
Immunity to Increasing Condition
Numbers of Linear Superiorization

versus Linear Programming

Jan Schröder1, Yair Censor2, Philipp Süss1 and Karl-Heinz Küfer1

1Optimization Department, Fraunhofer - ITWM,
Kaiserslautern 67663, Germany

2Department of Mathematics, University of Haifa, Mt. Carmel,
Haifa 3498838, Israel

July 26, 2024

Abstract

Given a family of linear constraints and a linear objective function
one can consider whether to apply a Linear Programming (LP) algo-
rithm or use a Linear Superiorization (LinSup) algorithm on this data.
In the LP methodology one aims at finding a point that fulfills the
constraints and has the minimal value of the objective function over
these constraints. The Linear Superiorization approach considers the
same data as linear programming problems but instead of attempting
to solve those with linear optimization methods it employs pertur-
bation resilient feasibility-seeking algorithms and steers them toward
feasible points with reduced (not necessarily minimal) objective func-
tion values. Previous studies compared LP and LinSup in terms of
their respective outputs and the resources they use. In this paper we
investigate these two approaches in terms of their sensitivity to condi-
tion numbers of the system of linear constraints. Condition numbers
are a measure for the impact of deviations in the input data on the
output of a problem and, in particular, they describe the factor of
error propagation when given wrong or erroneous data. Therefore,
the ability of LP and LinSup to cope with increased condition num-
bers, thus with ill-posed problems, is an important matter to consider
which was not studied until now. We investigate experimentally the
advantages and disadvantages of both LP and LinSup on examplary
problems of linear programming with multiple condition numbers and
different problem dimensions.

1



Keywords: Condition number, ill-posed problem, Linear Programming, Lin-
ear Superiorization, bounded perturbations, feasibility seeking, Scipy, Gurobi.

1 Introduction

In this paper we investigate and discuss the behavior of the linear superi-
orization (LinSup) methodology for various different condition numbers and
compare it to the behavior of multiple linear optimization solvers. We set
up differently conditioned linear optimization problems in a manner that
keeps them structurally similar in order to keep them comparable to each
other. Then we solve these problems with the introduced superiorization
methodology and with established implementations of the simplex algorithm
and an interior point method. We compare the necessary runtimes in prob-
lems with multiple dimensions and discuss the observed effects. We show
experimentally that superiorization is rather robust in comparison to scipy’s
simplex implementations observing both faster runtimes and better objective
function values.

1.1 Context and previous work

The superiorization methodology (SM) is a relatively new method that aims
to improve an existing iterative algorithm by interlacing into it perturba-
tion steps ([10]). In the context of optimization problems, this concept can
be applied by interlacing into a feasibility-seeking algorithm (for example a
projection method) perturbations of negative gradient steps that reduce the
objective function values. Since its development, the SM has successfully
been applied in various practical applications such as intensity-modulated
radio therapy ([3]), image reconstruction ([11]) and telecommunication net-
works ([17]). In the particular context of linear optimization problems (LPs),
there is a vast literature for both the feasibility problem (for example the
Agmon-Motzkin-Schönberg algorithm [1, 24],[14, algorithm 5.4.1]) and the
optimization problem (e. g., simplex algorithm, ellipsoid method [25]). Fur-
thermore, for the LinSup case, the “guarantee problem of the superiorization
method” has been answered positively. This problem is the question whether
superiorization can actually converge to a feasbile point with a lower or equal
objective function value than the point of the unsuperiorized version of the
same feasibility-seeking algorithm. In [13] the authors employ the principle
of concentration of measure to show the result with high probability. A sim-
ilar conclusion for the nonlinear case is yet to be found.
This paper aims to compare the superiorization methodology with optimiza-
tion algorithms for LPs in an organized, reproducible and fair manner for
problems of varying difficulty, indicated by the problems’ dimensions and
their condition numbers. Accordingly, our work is an extension of the results
in [9], where a superiorization method for linear problems (called LinSup)

2



was compared to the simplex method. We augment these results by vary-
ing the condition numbers across multiple problem instances. The condition
number has been known to have a large impact on the performance of certain
methods and often leads to the failure of an algorithm ([28]). As many real-
world problems have an inherently high condition number, immunity against
ill-conditioning of problems is a desirable property for any algorithm. Of-
ten it is enough to have a rough understanding of the order of magnitude
of the condition number and there are efficient algorithms for its estimation
([15],[22]). There is a vast literature on preconditioning of matrix problems,
which has been reviewed in [5].

