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Abstract

Motivated by our collaboration with a residency program at an academic health system, we propose

new integer programming (IP) approaches for the resident-to-rotation assignment problem (RRAP).

Given sets of residents, resident classes, and departments, as well as a block structure for each

class, staffing needs, rotation requirements for each class, program rules, and resident vacation

requests, the RRAP consists of finding a feasible yearlong rotation schedule specifying resident

assignments to rotations and vacation times. We first present an IP formulation for the RRAP,

which mimics the manual method for generating rotation schedules in practice and can be easily

implemented and efficiently solved using off-the-shelf optimization software. However, it can lead to

disparities in satisfying vacation requests among residents. To mitigate such disparities, we derive

an equity-promoting counterpart, which finds an optimal rotation schedule that maximizes the

number of satisfied vacation requests and minimizes a measure of disparity in satisfying vacation

requests. Then, we propose a computationally efficient Pareto Search Algorithm capable of finding

the complete set of Pareto optimal solutions to the equity-promoting IP within a time that is

suitable for practical implementation. In addition, we present a user-friendly tool implementing

the proposed models to automate the generation of the rotation schedule. Finally, we construct

diverse RRAP instances based on data from our collaborator and conduct extensive experiments to

illustrate the potential practical benefits of our proposed approaches. Our results demonstrate the

computational efficiency and implementability of our approaches and underscore their potential to

enhance fairness in resident rotation scheduling.

Keywords: Resident scheduling; Fairness; Optimization; Integer Programming

1. Introduction

Upon graduating from medical school, new doctors join a certified residency program to fulfill spe-

cialty board certification requirements as part of the pathway to independent practice. Residency

program lengths and structures vary by specialty, but most programs in the United States (U.S.)
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require around three to five years, commonly known as post-graduate years (PGY). For exam-

ple, general surgery programs (including the one for Columbia University Irving Medical Center

(CUIMC)) require five years. During each of these years, residents rotate through different hospital

departments (services or divisions) to gain required clinical training and specialization under the

supervision of more senior physicians and provide care to patients in these departments.

Medical schools administer residency programs in conjunction with their affiliated hospitals.

The Accreditation Council for Graduate Medical Education (ACGME) sets the guidelines and ex-

pectations for residency programs in the U.S. Some of these guidelines apply to all specialties.

Others are specialty-specific, such as the rotation period in each clinical setting. Residency pro-

grams use these guidelines to decide the list of rotations for each class of residents (PGY1–PGY5),

then construct a yearlong rotation schedule that specifies the assignment of residents to rotation

periods in different departments during the academic year. The schedule also specifies vacation

time for each resident.

The exact approach for constructing the annual rotation schedule may vary between residency

programs. However, most programs, including CUIMC, divide the academic year (e.g., 52–53 weeks

at CUIMC) into time blocks, each consisting of several consecutive weeks within the academic year.

The length of each block (i.e., the number of weeks) can be different, and some blocks may have

more weeks than others. Assigning a resident to a block is equivalent to assigning this resident to a

rotation period in a specific department. The length and structure of each rotation depend on the

resident class, ACGME guidelines, residency program requirements, and staffing needs. Moreover,

each resident must take a mandatory number of vacation weeks during the academic year that

adhere to ACGME rules on rest periods. Residents often submit their requests for vacation time

before the annual rotation schedule is constructed.

In most hospitals, the program director or chosen resident (e.g., the chief resident at CUIMC)

manually constructs the annual rotation schedule for each class before the academic year starts.

Constructing the annual rotation schedule is challenging, lengthy, and laborious for various reasons

(Erhard et al., 2018; Guo et al., 2014; Lemay et al., 2017; Perelstein et al., 2016; Smalley and

Keskinocak, 2016). First, the schedule must adhere to accreditation standards and satisfy different

class-specific rotation and educational requirements. Second, it must fulfill multiple staffing needs

of different departments and affiliated hospitals. Third, it should accommodate residents’ vacation

preferences. Finally, the rotation schedule should ensure equity among residents (e.g., no resident

receives a more desirable vacation assignment than any other resident for the academic year) while

also considering all other requirements and logistics preferences of the residency program. Indeed,

the chief resident spends several weeks manually designing a rotations schedule that often fails

to fulfill these constraints simultaneously. In addition, manual methods often produce inequitable

rotation schedules that are also challenging to adjust during the academic year. Mathematical

formulations of the rotation scheduling problem are also challenging to solve.
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These challenges motivate the need for computationally efficient and implementable optimiza-

tion models that help automate rotation scheduling. The ACGME has also called for methods to

generate better and equitable rotation schedules to help improve residents’ satisfaction and reten-

tion (Block et al., 2013; Colbert et al., 2017; Proano and Agarwal, 2018). However, as discussed in

Section 2, rotation scheduling has received less attention than the shift scheduling problem. More-

over, existing formulations of the problem are challenging to solve, and few studies have attempted

to address the issue of equity (fairness) among residents.

Motivated by these critical issues and our collaboration with CUIMC, this study develops, an-

alyzes, and deploys new integer programming approaches for the resident-to-rotation assignment

problem (RRAP). Given sets of residents, resident classes, and departments, as well as a block

structure for each class, rotation requirements for each class, program rules and requirements, and

resident vacation requests, the RRAP is a feasibility problem that consists of finding a feasible

rotation schedule specifying resident assignments to rotations and vacations. We first derive an

IP formulation for the RRAP, which finds a feasible rotation schedule that satisfies all rotation

and residency program requirements. As we later show, such a blind, feasible assignment to rota-

tions results in inequitable rotation schedules, specifically disparities in satisfying vacation requests

among residents, with some being given vacations according to their preferences and others being

given vacations in weeks different from their preferred weeks. To address this issue, we derive

an equity-promoting counterpart that ensures equity in the number of vacation requests granted

based on residents’ preferences. Satisfying vacation preferences has been considered a criterion for

other scheduling endeavors (see, e.g., Becker et al. (1982); Lemay et al. (2016); Cohn et al. (2009);

Shahraki et al. (2022); Gross et al. (2019); Uhde et al. (2020)), and its absence has been noted

as a drawback that impacts resident satisfaction, among others. As highlighted by Howard et al.

(2020), the challenge of accommodating vacation requests and equity in satisfying these requests

has prompted the exploration of alternative, non-automated methods that lead to unfair schedules.

This underscores the significance of improving equity in fulfilling vacation requests as an important

indicator of schedule quality and residents’ satisfaction. Finally, we note that residents of the same

class will be assigned the same workload in terms of required rotations throughout the academic

year. So there, there is no disparity in this aspect.

1.1. Contributions

Our main contributions, both methodological and practical, can be summarized as follows.

1. New IP Approaches for the RRAP.

(a) We propose new IP models for the RRAP. These models adhere to ACGME guidelines

and incorporate decisions and constraints related to class-specific rotation and program

requirements, department staffing needs, vacation requirements, and other practical con-

siderations. We first derive an IP formulation that finds a feasible rotation schedule that

satisfies these constraints. This formulation mimics the manual method for generating ro-
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tation schedules in practice and provides the foundation for the equity-neutral and equity-

promoting models. The equity-neutral model seeks to find an optimal rotation schedule that

maximizes the total number of satisfied vacation requests. The equity-promoting counter-

part additionally incorporates an inequity measure in the objective to minimize disparities

in satisfying vacation requests among residents.

(b) The feasibility problem and equity-neutral model can be easily implemented and efficiently

solved using off-the-shelf optimization software, enabling the implementation of the model

in practice. In contrast, the proposed equity-promoting RRAP model has two conflicting

objectives: maximize the total number of satisfied vacation requests and minimize a mea-

sure of inequity in satisfied requests among residents. Identifying the entire set of Pareto

optimal (non-dominated) rotation schedules to the equity-promoting RRAP problem via

traditional methods, such as the ε-constraint method, is computationally challenging. To

address this challenge, we propose a computationally efficient Pareto Search Algorithm ca-

pable of finding the complete set of Pareto optimal solutions for large instances of the

problem within a reasonable time suitable for practical implementation.

2. User-Friendly Tool. We developed a user-friendly tool implementing the proposed models to

ensure the adaptation in practice and automate the annual rotation schedule generation.

3. Computational Results and Insights. We construct diverse RRAP instances based on data

from CUIMC and conduct extensive experiments to illustrate the potential practical benefits

of our proposed approaches. Our results (a) demonstrate the computational efficiency and im-

plementability of our approaches and underscore their potential to enhance fairness in resident

rotation scheduling; (b) show how equity-neutral models lead to inequitable rotation schedules

and disparities in satisfying vacation requests; (c) illustrate how different choices of the inequity

measure in the equity-promoting model result in different sets of Pareto-optimal rotation sched-

ules; and (d) emphasize the importance of integrating rotation and vacation scheduling decisions

to ensure equity among residents and show the negative consequences on fairness when adopting

a sequential approach that separates the rotation and vacation scheduling decisions. Although

inspired by our collaborating residency program, our approaches are generic and can be adapted

by other programs to automate rotation scheduling.

1.2. Structure of the Paper

The remainder of the paper is organized as follows. In Section 2, we review the relevant literature.

In Section 3, we provide details about CUIMC’s general surgery residency program. In Section 4, we

present our proposed models. We present our Pareto Search Algorithm in Section 5. In Section 6,

we present the RRAP tool. We present our numerical experiments and corresponding insights in

Section 7. Finally, we draw conclusions in Section 8.
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2. Relevant Literature

Medical professionals (e.g., physicians, nurses, etc.) and personal scheduling problems have at-

tracted much attention from the operations research community. These problems are challenging

from a computational point of view, and each poses some specific modeling challenges. We refer

to Brucker et al. (2011); Van den Bergh et al. (2013); Abdalkareem et al. (2021) for comprehen-

sive surveys on these problems. We refer to Erhard et al. (2018) for a recent survey on physician

scheduling, including resident scheduling. Two main scheduling problems arise in resident training–

rotation scheduling and shift scheduling. Typically, the former problem must be solved first before

the academic year starts to construct the rotation schedule, specifying residents’ assignments to

specific departments in specific time blocks and vacation periods. The shift scheduling problem is

then solved for each department to plan the daily and shift schedules for residents rotating in that

department. Recent surveys indicate that the rotation scheduling problem received significantly

less attention than the shift scheduling problem Erhard et al. (2018). In addition, limited research

has considered the issue of improving equity among residents. Our research contributes to filling

this gap. Next, we focus on discussing relevant studies on rotation scheduling.

Franz and Miller (1993) is one of the early works on rotation scheduling. They proposed an IP

model for assigning residents to rotations over one year and solved it using a rounding heuristic. Guo

et al. (2014) proved that the resident scheduling problem is NP-complete and developed a greedy

heuristic to solve it. Cire et al. (2019) formulated the rotation scheduling problem using a network-

flow model. Recently, Guo et al. (2023) proposed a two-stage partial fixing approach for solving the

residency block scheduling problem. Note that merely assigning residents to rotations and vacations

according to program requirements may result in inequitable rotation and vacation schedules and,

consequently, residents’ dissatisfaction (Colbert et al., 2017). However, most studies, including

those mentioned above, formulate the rotation scheduling problem as a feasibility problem or do

not incorporate equity measures in their models. Next, we review the limited literature considering

equity in resident rotation scheduling.

Akbarzadeh and Maenhout (2021) studied the problem of assigning medical students to specific

disciplines and hospitals. Specifically, they considered a residency program where students could

customize their training by selecting a preferred subset of the disciplines from an elective list. They

proposed a mixed-integer program (MIP) to find feasible schedules satisfying all educational and

hospital requirements while considering student preferences and ensuring equity in meeting them.

Akbarzadeh and Maenhout (2021) solved their MIP using a customized branch and price algorithm.

Smalley and Keskinocak (2016) discussed the issue of ensuring an equitable educational experience

among residents during their rotation. They proposed an IP formulation to find a resident rotation

schedule. The IP model ensures that residents of the same class are assigned to rotations in the

same set of departments. Proano and Agarwal (2018) proposed a multi-objective IP model for

rotation assignment.
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Bard et al. (2017) proposed a MIP model to determine the annual block schedule of Internal

Medicine residents that hierarchically minimizes the maximum deviation between the number of

clinic sessions each resident must attend from the average; restricts the number of times residents

are assigned to a night float block immediately before or after an intensive care unit block; and

minimizes the maximum deviation between patients seen in clinic during any month over the year

from the average. Bard et al. (2017) solved their MIP using a heuristic that yielded locally optimal

alternative solutions. Castaño and Velasco (2020) focused on fairness from the perspective of

hospitals and proposed an MIP formulation to find resident rotation schedules that minimize the

variance in the number of residents assigned to each department. They developed a heuristic based

on variable neighborhood searches to obtain near-optimal solutions.

We contribute to this literature with new and computationally efficient equity-promoting IP

methodologies for rotation scheduling. Our work differs from the above pioneering studies in the

following aspects. First, most studies assume that the academic year is divided into multiple

periods or blocks of the same length, typically a month or a week (e.g., Bard et al. (2016, 2017);

Guo et al. (2023); Smalley and Keskinocak (2016)). Such models can only be used for constructing

rotation schedules with equal-length or similar rotations. In many residency programs, however,

each class of residents may require a different training period in each department, i.e., the set of

blocks and their length (and hence the number of departments and period of rotation in each) are

different for each class. For example, at CUIMC, rotation schedules of PGY1 residents consist of

blocks of 4 consecutive weeks in each required department, while those of PGY5 are comprised of

blocks of 7-8 consecutive weeks in each required department (see Section 3). Our proposed models

generalize existing models by accommodating block structure and length variations within resident

classes. Second, most existing models do not require a resident to complete their rotation in each

department before starting their rotation in another department. Our proposed model allows the

resident to complete their rotation in each department before they start the next one (a requirement

at CUIMC and other programs).

Third, although some studies have attempted to incorporate inequity measures in their models,

each study adopted a specific measure. For example, Bard et al. (2016, 2017); Kraul (2020) used

the maximum deviation from the mean as the inequity measure in their models, while Smalley

and Keskinocak (2016) and Castaño and Velasco (2020) considered minimizing the difference be-

tween maximum and minimum outcomes. In contrast, our model allows for incorporating different

inequity measures, and we compare rotation schedules constructed using a set of well-known mea-

sures. In addition, prior studies did not propose methodologies for identifying the trade-off between

inequity and other objectives. In contrast, we develop a computationally efficient Pareto Search

Algorithm that allows practitioners to analyze the trade-off between resident satisfaction and eq-

uity. Identifying the complete set of non-dominated rotation schedules in our context is beneficial

as it enhances the decision-makers understanding of the trade-offs between the two objectives and
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Table 1: An example of mandatory departments for each class of residents.

Department PGY1 PGY2 PGY3 PGY4 PGY5

Hepatopancreaticobiliary/Endocrine Surgery (HPB) ✓ ✓ ✓
Colorectal Surgery (CR) ✓ ✓ ✓
Breast/Surgical Oncology (Breast) ✓ ✓
Vascular Surgery (Vascular) ✓ ✓ ✓
Advanced Laparoscopic Surgery/Complex Hernia (Lap) ✓ ✓ ✓
Pediatric Surgery (Peds) ✓ ✓
Overlook Hospital (Overlook) ✓ ✓ ✓ ✓
Surgical Intensive Care Unit (SICU) ✓
Thoracic Surgery (Thoracic) ✓ ✓
Night Float (Nights) ✓ ✓ ✓
Acute Care Surgery Consult (ACS-Consults) ✓
Acute Care Surgery Operative (ACS-OR) ✓
Allen Hospital Consult (Consults) ✓
Cardiothoracic Intensive Care Unit (CTICU) ✓
Renal Transplant (Renal) ✓
Trauma–University Hospital (Trauma) ✓
Acute Care Surgery (ACS) ✓
Allen Hospital (Allen) ✓
Elective (Elective) ✓ ✓

enables them to select the most preferred schedule. Finally, most studies primarily address the

assignment of residents to rotations with limited consideration for vacation scheduling. In contrast,

we integrate rotation and vacation scheduling. In Section 7.3, we demonstrate the importance of

integrating these decisions, especially to promote equity.

3. The General Surgery Residency Program at CUIMC

Our proposed models are partly based on the general surgery residency program at CUIMC. In this

section, we provide details about this program to lay the foundation for the subsequent discussions.

This program is a five-year clinical training program. Year 1 (PGY1) residents are recent medical

graduates joining the program, while year 5 (PGY5) residents are the most senior. The program

offers categorical and preliminary positions. A categorical position is a five-year-long training

required for board certification. In contrast, a preliminary position is one to two years of training

generally before entry into advanced specialty programs. Residents from other surgical specialties

(e.g., cardiac surgery) also do rotations in this program; hence, their partial rotations within the

general surgery departments must be considered. Clinical training occurs at four sites: Milstein

Hospital, Allen Hospital, University Hospital (Newark), and Overlook Hospital.

