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Abstract

Given a {0, 1}-matrix M , the graph realization problem for M asks if there exists a spanning
forest such that the columns of M are incidence vectors of paths in the forest. The problem
is closely related to the recognition of network matrices, which are a large subclass of totally
unimodular matrices and have many applications in mixed-integer programming. Previously,
Bixby and Wagner have designed an efficient algorithm for graph realization that grows a
submatrix in a column-wise fashion whilst maintaining a graphic realization. This paper
complements their work by providing an algorithm that works in a row-wise fashion and uses
similar data structures. The main challenge in designing efficient algorithms for the graph
realization problem is ambiguity as there may exist many graphs realizing M . The key insight
for designing an efficient row-wise algorithm is that a graphic matrix is uniquely represented by
an SPQR tree, a graph decomposition that stores all graphs with the same set of cycles. The
developed row-wise algorithm uses data structures that are compatible with the column-wise
algorithm and can be combined with the latter to detect maximal graphic submatrices.
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1 Introduction

Graphs are important objects in mathematics, and occur in many different fields and practical applications.
Representing graphs using matrices, such as the adjacency matrix or the node-edge incidence matrix, can
provide powerful insights into the structure and facilitate solving problems involving the graph. In this
work, we consider the representation matrix of a graph, defined as follows.

Given a connected multigraph G with vertex set V (G), edge set E(G) and a spanning tree T ⊆ E(G)
of G, the fundamental path Pe(T ) := Pu,w(T ) ⊆ T of an edge e = {u,w} ∈ E \ T is defined as the unique
path in T connecting the two end-vertices of e. For such a graph-tree pair (G,T ), let M(G,T ) be a binary
|T | × |E \ T | matrix with rows indexed by edges in T and columns indexed by edges in E \ T . For a pair
of edges (e, f) ∈ T × (E \ T ) we let Me,f = 1 if e ∈ Pf (T ) and Me,f = 0 otherwise. The matrix M(G,T )
constructed in this fashion is called the representation matrix of (G,T ). Figure 1 shows an example of a
graph-tree pair and its representation matrix.
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(a) A graph-tree pair (G,T )

f g h i j


a 0 1 1 1 0
b 1 1 0 0 0
c 1 0 1 1 0
d 0 0 1 1 1
e 0 0 0 1 1

(b) The representation matrix M(G,T )

Figure 1: A graph-tree pair (G,T ) and its representation matrix. Edges in T are marked bold and
red, edges in E \ T are marked blue.

Our central problem, the graph realization problem asks for the reverse operation:
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Problem 1. Given a binary matrix B, is there a multigraph G with spanning tree T ⊆ E(G) such that
B = M(G,T ) holds?

In the affirmative case, B is said to be graphic, and (G,T ) is said to realize B.

Related problems. Our main motivation for investigating Problem 1 comes from network matrices,
which are closely related to graphic matrices. Given a directed multigraph G = (V,A), with some (not
necessarily rooted) spanning forest T , the network matrix N(G,T ) is a |T | × |A \T | matrix where for edge
pair (e, f) ∈ T × (A \ T ) satisfies

N(G,T )e,f =


+1 if e occurs in Pf (T ) forwardly,

−1 if f occurs in Pf (T ) backwardly,

0 otherwise.

The graph realization problem is closely connected to the problem of determining whether a given
{−1, 0, 1}-matrix B is a network matrix. After solving the graph realization problem on the binary support
of B, one only needs to determine the direction of each arc in order to determine whether the matrix is
a network matrix. Finding the arc directions is relatively straightforward to do, as first outlined by
Camion [7]. Bixby and Cunningham [5] go into more detail (see Algorithm 7 of [5]).

Network matrices are a large class of totally unimodular matrices [36]. This makes them of practical
interest for (mixed)-integer linear optimization, because problems with a totally unimodular constraint
matrix and integer right hand side can be solved in polynomial time using linear optimization [18] with,
say, the Ellipsoid method [15, 23, 24] or interior-point methods [22]. Even if only part of the constraint
matrix of an integer linear optimization program is a network matrix, a large network submatrix can be
useful to reduce the solution time. For instance, branch-and-cut algorithms can use stronger cutting planes
that exploit network-design substructures [1]. In recent work, Aprile et al. consider integer programs with
∆-modular constraint matrices that contain a large transposed network matrix and only a constant number
of rows that do not belong to the transposed network matrix, and show that these integer programs are
solvable in time polynomial in ∆ and the size of the constraint matrix [2].

Additionally, the detection of total unimodularity requires the solution of graph realization prob-
lems [26, 32]. Although detecting whether a matrix is a network matrix can be done in polynomial
time [34], both the problem of finding the largest graphic submatrix (using various definitions of ‘largest’)
and the problem of finding the largest network submatrix are NP-hard [3].

The graph realization problem is closely connected to graphic matroids, and can be reformulated in
terms of matroids. A binary matrix B defines a linear matroid that has the columns of

[
I | B

]
as a ground

set, where subsets are independent if and only if the corresponding column vectors are linearly independent
over F2. Every graph G = (V,E) also has an associated graphic matroid, which has the set E of edges
as its ground set and the forests of G as its independent sets. The graph realization problem can then be
reformulated as follows: given a binary matrix B, is the linear matroid given by B isomorphic to a graphic
matroid? Although we will not use the matroid perspective throughout this work, it may be useful for
readers that are familiar with matroid theory.

Known methods. Numerous methods have been proposed to solve the graph realization problem.
Tutte gave a first polynomial-time algorithm [34, 35]. Many other polynomial-time algorithms were later
developed by a large variety of authors [5, 6, 8, 13, 14, 20, 31], and the books [25, 33] explain some of these
in further detail. The most impressive results for graph realization were obtained by Bixby and Wagner [6]
and Fujishige [13]. Let k be the number of nonzeros of the input matrix B ∈ {0, 1}m×n. Both papers
achieve an ‘almost linear’ running time of O(kα(k,m)), where α denotes the extremely slowly growing
inverse Ackermann function [30].

The algorithms described in both papers work in a similar column-wise fashion, namely by growing
a graphic submatrix by one column in each step. First, they determine some initial graphic matrix M
given by a subset of columns of B, typically by a single column. If M has a single column, M represents a
graph that is a cycle. Then they augment M with a new column c and (efficiently) determine if the matrix
[M | c] is graphic. In the affirmative case, they set M := [M | c] and repeat the augmentation, terminating
only when M = B or when [M | c] is found to be non-graphic.

It is well known that there may be many graph-tree pairs (G,T ) sharing the same representation matrix
M(G,T ) [39]. This ambiguity is one of the main challenges in designing algorithms for Problem 1. The
algorithms due to Bixby and Wagner and due to Fujishige both maintain complicated data structures in
order to represent the graphic matrix M , and efficiently check if the new column c can be augmented whilst
preserving graphicness. Bixby and Wagner use a so-called t-decomposition, whereas Fujishige uses the more
complicated PQ-trees. In this work, we will use SPQR trees, which are very similar to the t-decomposition
used by Bixby and Wagner.

Research gap. As there is an interest in determining large graphic submatrices, we observe a gap in
previous research. Although the existing algorithms are very efficient, there is no algorithm that grows a
graphic (sub)matrix in a row-wise fashion. The lack of such an algorithm can be explained by its difficulty.
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In the column augmentation algorithms the new column is added by reversing the deletion of an edge in a
represented graph, which is equivalent to the addition of the column edge. Augmenting a row amounts to
reversing the contraction of an edge in the graph, which is a more complicated operation than addition.
However, a row-wise algorithm could be useful since for all fast algorithms known from the literature
the found submatrix always contains all rows. This limits the set of graphic submatrices that can be
efficiently found by existing algorithms. We would like to be able to determine graphicness of arbitrary
submatrices, having the application of finding network submatrices in mixed-integer linear optimization in
mind. Consequently, we are interested in solving the graphic row augmentation problem:

Problem 2. Given a graphic matrix M and a binary vector b, determine graphicness of the matrix

M ′ :=

[
M
b⊺

]
. (1)

By repeatedly solving Problem 2, we can determine if a matrix is graphic. Note that similarly to the
column case, any binary matrix with a single row is graphic. It is realized by a graph G that has two
vertices that are connected by a set of parallel edges. Moreover, if the augmentation of a row b⊺ does not
preserve graphicness, one could also continue and ignore that row, which leads to an algorithm for greedily
building an inclusion-wise maximal graphic submatrix of B.