1.2 Outline

We give a brief overview of the superiorization method and of condition
numbers in Sections 2.1 and 2.2, respectively. We set up multiple linear
optimization problems with varying condition numbers in Section 3.1 and
run the superiorization method and several LP algorithms on them.
For details of our implementation of the superiorization method see Section
3.2. In Section 4 we present the results, followed by a discussion of remaining
challenges and future work in Section 5.

2 Preliminaries

2.1 The superiorization methodology

The Superiorization Methodology (SM) developed from the investigation of
feasibility-seeking models of some important real-world problems such as im-
age reconstruction from projections and radiation therapy treatment plan-
ning. Feasibility-seeking algorithms, mainly projection methods, generate
iterative sequences that (under reasonable conditions) converge to a point in
the feasible set. Their main advantage is that they perform projections onto
the individual sets whose intersection is the feasible set and not directly onto
the feasible set and the underlying situation is that such projections onto the
individual sets are more manageable.
When one wishes to find feasible points with a reduced, not necessarily min-
imized, value of an imposed objective function then the SM comes into play.
The principle of the SM is to interlace into the iterates of a feasibility-seeking
iterative process perturbations that will steer the iterates toward superior
(meaning smaller or equal) objective function values without losing the over-
all convergence of the perturbed iterates to a feasible point. To this end
“bounded perturbations” are used.
How all this is done is rigorously described in earlier papers on the SM, con-
sult, e.g., [10] for a recent review, read also [20]. A key feature of the SM is
that it does not aim for a constrained optimal function value, but is content

3



with settling for a feasible point with reduced objective function value – re-
duced in comparison to the objective function value of a feasible point that
would be reached by the same feasibility-seeking algorithm without pertur-
bations. For many applications this is sufficient, in particular, whenever the
introduction of an objective function is only a secondary goal. Fulfillment of
the constraints, in this context, is considered by the modeler of the real-world
problem to be much more important, see, e.g., [10, 11, 3].
Many papers on the SM are cited in [8] which is a Webpage dedicated to
superiorization and perturbation resilience of algorithms that contains a con-
tinuously updated bibliography on the subject. This Webpage is a source for
the wealth of work done in this field to date, including two special issues of
journals [12] and [18] dedicated to research of the SM. Recent work includes
[7, 19, 21, 23, 29].

2.2 Condition numbers

The relative condition number is a measure for the impact of deviations in
the input data on the output data of a problem. In particular, it describes
the factor of error propagation when given wrong or erroneous data. Let the
function f : Rn → Rm represent some mathematical problem and let x ∈ Rn

be its input, where Rn stands for the Euclidean n-dimensional space. Denote
with x̃ ∈ Rn the disturbed input data. Then the relative condition number
of the problem at the point x is defined as (see [31, equation (12.4)])

κrel := lim sup
x̃→x

∥f(x̃)− f(x)∥
∥x̃− x∥

∥x∥
∥f(x)∥

, (1)

as long as f(x) ̸= 0. Otherwise, it is κrel = ∞. In particular, the condition
number is independent of a chosen numerical algorithm for solving the prob-
lem f , but the algorithms convergence speed may depend on the magnitude
of the condition number (see [28, section 4]). In the following we are inter-
ested in the condition number of matrices. When f(x) = Ax describes the
problem of matrix multiplication, where A ∈ Rm×n and with ∥ · ∥ = ∥ · ∥2,
the above formula becomes