Before the academic year starts, the chief resident collects staffing requirements from each

department (e.g., the minimum and maximum number of residents required to serve in each de-

partment), residents’ information, and vacation requests. Then, s/he divides the academic year of

each class into several blocks based on the number of residents, educational requirements, ACGME

rules, departments’ needs, and other considerations. Since each class of residents may require a

different length of training period in each department, the set of blocks and their length are dif-

ferent for each class. For example, in the 2022–2023 academic year (PGY1, PGY2, PGY3, PGY4,

PGY5) rotations were divided into (4, 6, 6 to 7, 7 to 8, 8 to 9) weeks long blocks, respectively.

Each class has different requirements regarding the department they must rotate in (mandatory
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Figure 1: An example of rotation schedule of PGY1–PGY5 residents. There are ten residents in this example (two

from each class). The number inside parentheses is the number of weeks in each block. Pink boxes marked with “v”

indicate that a resident is on vacation that week.

departments). Table 1 provides an example of mandatory departments for each class. Categorical

residents must attend the program during the academic year and rotate through all the mandatory

departments for their classes. Generally, most residents rotate in each required department for their

class once during the academic year. However, some classes may rotate more than once in some

departments to satisfy their educational requirements or work time restrictions. For example, PGY2

needs to do service in the Acute Care Surgery (ACS) department twice (see Table 1). The first

rotation is ACS-Consults, where residents learn clinical algorithms for common consults, including

biliary disease, acute abdomen, bowel obstruction, and peripheral vascular disease. The second

rotation is ACS-OR, which is more demanding. Specifically, in this rotation, residents perform

all daytime operations on consults and elective patients in the Acute Care Service, manage the

non-operative consult list, and rounds in the Surgical ICU on ACS inpatients.

The typical number of residents in this program often ranges from 50-65. In Figure 1, we provide

a small illustrative example of block structure and rotation schedule. In this example, there are

ten residents. For (PGY1, PGY2, PGY3, PGY4, PGY5), the number of blocks is (6, 7, 9, 8, 12)

and each block contains (8 to 9, 7 to 8, 5 to 6, 6 to 7, 4 to 5) weeks respectively. Each resident is

assigned to one department in each block. For example, resident A (a PGY5 resident) is assigned

to Nights in Block 1 and HPB in Block 2. Each resident has a vacation week (highlighted in pink

and marked with “v”).

4. The Resident-to-Rotation Assignment Problem (RRAP)

In this section, we formally define the RRAP (Section 4.1). In Section 4.2, we present an IP

formulation of the RRAP. Then, we present the equity-promoting counterpart in Section 4.3.

4.1. Problem Setting

Consider a residency program that requires residents to complete different services during the

academic year in different departments (hospital units). We define D as the set of departments, R
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as the set of residents, and E as the set of resident classes (e.g., PGY1, PGY2, . . ., PGY5). Since

each class may require a different training period in each department, the program usually divides

the academic year of each class (typically 52–53 weeks at CUIMC) into several blocks. Each block

consists of several consecutive weeks. The length of each block (i.e., the number of weeks) can be

different. Moreover, some blocks may have more weeks than others. Assigning a resident to a block

is equivalent to assigning this resident to a rotation period in a given department. For each class

e ∈ E, we define Be as the set of blocks for this class e, Re as the set of class e residents, and

Wb,e as the set of weeks in each block b ∈ Be. Residents of the same class have the same block

arrangement, but the block arrangements could vary between classes. We define the following sets

that could be customized depending on residency program requirements, ACGME regulations, and

resident’s class and availability:

• Dreq
r is the set of required departments that resident r ∈ R must do, i.e., mandatory rotations.

• Dimp
r is the set of impossible departments that residents r ∈ R cannot work in, i.e., resident

r ∈ R cannot be assigned to any d ∈ Dimp
r .

• Dbusy is the set of busy departments. Such departments often have a heavy workload. Thus,

if resident r ∈ R is assigned to serve in a department d ∈ Dbusy in a week w ∈W , then s/he

cannot take a vacation during that week.

• Bimp
r is the set of impossible blocks for resident r ∈ R, i.e., resident r ∈ R cannot be assigned

to any block b ∈ Bimp
r .

Residents of the same and different classes could have different required and impossible de-

partments. Moreover, program requirements and regulations often limit the number of weeks each

resident can serve in each department. Accordingly, we define parameter Tmin
r,d (Tmax

r,d ) as the mini-

mum (maximum) number of blocks each resident r ∈ R could work in department d ∈ D. On the

other hand, each department may require a specific number of residents from each class. Accord-

ingly, we define parameter Rmin
e,d,b (R

max
e,d,b) as the minimum (maximum) number of class e’s residents

required to serve in department d ∈ D in block b ∈ Be.

Each resident should have a mandatory number of vacation weeks during the academic year

(e.g., 2 or 4 weeks) that depends on ACGME rules and whether the resident is spending the entire

academic year (e.g., categorical) or only a particular period (e.g., six months) in the program.

Moreover, before the schedules are constructed, each resident submits their request for preferred

vacation weeks. For each r ∈ R, we define T vac
r as the number of mandatory vacation weeks and

W vac
r as the set of preferred vacation weeks. A complete list of our notation can be found in Table 2.

Given sets of residents, resident classes, departments, and blocks, as well as department types

and staffing needs, rotation requirements for each class, and vacation requests, the RRAP consists of

finding a feasible rotation schedule specifying each resident’s assignments to rotations and vacations.

More intuitively, completing this scheduling problem can be visualized as filling the department

name in each block as illustrated in Figure 1 and specifying vacation weeks for each resident.
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Table 2: Notation (RRAP)

Index sets
E the set of residents’ classes
Re the set of residents in class e ∈ E
R the set of all residents, i.e., R =

⋃
e∈E Re

Be the set of blocks for residents in class e
Wb,e the set of weeks in each block b of residents in class e
W the set of weeks in the planning horizon, i.e., W =

⋃
b∈Be

Wb,e, ∀e ∈ E
D the set of departments
Dimp

r the set of resident r’s impossible working department
Dreq

r the set of resident r’s required working department
Dbusy the set of busy departments
Bimp

r the set resident r’s impossible working blocks
W vac

r the set of weeks that resident r requests for vacations
Parameters
Tmin
r,d resident r’s minimum required working time (in blocks) in department d

Tmax
r,d resident r’s maximum required working time (in blocks) in department d

Rmin
e,d,b minimum number of year e’s residents required in department d in block b ∈ Be

Rmax
e,d,b maximum number of year e’s residents required in department d in block b ∈ Be

T vac
r mandatory number of vacation weeks that resident r should take

Dvac
d,w maximum number of residents in vacation in department d in week W .

Rvac
r,b maximum number of vacation weeks that a resident r is allowed to take in block b.

Decision Variables
zr,d,b equals 1 if resident r is assigned to department d in block b
xr,d,w equals 1 if resident r works in department d in week w
vr,d,w equals 1 if resident r has a vacation in week w in department d

4.2. The RRAP Formulation

In this section, we present our proposed IP formulation for the RRAP, which mimics the cur-

rent manual method for generating the rotation schedule and provides the foundation for equity-

promoting formulation presented in Section 4.3. We first introduce the sets, variables, and pa-

rameters defining this model. For each e ∈ E, r ∈ Re, b ∈ Be, and d ∈ D, we define a binary

decision variable zr,d,b, which equals 1 if resident r is assigned to department d in block b, and is

zero otherwise. For each r ∈ R, w ∈ W , and d ∈ D, we define a binary decision variable xr,d,w,

which equals 1 if resident r works in department d in week w, and is zero otherwise. Finally, we

define a binary decision variable vr,d,w, which equals 1 if resident r has a vacation in a week w, and

is zero otherwise, for all r ∈ R, w ∈ W , and d ∈ D. The RRAP formulation can be stated as the

following feasibility problem.

maximize /minimize
xxx,zzz,vvv

0 (1a)

s.t.
∑
d∈D

zr,d,b ≤ 1, ∀e ∈ E, r ∈ Re, b ∈ Be, (1b)

∑
b∈Be

zr,d,b = 1, ∀e ∈ E, r ∈ Re, d ∈ Dreq
r , (1c)

zr,d,b = 0, ∀e ∈ E, r ∈ Re, b ∈ Be, d ∈ Dimp
r , (1d)

zr,d,b = 0, ∀r ∈ R, b ∈ Bimp
r , d ∈ D, (1e)
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∑
w∈W

∑
d∈D

vr,d,w = T vac
r , ∀r ∈ R, (1f)

Tmin
r,d ≤

∑
b∈Be

zr,d,b ≤ Tmax
r,d ∀e ∈ E, r ∈ R, d ∈ Dreq

r , (1g)

Rmin
e,d,b ≤

∑
r∈Re

zr,d,b ≤ Rmax
e,d,b, ∀e ∈ E, d ∈ D, b ∈ Be, (1h)

vr,d,w ≤ 1− zr,d,b, ∀e ∈ E, r ∈ Re, b ∈ Be, w ∈Wb,e, d ∈ Dbusy, (1i)∑
r∈R

vr,d,w ≤ Dvac
d,w, ∀d ∈ D,w ∈W, (1j)

∑
w∈Wb,e

∑
d∈D

vr,d,w ≤ Rvac
r,b , ∀e ∈ E, r ∈ Re, b ∈ Be, (1k)

zr,d,b = vr,d,w + xr,d,w, ∀e ∈ E, r ∈ Re, b ∈ Be, d ∈ D,w ∈Wb,e, (1l)

zr,d,b, xr,d,w, vr,d,w ∈ {0, 1}, ∀e ∈ E, r ∈ Re, d ∈ D, b ∈ Be, w ∈Wb,e. (1m)

Formulation (1) finds a feasible rotation schedule that maximizes the total number of satisfied

vacation requests. Constraints (1b) ensure that each resident is assigned to at most one department

in each block. Constraints (1c) ensure that each resident is assigned to each required department

exactly once. When a resident must serve in department d ∈ D more than one time, one can easily

replace constraints (1c) by
∑

b∈Be
zr,d,b = Req, where Req is the required number of rotations.

Constraints (1d) ensure that residents are not assigned to rotations in impossible departments.

Similarly, constraints (1e) ensure that residents are not assigned to impossible blocks. Constraints

(1f) ensure that each resident has the required vacation weeks. Constraints (1g) ensure that the

length of resident r’s rotation in department d satisfies the required minimum Tmin
r,d and maximum

Tmax
r,d rotation length. Constraints (1h) ensure that the number of residents of class e working in

department d satisfies Rmin
e,d,b and Rmax

e,d,b of that department. Recall that residents assigned to busy

departments cannot take vacations during their rotation in these departments. Constraints (1i)

ensure this condition. Constraints (1j) ensure that the total number of residents on vacation in

department d and week w should be less than or equal to Dvac
d,w. Constraints (1k) ensure that each

resident r ∈ R can take at most Rvac
r,b weeks of vacations in each block. Finally, constraints (1l)

ensure that if resident r is assigned to department d in block b, s/he either works or has a vacation

for each week within block b. We highlight that, due to constraints (1l), we can relax the binary

restriction on vvv.

We close this section by observing the following about formulation (1). First, we model rotation

and vacation requirements as hard constraints that must be respected to adhere to CUIMC resi-

dency program requirements and ACGME rules. Relaxing these constraints may result in failure to

meet rotation and educational standards and potentially cause the program to lose its accreditation.

Second, formulation (1) provides a blind feasible assignment to rotations and vacations, potentially

leading to disparities in satisfying vacation requests among residents, with some residents assigned
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Table 3: Inequity measures

Index Name of the measure Mathematical expression
(1) Range max

r∈R
ur −min

r∈R
ur

(2) Gini deviation (Gini)
∑
r∈R

∑
r′∈R
|ur − ur′ |

(3) Maximum pairwise deviation (MaxPair) max
r∈R

max
r′∈R
|ur − ur′ |

(4) Absolute deviation from mean (MeanDev)
∑
r∈R
|ur − ū|

(5) Maximum absolute deviation from mean (MaxMeanDev) max
r∈R
|ur − ū|

(6) Maximum sum of pairwise deviation (MaxSumPair) max
r∈R

∑
r′∈R
|ur − ur′ |

(7) Sum of Maximum pairwise deviation (SumMaxPair)
∑
r∈R

max
r′∈R
|ur − ur′ |

vacations in their preferred weeks and others assigned vacations in weeks different than their pre-

ferred weeks (see Section 7). Indeed, there is room to maximize the number of satisfied requests

by considering the following formulation

maximize
v,x,zv,x,zv,x,z

{
f1(vvv) :=

∑
r∈R

∑
d∈D

∑
w∈W vac

r

vr,d,w

∣∣∣(vvv,xxx,zzz) ∈ {(1b)− (1m)}
}
. (2)

However, as we later show in Section 7, similar to formulation (1), formulation (2) may result in a

disparity in satisfying vacation requests because it has no measure to ensure fair vacation schedule.

In what follows, we call formulation (2) an equity-neutral formulation. To mitigate this, in the next

section, we derive an equity-promoting counterpart that maximizes the number of satisfied requests

and minimizes a measure of inequity in the number of vacation requests granted based on residents’

preferences. Finally, we note that residents of the same class will have the same workload in terms

of the assignment to required rotations during the academic year; thus, there is no unfairness in

this aspect.

4.3. The Equity-Promoting Formulation

In this section, we derive an equity-promoting IP model for the RRAP. First, we introduce addi-

tional notations that are needed to define our equity-promoting model. We define ur as the number

of satisfied vacation requests for resident r ∈ R, i.e., ur =
∑

d∈D
∑

w∈W vac
r

vr,d,w, where W vac
r is

the set of preferred vacation weeks for resident r. We let ū =
∑|R|

i=1 ui/n represent the mean of

uuu := [u1, . . . , u|R|]
⊤. Finally, we let ϕ : R|R|×|D|×|W | → R represent an inequity measure. Table 3

presents well-known and commonly used inequity (unfairness) measures. We employ these mea-

sures to gauge the level of inequity among residents in terms of the number of satisfied vacation

requests. For example, given a vacation schedule vvv, we can compute the Gini deviation in the satis-

fied vacation requests as ϕ(vvv) =
∑

r∈R
∑

r′∈R,r′ ̸=r |
∑

d∈D
∑

w∈W vac
r

vr,d,w −
∑

d∈D
∑

w∈W vac
r′

vr′,d,w|.
Note that ϕ(vvv) = 0 implies perfect equity, whereas a larger value ϕ(vvv) > 0 indicates a higher degree

of inequity. Hence, to promote equity, one could consider minimizing ϕ(vvv), i.e.,

minimize
zzz,vvv,xxx

{
ϕ(vvv)

∣∣(zzz,vvv,xxx) ∈ {(1b)− (1m)}
}
. (3)
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Formulation (3) finds an optimal rotation schedule that minimizes a measure of inequity in satisfied

vacation requests. Our preliminary investigation suggests that such formulation leads to a rotation

schedule with zero vacation requests satisfied. Intuitively, denying all vacation requests is the most

equitable schedule, with ϕ(vvv) = 0 for any ϕ. While this is an equitable schedule, residents will

be dissatisfied. Indeed, there is room to satisfy vacation requests and improve satisfaction while

ensuring equity among residents. To do so, we incorporate both objectives: minimizing inequity in

the number of satisfied vacation requests among residents and maximizing the number of satisfied

requests. The resulting equity-promoting RRAP formulation is as follows.

maximize
v,x,zv,x,zv,x,z

f1(vvv) :=
∑
r∈R

∑
d∈D

∑
w∈W vac

r

vr,d,w (4a)

minimize
v,x,zv,x,zv,x,z

f2(vvv) := ϕ(vvv) (4b)

subject to: (vvv,xxx,zzz) ∈ {(1b)− (1m)}. (4c)

Formulation (4) finds an optimal rotation schedule that simultaneously maximizes the total number

of satisfied vacation requests (i.e., f1(vvv)) and minimizes a measure of inequity in satisfied requests

among residents (i.e., f2). For brevity, we relegate the formulation of the form (4) based on each

measure in Table 3 to Online Appendix A. Note that one can employ formulation (4) to promote

equity among residents irrespective of their classes or equity among residents of the same class (or

group). In the former case, we evaluate inequity within the entire set of residents. In the latter

case, we evaluate inequity within each group. For example, suppose that the program defines G

groups of residents {Rg}g∈G based on some criterion (e.g., seniority), where Rg is the set of residents

belonging to group g. In this case, one can compute ϕg(vvv) for each group of residents Rg and use

f2(vvv) =
∑

g∈G ϕg(vvv) in (4b). We compare these approaches in Section 7.4.