Given an efficient algorithm to solve Problem 2, we could additionally combine row and column aug-
mentation to efficiently determine graphicness of arbitrary graphic submatrices, and not just of all-row or
all-column submatrices. In order to facilitate the practical implementation of such an algorithm, we use
data structures that are highly similar to the ones used by Bixby and Wagner [6].

Outline. In Section 2 we show how to deal with a block structure of M and reduce the graphic row
augmentation problem to the case in which M is connected. Section 3 characterizes the graphic row
augmentation problem in terms of graphs. In Section 4 we introduce the SPQR tree data structure and
show how they encode graphic matrices. Section 5 relates the previous two sections and shows how to
update SPQR trees to reflect a graphic row augmentation. In Section 6 we present and discuss the complete
algorithm and provide worst-case bounds for space and time complexity.

2 Separations and connectivity

It is well-known that there can be multiple graphs G and trees T with the same representation matrix
M(G,T ) [39]. In other words, the graph that is represented by a certain matrix is not unique. To formalize
the corresponding ambiguity, let us define a k-separation as a partition of E(G) into E1 and E2 such that
|E1|, |E2| ≥ k holds and such that the corresponding graphs G1 and G2 have exactly k separating vertices in
common, where Gi is the graph with edge set Ei and vertex set Vi :=

⋃
e∈Ei

e. A graph is called k-connected
if it is connected and it has no ℓ-separation for all ℓ ∈ {1, 2, . . . , k − 1}. Our definition of k-connected is
equivalent to the one used by Tutte [37]. Tutte k-connectivity implies the more commonly used k-vertex
connectivity. A vertex that is the common to two parts of a 1-separation is called an articulation vertex.

Consider a multigraph G = (V,E). For a vertex v ∈ V , we use δ(v) to denote the edges incident to v.
Occasionally, we will write δG(v) to clarify in which graph we are considering the neighborhood of v. For
a subset of edges F ⊆ E, we use the notation G \ A to denote the graph G = (V,E \ F ) where the edges
in F are removed. For a set of edges F ⊆ E, we use G/F to denote the graph obtained by contracting
each edge e ∈ F into a single vertex. For a subset of vertices U ⊆ V , we use G− U to denote the induced
subgraph G[V \ U ], where the vertices U and all incident edges have been removed. For a singular vertex
v ∈ V , we occasionally abuse notation and write G− v, instead.

Although Problem 2 asks for the addition of a new row, the reverse operations of deleting a row (or
a column) from a graphic matrix M = M(G,T ) give us important intuition. In particular, if M ′ is the
matrix obtained by deleting a column c from M , this corresponds to the deletion of the corresponding
edge in E \ T , and for G′ = (V,E \ {c}) it holds that M ′ = M(G′, T ). If M ′ is the matrix obtained by
deleting a row r from M , then it can be obtained by contracting the corresponding tree edge, and we
observe that M ′ = M(G/{r}, T/{r}) holds. Since graphicness is maintained under the deletion of rows
and columns, it follows that graphicness is maintained under taking submatrices. For more details, we
refer to [33, Chapter 3].

We start with a reduction to the case in which we can assume that M in (1) is connected, meaning

that the graph with the adjacency matrix

[
0 M

M⊺ 0

]
is connected. If our input matrix A is connected, one

can, via a breadth-first search, reorder the rows in such a way that M remains connected in consecutive
updates. However, this sequential connectivity property is lost if we may later skip rows whose addition
does not preserve graphicness. Consequently, we show how to actually treat matrices M that are not
connected.

To this end, we consider the case in which the matrix M consists of k block submatrices M1,M2, . . . ,Mk

each of which being connected, and that b⊺ = (b⊺1, b
⊺
2, . . . , b

⊺
k−1, b

⊺
k) is the corresponding partition of the
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new row b:

M ′ =



M1 0 . . . 0 0
0 M2 0 0
...

. . .
...

0 0 Mk−1 0
0 0 . . . 0 Mk

b⊺1 b⊺2 . . . b⊺k−1 b⊺k


, bi ̸= O (2a)

M ′
i :=

[
Mi

b⊺i

]
(2b)

Note that we require each bi containing at least one 1-entry. Moreover, we allow that any such submatrix
Mi has no rows, in which case it must have a single column in order to be connected. The following
theorem ensures that we can assume connectivity in subsequent sections.

Theorem 3. Let M ∈ {0, 1}m×n be a graphic matrix and let b ∈ {0, 1}n be such that the matrix M ′ is of
the form (2a). Then M ′ is graphic if and only if all matrices M ′

i as in (2b) are graphic for i = 1, 2, . . . , k.
Moreover, every pair (G′, T ′) with M ′ = M(G′, T ′) can be obtained as follows. For i = 1, 2, . . . , k, let
(G′

i, T
′
i ) be such that M ′

i = M(G′
i, T

′
i ) holds and let e′i ∈ T ′

i be the edge corresponding to the last row of
M ′

i . Let G′
0 be a graph with two vertices and exactly k + 1 edges e0, e1, . . . , ek. Obtain G′ (resp. T ′) from

G′
0, G

′
1, . . . , G

′
k (resp. from G′

0, G
′
1, . . . , G

′
k) by identifying ei with e′i for every i = 1, 2, . . . , k, and then

removing these 2k edges. The edge e0 then corresponds to the last row of M ′.

Proof. Since graphicness is maintained under taking submatrices, graphicness of M ′ implies graphicness
of M ′

i for all i = 1, 2, . . . , k. In order to prove the reverse direction of the first statement, assume M ′
i =

M(G′
i, T

′
i ) for i = 1, 2, . . . , k. Let G′

0, G′, T ′ as well as all e′i and ei be as in the theorem. By construction,
T ′ consists of the union of the sets T ′

i \ {e′i}, augmented by e0. We now show M(G′, T ′) = M ′. Consider
any column of M ′, which is also a column of M ′

i for some i ∈ {1, 2, . . . , k} and let e ∈ E(G′
i) \ T ′

i be the
corresponding edge. By construction of G′ and T ′, the fundamental path Pe(T ′) contains the same edges
as Pe(T ′

i ), except that e0 in T ′ is exchanged for e′i ∈ Pe(T ′). Since the row vector of M ′
i corresponding to

e′i and the row vector of M ′ corresponding to e0 are both b⊺i , this shows that the column vectors of M ′

and of M(G′, T ′) are identical. We conclude that M ′ is indeed graphic and that M ′ = M(G′, T ′) holds.
It remains to show that all realizations of M ′ are of that type. To this end, consider any (G⋆, T ⋆)

with M ′ = M(G⋆, T ⋆). Let e⋆ ∈ T ⋆ denote the edge corresponding to the last row of M ′. Let, for
every i ∈ {1, 2, . . . , k}, G′

i and T ′
i be obtained from G⋆ and T ⋆, respectively, by contracting all edges of T ⋆

corresponding to rows that do not belong to M ′
i and (for G′

i) deleting all edges of E(G⋆)\T ⋆ corresponding
to columns that do not belong to M ′

i . By construction we have M(G′
i, T

′
i ) = M ′

i . The edge e⋆ remains
present in each of the constructed graphs, and we denote this edge by e′i in the corresponding graph and
tree. Let Gi := G′

i/e
′
i and Ti := T ′

i/e
′
i, respectively. Clearly, the edge sets of the Gi form a partiton of

E(G⋆) \ {e⋆}. Hence, G⋆ must be so that the contraction of e⋆ yields a graph that consists of the Gi, all
having a single vertex v⋆ ∈ V (G1) ∩ V (G2) ∩ · · · ∩ V (Gk) in common. Moreover, since each bi contains at
least one 1-entry, every Gi has some edge f such that e⋆ ∈ Pf (T ⋆) holds. Hence, the joint vertex v⋆ of the
parts of G⋆/e⋆ must be the one to which e⋆ was contracted. This shows that (G⋆, T ⋆) is equal to the pair
(G′, T ′) (with respect to the (G′

i, T
′
i ) and e′i constructed above) as stated in the theorem.