κrel = lim sup
x̃→x

∥A(x̃− x)∥
∥x̃− x∥

∥x∥
∥Ax∥

. (2)

As f is differentiable and writing x̃ − x = hv, for some unit vector v and
h = ∥x̃− x∥ we get

κrel = lim
h→0

∥A(x+ hv − x)∥
h

∥x∥
∥Ax∥

= ∥A∥ ∥x∥
∥Ax∥

≤ ∥A∥∥A−1∥. (3)

The term on the right is called the condition number of the matrix A (see
[31, equation (12.15)]), where A−1 denotes the inverse or, if A is non-square,
the pseudo-inverse of A:

κ(A) = ∥A∥∥A−1∥ = σmax

σmin

, (4)

4



where σmax and σmin are the maximal and minimal singular values of A, re-
spectively. The condition number plays a significant role in the analysis of
numerical problems and is subject to extensive studies in the literature ([16],
[31], [15], [28]). Several methods exist to improve high condition numbers of
ill-conditioned problems (these are the, so-called, pre-conditioning methods,
see e. g., [5]) in order to increase the accuracy of calculated solutions. This
is often necessary because many real-world applications give rise to condi-
tion numbers of significant magnitude. This is the key motivation for the
investigation in this paper.

3 Problem Setup and Implementation Details

3.1 The problem formulation

We consider linear problems of the form

min
x∈Rn

⟨c, x⟩

s.t. Ax ≤ b (5)

ℓ ≤ x ≤ u,

where A ∈ Rm×n, b ∈ Rm, c, ℓ, u ∈ Rn. Write A = UΣV via the singular value
decomposition (cf. [6]) with semi-orthogonal matrices U and V and diagonal
matrix Σ = diag(σ1, . . . , σq) of singular values. Without loss of generality,
let σ1 ≥ . . . ≥ σq ≥ 0. The condition number κ of A is (see [16])

κ(A) =
σmax

σmin

=
σ1

σq

. (6)

We want to construct a sequence of matrices Aκ of a specified condition
number κ in such a way that they remain structurally similar to each other.
To this end we reverse the singular value decomposition, that is, we create
exactly one pair of U and V which contains the structure of the problem and
construct, for different values of κ, diagonal matrices Σκ, which impose the
condition number of the problem. Then, we calculate Aκ := UΣκV . As any
matrix has a singular value decomposition, this makes it possible to define
any matrix via this approach too. In our construction we focus on matrices
of full rank, because otherwise one can remove rows or columns until full
rank is achieved. In order to construct Σ, setup q = min(m,n) = rank(A)
singular values as

σi =
t

zi
+

1− t

s
(7)

where t = κ−1
q−1

, s = 10 and zi = si
q
. Note that this choice is somewhat

arbitrary. We chose this setup of the σi, because in real-world applications

5



the singular values often behave approximately proportional to 1
i
(instead

of linear which seems like an obvious first choice for our problem). The
parameter s is used to control the magnitude of the singular values since in
this model we always have σq = 1

s
. Due to the choice of t it is easy to see

that
σ1

σq

=
σmax

σmin

= κ (8)

as desired. For U and V choose random semi-orthogonal matrices and set
A = U · diag(σ1, . . . , σq) · V . Furthermore, set b = A1+ 1, u = −ℓ = 100 · 1
and randomly choose c. This choice of parameters implies the feasibility of
x = 1. We set up this problem for multiple dimensions, ranging from 80×100
to 2000× 2500 (cf. [9]).