We observe the following about formulation (4). The two objectives f1 and f2 can be conflicting,

i.e., improving one can entail deteriorating the other. Indeed, satisfying a larger number of vacation

requests does not necessarily ensure equity in the number of satisfied vacation requests per resident.

To see this, let us consider the following simple example. Suppose we have three residents (i.e.,

R = {1, 2, 3}), where each has one satisfied vacation request (i.e., ur = 1,∀r ∈ R and f1=3). This is

an equitable vacation assignment because all residents have the same number of satisfied requests.

Indeed, the value of each inequity measure in Table 3 is zero under this vacation assignment, i.e.,

f2 = 0. Suppose we can satisfy an additional vacation request for one of the residents and we

choose to fulfill one more request of resident 1. In this case, u1 = 2, ur = 1 for r ∈ {2, 3}, and the

total number of satisfied vacation requests increases to f1 = 4. This is clearly inequitable as one

resident has two requests granted while the other two have one request and the value of all inequity

measures increases. For example, the Gini deviation (measure 2) increases from 0 (under the first

assignment) to 4 (under the second assignment).

In the next section, we present methodologies for investigating the trade-off between f1 (number
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of satisfied vacation requests) and f2 (inequity) and accordingly obtain Pareto-optimal rotation

schedules. Here, Pareto optimal (equivalently, efficient, non-dominated, or non-inferior) rotation

schedules or solutions to (4) are solutions that cannot be improved in one objective function without

deteriorating their performance in the other one. The weighting and ε-constraint methods are

widely used iterative methods to identify subsets of the Pareto optimal solutions for bi-objective

IP problems, such as the equity-promoting RRAP. The ε-constraint method has several advantages

over the weighting method. First, as pointed out by Das and Dennis (1997); Ehrgott (2005) and

recently shown in Bergman et al. (2022), the weighting method often fails to find the complete set

of Pareto optimal solutions to multi-objective integer and mixed integer programming problems.

In contrast, the ε-constraint method does not suffer from this pitfall. Note that identifying the

entire set of non-dominated rotation schedules is desirable since it maximizes the decision-maker’s

knowledge about the trade-offs between the two objectives. They can then choose the “most

preferred” schedule. Second, in the weighting method, the scaling of the objective functions strongly

influences the obtained results. Therefore, one must scale the objective functions to a common

scale before forming the weighted sum. In the ε-constraint method, this is not necessary. Given

these shortcomings and our collaborator’s interest in analyzing the entire non-dominated rotation

schedules, we do not adopt the weighting method.

5. Solution Methodology

In this section, we present our proposed method that produces the entire set of non-dominated

rotation schedules of the equity-promoting RRAP problem in (4). In Section 5.1, we briefly dis-

cuss the traditional ε-constraint method and its challenges. Then, in Section 5.2, we present our

proposed Pareto Search Algorithms. We relegate all proofs to Online Appendix B.

5.1. ε−Constraint Method

In this section, we briefly discuss the classical ε-constraint method (see Ehrgott (2005); Balles-

tero and Romero (2013) for detailed discussions). To facilitate the discussion, we first intro-

duce some notation and define relevant terms. We define the feasible set of problem (4) as

F = {zzz ∈ B|R|×|D|×|B|,xxx ∈ B|R|×|D|×|W |, vvv ∈ B|R|×|D|×|W | |(1b) − (1m)}. Definitions 5.1 and 5.2

introduce the notions of Pareto optimal solutions and non-dominated points, respectively.

Definition 5.1 (Pareto Optimal or Non-dominated Solutions). A feasible solution (zzz,xxx,vvv) ∈ F is

called a Pareto-optimal (or non-dominated) solution if there is no other feasible solution (zzz′,xxx′, vvv′) ∈
F such that f1(vvv

′) ≥ f1(vvv) and f2(vvv
′) ≤ f2(vvv). We define the set of Pareto-optimal solutions as

Fp = {(zzz,xxx,vvv) ∈ F|f1(vvv) ≥ f1(vvv
′), f2(vvv) ≤ f2(vvv

′), ∀(zzz′,xxx′, vvv′) ∈ F}.

Definition 5.2 (Non-dominated Points). Given a Pareto-optimal solution (zzz,xxx,vvv) ∈ Fp, the cor-

responding objective value (f1(vvv), f2(vvv)) is called a non-dominate point. We call the set P =

{(f1(vvv), f2(vvv))⊤ ∈ R2|(zzz,xxx,vvv) ∈ Fp} the set of non-dominated points (Pareto front).

In the ε-constraint method, we optimize one objective function while constraining the value of
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Algorithm 1: The ε-constraint method for the equity-promoting RRAP

Initialization: i = 1, V = −1, ε = 1, P = ∅, V = optimal value to (2)

while V < V do
• Solve problem (5). Record optimal solution (zzz∗,xxx∗, vvv∗, f1(vvv

∗)) and value f2(vvv
∗).

• Update f i
1 ← f1(vvv

∗), f i
2 ← f2(vvv

∗), V ← f1(vvv
∗), P ← P{(f i

1, f
i
2)}, and i← i+ 1.

end

the other objective function, requiring that the objective value meets a threshold and iteratively ad-

justing that threshold. Specifically, the method produces the entire set of non-dominated solutions

and points of problem (4) by solving a sequence of problems of the following form

minimize
zzz,vvv,xxx

{
f2(vvv)

∣∣(zzz,vvv,xxx) ∈ (1b)− (1m)}, f1(vvv) ≥ V + ε
}
, (5)

where ε > 0 is a pre-defined small positive constant. Algorithm 1 summarizes the steps of

the ε-constraint method. To initialize the algorithm, we solve the equity-neutral problem (2) and

record the optimal value V (maximum number of vacation requests that can be satisfied). Then,

the algorithm solves a sequence of problem (5) by successively adjusting (increasing) the parameter

V in the RHS of the constrained objective f1. Given that the minimum increase in the number

of satisfied vacation requests in any feasible solution is one, we can set ε = 1. In each iteration,

algorithm 1 seeks to identify a new feasible solution with one additional vacation request satisfied

compared to the solution obtained from the previous iteration, where vacation requests are granted

in a way that minimizes the inequity measure.

As is well-known, the traditional ε-constraint method may require substantial computational

effort to generate the entire Pareto front (Kim and De Weck, 2005; Marler and Arora, 2010). Indeed,

our results in Section 7.5 suggest that implementing the ε-constraint method to solve (4) with some

inequity measures such as Gini and MeanDev is computationally challenging. In particular, as

the number of fulfilled vacation requests, denoted as V , increases, problem 5 becomes extremely

challenging to solve. To address this challenge, in the next section, we present our proposed Pareto

Search algorithm, which, as shown in Section 7 can find the entire Pareto front for large RRAP

instances within a reasonable time.

5.2. Pareto Search Algorithm

In this section, we present our proposed Pareto Search Algorithm. We first identify several char-

acteristics of the optimal solutions and Pareto front, which we exploit in our proposed algorithm.

Recall that the minimum value of any inequity measure in Table 3 is zero. In Proposition 1, we

show that there exists a Pareto-optimal solution (zzz0,xxx0, vvv0) ∈ Fp to (4) with f2(vvv
0) = 0.

Proposition 1. An optimal solution (zzz0,xxx0, vvv0) to the optimization problem

maximize
zzz,vvv,xxx

{
f1(vvv)

∣∣∣(zzz,vvv,xxx) ∈ (1b)− (1m), f2(vvv) = 0
}

(6)

is a Pareto-optimal solution to problem (4), i.e., (zzz0,xxx0, vvv0) ∈ Fp and (f1(vvv
0), f2(vvv

0)) ∈ P.
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Recall that the optimal value to the equity-neutral formulation (2), denoted as V , represents

the maximum number of vacation requests that can be satisfied. In Proposition 2, we show there

exists a Pareto-optimal solution (zzzl,xxxl, vvvl) ∈ Fp to (4) with f1(vvv
l) = V .

Proposition 2. Let V be the optimal objective value of problem (2). An optimal solution (zzzl,xxxl, vvvl)

to the optimization problem

minimize
zzz,vvv,xxx

{
f2(vvv)

∣∣∣(zzz,vvv,xxx) ∈ (1b)− (1m), f1(vvv) = V
}
, (7)

is a Pareto-optimal solution to problem (4), i.e., (zzzl,xxxl, vvvl) ∈ Fp and (f1(vvv
l), f2(vvv

l)) ∈ P.

Propositions 1 and 2 indicate that any non-dominated point (f1(vvv), f2(vvv)) ∈ P associated

with non-dominated solution (zzz,xxx,vvv) ∈ Fp satisfies f1(vvv) ∈ [f1(vvv
0), f1(vvv

l)] and f2(vvv) ∈ [0, f2(vvv
l)].

Note also that the difference in the total number of satisfied requests between two non-dominated

vacation schedules vvv ∈ Fp and vvv′ ∈ Fp is at least one, i.e., |f1(vvv)− f1(vvv
′)| ≥ 1. Hence, given a non-

dominated rotation schedule with a vacation schedule vvv and V satisfied requests, the subsequent

non-dominated rotation schedule might retain the same satisfied requests as in vvv while fulfilling an

additional request (totaling V + 1 satisfied requests).

These observations motivate our Pareto Search Algorithm. Algorithm 2 summarizes the steps of

this algorithm. First, we solve problem (6) and record optimal value f1(vvv
0) and solution (zzz0,xxx0, vvv0)

with f2(vvv
0) = 0. We extract the following categories of residents from vvv0: the set of residents

with one or more fulfilled requests denoted as V0 and the set of residents with i satisfied vacation

requests denoted as U0
i . For any vacation schedule vvvj , the sets Vj and U j

i are defined as follows.

Vj =
{
r ∈ R, d ∈ D,w ∈W vac

r : vjr,d,w = 1

}
. (8)

U j
i =

{
r ∈ R :

∑
d∈D

∑
w∈W vac

r

vjr,d,w = i

}
, ∀i ∈

[
0, w̄

]
. (9)

Parameter w̄ in (9) is the maximum number of requested weeks for vacation among all residents,

i.e., w̄ = maxr∈R |W vac
r |. In Step 2, we solve the equity-neutral model and record the optimal

number of satisfied vacations f1(vvv
l). Then, in each iteration j of Step 3 (with sets V0 and {U0

i }w̄i=0

as inputs), the algorithm attempts to find a new feasible rotation schedule with a vacation schedule

that has one more vacation request fulfilled than the vacation schedule obtained from the previous

iteration. Specifically, for each V ∈ [f1(vvv
0) + 1, f1(vvv

l)]Z, Step 3 proceeds as follows. In Step 3.1,

we identify the set of residents with the lowest number of satisfied vacation requests denoted as R′.

In Step 3.2, we attempt to find an optimal schedule with one more satisfied vacation request than

the previous iteration j − 1 by solving the optimization problem

minimize
zzz,vvv,xxx

f2(vvv) (10a)
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Algorithm 2: The Pareto Search Algorithm
Initialization: j = 1; P = ∅, Fp = ∅
Step 1. Solve problem (6) and record optimal solution (zzz0,xxx0, vvv0) and value (f1(vvv

0), f2(vvv
0)). Obtain sets

V0 and {U0
i }w̄i=0 using (8) and (9). Set Fp = {(zzz0,xxx0, vvv0)}, P = {(f1(vvv0), 0)}, and V = f1(vvv

0) + 1

Step 2. Solve the equity-neutral RRAP problem (2) and record optimal solution (zzzl,xxxl, vvvl) and value

(f1(vvv
l), f2(vvv

l)).

Step 3. Obtain Optimal Solutions

while V < f1(vvv
l) do

3.1 Set s← arg min
i∈[0,w̄]

{U j−1
i ̸= ∅} and R′ ← U j−1

s

3.2 Solve problem (10)

if problem (10) has an optimal solution (zzz∗,xxx∗, vvv∗, f1(vvv
∗)) and value f2(vvv

∗) then

Update sets Vj and {Uj}w̄i=0. Set f
j
1 ← f1(vvv

∗), f j
2 ← f2(vvv

∗), Sj ← {(zzz∗,xxx∗, vvv∗)};
V ← V + 1 and j ← j + 1. Go to Step 3.1 ;

else Go to Step 3.3;

3.3 Solve problem (11)

if problem (11) has an optimal solution (zzz∗,xxx∗, vvv∗, f1(vvv
∗)) and value f2(vvv

∗)) then

Update sets Vj and {Uj}w̄. Set f j
1 ← f1(vvv

∗), f j
2 ← f2(vvv

∗), Sj ← {(zzz∗,xxx∗, vvv∗)};
V ← V + 1 and j ← j + 1. Go to Step 3.1 ;

else Set V ← V + 1 and go to Step 3.3.;

end

Step 4. Extract Non-dominated Solutions

for k ∈ [1, j] do

Let I = {i ∈ [1, j]|f i
1 ≥ fk

1 };
if fk

2 < f i
2 ∀i ∈ I then

P ← P ∪ {(fk
1 , f

k
2 )}, Fp ← Fp ∪ Sk

end

end

subject to: (1b)− (1m), (10b)

f1(vvv) = V, (10c)

vr,d,w = 1, ∀(r, d, w) ∈ Vj−1, (10d)∑
r∈R′

∑
d∈D

∑
w∈W vac

r

vr,d,w = 1. (10e)

Problem (10) aims to find an optimal rotation schedule with f1 = V satisfied vacation requests

that minimize a measure of inequity in the satisfied vacation requests (f2 = ϕ(vvv)). The associated

vacation schedule has the same satisfied vacation requests as the one obtained from (j−1), with one

additional vacation request being satisfied. This feature, which is desirable since, for the purpose

of comparison, it is preferred to have solutions throughout the Pareto front that involve common

assignments rather than very distinct ones, is ensured via constraints (10c)–(10e). Specifically,

constraints (10c) ensure the number of satisfied vacation requests is V . Constraints (10d) ensure

that satisfied vacation requests for residents r ∈ Vj−1 in the schedule obtained in iteration (j − 1)
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Figure 2: An illustration of Proposition 3 using an instance of four residents and the Gini deviation as the inequity

measure f2. The left panel shows a vacation schedule in which two residents have one fulfilled request while the other

two have no fulfilled requests, so f1 = 2 and f2 = 8 in this schedule. Suppose we can satisfy one more request. The

right panel shows two options. The first option is to fulfill a vacation request of one of the two residents who already

have one satisfied request. In this case, f1 = 3 and f2 = 14. The second option is to fulfill a vacation request for one

of the residents with zero satisfied requests (i.e., with the fewest satisfied requests). In this case, f1 = 3 and f2 = 6.

Thus, the second option results in the lowest value of the inequity measure f2.

remain satisfied in the new schedule. Constraints (10e) guarantee that we prioritize satisfying an

additional vacation request of one of the residents r ∈ R′ with the fewest granted vacation requests

in the previous schedule j − 1 (identified in Step 3.1). Proposition 3 establishes that fulfilling a

vacation request for one of the residents with the fewest satisfied requests is always optimal; see

Online Appendix B.3 for a proof and Figure 2 for an illustrative example.

If problem (10) has an optimal solution, we store the optimal solution and value, update sets

Vj and U j using (8) and (9), set V ← V + 1 and j ← j + 1, and return to Step 3.1. If problem

(10) does not have a feasible solution, this indicates that we cannot satisfy an additional vacation

request based on the current vacation schedule {vr,d,w = 1, ∀(r, d, w) ∈ Vj−1}. In this case, we

proceed to Step 3.3, where, we attempt to solve the following problem

minimize
zzz,vvv,xxx

{
f2(vvv)

∣∣∣(zzz,vvv,xxx) ∈ (1b)− (1m), f1(vvv) = V
}
. (11)

If problem (11) has an optimal solution, we record the optimal solution and value, update sets

Vj and U j , set V ← V + 1 and j ← j + 1, and return to Step 3.1. On the other hand, if problem

(11) does not have a feasible solution, this indicates that there is no optimal rotation schedule with

exactly V satisfied vacation requests. In this case, we increase V by 1 and try to solve problem (11)

again. Step 3 terminates when V = f1(vvvl). Note that Step 3 generates all non-dominated solutions

and some dominated solutions. In Step 4, we extract non-dominated solutions. Given that V is

finite, then Step 3 and hence Algorithm 2 terminates in a finite number of iterations.

Proposition 3. Consider a vacation schedule vvv and let R′ be the set of residents with the fewest

number of approved requests in vvv. Suppose we can fulfill one additional vacation request. Then,

fulfilling a vacation request for one of the residents r ∈ R′ yields the lowest value of any inequity

measure in Table 3.
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Figure 3: User Interface of the RRAP Tool

Solving problem (10) in Step 3.2 of Algorithm 2 is much easier than solving problem (11) in Step

3.3. Both problems aim to find a new rotation schedule with one more satisfied vacation request

than the one found in the previous iteration while minimizing the value of the inequity measure, i.e.,

f2 = ϕ. However, the search space in (10) is smaller because we fix {vr,d,w = 1, ∀(r, d, w) ∈ Vj−1}
via constraint (10d) and approve a request of one of the residents with the fewest approved requests

via constraint (10e). It is easy to verify that an optimal solution to (10) is also optimal to (11).