In our introduction, we assumed that G was a connected multigraph. For any disconnected graph G
and any spanning forest T , M(G,T ) has two or more disconnected blocks. As we can process each block
individually, it is clear that the assumption that G is connected was not necessary and can be easily dealt
with. Moreover, from now on we can assume that the current matrix M is connected. As a consequence,
we can focus on 2-connected graphs due to the following result.

Proposition 4 (Truemper [33, Prop. 3.2.31]). Let G be a connected graph such that M = M(G,T ) holds.
Then G is 2-connected if and only if M is connected.

3 Graphic row augmentation

In the previous section, we observed that the graphic row augmentation problem reduces to the case in

which M ′ =

[
M
b⊺

]
holds, where M is connected. In this section, we do not explicitly use the connectivity

property of M , but derive more general results for when M is graphic. We denote by Y := supp(b) the
subset of columns with a 1-entry in b⊺. To gain some intuition, let us assume that we are given some graph
G with tree T such that M = M(G,T ). We then want to find operations on G that add a new edge r⋆

(indexing b⊺) such that the paths Py(T ) ∈ Y are elongated with r⋆ and the paths Pc(T ) are unaltered for
all columns c of M where bc = 0.

Suppose that M ′ is indeed graphic such that M ′ = M(G′, T ′) for some graph G′ with tree T ′. If we
were to remove the last row r⋆ of M ′, we would obtain M back again. Now, we consider what happens to
G′ and T ′ in this case. The removal of the row r⋆ corresponds to a contraction of the edge corresponding to
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r⋆ in G′. Clearly, such a contraction shortens precisely those fundamental paths of the edges e ∈ E \T for
which r⋆ ∈ Pe(T ) holds. Thus, after performing the contraction, we find a graph G with tree T = T ′ \{r⋆}
such that M = M(G,T ) holds.

An algorithm that solves Problem 2 would need to find the ‘reverse’ of such a contraction. Hence, we
can intuitively determine that we need to take two steps. First, we identify a vertex v ∈ V (G) that is to
be split into vertices v1 and v2. Second, we check if there exists a bipartition of the edges in δ(v), so that
we can reassign the edges in δ(v) to either δ(v1) or δ(v2). In particular, this bipartition should ensure that
the fundamental paths of the columns Y are elongated and the fundamental paths of the columns C \ Y
remain unchanged.

If there is such a bipartition, we can split v into two new vertices v1 and v2, reassign the edges δ(v) to
δ(v1) and δ(v2), and add the new edge r⋆ between v1 and v2. This way, we create a new graph-tree pair
(G′, T ′) with T ′ = T ∪ {r⋆} such that M ′ = M(G′, T ′).

We will now formalize the above intuition. The following definitions were inspired by Truemper’s
work on recognizing total unimodularity, which contains an algorithm for solving the problem in case the
involved graphs are 3-connected (see case 2 of the TEST-C subroutine in [32]). However, Truemper’s
algorithm lacks a detailed explanation and proofs. In fact, we identified a minor mistake and later provide
a fix.

Definition 5 (Y -reduced graph, auxiliary graph, Y -splittable vertices). Let G be a multigraph and let Y ⊆
E(G) be a subset of its edges. We define the Y -reduced graph of G as the graph GY := (V (G), E(G) \ Y ).
Moreover, by Gv

Y := GY [V \ {v}] we denote the graph obtained by removing edges Y and vertex v (along
with its incident edges). The corresponding auxiliary graph Hv

Y := Hv
Y (G) is the graph having a vertex

for each connected component of Gv
Y and with edges {h1, h2} ∈ E(Hv

Y ) if and only if there is an edge
{v1, v2} ∈ Y with v1 ∈ V (h1) and v2 ∈ V (h2). Finally, we say that a vertex v ∈ G is Y -splittable with
respect to G if Hv

Y is bipartite.

Note that the auxiliary graph Hv
Y is not bipartite if it contains loops, i.e., if an edge from Y has both

end-vertices in the same connected component of Gv
Y .

Figure 2 shows an example of a graph-tree pair with a Y -splittable vertex, and highlights how v and
its neighbouring edges can be split so that we can obtain (G′, T ′).

a

e

b c d

f

g

h

i

(a) A graph-tree pair (G,T )
with a Y -splittable node v.

a

e

b c d

f

g

h

i

(b) The auxilliary graph Hv
Y (G),

whose nodes are connected
components of Gv

Y .

a

e

b
c

d

f

g

ir

h

(c) (G′, T ′) obtained by split-
ting v according to Lemma 11.

Figure 2: An example of a graph-tree pair (G,T ) with a Y -splittable node v, its auxilliary graph
Hv

Y (G) and the updated graph G′ obtained after splitting v into two vertices, reassigning the
neighbouring edges and adding the new row edge. Edges in T are marked red and bold, all other
edges are marked in blue. The edges in Y = {f, g, h} are marked with two stripes. The Y -splittable
node v is marked in white in a). In c), the two vertices that v is split into are marked in white,
and the newly added row that is given by r connects them.

Based on Definition 5, a few basic but insightful results follow. Given a subset of edges Y ⊆ E, we say
that Y is a star centered at v if Y ⊆ δ(v), such that all edges y ∈ Y have the vertex v in common.

Proposition 6. Let G be a multigraph and let Y ⊆ E(G) be a subset of edges such that Y is a star centered
at v. Then v is Y -splittable.

Proof. From Y ⊆ δ(v) it follows that the auxiliary graph Hv
Y has no edges, and thus Hv

Y is bipartite.

Corollary 7. Every vertex of a multigraph is ∅-splittable.

Proof. Apply Proposition 6 to each vertex.

We can also derive a few necessary conditions for a Y -splittable vertex v when Y is not a star.

Lemma 8. Let G be a multigraph and let Y ⊆ E(G) be an edge subset. If v ∈ V (G) is Y -splittable and Y
is not a star centered at v, then v is an articulation vertex of GY .

5



Proof. As Y is not a star centered at v, there must exist an edge e ∈ Y that is not incident to v. Since
e ∈ Y \ δ(v), it induces an edge {h1, h2} in the auxiliary graph Hv

Y . Since Hv
Y is bipartite, h1 ̸= h2 holds,

which implies that Gv
Y has at least two connected components.

Lemma 9. Let G be a multigraph with spanning tree T ⊆ E(G) and a set of edges Y ⊆ E(G) \ T . If v is
Y -splittable, then v must lie on the fundamental path Py(T ) for each y ∈ Y .

Proof. Assume, for the sake of contradiction, that there exists an edge y ∈ Y such that v is not on Py(T ).
Since Py(T ) ⊆ T \ δ(v) and T ∩ Y = ∅ hold, Py(T ) must lie in a single connected component of Gv

Y .
This implies that Hv

Y has a loop for this component, and hence Hv
Y is not bipartite. This contradicts the

assumption that v was Y -splittable, which concludes the proof.

Proposition 6 and Lemmas 8 and 9 provide necessary conditions for a vertex v to be Y -splittable. Now,
we consider the next step where we split v into two new vertices and reassign the edges incident to v to
these vertices. This step is formalized in Definition 10 and Lemma 11, where Lemma 11 proves that for
a Y -splittable node v a certain reassignment of incident edges elongates exactly the fundamental paths of
edges Y by splitting v into two nodes v1 and v2 and subsequently setting the new tree edge r⋆ to connect
v1 and v2.

Definition 10 (neighborhood split). Let G be a multigraph with a set of edges Y ⊆ E(G). Let v be a Y -
splittable vertex and let I and J be the two sides of a corresponding bipartition of Hv

Y . Then the associated
neighborhood split of v is the partition of δ(v) into δI(v) and δJ(v) defined via

δI(v) := {{u, v} ∈ δ(v) | either {u, v} ∈ Y or there exists h ∈ I with u ∈ h (but not both)}.