3.2 The superiorization algorithm

We aim to apply separately linear programming and the superiorization
methodology for the data A = (ai)mi=1, b, c, ℓ, u that appears in (5). In the
SM we chose for the feasibility-seeking algorithm the projection method of
Agmon Motzkin and Schönberg (AMS) with overshoot 0 < r := 10−3 as
the “basic algorithm”. This algorithm cyclically projects onto the individual
half-spaces ⟨ai, x⟩ ≤ bi via (as defined in [27, p. 411])

Ai(x) :=

{
x− ⟨ai,x⟩−bi+r∥ai∥

∥ai∥2 ai, if ⟨ai, x⟩ > bi

x, otherwise
(9)

and a full sweep through all half-spaces is done by the algorithmic operator
A, which is a composition of the individual projections

A := Am ◦ · · · ◦ A1. (10)

The parameter r describes, how far into the half-space the projection maps
(i. e., beyond the bounding hyperplane). For the direction vectors in the
perturbations used in the SM we chose the normalized negative gradient
of the objective function in (5), which is constant throughout and equals
− c

∥c∥ . For the step-sizes ηk we take an exponentially decreasing null sequence

(10 · 0.99n)n∈N with resets every τreset = 20 iterations as described in [2, p.
6]. The starting step-size η0 = 10 is decreased by the kernel α = 0.99 in each
iteration, unless there is a reset. In that case, set ηk = η0α

ρ, where ρ is the
number of previous resets during this run.
In other words, the k-th iteration consists of a gradient step −ηk c

∥c∥ followed

by a cyclic sweep of projections onto the half-spaces via A as given in (9)
and (10). This process was repeated, until the iterate xk was feasible up to

a tolerance of ϵ = 10−8 and the relative change ∥xk−xk−1∥
∥xk−1∥ from the previous

iterate was negligible, i. e., became smaller than ϵ. Algorithm 21 contains
the pseudocode for the described process. All runs were initialized at the
all-ones vector x0 = 1. The parameters ϵ, α, η0, r, τreset can be adjusted for
individual preferences or a particular problem.

6



Algorithm 1: The superiorization algorithm

Data: A, b, c, ℓ, u, x0

Output: Superiorized vector y
Parameters: ϵ = 10−8, α = 0.99, η0 = 10, r = 10−3, τreset = 20

1 k ← 0;
2 τ ← 0;
3 ρ← 0;
4 x−1 ← x0 + 1;

5 while maxi(⟨ai, xk⟩ − bi) ≥ ϵ or ∥xk−xk−1∥
∥xk−1∥ ≥ ϵ do

6 xk+1 ← xk − ηk
c

∥c∥ ;

7 xk+1 ← A(xk+1);
8 xk+1 ← max(xk+1, ℓ);
9 xk+1 ← min(xk+1, u);

10 τ ← τ + 1;
11 if τ < τreset then
12 ηk+1 ← ηkα;
13 else
14 τ ← 0;
15 ρ← ρ+ 1;
16 ηk+1 ← η0α

ρ;

17 end
18 k ← k + 1;

19 end
20 y ← xk;
21 return y

7



3.3 The LP algorithms

We compare the superiorization method with the following LP algorithms:

1. scipy.simplex

2. scipy.revised simplex

3. scipy.interior-point

4. gurobi.primal simplex.

Scipy is a library for scientific computing in the programming language
Python. It is freely available at www.scipy.org. Its optimization suite
scipy.optimize contains multiple implementations of common optimization
algorithms like the SQP method, the dogleg method or the conjugate gra-
dient method. Since we are working with the data of an LP, we employed
specialized LP methods only, in particular the simplex and revised simplex
method as well as the interior-point method of scipy’s linprog function.
Gurobi is a commercial state-of-the-art solver for linear and nonlinear, con-
tinuous and (mixed) integer problems. It is available at www.gurobi.com and
offers a wide range of customization, including multiple algorithms, global-
ization strategies, preconditioning, etc. For our experiments we turned off
Gurobi’s automated choice of algorithm and instead forced it to use its im-
plementation of the primal simplex to ensure consistency of the output data.