Similarly, solving problem (10) is also much easier than solving problem (5) in each iteration of

Algorithm 1.

6. The RRAP Tool

We developed a web-based tool implementing the proposed models using the Python programming

language to automate the generation of the annual rotation schedule. Figure 3 presents a screenshot

of the user interface, which has two modules: the input interface and the output interface. Details

of these components are provided next.

The input interface is used to input data (i.e., details of an RRAP instance) required for solving

the IP model. Specifically, the user first downloads the info template (Step 1), an Excel workbook

that has several sheets, each designated for a specific set of input parameters to the IP model (e.g.,

program information, block information, list of residents, hospital departments, mandatory and

impossible departments, etc.); see Online Appendix C for an example. Once the user fills out the

info template, they upload it using the upload function (Step 3). Then, they click on the “Generate

Schedule” function to generate the rotation schedule. Specifically, in the back end, this function

reads the data from the filled input template, uses it as input to the IP model, and then calls

Gurobi to solve the model. The output interface enables users to download the optimal solution

using two Excel workbooks. The first provides the rotation schedule, and the second provides the

associated vacation schedule.

7. Numerical Results

In this section, we construct various RRAP instances and conduct extensive experiments to il-

lustrate the computational efficiency of the proposed model; compare optimal solutions to the
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Table 4: Number of blocks and possible departments for each class in each RRAP Instances

Inst
Blocks Departments

PGY1 PGY2 PGY3 PGY4 PGY5 PGY1 PGY2 PGY3 PGY4 PGY5
Inst1 12 8 9 7 6 12 6 8 7 6
Inst2 12 12 12 12 12 12 12 12 12 12
Inst3 12 12 10 10 9 12 10 10 10 9

proposed models and their impact on equity; investigate the trade-off between equity in satisfying

vacation requests and the number of satisfied requests; and derive insights relevant to practice.

In Section 7.1, we discuss experimental setups. In Section 7.2, we analyze the trade-off between

inequity and the number of satisfied requests under different inequity measures. In Section 7.3,

we compare our proposed approach with the manual approach. In Section 7.4, we compare the

residents-based and class-based approaches. Finally, in Section 7.5, we analyze the computational

performance of our approaches and the ε-constraint method.

7.1. Test Instances and Experimental Setup

To show our proposed approach’s broad applicability and benefits, we constructed various RRAP

instances based on the data provided by CUIMC’s general surgery residency program. As detailed in

Section 3, this program is a five-year-long program, where each academic year consists of |W | = 53

weeks. We constructed three sets of RRAP instances based on the data from six academic years

(2018–2023) by varying the number of blocks and departments for each resident class.

Table 4 summarizes the number of blocks and departments for each class in each instance.

The number of weeks in each block in each instance is as follows. For Inst1, the number of

weeks in each block of (PGY1, PGY2, PGY3, PGY4, PGY5) is (4 to 5, 6 to 7, 6 to 7, 7 to 9,

9 to 10). For Inst2, the number of weeks in each block of PGY1–PGY5 is 4 to 5 weeks. For

Inst3, the number of weeks in each block of (PGY1, PGY2, PGY3, PGY4, PGY5) is (4 to 5, 4

to 5, 5 to 6, 5 to 6, 5 to 6). Table 5 summarizes the sets of mandatory/required (i.e., Dreq) and

busy departments (i.e., Dbusy), where busy departments are highlighted in bold text. The set of

impossible departments includes those that are not mandatory, i.e., Dimp
r = D \Dreq

r ,∀r ∈ R. Note

that Inst2 represents a residency program where all resident classes have the same sets of blocks

and mandatory departments. In contrast, Inst1 and Inst3 represent programs where resident

classes have different rotation requirements. We provide details of departmental staffing needs

(Rmin and Rmax) and the required rotation length (Tmin and Tmax) in Online Appendix D.

We generate vacation requests for each resident using two methods, denoted as A and B. In

method A, we randomly select vacreq non-overlapping weeks from the 53 weeks for each resident.

In method B, we first partition the academic year evenly into three parts, denoted as W1, W2, and

W3. Then, we randomly generate vacation requests as follows: 20% of residents’ vacation requests

are drawn fromW1, 30% of requests are drawn fromW2, and the remaining 50% of vacation requests

are from W3. Based on these methods and Inst1–Inst3, we construct 18 RRAP instances with

|R| ∈ {62, 125, 185} residents, where instances with |R| = 125 and 185 represent large instances as
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Table 5: Mandatory and busy departments for each class in each RRAP Instance. Busy departments are high-

lighted in bold text.

Inst Class Departments

Inst1

PGY1 Allen, Vascular, Breast, Thoracic, CR, SICU, HPB, Peds, Overlook, Lap, Rainbow, VTF

PGY2 Overlook, ACS-OR, Consults, CTICU, Peds, Allen

PGY3 Renal, Lap, CR, Trauma, Overlook, Vascular, Breast, Thoracic

PGY4 Overlook, Elective, Vascular, HPB, ACS, Allen, Nights

PGY5 HPB-Chabot, CR, HPB, Lap, Elective,Nights

Inst2

PGY1 Allen, Vascular, Breast, Thoracic, CR, SICU, HPB, Peds, Overlook, Lap, Rainbow, VTF

PGY2 Allen, Vascular, Breast, Thoracic, CR, SICU, HPB, Peds, Overlook, Lap, Rainbow, VTF

PGY3 Allen, Vascular, Breast, Thoracic, CR, SICU, HPB, Peds, Overlook, Lap, Rainbow, VTF

PGY4 Allen, Vascular, Breast, Thoracic, CR, SICU, HPB, Peds, Overlook, Lap, Rainbow, VTF

PGY5 Allen, Vascular, Breast, Thoracic, CR, SICU, HPB, Peds, Overlook, Lap, Rainbow, VTF

Inst3

PGY1 Allen, Vascular, Breast, Thoracic, CR, SICU, HPB, Peds, Overlook, Lap, VTF, Rainbow

PGY2 Allen, Vascular, Breast, VTF, Thoracic, CR, HPB, Consults, ACS, Overlook

PGY3 Allen, Vascular, Breast, VTF, Thoracic, CR, SICU, HPB, Trauma, Overlook

PGY4 Allen, Vascular, Breast, Lap, Thoracic, CR, SICU, HPB, Overlook, Nights

PGY5 Allen, Vascular, Breast, Lap, Thoracic, CR, SICU, ACS, Nights

Allen: Allen Hospital; CR: Colorectal Surgery; SICU: Surgical Intensive Care Unit; HPB: Hepatopancreaticobiliary; Peds:

Pediatric Surgery; Rainbow: Night Float for PGY1; Lap: Advanced Laparoscopic Surgery; Overlook: Overlook Hospital;

ACS-OR: Acute Care Surgery Operative; Consults: Acute Care Surgery Consult; CTICU: Cardiothoracic Intensive Care

Unit; Renal: Renal Transplant; Nights: Night Float; VTF: Veterinary Treatment Facility.

the typical number of general surgery residents at CUMIC often ranges from 50–65. We denote

each instance as Inst#-R-Method. For example, Inst1-62-A is Inst1 with 62 residents and vacation

requests generated using method A.

Residents are required to stay in the program for the entire academic year (i.e., Bimp
r = ∅, ∀r ∈

R). Moreover, ACGME requires each resident to have four vacation weeks during the academic

year. Accordingly, we set |W vac
r | = 4 in all instances. Each resident could submit two vacation

requests at the beginning of the year (i.e., T vac
r = 2, ∀r ∈ R), and each can have at most one

vacation in each block/rotation (i.e., Rvac
r,b = 1, ∀r ∈ R, b ∈ B). Moreover, for instances with 62 and

125 residents, at most, one resident can be on vacation per week in each department, i.e., Dvac
d,w = 1,

for all d ∈ D and w ∈ W . For instances with 185 residents, at most three residents can be on

vacation per week in each department, i.e., Dvac
d,w = 3, for all d ∈ D and w ∈W .

We use the constructed 18 RRAP instances (Inst1-62-A, Inst1-62-B,. . . , Inst3-185-B) to

analyze the computational time of the proposed methodologies in Section 7.5. In addition, we use

a case study based on the data related to the 2023–2024 academic year to derive the practical

insights discussed in Sections 7.2–7.4. We call this instance RRAP-Case. Specifically, this instance

consists of 54 residents, of which (22, 9, 9, 7, 7) are (PGY1, PGY2, PGY3, PGY4, and PGY5)

residents. We consider five types of PGY1 residents in this instance1, namely PGY1-Categorical,

PGY1-OMFS, PGY1-Prelim, PGY1-GU, and PGY1-Ortho. PGY1-Categorical and PGY1-Prelim

1Note that there are typically eight types of PGY1 residents: Categorical, Prelim, GU, OMFS, Ortho, Cardiac,

ENT, and Plastics. We do not include Cardiac, ENT, and Plastics in this illustrative instance.
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are general surgery residents with categorical and preliminary positions, respectively (see Section 3

for details). On the other hand, PGY1-GU, PGY1-OMFS, and PGY1-Ortho are from the urology,

oral and maxillofacial, and orthopedic surgical residency programs, respectively, rotating within

the general surgery program. PGY2 and PGY3 residents are either Categorical or Cardiac. All

residents, except PGY1-GU and PGY1-Ortho, rotate in the program for the entire academic year,

while PGY1-GU and PGY1-Ortho spend 40 and 26 weeks, respectively. Moreover, each resident,

except PGY1-Ortho, have four vacation weeks (T vac
r = 4), while PGY1-Ortho (because they are

only present half of the year) have two vacation weeks (T vac
r = 2). Each resident can submit requests

for |W vac
r | = T vac

r preferred vacation weeks. The sets of blocks (mandatory, possible, and busy)

departments for each class and each type of resident are different. We refer to Online Appendix G

for details and parameter settings of this instance.

In our implementation, we add the following symmetry-breaking constraints (12) to ensure that,

for residents staying in the program for the whole academic year (i.e., {r ∈ R|Bimp
r = ∅}), their

block schedules are filled sequentially (i.e., a department should be assigned to block b before block

b+ 1): ∑
d∈D

zr,d,b ≥
∑
d∈D

zr,d,b+1, ∀r ∈ R : Bimp
r = ∅, b ∈ B. (12)

We implemented our proposed models and algorithm in Python 3.8.6 and used Gurobi 9.5.0 as

the solver with default settings. We conducted all the experiments on a MacBook Pro with an M1

chip and 32 gigabytes (GB) RAM. This represents the computing capability available to a chief

resident who would be tasked with producing a schedule in a real-world setting.

7.2. Analysis of the Trade-off between Inequity and Number of Satisfied Requests

In this section, we analyze the trade-off between inequity (f2) and the number of satisfied vacation

requests (f1) using the RRAP-Case instance. Figure 4 presents the Pareto fronts (trade-off curves)

obtained by solving this instance using the Pareto Search Algorithm with different inequity mea-

sures. The (x, y) values of each point on the curve are the value of (f1, f2)=(total number of satisfied

requests, value of the inequity measure) associated with a Pareto optimal rotation schedule. The

red star represents the values of (f1, f2) associated with a feasible rotation schedule obtained by

solving the feasibility problem (1).

Figure 4 provides several important insights. First, all non-dominated points lies between

[108, 0] and [193, f2], where 108 is the optimal value of problem (6) and f2 is the optimal value of

problem (4), and f1=193 is the optimal value of the equity-neutral problem (2). This is consis-

tent with our theoretical results in Propositions 1–2. Second, the equity-neutral model produces

rotation schedules that maximize both the number of satisfied requests and the value of each in-

equity measure. This shows that these schedules exhibit significant disparities in meeting residents’

vacation requests.
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Figure 4: Pareto fronts illustrating the trade-off between the number of satisfied vacation requests (f1) and inequity

(f2). The red star represents a feasible rotation schedule.

Third, it is clear that different choices of the inequity measure in the equity-promotingfr model

produce different sets of Pareto optimal (non-dominated) rotation schedules with varying impacts

on equity and the number of satisfied requests. Moreover, the number of non-dominated rotation

schedules and points varies under different measures. Specifically, the number of non-dominated

points under (Range, Gini, MeanDev, MaxMeanDev, SumMaxPair) = (3, 12, 13, 63, 40). Note also

that the non-dominated points are different. For example, using the Gini deviation, we can find a

rotation schedule with 109 satisfied requests and a Gini deviation of 94, i.e., (f1, f2) = (109, 94).

But there is no such rotation schedule under other measures. Although there is no clear winner

among these inequity measures or criteria for selecting any of them, the program director and chief

resident of the collaborating health system favor utilizing measures that identify a larger number

of non-dominated solutions. This choice allows for more rotation scheduling options and flexibility

in selecting a preferred schedule while acknowledging the trade-offs between the two objectives.

Finally, we observe that the optimal equity-promoting rotation schedules always dominate the

one obtained by solving feasibility problem (1) (represented by a star in Figure 4). In particular,

using a feasible solution, we can satisfy 163 vacation requests, and the corresponding values of

(Range, Gini, MeanDev, MaxMeanDev, and SumMaxPair) are (4, 1990, 35.2, 2.9, 131). These

points are notably above the Pareto fronts. Moreover, we can find non-dominated rotation schedules

with more satisfied requests and lower values of each measure.

7.3. Comparison with the Sequential Approach

In practice, the chief resident or program director employs a sequential approach, separating

rotation assignment decisions (zzz) from the remaining decisions (vvv and xxx). Specifically, first,

they assign residents to blocks and departments (i.e., find a feasible zzz). Then, they construct

a vacation schedule, specifying vacation and working weeks for each resident (i.e., find feasible
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Figure 5: Pareto fronts resulting from the integrated and sequential approaches.

vvv and xxx). In this section, we compare the performance of this sequential approach with our

proposed integrated approach. In the sequential approach, we first solve a feasibility problem

max
zzz
{0|(1b) − (1e), (1g) − (1h), zzz ∈ {0, 1}|R|×|D|×|B|} to obtain a feasible z̄zz. Then, we solve the

following equity-promoting IP with zzz fixed to z̄zz to obtain corresponding (vvv, xxx) and (f1, f2).

maximize
v,xv,xv,x

f1(vvv) :=
∑
r∈R

∑
d∈D

∑
w∈W vac

r

vr,d,w (13a)

minimize
v,x,zv,x,zv,x,z

f2(vvv) := ϕ(vvv) (13b)

subject to: (vvv,xxx) ∈ {(1f), (1i)− (1m)} (13c)

Figure 5 presents the Pareto fronts obtained by solving the RRAP-Case instance using our inte-

grated approach and the sequential approach. We observe that the sequential approach results in

inferior solutions, which are dominated by those obtained using our proposed approach. In partic-

ular, our approach allows us to find equitable rotation schedules with a larger number of satisfied

vacation requests and a lower value of the inequity measure. These results demonstrate the im-

portance of integrating rotation and vacation scheduling decisions and show how our integrated

equity-promoting approach can yield more equitable rotation schedules than the equity-promoting

sequential approach, which separates rotation and vacation scheduling decisions.

7.4. Residents-based Versus Class-based Equity

Recall from Section 4.3 that one can employ the equity-promoting model (4) to promote equity

among all residents or within residents of the same class. In the former approach (denoted as the

residents-based), we evaluate inequity across the entire set of residents, and in the latter (denoted

as the class-based), we evaluate inequity within each class of residents. In this section, we compare

solutions obtained from these approaches.

For brevity and illustrative purposes, in Figure 6, we present Pareto fronts obtained using
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Figure 6: Pareto fronts resulting from residents-based and class-based approaches.

the residents-based (black curve) and class-based (blue curve) approaches with Range, Gini, and

MeanDev. The f2 value of each point on the class-based curve is computed as f2(vvv) =
∑

c∈C ϕc(vvv),

where C is the set of resident classes, i.e., C = {PGY1,PGY2,PGY3,PGY4,PGY5}, and ϕc(vvv)

the value of the inequity measure for each class. We also evaluate the impact of employing class-

based schedules on inequity among all residents by computing the value of the inequity measure

considering the entire set of residents as in the residents-based approach. Red squares in Figure 6

represent the resulting (f1, f2) values.