Lemma 11. Let G be a multigraph with spanning tree T ⊆ E(G), and let Y ⊆ E(G) \ T be a subset
of the non-tree edges. Let v be a Y -splittable vertex and let I, J ⊆ V (Hv

Y ) denote the bipartition of Hv
Y .

Construct the multigraph G′ from G by splitting v into vertices i and j, adding the new edge r⋆ = {i, j},
and replacing the edges {u, v} ∈ δ(v) by {u, i} (resp. by {u, j}) if u ∈ δI(v) (resp. u ∈ δJ(v)). Construct
the spanning tree T ′ := T ∪ {r⋆} of G′. Then for each e ∈ E \ T we have

Pe(T ′) =

{
Pe(T ) ∪ {r⋆} if e ∈ Y,

Pe(T ) otherwise.

Proof. First note that T ′ is indeed a spanning tree of G′.
Second, consider an edge e ∈ E \ (T ∪ Y ). Denote by C := Pe(T ) ∪ {e} its fundamental cycle and

observe that C ∩ Y = ∅ holds. If Pe(T ) ∩ δ(v) = ∅ then none of the edges in the path are changed by
changing v and δ(v) and thus Pe(T ) = Pe(T ′) holds. Otherwise, let f, f ′ ∈ δ(v)∩C be the two cycle edges
incident to v. From C ∩ Y = ∅ it follows that C \ δ(v) is a path in the reduced graph Gv

Y and hence, f
and f ′ connect to the same connected component of Gv

Y . Again from C ∩ Y = ∅ we have f, f ′ /∈ Y , and
thus f and f ′ are reassigned to the same vertex from {i, j} in G′. This implies that in G′ the path Pe(T )
remains unchanged, so we conclude that Pe(T ) = Pe(T ′) holds.

Third, consider an edge y ∈ Y . Once again, denote by C := Py(T ) ∪ {y} the fundamental cycle. By
Lemma 9 we know that v must lie on Py(T ), and we obtain C ∩ δ(v) = {f, f ′} for suitable edges f, f ′. We
claim that these edges are reassigned to different end-vertices, and we distinguish two cases to prove it.

Case 1: y ∈ {f, f ′}. We can assume y = f without loss of generality. Then f ′ ∈ T and Py(T ) \ {f ′}
is a path that lies in a single connected component of the reduced graph Gv

Y . Both y and f ′ must connect
to this component. Since f ∈ Y and f ′ /∈ Y hold, they are indeed reassigned to different end-vertices from
{i, j} in G′.

Case 2: y /∈ {f, f ′}. In this case, Py(T ) \ {f, f ′} is no longer a path and thus disconnected. Let P 1

and P 2 be the two (maximal) subpaths formed by Py(T )\{f, f ′}, which may consist of just a single vertex.
Each such path P k (k = 1, 2) lies in a single connected component hk of Gv

Y . Since v is Y -splittable, Hv
Y is

bipartite. Moreover, since y connects a vertex from P 1 with one from P 2, h1 and h2 must be on different
sides of the bipartition. Due to f, f ′ /∈ Y , they are indeed reassigned to different end-vertices from {i, j}
in G′.

In both cases, f and f ′ were reassigned to different end-vertices from {i, j} in G′. Thus, the new edge
r⋆ = {i, j} lies on the fundamental path of Py(T ′), which yields Py(T ′) = Py(T ) ∪ {r⋆}. This concludes
the proof.

Now, we have the tools to show the main result of this section, which characterizes the graphic row
augmentation problem for a matrix M in terms of Y -splittability of the graphs represented by M .

Theorem 12. Let M and M ′ be binary matrices and b be a binary vector as in (1) and define Y :=
supp(b⊺). Then M ′ is graphic if and only if there exists a graph G = (V,E) and a tree T ⊆ E with
M = M(G,T ) such that G has a Y -splittable vertex.
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Proof. To prove sufficiency, assume that M ′ is graphic, i.e., it has a realization M ′ = M(G′, T ′). Let r⋆

index the last row given by b⊺. Removal of row r⋆ from the matrix M ′ corresponds to the contraction of the
edge r⋆ ∈ T ′ with end-vertices v1, v2 into a new vertex v. Hence, M = M(G,T ) holds, where T = T ′/r⋆

and G = G′/r⋆.
We claim that v is Y -splittable in G. If Y is a star centered at v, the statement follows from Proposi-

tion 6. Otherwise, Y is not a star centered at v so there must exist some edge y ∈ Y that is not incident to
v. Deletion of r⋆ from the tree T ′ yields two trees T1 and T2 with vertex sets K1 = V (T1) and K2 = V (T2),
respectively, where v1 ∈ K1 and v2 ∈ K2. Note that the edge y must connect K1 with K2, since its fun-
damental path Py(T ′) must contain r⋆ because M ′ is graphic. As y is not incident to v in G, there must
exist vertices w1 ∈ K1, w1 ̸= v1 and w2 ∈ K2, w2 ̸= v2. This shows that |Ki| ≥ 2 for i = 1, 2.

Consider any edge e ∈ E(G′) \ T ′ that connects K1 with K2. Since r⋆ ∈ Pe(T ′) holds, we must have
e ∈ Y , and all edges in Y must connect K1 to K2. Hence, no such edge belongs to GY . Then the vertex
sets Ki \{vi} for i = 1, 2 are non-empty (since |Ki| ≥ 2) and belong to G. Since K1 \{v1} is not connected
to K2 \ {v2} by any edge in GY , we conclude that v is an articulation vertex of GY .

Now, let us show that Hv
Y is bipartite. For i = 1, 2, we define Hi := {h ∈ V (Hv

Y ) : V (h) ⊆ Ki \ {vi}}.
Clearly, H1 and H2 are disjoint since K1 and K2 are. The vertices of any connected component of Gv

Y are a
subset of either K1 \{v1} or K2 \{v2} as these vertex sets are disconnected in Gv

Y . Then H1∪H2 = V (Hv
Y )

holds since these vertex sets cover all vertices of Gv
Y , i.e., (K1 \ {v1}) ∪ (K2 \ {v2}) = V (Gv

Y ). Thus, H1

and H2 form a bipartition of the components V (Hv
Y ). As argued above, every edge y ∈ Y must connect

K1 to K2 as M ′ is graphic. This implies that every edge (hi, hj) ∈ E(Hv
Y ) has hi ∈ H1 and hj ∈ H2 (or

vice versa). This shows that Hv
Y is bipartite with bipartition H1, H2. We conclude that v is Y -splittable.

To prove necessity, we consider a graph G with spanning tree T ⊆ E(G) with M = M(G,T ) that has
a Y -splittable vertex v. We obtain G′ and T ′ according to Lemma 11. Then Lemma 11 shows that G′

correctly elongates the fundamental paths of all edges in Y and does not modify those of other edges. This
shows M ′ = M(G′, T ′) and in particular that M ′ is graphic.

Theorem 12 provides a good characterization of when the matrix M ′ is graphic. However, it is difficult
to turn into a full algorithm. In particular, it does not tell us how to find G explicitly. This is problematic,
as there may exist a large number of graphs that each realize M , of which only a few may have a Y -
splittable vertex. Figure 3 shows an example with a series of graphic matrices with m rows and a given
set Y , for which only a fraction of 2/m of all represented graphs contains a Y -splittable vertex.

a b c



r1 1 1 0
r2 1 0 1
r3 1 0 0
r4 1 0 0
...

...
...

...
rm 1 0 0

(a) The matrix Bm

a

r1

r2

r3

r4

r5
b

c

(b) A realization of B5. Any permutation of the edges
r1 . . . r5, where b and c are placed parallel to r1 and
r2, is a graphic realization of B5.

Figure 3: A series of matrices Bm with m ≥ 2 rows where each matrix Bm has m!
2 realizations.

Only (m− 1)! realizations contain a {b, c}-splittable node (when b and c share an adjacent node).
Thus, the fraction of graphs that realizes Bm and contains a {b, c}-splittable node is 2/m.

In the next section, we will explain how one can use an SPQR tree, which is a graph decomposition
that represents all graphs that realize M . Then our goal will become to update the SPQR tree of M to
an SPQR tree for M ′, by efficiently finding the Y -splittable vertices across all graphs realizing M .