4 Experimental Results of the Comparative

Investigation

Our main finding is, that, based on our computational experiments, the supe-
riorization methodology is quite robust with respect to increasing condition
numbers. In particular, the runtime remains relatively small when compared
to the scipy implementations of the simplex algorithm. We conjecture that
this is due to the fact, that our superiorization implementation never con-
siders the full problem at once, but performs individual projections onto the
half-spaces instead. This comes at the cost of sacrificing feasibility during
early iterations. Furthermore, we conjecture, that the bounded perturbation
resilience of the basic algorithm may play a role in absorbing errors that oc-
cur during computation, which would normally be amplified by the condition
number.
Depending on the rate at which the step-sizes of the perturbations converge to
zero, this would mean that superiorization, in general, may be less affected by
high condition numbers, than other current algorithms. A secondary finding
is, that superiorization can produce better results than the scipy simplex
implementations, when both are terminated at a certain time, that is before
the usual termination criterion is met, cf. Figure 1c. Furthermore, we see

8

www.scipy.org
www.gurobi.com


that superiorization reaches its termination criterion considerably faster than
scipy in higher dimensions.
The trend is clear: While in problems with smaller dimensions the simplex
algorithms are considerably faster, with increasing problem dimensions the
scipy implementations take much longer to terminate. We also see a clear
difference in the algorithms styles: Simplex aims to become feasible first
and then starts to improve the objective function. Superiorization, on the
other hand, reduces objective function values in its initial iterations because
then the step-sizes of the perturbations are still large and only as iterations
proceed the effect of feasibility-seeking becomes stronger.
Finally, it should be noted that scipy’s revised simplex performs better than
scipy’s standard simplex method. This can be attributed to the internal LU
decomposition of the basic matrices, leading to better numerical stability as
described in [4].

We observe that in our experiments the interior point method and the Gurobi
implementation outperformed the other algorithms by a lot. For the inte-
rior point method this matched our expectations and can be explained in
the following way: The condition number of a matrix can be interpreted
as a measure of how linearly dependent its rows or columns are. A well-
conditioned matrix (i. e., κ = 1) only has a single singular value and will
be semi-orthogonal, whereas an ill-conditioned matrix (κ “large”) will have
“almost” linearly dependent entries. Consequently, the half-spaces {x ∈
Rn : ⟨ai, x⟩ ≤ bi} will be almost parallel and the resulting polyhedron will
consist of many facets and vertices. A basic simplex implementation, which
moves from vertex to vertex, will consequently face a long runtime. The
interior point method, on the other hand, is not dependent on the vertices.
It will take its path through the interior of the polyhedron regardless of its
boundary.
The Gurobi implementation is based on observations of the condition num-
ber. In that sense, our experiments played into one of Gurobis strongest
suits. As one of the biggest commercial state of the art solvers we did not
expect to outperform Gurobi with our implementation, but rather used it as
a benchmark to compare with the other algorithms.

5 Conclusions

In this paper we experimentally discussed the superiorization method and
constrained optimization on a set of examplary linear problems with varying
condition numbers and problem sizes with the aim of investigating and com-
paring their immunity to increasing condition numbers. Our experimental
results are promising for the observed problem sizes, but more work needs
to be done for larger instances to verify that the trend that we observed
continues.

9



(a) 80× 100

(b) 200× 250

(c) 400 × 500. Had both implementations been terminated at an earlier
time (say after 25 seconds), the superiorized solution would be both less
violating the constraints and closer to optimality. As the problem dimen-
sions increase this trend becomes more and more prominent

(d) 800× 1000

Figure 1: Figures 1a-1d show the behavior of the different algorithms on
problems with increasing dimension for fixed condition number κ = 1000.
On the left we see the maximum violation of the constraints maxi(⟨ai, x⟩ −
bi) plotted against the runtime. On the right we have the corresponding
objective function values ⟨c, x⟩ plotted against the runtime.

10



(a) 400× 500

(b) 800× 1000

(c) 2000× 2500

Figure 2: Figures 2a-2c demonstrate well the robustness with respect to
increasing condition numbers. On the left we see the runtimes of each al-
gorithm, plotted against the condition numbers, on the right we see the ob-
jective function value at termination, plotted against the condition numbers.
Notice the severely suboptimal objective function value of scipy’s simplex
for high condition numbers. This explains the low runtime as the algorithm
realizes that these problems are hard and quickly “surrenders”. This trend
continues in Figures 2b and 2c and the revised simplex too starts to reach its
limits. Superiorization on the other hand proves to be quite stable in terms
of its runtime with regards to increasing condition numbers.