It is clear that the residents- and the class-based approaches result in distinct sets of rotation

schedules. This makes sense because they consider different sets of residents when measuring

inequity. Moreover, while the class-based approach improves equity within each class, it potentially

results in significant disparities among residents of different classes compared with the residents-

based approach. In particular, rotation schedules generated using the class-based approach result

in high values of each inequity measure when computed considering all residents. These values are

significantly higher than those associated with rotation schedules obtained using the residents-based

approach (see red squares in Figure 6).

It is worth noting that there is no universal agreement in the literature regarding the preference

for either an individual-based approach (as in the residents-based) or a group-based approach (as in

the class-based). The choice often depends on the context and is a matter of subjective evaluation.

The results in this section indicate that, in terms of promoting equity among all residents, regardless

of their class, the class-based approach may not be suitable.

7.5. Computational Performance

In this section, we analyze the solution time of the proposed approaches. We first generate five

instances of each of the 18 RRAP instances (Inst1-62-A, Inst1-62-B,. . . , Inst3-185-B) described

in Section 7.1 for a total of 90 instances and then solve each with the proposed models and the

Pareto Search Algorithm.

Let us first analyze the computational performance of the Pareto Search Algorithm (Algo-

rithm 2). Table 6 presents the total solution time required to generate the complete set of Pareto
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Table 6: The total time required to obtain the set of non-dominated solutions using Algorithm 2.

Instance Range Gini MeanDev MaxMeanDev SumMaxPair
Inst1-62-A 140.1 239.5 235.4 174.9 218.1
Inst1-62-B 208.0 239.5 527.0 241.0 546.8
Inst2-62-A 118.6 301.2 157.2 95.5 200.2
Inst2-62-B 143.9 222.8 311.1 158.7 500.8
Inst3-62-A 110.0 239.5 183.9 139.5 177.1
Inst3-62-B 154.3 644.1 333.6 182.4 434.6

Inst1-125-A 557.8 1179.2 1188.7 853.1 1267.0
Inst1-125-B 920.1 1222.4 1265.0 1047.1 3778.2
Inst2-125-A 699.3 2874.3 1703.2 1360.6 1016.5
Inst2-125-B 1250.0 3528.7 2028.7 2586.9 1370.3
Inst3-125-A 496.4 1243.5 1020.4 877.0 953.0
Inst3-125-B 704.3 1834.5 1150.8 942.4 1589.7

Inst1-185-A 1209.5 4077.0 3344.0 2091.8 1267.0
Inst1-185-B 1637.6 4491.1 4342.1 2475.4 3825.4
Inst2-185-A 1350.3 6240.8 3252.8 7273.5 2324.0
Inst2-185-B 1772.1 5971.6 3737.1 2797.4 4005.5
Inst3-185-A 917.5 4091.1 2597.9 1882.4 2184.0
Inst3-185-B 2932.2 7972.1 7807.7 3315.1 6190.3

optimal rotation schedules to the equity-promoting model with measures Range, Gini, MeanDev,

MaxMeanDev, and SumMaxPair. We do not present solution times with measures MaxPair and

MaxSumPair since, as shown in the Proof of Propositon 3 in Online Appendix B, the former mea-

sure is equivalent to Range, and the latter is equivalent to MaxMeanDev and thus have comparable

solution times. In Online Appendix E, we present the average time spent in each step of Algorithm

2.

We observe the following from Table 6. First, we can obtain the set of Pareto optimal solutions

to the equity-promoting model using Algorithm 2 in less than two hours, irrespective of the inequity

measure used in the model. Second, the algorithm takes a longer time as the instance size increases.

Specifically, the ranges of the total time required to obtain the complete set for instances with 62,

125, and 185 residents are approximately 1.6–9 minutes, 12–62 minutes, and 15 minutes–2.2 hours.

These results make sense because the size of the equity-promoting formulation and thus problems

(10) and (11) in Step 3 of the algorithm increase with |R|, potentially increasing the time required

to solve each in each iteration of the algorithm. Moreover, instances with more residents have

more vacation requests and, hence, have larger numbers of non-dominated solutions, potentially

increasing the time required to identify these solutions. However, these solution times are suitable

for practical implementation, considering that the rotation schedule is constructed once a year and

CUIMC typically has a range of 50 to 65 general surgery residents.

Third, the algorithm’s computational performance varies depending on the inequity measure

employed in the equity-promoting model. In particular, the algorithm takes a shorter time to find

the non-dominated set under the Range than under the other considered measures, and it takes the

longest time under the Gini deviation. Intuitively, different measures require introducing different

sets of additional variables and constraints into the model; see Online Appendix A. Thus, the size
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and complexity of solving the resulting formulation under each measure differ. For example, we

need two additional variables and 2|R| + 1 constraints to represent the Range. In contrast, we

need |R|2 variables and 2|R|2 constraints to represent the Gini deviation (see Table A1 in Online

Appendix A). Thus, the size of the equity-promoting formulation employing the Gini deviation is

significantly larger. Such an increase in the size of the IP formulation often suggests an increase in

solution time for solving it (Klotz and Newman, 2013).

Fourth, we observe that Step 3 of the algorithm requires the longest time (see Online Appendix

E) as this step generates the entire set of Pareto optimal solutions by iteratively solving either

problem (10) (in Step 3.2) or problem (11) (in Step 3.3). Consider Inst1-62-A, for example, the

total solution time of this instance using the algorithm with the Range measure is 140 seconds, 133

of which are spent in Step 3. Finally, we observe that instances with vacation requests generated

using method B often require a slightly longer time to solve than those with vacation requests

generated using method A. This makes sense as method B may lead to more conflicting requests

than method A and, thus, potentially harder-to-solve instances.

Note that using the traditional ε-constraint method (Algorithm 1), we could not solve any of

the generated RRAP instances under the Gini, SumMaxPair, and MeanDev. Consider Inst1-125-

A for example. Using the Pareto Search Algorithm (Algorithm 2), we can obtain all the Pareto

optimal solutions (16, 15, 2) with average solution time (1179.2, 1188.7, 1267) seconds for the

equity-promoting model with (Gini, MeanDev, SumMaxPair). In contrast, Algorithm 1 cannot

find the entire set within a day. In fact, Algorithm 1 terminates at the third iteration with an

average MIP gap of (63%, 44%, 79%) for (Gini, MeanDev, SumMaxPair).

Finally, we analyze solution time using formulation (1) and the equity-neutral model (2). In

Online Appendix F, Tables F1 and F2 respectively present solution time of formulations (1) and

(2) in Tables F1 and F2. Using the equity-neutral model (2), we can solve all instances with an

average solution time ranging from 2.5 to 60 seconds. In fact, we can quickly solve even larger

(though not realistic) instances of the problem using this model. For example, the average solution

time of instances with 200, 400, and 600 residents ranges from 12 to 80 seconds. Similarly, using

formulation (1), we can solve all the instances quickly with an average solution time ranging from

0.63 to 7.45 seconds.

The results in this section demonstrate the computational efficiency of our proposed approaches

for the RRAP.

8. Conclusion

Motivated by our collaboration with CUIMC, we propose and analyze new IP models and ap-

proaches for the resident-to-rotation assignment problem (RRAP). First, we derive an IP formu-

lation that finds a feasible rotation and vacation schedule that satisfies all rotation requirements.

We show that such a formulation and the corresponding equity-neutral formulation that maximizes

the number of satisfied vacation requests lead to disparity in satisfying vacation requests among
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residents. To address this, we derive an equity-promoting counterpart, which finds optimal rotation

schedules that maximize the total number of satisfied vacation requests and minimize a measure

of inequity in satisfied requests among residents. Second, we propose a computationally efficient

Pareto Search Algorithm that finds the complete set of Pareto optimal (non-dominated) rotation

schedules to the equity-promoting model within a time that is suitable for practical implementation.

Third, we develop a user-friendly tool that implements the proposed methodologies, which

helps residency programs automate the rotation schedule. Finally, we construct various instances

based on data from CUIMC to derive insights and illustrate the potential benefits of our proposed

approaches in practice. Our results demonstrate the computational efficiency and, thus, the po-

tential implementability of our proposed approach. They also show the benefits of our proposed

approaches in promoting equity in resident rotation scheduling. Moreover, we demonstrate the su-

perior computational performance of our Pareto Search Algorithm compared with the traditional

ε-constraint method.

For future research, extending the proposed approaches by considering potential uncertain

events that could affect residents’ training and rotations (e.g., residents’ absenteeism) would be

valuable. It will also be interesting to consider residents’ preferences on possible shifts within each

rotation and build on our proposed approach to promote equity in shift schedules.
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Equity-promoting Integer Programming Approaches For Medical Resident

Rotation Scheduling (Online Appendices)

Online Appendix A. Equity-promoting RRAP formulation

In this appendix, we present the equity-promoting formulations for the RRAP with each measure

listed in Table 3.

Online Appendix A.1. Equity-promoting RRAP with Range

maximize
v,x,zv,x,zv,x,z,umin≥0,umax

∑
r∈R

∑
d∈D

∑
w∈W vac

r

vr,d,w

minimize
v,x,zv,x,zv,x,z,umin,umax

umax − umin

subject to: (1b)− (1m), umax ≥
∑

w∈W vac
r

∑
d∈D

vr,d,w,∀r ∈ R, umin ≤
∑

w∈W vac
r

∑
d∈D

vr,d,w, ∀r ∈ R.

Online Appendix A.2. Equity-promoting RRAP with Gini

maximize
v,x,z,yv,x,z,yv,x,z,y

∑
r∈R

∑
d∈D

∑
w∈W vac

r

vr,d,w

minimize
v,x,z,yv,x,z,yv,x,z,y

∑
(r,r′)∈R×R\{r}

yr,r′

subject to: (1b)− (1m), yr,r′ ≥
∑

w∈W vac
r

∑
d∈D

vr,d,w −
∑

w∈W vac
r′

∑
d∈D

vr′,d,w, ∀(r, r′) ∈ R×R \ {r},

yr,r′ ≥
∑

w∈W vac
r′

∑
d∈D

vr′,d,w −
∑

w∈W vac
r

∑
d∈D

vr,d,w, ∀(r, r′) ∈ R×R \ {r}.

Online Appendix A.3. Equity-promoting RRAP with MaxPair

maximize
v,x,zv,x,zv,x,z,y

∑
r∈R

∑
d∈D

∑
w∈W vac

r

vr,d,w

minimize
v,x,zv,x,zv,x,z,y

y

subject to: (1b)− (1m), y ≥
∑

w∈W vac
r

∑
d∈D

vr,d,w −
∑

w∈W vac
r′

∑
d∈D

vr′,d,w, ∀(r, r′) ∈ R×R \ {r},

y ≥
∑

w∈W vac
r′

∑
d∈D

vr′,d,w −
∑

w∈W vac
r

∑
d∈D

vr,d,w, ∀(r, r′) ∈ R×R \ {r}.

Online Appendix A.4. Equity-promoting RRAP with MeanDev

maximize
v,x,z,yv,x,z,yv,x,z,y

∑
r∈R

∑
d∈D

∑
w∈W vac

r

vr,d,w

minimize
v,x,z,yv,x,z,yv,x,z,y

∑
r∈R

yr

1



subject to: (1b)− (1m), yr ≥
∑

w∈W vac
r

∑
d∈D

vr,d,w −

∑
r′∈R

∑
w∈W vac

r′

∑
d∈D

vr′,d,w

|R|
, ∀r ∈ R,

yr ≥

∑
r′∈R

∑
w∈W vac

r′

∑
d∈D

vr′,d,w

|R|
−

∑
w∈W vac

r

∑
d∈D

vr,d,w, ∀r ∈ R.

Online Appendix A.5. Equity-promoting RRAP with MaxMeanDev

maximize
v,x,zv,x,zv,x,z,y

∑
r∈R

∑
d∈D

∑
w∈W vac

r

vr,d,w

minimize
v,x,zv,x,zv,x,z,y

y

subject to: (1b)− (1m), y ≥
∑

w∈W vac
r

∑
d∈D

vr,d,w −

∑
r′∈R

∑
w∈W vac

r′

∑
d∈D vr′,d,w

|R|
, ∀r ∈ R,

y ≥

∑
r′∈R

∑
w∈W vac

r′

∑
d∈D vr′,d,w

|R|
−

∑
w∈W vac

r

∑
d∈D

vr,d,w, ∀r ∈ R.

Online Appendix A.6. Equity-promoting RRAP with MaxSumPair

maximize
v,x,z,yv,x,z,yv,x,z,y,ȳ

∑
r∈R

∑
d∈D

∑
w∈W vac

r

vr,d,w

minimize
v,x,z,yv,x,z,yv,x,z,y,ȳ

ȳ

subject to: (1b)− (1m), yr,r′ ≥
∑

w∈W vac
r

∑
d∈D

vr,d,w −
∑

w∈W vac
r′

∑
d∈D

vr′,d,w, ∀(r, r′) ∈ R×R \ {r},

yr,r′ ≥
∑

w∈W vac
r′

∑
d∈D

vr′,d,w −
∑

w∈W vac
r

∑
d∈D

vr,d,w, ∀(r, r′) ∈ R×R \ {r},

ȳ ≥
∑

r′∈R\{r}

yr,r′ , ∀r ∈ R.

Online Appendix A.7. Equity-promoting RRAP with SumMaxPair

maximize
v,x,z,yv,x,z,yv,x,z,y

∑
r∈R

∑
d∈D

∑
w∈W vac

r

vr,d,w

minimize
v,x,z,yv,x,z,yv,x,z,y

∑
r∈R

yr

subject to: (1b)− (1m),

yr ≥
∑

w∈W vac
r

∑
d∈D

vr,d,w −
∑

w∈W vac
r′

∑
d∈D

vr′,d,w, ∀(r, r′) ∈ R×R \ {r},

yr ≥
∑

w∈W vac
r′

∑
d∈D

vr′,d,w −
∑

w∈W vac
r

∑
d∈D

vr,d,w, ∀(r, r′) ∈ R×R \ {r}.

Table A1 summarizes the additional number of constraints and variables required to represent
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each measure in each equity-promoting RRAP model.

Table A1: Number of additional variables and constraints required to represent each inequity measure.

Range Gini MaxPair MeanDev MaxMeanDev MaxSumPair SumMaxPair
No. variables 2 |R|2 1 |R| 1 |R|2 + 1 |R|
No. constraints 2|R|+ 1 2|R|2 |R|2 2|R| 2|R| 2|R|2 + |R| 2|R|2

Online Appendix B. Mathematical Proofs

Online Appendix B.1. Proof of Proposition 1

Proof. Note that (zzz0,xxx0, vvv0) satisfies constraints (1b)-(1m). Hence, it is a feasible solution to

problem (4), i.e., (zzz0,xxx0, vvv0) ∈ F . Next, we show that (zzz0,xxx0, vvv0) ∈ Fp. To show this, we need

to verify that f1(vvv) ≤ f1(vvv
0) and f2(vvv

0) ≤ f2(vvv) for any (zzz,xxx,vvv) ∈ F . Since (zzz0,xxx0, vvv0) ∈ F ,
f(vvv0) = 0, and f(vvv) ≥ 0 for any vvv ∈ F , we have f2(vvv) ≥ f2(vvv

0) = 0 for all (zzz,xxx,vvv) ∈ F . Moreover,

for any feasible solution (zzz,xxx,vvv) ∈ F such that f2(vvv) = 0, we have

f1(vvv
0) =

∑
r∈R

∑
b∈B

∑
w∈W vac

r

v0r,d,w ≥
∑
r∈R

∑
b∈B

∑
w∈W vac

r

vr,d,w = f1(vvv),

where the first inequality follows from the optimality of vvv0. It follows that (zzz0,xxx0, vvv0) ∈ Fp and

(f1(vvv
0), f2(vvv

0)) ∈ P. This completes the proof.

Online Appendix B.2. Proof of Proposition 2

Proof. Note that (zzzl,xxxl, vvvl) satisfies constraints (1b)-(1m). Hence it is a feasible solution to problem

(4), i.e., (zzzl,xxxl, vvvl) ∈ F . Next, we show that (zzzl,xxxl, vvvl) ∈ Fp. To show this, we need to verify that

f1(vvv) ≤ f1(vvv
l) and f2(vvv

l) ≤ f2(vvv), for any (zzz,xxx,vvv) ∈ F . Since (zzzl,xxxl, vvvl) ∈ F , f1(vvvl) = V̄ and

f1(vvv) ≤ V̄ for any vvv ∈ F , we have f1(vvv) ≤ f1(vvv
l) = V̄ . Moreover, for any feasible solution

(zzz,xxx,vvv) ∈ F such that f1(vvv) = V̄ , we have

f2(vvv
l) ≤ f2(vvv),

where the inequality follows from optimality of vvvl. Thus, (zzzl,xxxl, vvvl) ∈ Fp and (f1(vvv
l), f2(vvv

l)) ∈
P.