4 Representing graphic matrices using SPQR trees

In the previous section we showed that the augmentation problem can be reduced to the search for a
Y -splittable vertex in case the matrix M in (1) represents a unique graph. However, this does not need to
be the case. Note that we can assume that M is connected by Theorem 3 and by Proposition 4 that every
realization G (with spanning tree T such that M = M(G,T ) holds) is 2-connected.

Suppose that G has a 2-separation (E1, E2) with separating vertices {u, v} = V (E1) ∩ V (E2). Let G′

be a graph with the same edge labels but with the sets of incident edges of u and v in E2 swapped, i.e.,
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setting δG′(u) := (δG(u)∩E1)∪(δG(v)∩E2) and δG′(v) := (δG(v)∩E1)∪(δG(u)∩E2), and leaving all other
edges unchanged. We say that G′ is obtained from G by reversing E2. Moreover, two graphs are called
2-isomorphic if one can be obtained from the other by a sequence of reversals (for arbitrary 2-separations).
An example of two 2-isomorphic graphs can be found in Fig. 4. Whitney [38, 39] showed that two graphs
G and G′ are 2-isomorphic if and only if they have the same cycles. In particular, 3-connected graphs are
uniquely determined by their cycles.

f g h i j


a 0 1 1 1 0
b 1 1 0 0 0
c 1 0 1 1 0
d 0 0 1 1 1
e 0 0 0 1 1

(a) A graphic matrix

b

f

ga

cjd

e

h i

(b) A realization

b

f

ga

c

jd

e

h i

(c) A second realization

Figure 4: A graphic matrix with two 2-isomorphic realizations. The realization in c) can be
obtained from b) using a reversal on the 2-separation given by E1 = {d, e, h, i, j} and E2 = E \E1.

This is highly relevant for the graph realization problem since the columns of a matrix M = M(G,T )
encode the set of fundamental cycles Pe(T ) ∪ {e} for all e ∈ E(G) \ T . Consequently, 2-isomorphic graphs
G and G′ (with a spanning tree T ) satisfy M(G,T ) = M(G′, T ). Despite the fact that M(G,T ) only
encodes a (usually small) subset of G’s cycles, the reverse implication also holds. This follows from the
fact that these fundamental cycles form a basis of the cycle vector space [12, Section 1.9].

Proposition 13 (Consequence of Whitney [38, 39]). Let G and G′ be 2-connected graphs with identical
edge labels E(G) = E(G′) and let T be a spanning tree of G. Then M(G,T ) = M(G′, T ) holds if and only
if G and G′ are 2-isomorphic. In particular, in the affirmative case T is also a spanning tree of G′.

Thus, in order to represent the set of graphs represented by M we could, in principle, maintain one
graph G that realizes M and maintain all its 2-separations, and thus its possible reversals. This is done by
the fast column-wise algorithms for graph realization proposed by Bixby and Wagner [6] and Fujishige [13]
by means of so-called t-decompositions and PQ-graphs, respectively. The former relies on fundamental
work of Cunningham and Edmonds [9]. A variant of the t-decomposition appears in the more modern
literature under the name SPQR tree or SPQR decomposition [10, 11, 16].

We will stick to that notion, but augment the represented 2-isomorphic graphs G with a spanning tree
T ⊆ E(G). Moreover, in order to keep the presentation simple, our notion of an SPQR tree is undirected.

Definition 14 (SPQR tree, virtual edges, regular edges). An SPQR tree is a tree T = (V, E) that is
supported by a map π. For every node µ ∈ V there is an associated connected multi-graph Gµ without
loops, called the skeleton, and a spanning tree Tµ of Gµ. We assume that the vertex sets of all skeletons
are pairwise disjoint. We denote by E(T ) the union of the edges E(Gµ) over all µ ∈ V, and by V (T ) the
union of the vertices V (Gµ) over all µ ∈ V.
A subset Evirt(T ) ⊆ E(T ) of size |Evirt(T )| = 2|E| of the edges is called virtual: for every edge {µ, ν} ∈ E
of the SPQR tree there is a pair of virtual edges e ∈ E(Gµ) and f ∈ E(Gν). This relationship is specified
by means of the map π : E(T ) → E(T ) ∪ {∅}, where π(e) = f and π(f) = e indicates that e ∈ E(Gµ)
and f ∈ E(Gν) are the two virtual edges corresponding to the edge {µ, ν} ∈ E, and where π(e) = ∅ holds
whenever e is no virtual edge. Every virtual edge corresponds to exactly one edge in E. The remaining edges
Ereg(T ) := E(T ) \ Evirt(T ) are called regular. By Ereg

µ (T ) we denote all regular edges E(Gµ) ∩ Ereg(T ).
For each virtual edge pair e, f , either e ∈ Tµ or f ∈ Tν holds, i.e., exactly one of them is part of the
respective spanning trees. Moreover, each skeleton Gµ is of exactly one of four types:

(S) Gµ is a cycle of length at least 3; µ is called series.

(P) Gµ has exactly two vertices and at least 3 edges; µ is called parallel.

(Q) Gµ has at most 2 vertices and at most 2 edges, and µ is the only skeleton, i.e., V = {µ}.
(R) Gµ is simple, 3-connected and has at least 4 edges; µ is called rigid.

An SPQR tree is called minimal if its (S)-nodes are pairwise non-adjacent and its (P)-nodes are pairwise
non-adjacent.
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a 1 1 0 1 0 0 0 0 0
b 1 1 1 1 0 0 0 0 0
c 1 1 1 0 1 0 0 0 0
d 1 1 1 0 0 1 0 0 0
e 1 1 1 0 0 0 1 1 1
f 0 0 0 1 0 0 0 0 0

(a) The graphic matrix M

hg

i
b

a
f

j

ck e mno
d

l

(b) A realization
(G,T ) of M .

hg

i b

a

f

j

ck e mno

d

l

P R

SP P

P

S

(c) The unique minimal SPQR tree T
associated to M .

Figure 5: A graphic matrix with a realization and its unique minimal SPQR tree.

An example of a graphic matrix and its associated SPQR tree is depicted in Fig. 5.
To avoid confusion, we use node when referring to some µ ∈ V(T ) for some SPQR tree T , and we

use vertex for the represented graphs. The above definition differs slightly from that of Gutwenger and
Mutzel [16]. In particular, we do not consider each non-virtual edge to have its unique leaf node of type
(Q), but rather only use (Q) when the graph has at most two edges, which is closer to the definition of
t-decompositions as used by Bixby and Wagner [6].

To see how an SPQR tree T encodes a family of 2-isomorphic graphs, consider one such graph G. First,
E(G) consists of all the regular edges (of all skeletons) of T . Second, an edge {µ, ν} with virtual edges
e ∈ E(Gµ) and f ∈ E(Gν) represents a 2-separation (Eµ, Eν) of G, where Eµ (resp. Eν) consists of all
regular edges of skeletons that are closer to µ than to ν (resp. closer to ν than to µ). In Fig. 5, an example
of such a 2-separation is the 2-separation defined by E1 = {a, b, f, g, h, i, j} and E2 = E \ E1.

Although the edges of the SPQR tree encode many of the possible 2-separations of its represented
graphs, there may still be additional 2-separations that exist within nodes of type (S) and (P). We will
call a 2-separation (E1, E2) of any graph represented by T local if Ei ⊆ Ereg

µ (T ) holds for some µ ∈ V(T )
and some i ∈ {1, 2}. In other words, local 2-separations are those for which one side is contained entirely
in a single skeleton of the SPQR tree. In Fig. 5, an example of such a 2-separation is the 2-separation
defined by E1 = {n, o} and E2 = E \ E1.

Note that every pair of non-adjacent vertices of a cycle are the separating vertices of a 2-separation.
A corresponding reversal yields some reordering of the cycle edges. In fact, any permutation of a cycle’s
edges yields a 2-isomorphic cycle. These observations motivate the following definition.