11



The superiorization method and constrained optimization use the same input
data which consists of a family of constraints obtained from the modeling
process along with a user-chosen objective function. But the two approaches
aim at different end-points of their iterative processes. The easy accessibility
of the superiorization methodology allows for quick implementations with
the advance knowledge that the aim is not to reach a constrained optimum.
At the same time the SM may compute its solutions at a lower runtime (in
the case of scipy’s simplex and revised simplex).
As superiorization is a relatively new concept, we expect that, with further
tuning of its parameters it will continue to find a place as a computational
model and tool in situations in which users do not wish to invest efforts
in seeking a constrained optimal point but rather wish to find a feasible
point which is “superior” in the sense of having a smaller or equal objective
function value than that of a feasible point reached by the same feasibility-
seeking algorithm.
Another interesting point is that, as is well-known, interior point methods
reach their performance limits for ill-conditioned nonlinear problems (e. g.,
in intensity-modulated radio therapy). It would be interesting to compare
the superiorization methodology in a nonlinear setting, with a different basic
feasibility-seeking algorithm, to the interior point method to see if superior-
ization can contribute to solving these problems faster.

Acknowledgements: The work of Y.C. is supported by U.S. National In-
stitutes of Health Grant Number R01CA266467 and by the Cooperation Pro-
gram in Cancer Research of the German Cancer Research Center (DKFZ)
and Israel’s Ministry of Innovation, Science and Technology (MOST).

References

[1] S. Agmon, The relaxation method for linear inequalities, Canadian
Journal of Mathematics, 6 (1954), pp. 382–392.

[2] F. J. Aragón-Artacho, Y. Censor, A. Gibali, and
D. Torregrosa-Belén, The superiorization method with restarted
perturbations for split minimization problems with an application to ra-
diotherapy treatment planning, Applied Mathematics and Computation,
440 (2023). Article 127627.

[3] F. Barkmann, Y. Censor, and N. Wahl, Superiorization as a novel
strategy for linearly constrained inverse radiotherapy treatment planning,
Frontiers in Oncology, 13 (2023), pp. 1–15.

[4] R. H. Bartels, A stabilization of the simplex method, Numerische
Mathematik, 16 (1971), pp. 414–434.

12



[5] M. Benzi, Preconditioning techniques for large linear systems: A sur-
vey, Journal of Computational Physics, 182 (2002), pp. 418–477.

[6] J. Bisgard, Analysis and Linear Algebra: The Singular Value Decom-
position and Applications, The American Mathematical Society, 2021.

[7] E. Bonacker, A. Gibali, K.-H. Küfer, and P. Süss, Speedup of
lexicographic optimization by superiorization and its applications to can-
cer radiotherapy treatment, Inverse Problems, 33 (2017). Article 044012.

[8] Y. Censor, Superiorization and perturbation resilience of algorithms:
A bibliography compiled and continuously updated. Available at:
http://math.haifa.ac.il/yair/bib-superiorization-censor.html.

[9] Y. Censor, Can linear superiorization be useful for linear optimization
problems?, Inverse Problems, 33 (2017). Article 044006.

[10] Y. Censor, Superiorization: The asymmetric roles of feasibility-seeking
and objective function reduction, Applied Set-Valued Analysis and Op-
timization, 5 (2023), pp. 325–346.

[11] Y. Censor, R. Davidi, G. T. Herman, R. W. Schulte, and
L. Tetruashvili, Projected subgradient minimization versus superior-
ization, Journal of Optimization Theory and Applications, 160 (2014),
pp. 730–747.

[12] Y. Censor, G. T. Herman, and M. Jiang, Superiorization: Theory
and applications, Inverse Problems, 33 (2017). Article 040301.