Online Appendix B.3. Proof of Proposition 3

Proof. We define kkk ∈ Rw̄+1 as the vacation requests distribution vector associated with vacation

schedule vvv, where the ith entry of kkk = [k0, k1, k2, . . . , kw̄] represents the number of residents with

i satisfied requests and w̄ the is the maximum number of requested weeks for vacation among all

residents (i.e., w̄ = maxr∈R |W vac
r |). Note that for each resident r ∈ R, ur is the number of residents

r’s satisfied requests (ur =
∑

d∈D
∑

w∈W vac
r

vr,d,w), and ū is the average number of satisfied requests.

We assume that there are at least two residents, i.e., |R| ≥ 2. Next, we show that fulfilling a request

for one of the residents with the fewest satisfied requests yields the lowest value of each measure.

Range. Let l and s represent the largest and smallest non-zero entries of kkk = [k0, k1, k2, . . . , kw̄]

3



(i.e., s ≤ ur ≤ l,∀r ∈ R). By the definition of the range measure, we have

ϕ(kkk) = max
r∈R

ur −min
r∈R

ur = l − s.

Suppose we want to fulfill one additional vacation request and let kkk′ ∈ Rw̄+1 represent the resulting

vacation request distribution. Consider the following options for fulfilling the additional request.

a) Fulfill a request of one of the residents with i granted requests, where i = s. In this case, if

ks ≤ 1, we find that ϕ(kkk′) = l − (s+ 1) = l − s− 1. Otherwise, if ks ≥ 2, ϕ(kkk′) = l − s.

b) Fulfill a request of one of the residents with i granted requests, where i ∈ (s, l). In this case,

we observe that kkk′’s largest and smallest non-zero entries l and s do not change the inequity

value using range does not change (i.e., ϕ(kkk′) = l − s).

c) Fulfill a request of one resident with l granted requests, where i = l. In this case, since we

have one resident with l+1 satisfied requests, the largest non-zero entry of kkk′ becomes l+1.

Thus, the inequity value using range is ϕ(kkk′) = l + 1− s.

From (a)–(c), we conclude that fulfilling an additional request of a resident with the fewest satisfied

vacation requirements will either decrease the value of the range or decrease it.

Gini. Given vvv and its corresponding vacation requests distribution kkk ∈ Rw̄+1, we compute Gini as

ϕ(vvv) =
∑
r∈R

∑
r′∈R
|ur − ur′ |

= k0
(
k1 + · · ·+ w̄kw̄

)
+ k2

(
2k0 + k1 + · · ·+ (w̄ − 1)kw̄

)
· · ·+ kw̄

(
w̄k0 + (w̄ − 1)k1 + · · ·+ kw̄−1

)
=

w̄∑
i=0

ki
( w̄∑
j=0

|j − i|kj
)
, (14)

Let p ∈ [1, w̄ − 1] and consider the following two options for fulfilling one additional request.

(a) Fulfill a request of one of the residents with p−1 granted requests. The new vacation request

distribution is kkk′ = [k0, kp−1 − 1, kp + 1, . . . , kw̄] and the Gini deviation ϕ(k′) is as follows.

ϕ(kkk′) =
∑

i∈[0,w̄]:
i ̸=p−1,p

ki

[ ∑
j∈[0,w̄]:

j ̸=[p−1,p]

|j − i|kj + |p− 1− i|(kp−1 − 1) + |p− i|(kp + 1)

]
+ (kp−1 − 1)

[ ∑
j∈[0,w̄]:

j ̸=p

|j − (p− 1)|kj + kp + 1

]
+ (kp + 1)

[ ∑
j∈[0,w̄]:
j ̸=p−1

|j − p|kj + kp−1 − 1

]
The difference between ϕ(kkk) and ϕ(kkk′) equals to

ϕ(kkk′)− ϕ(kkk) =
∑

i∈[0,w̄]:
i ̸=p−1,p

ki

[ ∑
j∈[0,w̄]:

j ̸=[p−1,p]

|j − i|kj + |p− 1− i|(kp−1 − 1) + |p− i|(kp + 1)

−
∑

j∈[0,w̄]:
j ̸=[p−1,p]

|j − i|kj − |p− 1− i|kp−1 − |p− i|kp
]

+ kp−1

[ ∑
j∈[0,w̄]:

j ̸=p

|j − (p− 1)|kj + kp

]
− (kp−1 − 1)

[ ∑
j∈[0,w̄]:

j ̸=p

|j − (p− 1)|kj + kp + 1

]
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+ kp

[ ∑
j∈[0,w̄]:
j ̸=p−1

|j − p|kj + kp−1

]
− (kp + 1)

[ ∑
j∈[0,w̄]:
j ̸=p−1

|j − p|kj + kp−1 − 1

]

=
∑

i∈[0,w̄]:
i ̸=p−1,p

ki

[
|p− i| − |p− 1− i|

]
− kp−1 +

[ ∑
j∈[0,w̄]:

j ̸=p

|j − (p− 1)|kj + kp + 1

]
+ kp

−
[ ∑

j∈[0,w̄]:
j ̸=p−1

|j − p|kj + kp−1 − 1

]

=
∑

i∈[0,w̄]:
i ̸=p−1,p

ki +
∑

j∈[0,w̄]:
j ̸=p−1,p

(
|j − (p− 1)| − |j − p|

)
kj + 2kp − 2kp−1 + 2

=
∑

i∈[0,w̄]:
i ̸=p−1,p

ki −
∑

j∈[0,w̄]:
j ̸=p−1,p

kj + 2(kp − kp−1 + 1) = 2(kp − kp−1 + 1). (15)

(b) Fulfill a request of one of the residents with p granted requests. Let kkk′′ = [k0, . . . , kp −
1, kp+1 + 1, . . . , kw̄] represent the resulting vacation request distribution vector. It is easy to

verify following the same steps as in (a) that ϕ(kkk′′)− ϕ(kkk) = 2(kp+1 − kp + 1).

Computing the difference between ϕ(kkk′)− ϕ(kkk) and ϕ(kkk′′)− ϕ(kkk)[
ϕ(kkk′′)− ϕ(kkk)

]
−
[
ϕ(kkk′)− ϕ(kkk)

]
= 2

(
kp+1 − kp + 1− kp + kp−1 − 1

)
(16)

= 2
(
kp+1 + kp−1 − 2kp

)
≥ 2

[
kp+1 + kp−1 − 2(kp+1 + kp−1 − |R|)

]
≥ 2

[
2|R| − (kp+1 + kp−1)

]
> 0.

The last inequality holds because kp+1 + kp + kp−1 ≤
n∑

i=0
ki = |R|. Consequently, we conclude that

fulfilling a vacation request for one of the residents with p ∈ [1, w̄ − 1] satisfied requests results in

a lower increment in the value of the inequity measure (Gini deviation) than fulfilling a request of

one of the residents with p + 1 request. Since we show this for arbitrary p, this establishes that

fulfilling a vacation request for one of the residents with the fewest satisfied requests always yields

the lowest value of the Gini deviation.

Maximum pairwise deviation. We first show that the value of the maximum pairwise deviation

equals that of the range for any vacation request distribution kkk ∈ Rw̄+1. Recall that s and l

respectively represent the smallest and largest entries of kkk such that ki > 0,∀i ∈ [0, w̄], i.e.,

s ≤ ur ≤ l,∀r ∈ R. It follows that we can compute the maximum pairwise deviation as

max
r∈R

max
r′∈R
|ur − ur′ | = max

r∈R
|ur − s| = l − s = max

r∈R
ur −min

r∈R
ur.

This shows that the range and maximum pairwise deviation are equivalent. It follows from point

(1) that the results hold for maximum pairwise deviation.

Absolute deviation from mean. By the definition of the absolute deviation from the mean, we

have

ϕ(kkk) =
∑
r∈R
|ur − ū| = k0

∣∣∣∣
∑w̄

j=0 jkj∑w̄
j=0 kj

∣∣∣∣+ · · ·+ kw̄

∣∣∣∣w̄ −
∑w̄

j=0 jkj∑w̄
j=0 kj

∣∣∣∣
5



=
w̄∑
i=0

ki

∣∣∣∣i−
∑w̄

j=0 jkj

|R|

∣∣∣∣ = w̄∑
i=0

ki

∣∣∣∣i− S

|R|

∣∣∣∣, (17)

where S =
∑w̄

j=0 jkj represents the total number of satisfied vacation requests and |R| =
∑w̄

j=0 kj .

Now suppose we want to fulfill one additional vacation request. Suppose we fulfill a request for

one of the residents with currently p− 1 granted requests, where p ∈ [1, w̄ − 1]. The new vacation

request distribution is kkk′ = [k0, . . . , kp−1 − 1, kp + 1, . . . , kw̄]. By equation (17), we have

ϕ(kkk′) =
∑

i∈[0,w̄]:
i ̸=p−1,p

ki

∣∣∣∣i− S + 1

|R|

∣∣∣∣+ (kp−1 − 1)

∣∣∣∣p− 1− S + 1

|R|

∣∣∣∣+ (kp + 1)

∣∣∣∣p− S + 1

|R|

∣∣∣∣
Computing the difference between ϕ(kkk′) and ϕ(kkk), we obtain

ϕ(kkk′)− ϕ(kkk) =
∑

i∈[0,w̄]:
i ̸=p−1,p

ki

∣∣∣∣i− S + 1

|R|

∣∣∣∣+ (kp−1 − 1)

∣∣∣∣p− 1− S + 1

|R|

∣∣∣∣+ (kp + 1)

∣∣∣∣p− S + 1

|R|

∣∣∣∣
−
[ ∑

i∈[0,w̄]:
i̸=p−1,p

ki
∣∣i− S

|R|
∣∣+ (kp−1)

∣∣p− 1− S

|R|
∣∣+ (kp)

∣∣p− S

|R|
∣∣]

=
w̄∑
i=0

ki

[∣∣i− S + 1

|R|
∣∣− ∣∣i− S

|R|
∣∣]+

∣∣∣∣p− S + 1

|R|

∣∣∣∣− ∣∣∣∣p− 1− S + 1

|R|

∣∣∣∣. (18)

Now suppose that we instead fulfill an additional request of a resident with p granted request and

obtain the vacation request distribution vector kkk′′ = [k0, . . . , kp − 1, kp+1 + 1, . . . , kw̄]. Using (17)

and following the same techniques as in (18), we compute ϕ(kkk′′)− ϕ(kkk) as

ϕ(kkk′′)− ϕ(kkk) =
w̄∑
i=0

ki

[∣∣∣∣i− S + 1

|R|

∣∣∣∣− ∣∣∣∣i− S

|R|

∣∣∣∣]+

∣∣∣∣p+ 1− S + 1

|R|

∣∣∣∣− ∣∣∣∣p− S + 1

|R|

∣∣∣∣. (19)

Subtracting equation (19) from (18), we have[
ϕ(kkk′′)− ϕ(kkk)

]
−
[
ϕ(kkk′)− ϕ(kkk)

]
=

∣∣∣∣p+ 1− S + 1

|R|

∣∣∣∣− ∣∣∣∣p− S + 1

|R|

∣∣∣∣− ∣∣∣∣p− S + 1

|R|

∣∣∣∣+ ∣∣∣∣p− 1− S + 1

|R|

∣∣∣∣
=

∣∣∣∣p+ 1− S + 1

|R|

∣∣∣∣− 2

∣∣∣∣p− S + 1

|R|

∣∣∣∣+ ∣∣∣∣p− 1− S + 1

|R|

∣∣∣∣. (20)

Equation (20) shows, using the absolute deviation from the mean as the inequity measure, the gap

in the inequity value between fulfilling the extra request from a resident with p granted requests

and p− 1 granted requests. Consider the following three cases:

a) p ≤ S+1
|R| − 1 or p ≥ S+1

|R| + 1. We first consider the case when p ≥ S+1
|R| + 1. The same proof

techniques can be used for the case when p ≤ S+1
|R| − 1. When p+ 1 > p ≥ S+1

|R| + 1, we have[
ϕ(kkk′′)− ϕ(kkk)

]
−
[
ϕ(kkk′)− ϕ(kkk)

]
=

(
p+1− S + 1

|R|

)
− 2

(
p− S + 1

|R|

)
+

(
p− 1− S + 1

|R|

)
= 0.

b) S+1
|R| ≤ p ≤ S+1

|R| + 1. In this case, p+ 1 ≥ p ≥ S+1
|R| but p− 1 ≤ S+1

|R| . Then we have,[
ϕ(kkk′′)− ϕ(kkk)

]
−
[
ϕ(kkk′)− ϕ(kkk)

]
=

(
p+ 1− S + 1

|R|

)
− 2

(
p− S + 1

|R|

)
+

(
S + 1

|R|
− p+ 1

)
= 2

[
S + 1

|R|
− p+ 1

]
≥ 0.

c) S+1
|R| − 1 ≤ p ≤ S+1

|R| . In this case, p+ 1 ≥ S+1
|R| but p− 1 ≤ p ≤ S+1

|R| , then we have[
ϕ(kkk′′)− ϕ(kkk)

]
−
[
ϕ(kkk′)− ϕ(kkk)

]
=

(
p+ 1− S + 1

|R|

)
− 2

(
S + 1

|R|
− p

)
+

(
S + 1

|R|
− p+ 1

)

6



= 2

[
p− S + 1

|R|
+ 1

]
≥ 0.

From (a)–(c), we conclude that
[
ϕ(kkk′′) − ϕ(kkk)

]
≥

[
ϕ(kkk′) − ϕ(kkk)

]
. It follows that fulfilling a

request of a resident with p requests could result in a larger increment in the value of the inequity

measure (absolute deviation from the mean) compared with fulfilling a request to a resident with

p−1 requests. Thus, it is optimal to fulfill a request of a resident with the fewest satisfied requests.

Maximum absolute deviation from mean. Recall that s and l respectively represent the

smallest and largest entries of kkk such that ki > 0, ∀i ∈ [0, w̄], i.e., s ≤ ur ≤ l,∀r ∈ R. By definition

of maximum absolute deviation from the mean, we have

ϕ(kkk) = max
r∈R
|ur − ū| = max

{
|s− ū|, |s+ 1− ū|, . . . , |l − ū|

}
= max

{∣∣s− S

|R|
∣∣, . . . , ∣∣l − S

|R|
∣∣}

= max

{∣∣s− S

|R|
∣∣, ∣∣l − S

|R|
∣∣}, (21)

where S is the total number of satisfied requests, i.e., S =
∑

r∈R ur. Since the total number of

satisfied vacations S ∈ [|R|s, |R|l], the average number of satisfied requests S
|R| ∈ [s, l]. Thus,

equation (21) reduces to

ϕ(kkk) = max

{( S

|R|
− s

)
, (l − S

|R|
)}

. (22)

Suppose we want to fulfill one additional vacation request to a resident and let kkk′ represent the

resulting new vacation request distribution. Then ϕ(kkk′) equals

ϕ(kkk′) = max

{(S + 1

|R|
− s′

)
,
(
l′ − S + 1

|R|
)}

, (23)

where s′ and l′ represent the smallest and largest non-zero entries of kkk′, respectively. Now, consider

the following cases.

a) Fulfill a request of one of the residents with s granted requests.

First, when ks = 1 (there is one resident with s granted requests), we have s′ = s + 1 and

l′ = l. By equation (23),

ϕ(kkk′) = max

{(S + 1

|R|
− (s+ 1)

)
,
(
l − S + 1

|R|

)}
, (24)

Consider the following three sub-cases:

i) l+s
2 ≤

S+1
|R| −

1
2 . In this case, we have l− S+1

|R| ≤
S+1
|R| −(s+1). Thus, ϕ(kkk′) = S+1

|R| −(s+1).

Note also that l+s
2 ≤

S
|R| +

1
|R| −

1
2 ≤

S
|R| (since |R| ≥ 2). Hence, l − S

|R| ≤
S
|R| − s and

ϕ(kkk) =
(

S
|R| − s

)
. The difference between ϕ(kkk′) and ϕ(kkk) equals

ϕ(kkk′)− ϕ(kkk) =
S + 1

|R|
− s− 1−

( S

|R|
− s

)
=

1

|R|
− 1 < 0.

ii) l+s
2 ∈ [S+1

|R| −
1
2 ,

S
|R| ]. Since

l+s
2 ≥

S+1
|R| −

1
2 , we have l − S+1

|R| ≥
S+1
|R| − (s+ 1). Moreover,

since l+s
2 ≤

S
|R| , we have l−

S
|R| ≤

S
|R| − s. Thus, ϕ(kkk) = S

|R| − s and ϕ(kkk′) = l− S+1
|R| , and

ϕ(kkk′)− ϕ(kkk) = l − S + 1

|R|
−
( S

|R|
− s

)
= l + s− 2S + 1

|R|
≤ 2S

|R|
− 2S + 1

|R|
< 0.

iii) l+s
2 ≥ S

|R| . In this case, we have l − S
|R| ≥ s − S

|R| and ϕ(kkk) =
(
l − S

|R|
)
. Note that
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l + s ≥ 2S
|R| ≥

2S
|R| + ( 1

|R| − 1) (since |R| ≥ 2). Thus, l − S+1
|R| ≥

S+1
|R| − (s + 1) and so

ϕ(kkk′) =
(
l − S+1

|R|
)
. The difference between ϕ(kkk′) and ϕ(kkk) equals

ϕ(kkk′)− ϕ(kkk) = l − S + 1

|R|
− l +

S

|R|
= − 1

|R|
< 0.