Definition 15 (Graphs and trees represented by an SPQR tree). Let T be an SPQR tree supported by
the map π. A graph-tree pair (G,T ) is represented by T if it can be obtained by the following steps:

1. For each µ ∈ V(T ) of type (S), permute the edges of the cycle Gµ arbitrarily.

2. Contract each edge {µ, ν} ∈ E(T ) (in any order) to a new node ξ. Let e ∈ E(Gµ) and f ∈ E(Gν)
be the two corresponding virtual edges. The skeleton Gξ is the graph obtained from Gµ and Gν by
identifying the two end-vertices of e with the two end-vertices of f (via an arbitrary bijection) and
then removing e and f . Define Tξ to be (Tµ ∪ Tν) \ {e, f}. Define ΦG : V (T ) → V (G) to be the
mapping from the skeleton vertices to the resulting graph vertices, where initially ΦG(v) = v holds.
For the end nodes we ∈ e and wf ∈ f that are identified with one another into a new node v′, we
update ΦG for all u where ΦG(u) = we or ΦG(u) = wf holds to ΦG(u) = v′, instead.

Note that in Step 2 of the definition, since either e ∈ Tµ or f ∈ Tν holds, exactly one of the edges e, f
is removed from Tµ∪Tν . This (inductively) ensures that Tξ is a spanning tree of Gξ. By construction, any
two graphs G,G′ that are represented by T are 2-isomorphic. Moreover, every 2-separation of a represented
graph either corresponds to an edge of T or to a 2-separation of an (S)- or a (P)-node. Cunningham and
Edmonds have shown this more formally:

Proposition 16 (Consequence of Cunningham and Edmonds [9], Theorem 3). Let G be a graph represented
by T = (V, E), and let (E1, E2) be a 2-separation of G. Then, (E1, E2) is either a local 2-separation for
some µ ∈ V(T ), or there exists an SPQR tree edge ϵ = {µ, ν} ∈ E such that the subtrees Tµ and Tν formed
by removing ϵ from T satisfy E1 = Ereg(Tµ) and E2 = Ereg(Tν).

In the literature, SPQR trees are defined without the spanning tree Tµ of each skeleton Gµ. However,
the last statement of Proposition 13 shows that the SPQR tree structure is independent of the spanning
tree. By results from Hopcroft and Tarjan [19, Lemma 2] and Cunningham and Edmonds [9, Theorem 1],
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minimal SPQR trees are unique. The discussion above and Proposition 13 together are summarized in the
main result of this section.

Theorem 17. Let A be a connected graphic matrix. Then there exists a unique minimal SPQR tree T for
which the set of represented graph-tree pairs (G,T ) is equal to the set of graph-tree pairs (G,T ) for which
A = M(G,T ) holds.

The theorem in particular shows that the resulting SPQR tree T is independent of the choice of (G,T )
(among those represented by T ). Consequently, if we construct a minimal SPQR tree T from any graph-
tree pair (G,T ) for which A = M(G,T ) holds, then we can (in principle) obtain all other graph-tree pairs
(G′, T ′) for which A = M(G′, T ′) holds by enumerating all graph-tree pairs that are represented by T .

In the next sections we will explain how to update an SPQR tree for a matrix M when augmenting it
with a new row.

5 Graphic row augmentation using SPQR trees

In order to develop an algorithm that correctly determines graphicness of row augmentation, we need
to combine the results of the previous sections. First, recall that in Section 3 we characterized graphic
row augmentation by means of determining whether a given graph has a Y -splittable vertex. Second, in
Section 4 we observed that the set of graphs represented by graphic matrices are exactly the set of graphs
represented by a minimal SPQR tree. Combining these two ideas, the row augmentation problem then
becomes to determine if the SPQR tree represents a graph that has a Y -splittable vertex, and if so, to find
the unique minimal SPQR tree of the matrix after it has been updated by splitting a Y -splittable vertex
in one of the represented graphs.

Note that by Theorem 17 it is sufficient to show that a single realization G of the original SPQR tree
has a Y -splittable vertex: we could find all represented graphs of M ′ by computing the unique minimal
SPQR tree of G′, where G′ is obtained by splitting said Y -splittable vertex in G. In our algorithm we do
not recompute the SPQR tree of G′ from scratch, but instead construct it by modifying the SPQR tree
of G. To establish the correctness of our algorithm, we additionally argue that the updated SPQR tree is
minimal. In case of a non-graphic row augmentation we need to show that none of the graphs represented
by the SPQR tree contains a Y -splittable vertex, which then by Theorem 17 shows that M ′ is not graphic.

Let us describe our proposed algorithm in general terms. First, it computes the set Y from the given
row vector. Then the algorithm carries out certain reductions on the SPQR tree that preserve the existence
of a Y -splittable vertex in any represented graph. These reductions work by successively removing suitable
leaf nodes from the SPQR tree. Once no more reductions can be applied, the resulting reduced SPQR tree
and its represented graphs have certain properties. In particular, if one of the represented graphs has a
unique Y -splittable vertex and can not be further reduced, then splitting according to Lemma 11 will yield
a 3-connected simple graph. From this it follows that the reduced SPQR tree is merged into a single node
of type (R).

We start with a few structural results relating the concepts of Section 3 to 2-connected graphs. We
first show that the bipartition of Hv

Y is unique for any Y -splittable vertex v, which shows that the resulting
neighbourhood split is also unique.

Lemma 18. Let G = (V,E) be a 2-connected multigraph with spanning tree T ⊆ E, let Y ⊆ E \ T and
v ∈ V . Then Hv

Y is a connected graph.

Proof. Let C be a connected component of Hv
Y and let U :=

⋃
h∈V (C) V (h) be the vertices of Gv

Y that

belong to any vertex of Hv
U belonging to C. Since G is 2-connected, G[V \ {v}] is connected. This implies

that either W := V \ (U ∪{v}) is empty or that, by connectivity, E contains an edge e = {u,w} with u ∈ U
and w ∈ W . By construction, we would have e ∈ Y , which would contradict the assumption that C is a
connected component of Hv

Y . We conclude that W = ∅ holds, which proves that C is the only connected
component of Hv

Y .

Corollary 19. Let G = (V,E) be a 2-connected multigraph with spanning tree T ⊆ E and let Y ⊆ E \ T .
If Hv

Y is bipartite then it has a unique bipartition.

Proof. By Lemma 18, Hv
Y must be connected. This implies that if Hv

Y is bipartite, that its bipartition is
unique (up to switching sides).

5.1 Reductions

In this section we present three reductions that preserve the existence of Y -splittable vertices and shrink
the represented graph G. Since we are interested in reductions that work not just on G but also on
its SPQR tree, it is natural to consider 2-separations of the represented 2-connected graphs. All three
proposed reductions work in a similar fashion. For each reduction, we consider a 2-separation with a
certain structure, and then replace one of its sides by a single edge, whilst preserving the splittability of
any vertices in the remaining graph. Although we formulate the results in terms of general graphs, the
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relevance of the following results on the SPQR tree are due to the fact that every 2-separation is encoded
in the SPQR tree. Moreover, the proposed reductions do not depend on the orientation of the 2-separation;
they work for both the original graph and its reversal, so that we can apply them directly to an SPQR
tree T , simultaneously performing the reduction on all represented graphs of T .

First, let us introduce some notation to define the structure of a graph-tree pair (G,T ) when considering
a 2-separation of G.

Definition 20 (tree partition induced by a 2-separation). Let G be a 2-connected multigraph with span-
ning tree T and let (E1, E2) be a 2-separation of G with separating vertices u and w and the correspond-
ing graphs G1 and G2 such that Pu,w(T ) ⊆ E(G1) holds. The tree partition of T induced by the 2-
separation is the partition T = T1 ∪ Tu ∪ Tw such that T1 := T ∩ E(G1) and Tv := {e ∈ T ∩ E(G2) |
e and v are in the same connected component of T \ T1} for v ∈ {u,w}. The corresponding vertex par-
tition is V (G2) = Vu ∪ Vw with Vv := V (Tv) ∪ {v} for v ∈ {u,w}. The edges whose fundamental path
contains Pu,w(T ) are denoted by

P−1
u,w(G,T ) := {e ∈ E(G) \ T | Pu,w(T ) ⊆ Pe(T )}.