[13] Y. Censor and E. Levy, An analysis of the superiorization method
via the principle of concentration of measure, Applied Mathematics &
Optimization, 83 (2021), pp. 2273–2301.

[14] Y. Censor and S. A. Zenios, Parallel Optimization: Theory, Al-
gorithms, and Applications, Oxford University Press, New York, NY,
USA, 1997.

[15] A. K. Cline, C. B. Moler, G. W. Stewart, and J. H. Wilkin-
son, An estimate for the condition number of a matrix, SIAM Journal
on Numerical Analysis, 16 (1979), pp. 368–375.

[16] P. Deuflhard and A. Hohmann, Numerische Mathematik 1, De
Gruyter, Berlin, Germany, 2008.

[17] J. Fink, Fixed Point Algorithms and Superiorization in Communica-
tion Systems, PhD thesis, Fakultät IV-Elektrotechnik und Informatik,
Technische Universität Berlin, Germany, 2022.

13



[18] A. Gibali, G. T. Herman, and C. Schnörr, Superiorization versus
constrained optimization: Analysis and applications, Journal of Applied
and Numerical Optimization, 2 (2020), pp. 1–2.

[19] M. Guenter, S. Collins, A. Ogilvy, W. Hare, and A. Jirasek,
Superiorization versus regularization: A comparison of algorithms for
solving image reconstruction problems with applications in computed to-
mography, Medical Physics, 49 (2022), pp. 1065–1082.

[20] G. T. Herman, Problem structures in the theory and practice of supe-
riorization, Journal of Applied and Numerical Optimization, 2 (2020),
pp. 71–76.

[21] G. T. Herman and R. Davidi, Image reconstruction from a small
number of projections, Inverse Problems, 24 (2008). Article 045011.

[22] N. J. Higham, A survey of condition number estimation for triangular
matrices, SIAM Review, 29 (1987), pp. 575–596.

[23] V. Mart́ın-Márquez, S. Reich, and S. Sabach, Iterative methods
for approximating fixed points of Bregman nonexpansive operators, Dis-
crete and Continuous Dynamical Systems - Series S, 6 (2012), pp. 1043–
1063.

[24] T. S. Motzkin and I. J. Schönberg, The relaxation method for
linear inequalities, Canadian Journal of MAthematics, 6 (1954), pp. 393–
404.

[25] K. G. Murty, Linear Programming, Wiley & Sons Ltd., Hoboken, NJ,
USA, 1991.

[26] J. Nocedal and S. J. Wright, Numerical Optimization, Springer,
New York, NY, USA, 1999.

[27] B. T. Polyak, Random algorithms for solving convex inequalities,
Studies in Computational Mathematics, 8 (2001), pp. 409–422.

[28] A. Pyzara, B. Bylina, and J. Bylina, The influence of a ma-
trix condition number on iterative methods’ convergence, 2011 Feder-
ated Conference on Computer Science and Information Systems, (2011),
pp. 459–464.

[29] M. J. Schrapp and G. T. Herman, Data fusion in x-ray computed
tomography using a superiorization approach, Review of Scientific In-
struments, 85 (2014). Article 053701.

[30] B. Schultze, Y. Censor, P. Karbasi, K. E. Schubert, and
R. W. Schulte, An improved method of total variation superioriza-
tion applied to reconstruction in proton computed tomography, IEEE
Transactions on Medical Imaging, 39 (2018), pp. 294–307.

14



[31] L. N. Trefethen and D. Bau, Numerical Linear Algebra, Twenty-
fifth Anniversary Edition, SIAM, Philadelphia, PA, USA, 2022.

15


	Introduction
	Context and previous work
	Outline

	Preliminaries
	The superiorization methodology
	Condition numbers

	Problem Setup and Implementation Details
	The problem formulation
	The superiorization algorithm
	The LP algorithms

	Experimental Results of the Comparative Investigation
	Conclusions