We conclude that when ks = 1, fulfilling a request of a resident with s granted request (i.e.,

the one with the fewest number of satisfied requests) will decrease the value of ϕ.

Now, consider the case when ks ≥ 2 (there are more than two residents with s granted

requests). By equation (23), we have

ϕ(kkk′) = max

{(S + 1

|R|
− s

)
,
(
l − S + 1

|R|
)}

. (25)

Then we consider the following three sub-cases.

i) l+s
2 ≤

S
|R| . In this case, l+ s ≤ 2S

|R| and
S
|R| − s ≥ l− S

|R| . Moreover, since l+s
2 ≤

S+1
|R| , we

have S+1
|R| − s ≥ S+1

R − l. It follows that ϕ(kkk) = S
|R| − s, ϕ(kkk′) = S+1

|R| − s, and

ϕ(kkk′)− ϕ(kkk) =
S + 1

|R|
− s− S

|R|
+ s =

1

|R|
.

ii) S
|R| ≤

l+s
2 ≤

S+1
|R| . In this case, we have l − S

|R| ≥
S
|R| − s. Moreover, since l+s

2 ≤
S+1
|R| , by

point (i) when ks ≥ 2, S+1
|R| − s ≥ S+1

R − l. Hence, ϕ(kkk) = l − S
|R| , ϕ(kkk

′) = S+1
|R| − s, and

ϕ(kkk′)− ϕ(kkk) =
S + 1

|R|
− s− l +

S

|R|
=

2S + 1

|R|
− (l + s).

Since l+s
2 ∈ [S/|R|, (S + 1)/|R|], ϕ(kkk′)− ϕ(kkk) ∈ [−1/|R|, 1/|R|].

iii) l+s
2 ≥

S+1
|R| . In this case, we have l − S

|R| ≥
S
|R| − s and l − S+1

|R| ≥
S+1
|R| − s. Hence,

ϕ(kkk) = l − S
|R| , ϕ(kkk

′) = l − S+1
|R| , and

ϕ(kkk′)− ϕ(kkk) = l − S + 1

|R|
− l +

S

|R|
= − 1

|R|
.

Consequently, we conclude that when ks ≥ 2, (i) fulfilling a request to a resident with the

fewest satisfied requests will lead to either an increase or decrease in the inequity value; (ii)

If the inequity value increases, the increase in the inequity value is at most 1
|R| ; (iii) If the

inequity value decreases, the decrease in the inequity value is at most 1
|R| .

b) Fulfill a request to one of the residents with i requests, where i ∈ [s + 1, l − 1]. In this case,

ϕ(kkk) equals (24), and the proof is the same as point (a) when ks ≥ 2. Hence, fulfilling an

additional request to a resident with [s + 1, l − 1] satisfied requests will lead to either an

increase or decrease in the inequity value. The change in the inequity value is at most 1
|R| .

c) Fulfill a request of one of the residents with l requests. Let us consider the first case when

kl ≥ 2. In this case, ϕ(kkk) equals (24). The proof is the same as point (a) when ks ≥ 2. Now

we consider the second case when there is only one resident with l granted requests (kl = 1).

By equation (24), we have

ϕ(kkk′) = max

{(S + 1

|R|
− s

)
,
(
l + 1− S + 1

|R|

)}
.

Now consider the following three sub-cases.

i) l+s
2 ≤

S+1
|R| −

1
2 . In this case, since l+ s ≤ 2S+2

|R| − 1, we have (l+1)− S+1
|R| ≤

S+1
|R| − s. As

in point (a)–(i), we have l − S
|R| ≤

S
|R| − s. Hence, ϕ(kkk) = S

|R| − s and ϕ(kkk′) = S+1
|R| − s,
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Thus,

ϕ(kkk′)− ϕ(kkk) =
S + 1

|R|
− s− S

|R|
+ s =

1

|R|
> 0.

ii) S+1
|R| −

1
2 ≤

l+s
2 ≤

S
|R| . In this case, as in point (a)–ii, we have l − S

|R| ≤
S
|R| − s and

ϕ(kkk) = S
|R| − s. Moreover, since l + s ≥ 2S+2

|R| − 1, we have (l + 1)− S+1
|R| ≥

S+1
|R| − s and

ϕ(kkk′) = l + 1− S+1
|R| . Hence,

ϕ(kkk′)− ϕ(kkk) = l + 1− S + 1

|R|
− S

|R|
+ s = (l + s+ 1)− 2S + 1

|R|
≥ 2S + 2

|R|
− 2S + 1

|R|
> 0.

iii) l+s
2 ≥

S
|R| . In this case, as in point (a)–iii, we have ϕ(kkk) = (l− S

|R|). Moreover, l+1−S+1
|R| ≥

S+1
|R| − s and ϕ(kkk′) = l + 1− S+1

|R| . Thus,

ϕ(kkk′)− ϕ(kkk) = l + 1− S + 1

|R|
− l +

S

|R|
= 1− 1

|R|
≥ 0.

Consequently, we conclude that when kl = 1, fulfilling an additional request to a resident with

the maximal number of satisfied requests will (i) lead to an increase in the inequity value;

(ii) an increase in the inequality value is at least 1
|R| . Furthermore, when kl ≥ 2, fulfilling an

additional request to a resident with the maximal number of satisfied requests will lead to

either an increase or decrease in the inequity value. The change in the inequity value is at

most 1
|R| .

The above analyses show that fulfilling additional request of a resident with the fewest granted

requests is optimal because (i) it leads to the maximal decrease in the inequity value, i.e., the

decrease in the inequity value is at least 1/|R| when ks = 1; (ii) it leads to a minimal change in the

inequity value, i.e., the change in the inequity value is at most 1/|R| when ks ≥ 2.

Maximum sum of pairwise deviation. We first claim that, for any vacation request distribution,

the maximum sum of pairwise deviation equals a constant multiplied by the maximum absolute

deviation from the mean, i.e., kkk ∈ Rw̄+1, maxr∈R
∑

r′∈R |ur − ur′ | = |R|maxr∈R |ur − ū|. To prove

this claim, we rewrite the maximum sum of pairwise deviation as

ϕ(kkk) = max
r∈R

∑
r′∈R
|ur − ur′ |

= max
i∈[0,w̄]

{ w̄∑
j=0

kj |j − i|
}

= max

{ w̄∑
i=0

iki,

w̄∑
i=0

(w̄ − i)ki

}
= max{c1, c2}, (26)

where c1 and c2 represent the first and second expressions in the max operator, respectively. We

first consider the case when c1 ≤ c2. In this case, we have ϕ(kkk) =
∑w̄

i=0(w̄ − i)ki and
w̄∑
i=0

iki ≤ w̄
w̄∑
i=0

ki −
w̄∑
i=0

iki∑w̄
i=0 iki∑w̄
i=0 ki

≤
w̄
∑w̄

i=0 ki −
∑w̄

i=0 iki∑w̄
i=0 ki

ū ≤ w̄ − ū, (27)
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where the last inequality follows from ū =
∑w̄

i=0 iki/
∑w̄

i=0 ki. It follows that when c1 ≤ c2, we have

ϕ(kkk) =

w̄∑
i=0

(w̄ − i)ki =

w̄∑
i=0

w̄ki −
w̄∑
i=0

iki =

w̄∑
i=0

ki(w̄ − ū)

=

w̄∑
i=0

kimax
{
ū, |1− ū|. . . . , |w̄ − ū|

}
(since w̄ − ū ≥ ū by (27))

=
w̄∑
i=0

ki max
i∈[0,w̄]

|i− ū| = |R|max
r∈R
|ur − ū|. (28)

From (27), we conclude that maxr∈R
∑

r′∈R |ur − ur′ | = |R|maxr∈R |ur − ū|. A similar argument

holds when c1 ≥ c2. This shows that maxr∈R
∑

r′∈R |ur −ur′ | = |R|maxr∈R |ur − ū|. Note that the

number of residents |R| is constant. Moreover, in point (5), we have shown that the proposition

holds for the maximum absolute deviation from the mean maxr∈R |ur − ū|. It follows that the

results also hold for maxr∈R
∑

r′∈R |ur − ur′ |.
Sum of maximum pairwise deviation. Recall that s and l represent the smallest and largest

entries of kkk such that ki > 0,∀i ∈ [0, w̄] respectively, i.e., s ≤ ur ≤ l,∀r ∈ R. By definition of the

sum of maximum pairwise deviation, we have

ϕ(kkk) =
∑
r∈R

max
r′∈R
|ur − ur′ |

= ks(l − s) + ks+1max{|(s+ 1)− s|, |s+ 2− (s+ 1)|, . . . , |l − (s+ 1)|}+ · · ·+ kl(l − s)

= ks(l − s) + ks+1max{(s), (l − s− 1)}+ · · ·+ kl−1max{(l − 1), 1}+ kl(l − s)

=
l∑

i=s

max{(i− s), (l − i)}ki

=


∑c1

i=s ki(l − i) +
∑l

i=c2
ki(i− s) If (l + s)/2 is fractional∑c

i=s ki(l − i) +
∑l

i=c+1 ki(i− s) Otherwise
(29)

where c = l+s
2 , c1 = ⌊ l+s

2 ⌋ and c2 = ⌈ l+s
2 ⌉.

In the following, we consider the case when (l + s)/2 is fractional. A similar statement holds

when (l + s)/2 is integer. Now suppose we want to fulfill one additional vacation request to a

resident with p− 1 granted requests and let kkk′ = [k0, . . . , kp−1− 1, kp+1, . . . , kw̄] represent the new

vacation request distribution. Consider the following three cases:

a) p ≤ c1 − 1. In this case, we have p− 1 ≤ p ≤ p+ 1 ≤ c1 = ⌊ l+s
2 ⌋. Then we know

ϕ(kkk′)− ϕ(kkk) =
∑

i∈[s,c1]:
i ̸=p−1,p

(l − i)ki + (l − p+ 1)(kp−1 − 1) + (l − p)(kp + 1) +

l∑
i=c2

(i− s)ki

−
[ ∑

i∈[s,c1]:
i ̸=p−1,p

(l − i)ki + (l − p+ 1)(kp−1) + (l − p)(kp) +

l∑
i=c2

(i− s)ki

]

= (l − p+ 1)(−1) + (l − p) = l − p− l + p− 1 = −1.
Now suppose we fulfill an extra request of a resident with p fulfilled requests and let kkk′′
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be the new vacation request distribution. Since p ≤ p + 1 ≤ c1, it is easy to verify that

ϕ(kkk′′)− ϕ(kkk) = −1. Finally, we conclude that ϕ(kkk′′)− ϕ(kkk)− [ϕ(kkk′)− ϕ(kkk)] = 0.

b) p ≥ c2 + 1. In this case, we have p+ 1 ≥ p ≥ p− 1 ≥ c2 = ⌈ l+s
2 ⌉. Then we know

ϕ(kkk′)− ϕ(kkk) =

c1∑
i=s

(l − i)ki +
∑

i∈[c2,l]:
p−1,p

(i− s)ki + (p− 1− s)(kp−1 − 1) + (p− s)(kp + 1)

−
[ c1∑

i=s

(l − i)ki +
∑

i∈[c2,l]:
p−1,p

(i− s)ki + (p− 1− s)(kp−1) + (p− s)(kp)

]

= (p− 1− s)(−1) + (p− s) = p− s− p+ 1 + s = 1

Since p ≥ p − 1 ≥ c2, it is easy to verify that ϕ(kkk′′) − ϕ(kkk) = 1. Thus, we conclude that

ϕ(kkk′′)− ϕ(kkk)− [ϕ(kkk′)− ϕ(kkk)] = 0.

c) c1 ≤ p ≤ c2. In this case, since there is no integer between c1 and c2, we have two sub-cases

p = c1 or p = c2. Let us consider the first sub-case when p = c1. In this case, we have

p − 1 ≤ p ≤ c1. Then by conclusion in a), we have ϕ(kkk′) − ϕ(kkk) = −1. Meanwhile, since

p+ 1 ≥ c2 ≥ p, we have

ϕ(kkk′′)− ϕ(kkk) =
∑

i∈[s,c1]:
i̸=p

(l − i)ki + (l − p)(kp − 1) +
∑

i∈[c2,l]:
i ̸=p+1

(i− s)ki + (p+ 1− s)(kp+1 + 1)

−
[ ∑

i∈[s,c1]:
i ̸=p

(l − i)ki + (l − p)(kp) +
∑

i∈[c2,l]:
i ̸=p+1

(i− s)ki + (p+ 1− s)(kp+1)

]

= −(l − p) + p+ 1− s = −l + p+ p− s+ 1 = 2p− (s+ l) + 1.

Since p ≥ (l+s)/2−1, multiplying both sides by two, we have 2p ≥ (l+s)−2. Then we know

2p − (s + l) + 1 ≥ −1. Thus we conclude that ϕ(kkk′′) − ϕ(kkk) ≥ [ϕ(kkk′) − ϕ(kkk)]. Now consider

the second sub-case when p = c2. In this case, we know ϕ(kkk′′) − ϕ(kkk) = 1 by the conclusion

in b). Since p ≥ c1 ≥ p− 1, we have

ϕ(kkk′)− ϕ(kkk) =
∑

i∈[s,c1]:
i ̸=p−1

(l − i)ki + (l − p+ 1)(kp−1 − 1) +
∑

i∈[c2,l]:
i̸=p

(i− s)ki + (p− s)(kp + 1)

−
[ ∑

i∈[s,c1]:
i ̸=p−1

(l − i)ki + (l − p+ 1)(kp−1) +
∑

i∈[c2,l]:
i ̸=p

(i− s)ki + (p− s)(kp)

]

= −(l − p+ 1) + p− s = −l + p− 1 + p− s = 2p− (s+ l)− 1.

Since p ≤ (l + s)/2 + 1, multiplying both sides by two, we have 2p ≤ (l + s) + 2, and then

2p− (l + s)− 1 ≤ 1. Thus, we conclude that ϕ(kkk′′)− ϕ(kkk) ≥ [ϕ(kkk′)− ϕ(kkk)].

The above analyses show that fulfilling a request of a resident with p requests will result in a larger

increment in the value of the inequity value (sum of maximum pairwise deviation) than fulfilling

a request of a resident with p − 1 requests. It follows that it is optimal to fulfill a request to of

resident with the fewest satisfied requests.
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Online Appendix C. The Info Template of the RRAP Tool

In this appendix, we provide examples of the input info template of the RRAP tool that the user

must fill out and then upload into the interface to generate a rotation schedule. This template is

an Excel workbook with seven sheets, each designated for a specific set of input parameters to the

IP model. Figures C1–C3 show screenshots of these sheets.

Figure C1: Screenshots of sheets 1–3 of the input info template of the RRAP tool.
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Figure C2: Screenshots of sheets 4–6 of the input info template of the RRAP tool.

Figure C3: Screenshots of sheet 7 of the input info template of the RRAP tool.
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Online Appendix D. Additional Details of RRAP Instances

Tables D1, D2, and D3 respectively presents the values of paramaters Tmin and Tmax in Inst1,

Inst2 and Inst3. Table D4 provides an example of the values of parameters Rmin and Rmax in

Inst1 with 62.

Table D1: The value of Tmin and Tmax for each class of residents in Inst1.

PGY1 PGY2 PGY3 PGY4 PGY5
Departments Min Max Min Max Min Max Min Max Min Max
Allen 1 1 1 2 0 3 1 4 0 5
Vascular 1 1 0 1 1 0 1 1 0 0
Breast 1 1 0 0 1 1 0 1 0 0
VTF 1 1 0 0 0 2 0 0 0 0
Thoracic 1 1 0 0 1 0 0 0 0 0
CR 1 1 0 0 1 1 0 0 1 0
SICU 1 1 0 0 0 2 0 0 0 1
HPB 1 1 0 0 0 0 1 0 1 0
Peds 1 1 1 0 0 0 0 1 0 1
Rainbow 1 1 0 1 0 0 0 0 0 0
Overlook 1 1 1 0 1 0 1 0 0 0
Lap 1 1 0 1 1 1 0 1 1 0
ACS-OR 0 1 1 0 0 1 0 0 0 1
Consults 0 0 3 1 0 0 0 0 0 0
CTICU 0 0 1 3 0 0 0 0 0 0
Renal 0 0 0 1 1 0 0 0 0 0
Trauma 0 0 0 0 1 1 0 0 0 0
Elective 0 0 0 0 0 2 1 0 1 0
ACS 0 0 0 0 0 0 1 1 0 1
Nights 0 0 0 0 0 0 1 1 1 0
HPB-Chabot 0 0 0 0 0 0 0 1 1 1

Table D2: The value of Tmin and Tmax for each class of residents in Inst2.

