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We construct a fractional solution for the LP-relaxation of (1) as follows. We set the values of the assign-
ment variables of customer i ∈ I to facility j to x̄ij = (K+|U |)/(|S|+|U |) and the sum of values of the assign-
ment variables to a facility in J<

ij to
∑

a∈J<
ij
x̄ia = (|S| −K)/(|S|+ |U |), i.e., it is ci = (|S| −K)/(|S|+ |U |),

and assume that the value of the assignment variable of a customer k ∈ I corresponding to a subset s ∈ S
to a facility in J<

kj \ {jk} is equal to zero. Hence, we have

x̄ia =


(K + |U |)/(|S|+ |U |) if a = j

(|S| −K)/(|S|+ |U |) if a = i

0 otherwise

for each i ∈ I, a ∈ J . We set the lower bound for the demands to Qj + 1 = K + |U |. In order to extend
the solution to a complete LP solution, set the decision variable regarding whether facility j is open to one,
i.e., ȳj = 1, and the decision variables regarding whether each facility at least one customer in I strictly
prefers over j is open to (|S| −K)/(|S|+ |U |). It is not hard to see that the choice of assignment variables
satisfies all constraints of IP (1) and minimises the objective function.

The goal is to decide whether there is a set of customers Ī ⊆ I with implied demand of at least Qj + 1
so that the sum of assignments of non-implied customers in Ī to facilities they strictly prefer over j is equal
to K ·(|S|−K)/(|S|+|U |). First, note that through our choice of values to the assignment-variables, we don’t
have to take overlapping preference-sets into account when considering customers corresponding to elements
in collection S. Second, note that we don’t subtract anything in the objective function of instance I ′ even
though this is part of the separation problem. This, however, is not problematic. We will show that any
cover of interest must consist of customers corresponding to elements in collection S. Per construction, each
customer corresponding to an element in collection S has the same pattern behind their assignment value
to facility j and facilities they strictly prefer over j. Then, it suffices to compute a solution with minimum
cost. Afterwards, we pick a random, non-implied customer and subtract their assignment-value to a facility
they strictly prefer over j as well as their assignment-value to facility j from the objective value. This yields
a value of (K · |S| −K2 − |S| − |U |)/(|S|+ |U |) ∈ R. If this value is smaller than zero, the implied-cover
we found implies a maximum violated inequality (9). Instance I ′ can clearly be constructed in polynomial
time.

In order to prove our claim, we show that there is indeed a cover of size K for instance I if and only if
there is a solution Ī ⊆ I for instance I ′ where the sum of assignment-values of customers in Ī that are not
implied by other customers in Ī to facilities they strictly prefer over j corresponds to K ·(|S|−K)/(|S|+ |U |).

Suppose there is a minimum cover for instance I consisting of K elements and denote this sub-collection
with S′. In order to construct a solution for instance I ′, assign all customers corresponding to elements
in set S′ ∪ U to the cover Ī. Then, the demand of the customers corresponds to K + |U | on the left-hand
side of the capacity constraint, which satisfies the constraint. Due to the construction of instance I ′, the
customers in set Ī are not implied by other customers correspond to items s ∈ S′. Hence, we have a solution
where the sum of assignment-costs of non-implied customers in Ī to a facility they prefer over j corresponds
to K · (|S| −K)/(|S|+ |U |).

Conversely, suppose set Ī corresponds to a solution for instance I ′ with the sum of assignment-costs of
non-implied customers in Ī to a facility they prefer over j having value K · (|S| −K)/(|S| + |U |). Observe
first that all customers corresponding to an element in universe U are added to the cover. Suppose there
is at least one such customer not added to the cover. In order to still satisfy the budget constraint, we
have to assign at least K + 1 customers corresponding to items in collection S. However, this yields an
objective value of (K + 1) · (|S| − K)/(|S| + |U |) > K · (|S| − K)/(|S| + |U |), a contradiction to our
underlying assumption. Second, we observe that all customers corresponding to elements in U are implied
by at least one customer in set Ī corresponding to an element in set S each. Suppose at least one customer
corresponding to an element in universe U is added to cover Ī and is not implied by another customer in Ī.
In this case, K + 1 customers are not implied by another customer and the solution has an objective value
of (K + 1) · (|S| −K)/(|S|+ |U |) > K · (|S| −K)/(|S|+ |U |), which is again a contradiction to the solution
having objective value K · (|S| −K)/(|S|+ |U |). Given these results, we construct a solution for instance I
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as follows. Add all sets in collection S corresponding to customers in set Ī to the minimum cover. Thus, the
constructed minimum cover has size K and it follows immediately that all elements in U are covered by at
least one set in the minimum cover. Hence, the constructed solution is a minimum cover for instance I and
our claim follows.