Note that the definition above ensures for v ∈ {u,w} that Tv = ∅ implies Vv = {v}. Moreover, note
that P−1

u,w(G,T ) ∩ E2 consists of exactly those edges that connect Vu to Vw in E2.
Lemma 21 provides a basic result which we will need several times. Thereafter, we show in Lemmas 22

and 23 that when Ei ∩ Y = ∅ holds, Ei can be replaced by a single edge whilst preserving splittability of
the remaining graph. An overview of all three reductions can be found in Fig. 6.

(a) A case where Y ∩ E2 = ∅. (b) G′ obtained by applying Lemma 22 to (a).

(c) A case where Y ∩ E1 = ∅. (d) G′ obtained by applying Lemma 23 to (c).

(e) A case where Y ∩ E2 = P−1
u,w(G,T ) ∩ E2

and Y ∩ E1 ̸= ∅.
(f) G′ and Y ′ obtained by applying Lemma 26 to (e).

Figure 6: A graph-tree pair (G,T ) with a 2-separation E1, E2 with V (E1) ∩ V (E2) = {u,w} such
that Pu,w(T ) ⊆ E1. Subfigures (a),(c) and (e) present different sets Y . Subfigures (b),(d) and (f)
present the reduced graph G′ (and reduced set Y ′) obtained by applying a relevant reduction to
(a),(c) and (e) respectively. The new edge introduced in G′ is presented as a dashed edge. Edges
in T or T ′ are marked bold and red, and edges in Y or Y ′ are marked with two stripes.

Lemma 21. Let G be a 2-connected multigraph with spanning tree T and let (E1, E2) be a 2-separation
of G with separating vertices u and w and the corresponding graphs G1 and G2 such that Pu,w(T ) ⊆ E1

holds. Then any edge e ∈ E1 \ T has Pe(T ) ⊆ E1, and any edge e ∈ E2 \ T has Pe(T ) ⊆ E2 ∪ Pu,w(T ).

Proof. Consider an edge e ∈ E1 \ T . As T1 is a spanning tree, there exists a path between every vertex
pair u′, w′ ∈ V (G1), and Pe(T ) ⊆ T1 must hold. By definition of T1 we have Pe(T ) ⊆ T1 ⊆ E1.

Similarly, if both end-vertices of e ∈ E2 \ T lie in Tu or Tw then Pe(T ) ⊆ E2 holds as there exists a
unique path between them in Tu or Tw. In the other case, the end-vertices of e lie on both Tu and Tw.
Then Pe(T ) must be a subset of Tu ∪ Tw ∪ Pu,w(T ), as u and w are connected by a unique path in T .
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Lemma 22. Let G be a 2-connected multigraph with spanning tree T and let Y ⊆ E(G) \T be non-empty.
Let (E1, E2) be a 2-separation of G with separating vertices u and w and the corresponding graphs G1 and
G2 such that Pu,w(T ) ⊆ E1 and Y ∩ E2 = ∅ holds. Let G′ be G1 augmented by a new edge e = {u,w}.
Then the following hold:

1. A vertex v ∈ V (G) is Y -splittable with respect to G if and only if v ∈ V (G1) and v is Y -splittable
with respect to G′.

2. For any v ∈ V (G1) that is Y -splittable in G, let Ĝ be the graph obtained by applying Lemma 11 to v.

Similarly, let Ĝ′ be the graph obtained from G′ by applying Lemma 11 to v, and let Ĝ′′ be the graph
obtained from Ĝ′ by replacing e with G2. Then Ĝ′′ = Ĝ.

Proof. Let us prove the first statement. First, consider a vertex v ∈ V (G2) \ V (G1). Let y ∈ Y , which
exists since Y ̸= ∅, and note that y ∈ E1 since Y ∩ E2 = ∅ holds. By Lemma 21, Py(T ) ⊆ E1, and by
Lemma 9, all Y -splittable vertices lie on Py(T ). We conclude that v is not Y -splittable.
Second, consider a vertex v ∈ V (G1). Since G is 2-connected, v is not an articulation vertex of G, and
thus all vertices of V (G2) \ {v} are in the same connected component of G after removal of v. Since
Y ∩ E2 = ∅ holds, all these vertices are even in the same connected component h of Gv

Y . Similarly, by
definition of G′, all vertices in {u,w}\{v} are in the same connected component h′ of G′v

Y . For any vertex
v′ ∈ V (G1) \ {u,w}, the neighborhood of v′ is identical in G and G′. Hence, the connected components
of Gv

Y and G′v
Y are identical, except that in one component V (G2) \ {v} is replaced by {u,w} \ {v}. This

implies that the vertex sets of Hv
Y (G) and Hv

Y (G′) are isomorphic by identifying h with h′. Since Y ⊆ E1

is the same set in G and G′, the graphs Hv
Y (G) and Hv

Y (G′) are then isomorphic. This implies that
v ∈ V (G1) is Y -splittable with respect to G if and only if v is Y -splittable with respect to G′.

Now, let us prove the second statement. First, note that Ĝ′′ and Ĝ have the same edge set and the
same number of vertices. To show their equality it thus suffices to show that the incident edges for each
vertex are equal. Both Ĝ′′ and Ĝ were obtained by performing operations that only change the end-vertices
of edges incident to v and re-link these edges either to v1 or to v2. In particular, replacing E2 by e and
replacing e by E2 again does not change the edges incident to vertices V (G2) \ {u,w}. Thus, it suffices to
show for the vertices v1 and v2 that were obtained from the neighborhood split of v in G, and v′1 and v′2
that were obtained from the neighborhood split of v in G′, that δĜ(v1) = δĜ′′(v

′
1) holds.

Without loss of generality, we assume that v1 was obtained from the I-part of the neighborhood split,
such that δĜ(v1) = δIG(v) holds. Since E1 and E2 partition the edges of the graph, δIG(v)∩E1 and δIG(v)∩E2

form a partition of δIG(v).
Consider δIG(v)∩E1. We know that G is 2-connected, and it is easy to see that also G′ is 2-connected.

Then, because G and G′ are 2-connected, Hv
Y (G) and Hv

Y (G′) both have a unique bipartition by Corol-
lary 19, which we denote by (I, J) and (I ′, J ′) respectively. In particular, it must be the case that I and
I ′ both contain the same connected components (after identification) of Gv

Y and G′v
Y . Without loss of gen-

erality we assume that h ∈ I and h′ ∈ I ′ for the connected components h and h′ that contain {u,w} \ {v}.

Because all edges of E1 are also contained in G′, we then have that δIG(v) ∩ E1 = δI
′

G′(v) ∩ E1. Then, by

Definition 10, we have that δI
′

G′(v) ∩ E1 = δĜ′(v
′
1) ∩ E1. Clearly, δĜ′(v

′
1) ∩ E1 = δĜ′′(v

′
1) ∩ E1 holds, since

e /∈ E1 and e is replaced only by edges in E2. Thus, we conclude that δIG(v) ∩ E1 = δĜ′′(v
′
1) ∩ E1.

Secondly, consider δIG(v) ∩ E2. In G′, we replace E2 by e. If v /∈ {u,w}, then δG(v) ∩ E2 = ∅, and
replacing G2 by e and subsequently replacing e back by G2 does not modify the neighborhood of any
vertex of the graph. In particular, we then have that δĜ′′(v1) ∩ E2 = ∅. If v ∈ {u,w}, then replacing
G2 by e, splitting the vertex, and then replacing e by G2, means that all edges of δG′(v) ∩ E2 lie in the
same partition of the neighborhood split of G′. However, we proved earlier that this must exactly be the
case; since h and h′ lie in I and I ′ respectively, we have E2 ⊆ δIG(v) and e ∈ δI

′
G′(v), which implies that

e ∈ δ
Ĝ′(v

′
1). Then, by replacing e with E2 in Ĝ′′, we have that δIG(v) ∩ E2 = E2 = δĜ′′(v

′
1) ∩ E2 holds.

Thus, δĜ′′(v
′
1) ∩ E2 = δIG(v) ∩ E2.

We conclude that δĜ(v1) = δIG(v) = (δIG(v) ∩ E1) ∪ (δIG(v) ∩ E2) = (δĜ′′(v
′
1) ∩ E1) ∪ (δĜ′′(v

′
1) ∩ E2) =

δĜ′′(v
′
1) holds, which establishes Ĝ = Ĝ′′.