PGY1 PGY2 PGY3 PGY4 PGY5
Departments Min Max Min Max Min Max Min Max Min Max
Allen 1 1 1 1 1 1 1 1 1 1
Vascular 1 1 1 1 1 1 1 1 1 1
Breast 1 1 1 1 1 2 1 1 1 1
VTF 1 1 1 1 1 1 1 1 1 1
Thoracic 1 1 1 1 1 1 1 1 1 1
CR 1 1 1 1 1 2 1 1 1 1
SICU 1 1 1 1 1 1 1 1 1 1
HPB 1 1 1 1 1 1 1 1 1 1
Peds 1 1 1 1 1 1 1 1 1 1
Rainbow 1 1 1 1 1 1 1 1 1 1
Overlook 1 1 1 1 1 1 1 1 1 1
Lap 1 1 1 1 1 1 1 1 1 1
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Table D3: The value of Tmin and Tmax for each class of residents in Inst3.

PGY1 PGY2 PGY3 PGY4 PGY5
Departments Min Max Min Max Min Max Min Max Min Max
Allen 1 1 1 1 1 1 1 1 1 1
Vascular 1 1 1 1 1 1 1 1 1 1
Breast 1 1 1 1 1 1 1 1 1 1
VTF 1 1 1 1 1 1 0 0 0 0
Thoracic 1 1 1 1 1 1 1 1 1 1
CR 1 1 1 1 1 1 1 1 1 1
SICU 1 1 0 0 1 1 1 1 1 1
HPB 1 1 1 1 1 1 1 1 0 0
Peds 1 1 0 0 0 0 0 0 0 0
Rainbow 1 1 0 0 0 0 0 0 0 0
Overlook 1 1 1 1 1 1 1 1 0 0
Lap 1 1 0 0 0 0 1 1 1 1
ACS 0 0 1 1 0 0 0 0 1 1
Consults 0 0 3 3 0 0 0 0 0 0
Trauma 0 0 0 0 1 1 0 0 0 0
Nights 0 0 0 0 0 0 1 1 1 1

Table D4: An example of the value of Rmin and Rmax for each class of residents.

PGY1 PGY2 PGY3 PGY4 PGY5
Departments Min Max Min Max Min Max Min Max Min Max
Allen 1 3 1 2 0 0 1 1 0 0
Vascular 1 4 0 0 0 1 0 1 0 0
Renal 0 1 0 0 0 1 0 0 0 0
AdultAnes 0 1 0 0 0 0 0 0 0 0
Lap 1 3 0 0 0 1 0 0 0 1
Rainbow 1 3 0 0 0 0 0 0 0 0
ED 0 2 0 0 0 0 0 0 0 0
Breast 0 3 0 0 0 2 0 0 0 0
SICU 1 4 0 0 0 0 0 0 0 0
Plastics 0 2 0 0 0 0 0 0 0 0
Thoracic 1 4 0 0 0 2 0 0 0 0
OMFS 0 1 0 0 0 0 0 0 0 0
PMR 0 1 0 0 0 0 0 0 0 0
HPB 1 3 0 0 0 0 1 1 1 1
ENT 0 1 0 0 0 0 0 0 0 0
Overlook 1 3 0 3 0 2 1 1 0 0
CR 1 3 0 0 0 1 0 0 1 1
ACS 0 2 0 0 0 0 1 1 0 0
VTF 1 3 0 0 0 0 0 0 0 0
Peds 1 4 0 2 0 0 0 0 0 0
PedsAnes 0 1 0 0 0 0 0 0 0 0
ACS-OR 0 0 0 2 0 0 0 0 0 0
Consults 0 0 1 4 0 0 0 0 0 0
Trauma 0 0 0 0 0 1 0 0 0 0
Nights 0 0 0 0 0 0 1 1 1 1
Elective 0 4 0 0 0 0 0 1 0 1
HPB-Chabot 0 0 0 0 0 0 0 0 1 1
CTICU 0 0 1 3 0 0 0 0 0 0
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Online Appendix E. Details of CPU Time of Equity-Promoting model

Table E1 presents solution times in each step of Algorithm 2.

Table E1: Total time (in seconds) in each step of Algorithm 2.

Instance
Range Gini MeanDev MaxMeanDev SumMaxPair

Step 1 Step 2 Step 3 Step 1 Step 2 Step 3 Step 1 Step 2 Step 3 Step 1 Step 2 Step 3 Step 1 Step 2 Step 3

Inst1-62-A 3.6 3.1 133.3 4.6 3.6 197.8 3.9 3.4 185.2 3.9 3.3 141.8 4.5 3.8 176.2

Inst1-62-B 7.7 6.0 194.3 8.4 6.0 337.7 7.0 5.3 431.9 6.9 5.4 209.5 8.0 5.9 291.5

Inst2-62-A 2.5 3.1 110.9 1.5 2.9 114.6 2.2 2.4 108.8 2.2 2.4 75.1 3.1 2.4 113.0

Inst2-62-B 3.5 4.8 135.6 5.4 3.0 122.4 4.1 4.5 108.4 4.1 4.5 76.8 6.4 4.8 93.4

Inst3-62-A 2.3 4.3 103.2 3.1 5.6 171.0 2.5 4.8 153.7 2.5 4.7 117.1 3.1 5.6 146.4

Inst3-62-B 2.2 2.5 149.6 5.0 4.3 636.0 1.9 2.6 66.5 1.9 2.6 61.1 2.4 2.9 182.3

Inst1-125-A 9.8 8.8 539.2 15.5 11.0 1072.4 13.2 9.1 942.9 13.9 9.6 775.4 15.4 11.0 967.8

Inst1-125-B 13.3 9.9 896.8 10.7 8.5 623.9 14.3 9.5 986.4 14.2 9.5 906.1 14.2 9.6 906.1

Inst2-125-A 19.2 22.1 658.0 21.1 21.7 2496.2 18.0 20.9 1438.7 17.9 21.2 1134.2 21.0 22.2 906.2

Inst2-125-B 44.3 28.8 1176.9 43.1 27.9 2931.7 40.2 27.0 1818.6 43.0 27.1 1241.2 43.3 28.2 1101.1

Inst3-125-A 7.9 6.9 510.8 12.0 9.0 1222.5 9.6 7.6 1003.2 9.4 7.5 860.2 11.8 9.0 932.2

Inst3-125-B 14.6 8.0 681.7 14.9 8.5 1201.5 12.8 7.3 956.3 13.7 7.9 818.0 16.8 8.8 855.1

Inst1-185-A 11.2 10.06 1188.3 26 15 3667.1 24.6 12.2 3061.4 23.3 12.3 1915.6 15.4 26.4 950.7

Inst1-185-B 22.6 15.8 1599.2 30.1 18.0 3950.6 30.5 15.7 3563.4 29.1 15.5 2199.8 33.6 21.4 3381.9

Inst2-185-A 20.4 13.1 1316.8 28.7 14.8 5613.6 23.4 12.9 3052.3 23.3 14.7 5248.1 29.2 15.3 2187.7

Inst2-185-B 17.2 8.8 1746.1 20.2 11.6 5668.5 18.2 10.0 3616.5 18.2 9.7 2071.6 21.3 11.9 2697.7

Inst3-185-A 8.5 6.0 903.0 18.5 10.7 3635.5 14.8 8.1 2335.5 14.8 8.1 1789.5 19.0 10.9 2022.0

Inst3-185-B 125.4 59.6 2747.2 115.8 64.8 9718.2 111.5 55.2 7138.0 103.8 36.8 2755.4 116.7 59.6 5423.4
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Online Appendix F. Details of CPU Time of Formulations (1) and (2)

Tables F1 and F2 respectively present solution times of formulations (1) and (2).

Table F1: Solution time (in seconds) of formulation (1).

Instance Min Avg Max

Inst1-62 0.68 0.69 0.70

Inst1-125 2.09 2.12 2.15

Inst1-185 3.38 3.41 3.44

Inst2-62 0.71 0.72 0.73

Inst2-125 2.81 2.87 3.09

Inst2-185 4.42 4.46 4.50

Inst3-62 0.63 0.65 0.66

Inst3-125 3.22 3.26 3.30

Inst3-185 7.37 7.41 7.45

Table F2: Solution time (in seconds) using the equity-neutral model.

Instance Time Instance Time Instance Time
Inst1-62-A 3.1 Inst1-125-A 8.8 Inst1-185-A 10.1
Inst1-62-B 6.0 Inst1-125-B 9.9 Inst1-185-B 15.8
Inst2-62-A 3.1 Inst2-125-A 22.1 Inst2-185-A 13.1
Inst2-62-B 4.8 Inst2-125-B 28.8 Inst2-185-B 8.8
Inst3-62-A 4.3 Inst3-125-A 6.9 Inst3-185-A 6.0
Inst3-62-B 2.5 Inst3-125-B 8.0 Inst3-185-B 59.6

Online Appendix G. Details of the RRAP-Case Instance

We construct the RRAP-Case instance based on the data related to the CUIMC’s 2023–2024 aca-

demic year. As mentioned in Section 7.1, this instance consists of 54 residents, of which (22, 9, 9,

7, 7) are (PGY1, PGY2, PGY3, PGY4, PGY5) residents. There are five types of PGY1 residents,

PGY1-Categorical, PGY1-OMFS, PGY1-Prelim, PGY1-GU and PGY1-Ortho. In addition, PGY2

and PGY3 are either Categorical or Cardiac. The number of blocks for (PGY1, PGY2, PGY3,

PGY4, PGY5) is (12, 8, 9, 7, 7) and the number of weeks in each block is (4 to 6, 6 to 7, 5 to 6, 7

to 8, 7 to 9). Table G1 summarizes mandatory (required), possible, and busy departments for each

type of resident. Mandatory departments are underlined, and busy departments are highlighted

in bold text. Table G2 and G3 present the value of parameters Tmin and Tmax for PGY1 and

PGY2–PGY5 residents, respectively. Table G4 presents the values of parameters Rmin and Rmax.
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Table G1: Mandatory (underlined), possible, and busy departments (bold) for each type of resident.

Resident Type Departments

PGY1-Categorical
Allen, CR, HPB, Lap,Overlook, Peds, SICU,Thoracic, Vascular, Rainbow, VTF,
ACS, Breast

PGY1-Prelim ACS, Breast, Lap, Overlook, Thoracic, Vascular, Peds, HPB, Allen
PGY1-GU ACS, ED,Vascular, CR, Transplant, SICU, Rainbow, HPB, Thoracic
PGY1-OMFS ENT, SICU, AdultAnes, PedsAnes, Plastics, Peds, OMFS, Thoracic, Vascular, Rainbow, VTF
PGY1-Ortho Vascular, Plastics, SICU, PMR, Breast, ED,
PGY2-Categorical Consults, CTICU, Overlook, Peds, ACS, Allen
PGY2-Cardiac Cardiac, CTICU, Overlook, Consults, ACS, Allen
PGY3 Breast, CR, Lap, Overlook, Transplant, Thoracic, Trauma, Vascular
PGY3-Cardiac Cardiac, Overlook, Breast¡ Thoracic, Vascular
PGY4 ACS, Allen, Elective, HPB, Overlook, Nights, Vascular
PGY5 CR, Elective, HPB-Chabot, HPB, Lap, Floats, Nights

Table G2: The value of Tmin and Tmax for PGY1 residents.

PGY1-Categorical PGY1-OMFS PGY1-Prelim PGY1-GU PGY1-Ortho
Departments Min Max Min Max Min Max Min Max Min Max
Allen 1 1 0 0 0 1 0 0 0 0
CR 1 1 0 0 0 0 1 1 0 0
HPB 1 1 0 0 0 1 0 1 0 0
Lap 1 1 0 0 1 2 0 0 0
Rainbow 1 1 1 1 0 0 1 1 0 0
VTF 1 1 1 1 0 0 0 0 0 0
Overlook 1 1 0 0 1 1 0 0 0 0
Peds 1 1 1 1 0 1 0 0 0 0
SICU 1 1 1 1 0 1 1 1 1
Thoracic 1 1 1 2 1 2 0 1 0 0
Vascular 1 1 1 1 1 2 1 1 1 1
ACS 0 1 0 0 1 2 1 1 0 0
Breast 0 1 0 0 1 1 0 0 0 1
ENT 0 0 1 1 0 0 0 0 0 0
AdultAnes 0 0 1 1 0 0 0 0 0 0
PedsAnes 0 0 1 1 0 0 0 0 0 0
Plastics 0 0 1 2 0 0 0 0 1 1
OMFS 0 0 1 1 0 0 0 0 0 0
ED 0 0 0 0 0 0 1 1 0 1
Transplant 0 0 0 0 0 0 1 1 0 0
PMR 0 0 0 0 0 0 0 0 1 1

Table G3: The value of Tmin and Tmax for PGY2–PGY5 residents.

PGY2 PGY2-Cardiac PGY3 PGY3-Cardiac PGY4 PGY5
Departments Min Max Min Max Min Max Min Max Min Max Min Max
Consults 3 3 1 2 0 0 0 0 0 0 0 0
ACS 1 1 1 1 0 0 0 0 1 1 0 0
Allen 1 1 0 1 0 0 0 0 1 1 0 0
CTICU 1 1 1 1 0 0 0 0 0 0 0 0
Overlook 1 1 1 1 1 1 1 1 1 1 0 0
Peds 1 1 0 0 0 0 0 0 0 0 0 0
Cardiac 0 0 3 3 0 0 4 5 0 0 0 0
Breast 0 0 0 0 1 1 0 1 0 0 0 0
CR 0 0 0 0 1 2 0 0 0 0 1 1
Lap 0 0 0 0 1 2 0 0 0 0 1 1
Transplant 0 0 0 0 1 1 0 0 0 0 0 0
Thoracic 0 0 0 0 1 1 1 2 0 0 0 0
Trauma 0 0 0 0 1 2 0 0 0 0 0 0
Vascular 0 0 0 0 1 1 1 1 1 1 0 0
Elective 0 0 0 0 0 0 0 0 1 1 1 1
HPB 0 0 0 0 0 0 0 0 1 1 1 1
Nights 0 0 0 0 0 0 0 0 1 1 1 1
Chatbot 0 0 0 0 0 0 0 0 0 0 1 1
Floats 0 0 0 0 0 0 0 0 0 0 1 1
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Table G4: The value of Rmin and Rmax for each class of residents.

PGY1 PGY2 PGY3 PGY4 PGY5
Departments Min Max Min Max Min Max Min Max Min Max
Allen 0 1 1 2 0 0 1 1 0 0
Vascular 2 3 0 0 1 1 1 1 0 0
Transplant 0 1 0 0 0 1 0 0 0 0
AdultAnes 0 2 0 0 0 0 0 0 0 0
Lap 1 2 0 0 1 1 0 0 1 1
Rainbow 1 1 0 0 0 0 0 0 0 0
ED 0 2 0 0 0 0 0 0 0 0
Breast 1 2 0 0 0 1 0 0 0 0
SICU 1 3 0 0 0 0 0 0 0 0
Plastics 0 1 0 0 0 0 0 0 0 0
Thoracic 1 2 0 0 1 2 0 0 0 0
OMFS 0 1 0 0 0 0 0 0 0 0
PMR 0 1 0 0 0 0 0 0 0 0
HPB 1 2 0 0 0 0 1 1 1 1
ENT 0 1 0 0 0 0 0 0 0 0
Overlook 0 2 1 2 1 1 0 1 0 0
CR 0 1 0 0 1 2 1 1 1 1
ACS 1 1 1 2 0 0 1 1 0 0
VTF 0 1 0 0 0 0 0 0 0 0
Peds 1 3 0 1 0 0 0 0 0 0
PedsAnes 0 1 0 0 0 0 0 0 0 0
Consults 0 0 2 3 0 0 0 0 0 0
Trauma 0 0 0 0 1 1 0 0 0 0
Nights 0 0 0 0 0 0 1 1 1 1
Elective 0 0 0 0 0 0 1 1 1 1
HPB-Chabot 0 0 0 0 0 0 0 0 1 1
CTICU 0 0 1 2 0 0 0 0 0 0
Floats 0 0 0 0 0 0 0 0 1 1
Cardiac 0 2 0 1 1 1 0 0 0 0
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