For the cover-based inequalities that are not based on cover inequalities, the following result holts.

Proposition 9. Let j ∈ J be a facility. There exists an optimal solution (x̄, ȳ) ∈ [0, 1]|I||J|+|J| for the linear
relaxation of (1) for which finding a maximum violated inequality yj ≤

∑
k∈(∪i∈I′J

≤
ij )\{j}

yk with I ′ ⊆ I an
(implied-demand) cover is strongly NP-hard.

Proof. We prove that the decision version of the separation problem is strongly NP-complete via a reduction
from 3-Sat (Garey and Johnson, 1979). The proof is similar to the reduction from 3-Sat to Clique in Sipser
(1996). Consider an instance I of 3-Sat consisting of a set U of variables and a collection C of clauses over U
such that clause c ∈ C consists of three literals. Our goal is to decide whether there is a satisfying truth
assignment for C. In this proof, we assume that set C consists of K > 2 clauses.

We transform instance I into an instance of the separation problem for inequalities (11) as follows.
Introduce one customer i for any two clause-literal-pairs {(c, u), (d, v)} with clauses c, d ∈ C with c ̸= d
and literals u ∈ c, v ∈ d with u, v are not each other’s negations. Denote the set of customers with I. The
number of customers lies in O(9 · |C|2). We set the demand of each customer to one, i.e., it is di = 1 for
all i ∈ I. We define the set of facilities J as follows. Introduce one facility j. Furthermore, introduce
one facility jcu for each clause-literal-pair (c, u) with c ∈ C, u ∈ c and one customer-specific facility ji for
each i ∈ I; this yields O(|C|2) facilities. We define the preference set of a customer i ∈ I corresponding to
clause-literal pair {(c, u), (d, v)} as J=

ij = {j} and J<
ij = {ji, jcu, jdv}. Note that no customer is implied by

another customer regarding facility j in this instance; hence, this proof also holds for the case where classical
covers are considered. Set the capacity of facility j to K · (K − 1)/2, i.e., Qj = K · (K − 1)/2, and the
capacity of the remaining facilities a ∈ J \ {j} to Qa = |{i ∈ I : a ∈ J<

ij }|.
Last but not least we construct a fractional solution for the LP-relaxation of (1). Set the values of the

location variables to

ȳa =


1 if a = j,

(|I| −Qj)/(2 · |I|) if a ∈ J \ (∪i∈I{ji} ∪ {j}),
0 if a ∈ I

and the values of the allocation variables to

x̄ia =


Qj/|I| if a = j,

(|I| −Qj)/(2 · |I|) if a ∈ J<
ij \ {ji},

0 otherwise.

for each customer i ∈ I. This solution corresponds to a feasible solution with optimum value.
First, observe that the values of all decision variables lie in interval [0, 1]. This claim is obviously true

for the location variables. It also holds for the allocation variables. In order to prove the claim we show
that inequality Qj ≤ |I| holds. Given K clauses, there needs to be at least one pair {(c, u), (d, v)} for any
two clauses c, d ∈ C with c ̸= d with at least one literal u ∈ c, v ∈ d in each clause such that u, v are not
each other’s negations. Otherwise, we can determine in polynomial time that the instance is infeasible. This
yields at least K · (K − 1)/2 customers in set I and it is x̄ik ∈ [0, 1] for any i ∈ I, k ∈ J .

Second, we show that the constructed LP solution meets all constraints. Each customer is assigned
completely to open facilities since

∑
a∈J x̄ia = Qj/|I| + 2 · (|I| − Qj)/(2 · |I|) = 1 holds. Per construction,

the capacity of each facility is met. Furthermore, the preference constraints hold. Since facilities each
customer i ∈ I strictly prefers over j is open with (|I| − Qj)/(2 · |I|), the demand of customer i assigned
to j may be at most 1 − (|I| −Qj)/(2 · |I|) = (|I| +Qj)/(2 · |I|), which is greater than Qj/|I| due to valid
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inequality Qj ≤ |I|. Hence, this solution meets the preference constraints. Finally, the linking constraints,
i.e., x̄ij ≤ ȳj for i ∈ I, j ∈ J , obviously hold true.

Last but not least, observe that fractional solution (x̄, ȳ) ∈ [0, 1]|I|·|J|+|J| is indeed a feasible, cost-
minimising solution for instance I. If we set the opening costs so that opening facility j induces a cost of zero
and opening one of the facilities a ∈ J \ {j} induces a cost of |I| each and define that the distance between
any customer i ∈ I and any facility k ∈ J is equal to one, solution (x̄, ȳ) corresponds to a cost-minimising
LP solution. Note, though, that this solution is not an extreme point.

It remains to prove that there is a satisfying truth assignment for C in instance I if and only if there is
a subset I ′ ⊆ I of customers with weight of at least Qj + 1 and value

∑
a∈∪i∈I′

ya = K · (|I| −Qj)/(2 · |I|)
for instance I ′.

Suppose C has a satisfying assignment in instance I, i.e., at least one literal is true in each clause.
For each clause c ∈ C consider exactly one arbitrary literal u ∈ c with value TRUE and add the facility
corresponding to this clause-literal-pair (c, u) to the set of facilities strictly preferred by at least one customer
in set I ′ over j. We select one literal with value TRUE per clause; this yields K distinct facilities, which
are supposed to be strictly preferred by customers in set I ′ over j, and the sum of the fractional LP-values
for those facilities adds up to K · (|I| − Qj)/(2 · |I|). Denote this set of facilities with J ′. It remains to
show that there is a subset I ′ ⊆ I of customers in instance I ′ with |I ′| ≥ Qj + 1 and ∪a∈∪i∈I′J

<
ij = J ′.

We add a customer for each pair of clause-literal-pairs corresponding to selected facilities in J ′ to set I ′.
Such a customer exists because the corresponding clause-literal-pairs do not satisfy one of the exceptions
described before: we only add one facility per clause to set J ′ and the literals in the corresponding clause-
literal-pairs don’t have contradictory truth-values since we only select among facilities corresponding to a
clause-literal-pair where the literal has value TRUE. This yields a total of K · (K − 1)/2 customers in set I ′

and the constructed solution satisfies the budget constraint. Furthermore, per construction, we count the
LP-value regarding opening those facilities at least one customer in set I ′ strictly prefers over j. Hence,
set I ′ corresponds to a solution of instance I ′.

Conversely, consider a feasible solution for instance I ′ consisting of a subset of customers I ′ with demand
of at least K · (K − 1)/2 and the set of facilities at least one customer in I ′ strictly prefers over j, denoted
with J ′, consisting of K facilities with objective value K · (|I| − Qj)/(2 · |I|). Assign TRUE to literal u
in clause c if there is a customer in set I ′ who strictly prefers the facility corresponding to clause-literal-
pair (c, u) over facility j. Observe that there is one literal with value TRUE in each clause. Suppose there
is a clause containing two literals with value TRUE. Then, there is no customer corresponding to a pair of
clause-literal-pairs where the clause is the same in both pairs and we only consider a set I ′ consisting of at
most K · (K−1)/2−1 customers. This would yield a violation of the budget constraint in instance I ′. Thus,
each of the K clauses has exactly one literal set to TRUE. We assign the truth-values to the variables in U
so that each clause-literal-pair (c, u) corresponding to a facility considered in set J ′ is made true. Doing so
is always possible because there is no customer in set I who strictly prefers two facilities with contradictory
literals simultaneously over facility j; hence, such customers do not exist in set I ′. This assignment to the
variables satisfies a truth-assignment because for each clause there is one clause-literal-pair corresponding
to a facility in J ′ and hence each clause contains a literal that is assigned a TRUE-value. Thus, our claim
follows.
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