Lemma 23. Let G be a 2-connected multigraph with spanning tree T and let Y ⊆ E(G) \T be non-empty.
Let (E1, E2) be a 2-separation of G with separating vertices u and w and the corresponding graphs G1 and
G2 such that Pu,w(T ) ⊆ E1 and Y ∩E1 = ∅ holds. Let G′ be G2 augmented by a new edge e = {u,w} and
define T ′ := (T ∩ E2) ∪ {e}. Then the following hold:

1. A vertex v ∈ V (G2) is Y -splittable with respect to G if and only if v is Y -splittable with respect to
G′.

2. For any v ∈ V (G2) that is Y -splittable, let Ĝ be the graph obtained by applying Lemma 11 to v.

Let Ĝ′ be the graph obtained by applying Lemma 11 to v in G′, and let Ĝ′′ be the graph obtained by
replacing e with G1 in Ĝ′. Then Ĝ′′ = Ĝ.

Proof. Note that T ′ is indeed a spanning-tree, so that Y ′-splittability of a node in G′ is well-defined. First,
let us prove the first point. Consider a vertex v ∈ V (G2). Since G is 2-connected, v is not an articulation
vertex of G, and thus all vertices of V (G1) \ {v} are in the same connected component of G after removal
of v. Since Y ∩ E1 = ∅ holds, all these vertices are even in the same connected component h of Gv

Y .
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Similarly, by definition of G′, all vertices in {u,w} \ {v} are in the same connected component h′ of G′v
Y .

This implies that the vertex sets of Hv
Y (G) and Hv

Y (G′) are isomorphic by identifying h with h′. Using
Y ⊆ E2, we observe that Hv

Y (G) and Hv
Y (G′) are isomorphic. This implies that v ∈ V (G2) is Y -splittable

with respect to G if and only if v is Y -splittable with respect to G′.
The proof for the second statement is identical to the proof of the second statement of Lemma 22,

except that E1 and E2 as well as G1 and G2 are swapped.

Although Lemma 23 provides a strong argument for performing its proposed reduction, it is not suffi-
ciently safe to do so. In particular, there may still be Y -splittable vertices in V (G1) \ {u,w} that we miss
by performing this reduction. However, Lemma 24 shows that in this case the two vertices u and w of the
2-separation must also be Y -splittable and a very specific set of conditions holds.

Lemma 24. Let G be a 2-connected multigraph with spanning tree T and let Y ⊆ E(G) \T be non-empty.
Let (E1, E2) be a 2-separation of G with separating vertices u and w and the corresponding graphs G1 and
G2 such that Pu,w(T ) ⊆ E1 and Y ∩ E1 = ∅ holds. Then for each vertex v ∈ V (G1) \ {u,w}, Gv

Y consists
of one or two connected components. Let hu and hw be the components containing u and w, respectively.
Moreover, v is Y -splittable with respect to G if and only if the following statements hold:

1. v is an internal vertex of Pu,w(T ),

2. Y = P−1
u,w(G,T ),

3. u and w are Y -splittable, and

4. hu ̸= hw

Proof. We start by showing that Gv
Y has at most two connected components. To this end, we claim that

each vertex s ∈ V (G) \ {v} is connected to u or to w within Gv
Y . Since (Tu ∪ Tw) ∩ E2 belongs to Gv

Y ,
the statement is obvious for s ∈ V (G2). Otherwise, in case s ∈ V (G1) \ {u,w}, the 2-connectivity of G
implies that there is a path P ⊆ E(Gv) from s to {u,w}. Let P have minimum length among such paths,
which implies P ⊆ E1. Since E1∩Y = ∅, even P ⊆ E(Gv

Y ) holds, and the claim follows. In particular, this
implies that Hv

Y (G) can have at most two components hu and hw, which contain u and w, respectively.
To prove necessity, assume that v ∈ V (G1) \ {u,w} is Y -splittable. From δ(v) ∩ Y ⊆ E1 ∩ Y = ∅ and

Y ̸= ∅ it follows that Y is not a star centered at v. By Lemma 8, v is an articulation vertex of GY . By the
above argument, this implies that hu ̸= hw, as these are the only two possible components of Gv

Y . First, let
us show that v is an internal vertex of Pu,w(T ). Lemma 9 implies v ∈ Py(T ) for some y ∈ Y and thus y ∈ E2

holds. Since v ∈ V (G1) \ {u,w}, we must have Pu,w(T ) ⊆ Py(T ). Then, since V (Pu,w(T )) are the only
vertices of Py(T ) that are in V (G1) by Lemma 21, we have v ∈ V (Pu,w(T )) \ {u,w}. Since this argument
applies to any edge y ∈ Y , we must have Y ⊆ P−1

u,w(G,T ). Suppose, for the sake of contradiction, that an
edge e ∈ P−1

u,w(G,T )\Y exists. This implies that a path that connects u and w in Gv
Y exists in Tu∪Tw∪{e}.

However, this contradicts our observation that hu ̸= hw must hold. Consequently, Y = P−1
u,w(G,T ) holds.

In particular, this shows that each edge y connects Vu to Vw since we have E1 ∩ Y = ∅.
It remains to show that u and w are Y -splittable. We only show u; the argument for w is symmetric,

with u and w swapped. First, consider Gu
Y and let h′

w be the component of Gu
Y that contains w. Since Tw

is a tree, it follows that Vw is also contained in h′
w. Additionally, note that E1 \ δ(u) is connected since G

is 2-connected. Since E1 ∩ Y = ∅ and w is incident to some edges from E1, also E1 \ δ(u) is contained in
h′
w.

Due to Y = P−1
u,w(G,T ), the edges connecting Vu and Vw in E2 all belong to Y . Then, since we remove

u in Gu
Y and {u,w} are separating vertices, there are no paths in Gu

Y connecting any vertex s ∈ Vu \ {u}
to any vertex t ∈ Vw, which implies that each vertex from Vu \ {u} lies in some connected component
different from h′

w. This, together with the observation that each Y -edge is incident to a vertex from h′
w,

implies that Hu
Y is a star centered at h′

w, and thus bipartite.
To show sufficiency, assume that u and w are Y -splittable vertices such that v is an internal vertex

of Pu,w(T ), Y = P−1
u,w(G,T ) and hu ̸= hw hold. Note that Vu is contained in hu and Vw is contained in

hw. Due to Y = P−1
u,w(G,T ), every edge in Y connects Vu to Vw, which implies that every edge y ∈ Y

connects hu to hw. Since V (Hv
Y ) = {hu, hw} holds, {hu} and {hw} are a bipartition of Hv

Y . Thus, v is
Y -splittable.

Note that since {u,w} ⊆ V (G2), the reduction proposed in Lemma 23 is also valid for u and w and
thus u and w are Y -splittable in G if and only if u and w are Y ′-splittable in G′, where G′ is the graph
formed by the reduction given in Lemma 23. As Lemma 24 shows that a vertex V (G1) \ {u,w} is Y -
splittable only if u and w are Y -splittable, this shows that the reduction proposed in Lemma 23 is indeed
safe and valid, as we then always guarantee that G′ has a Y -splittable vertex if G has a Y -splittable vertex.

An important addition to Lemmas 22 and 23 is that ‘smaller’ 2-separations can always be reduced as
well. This later allows us to focus our algorithms on the leaves of the SPQR tree.

Proposition 25. Let G be a 2-connected multigraph with spanning tree T . Let Y ⊆ E(G) \ T be non-
empty. Let E1, E2 be a 2-separation of G with E2∩Y = ∅. Let E′

1, E
′
2 be a 2-separation of G with E′

2 ⊂ E2.
Then E′

2 ∩ Y = ∅ holds.
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Proof. Since E′
2 ⊂ E2 and E2 ∩ Y = ∅, E′

2 ∩ Y = ∅ holds.

Note in particular that Proposition 25 implies that one of Lemmas 22 and 23 can be applied to reduce
the 2-separation E′

1, E
′
2.

Lemmas 22 and 23 show that if one side of a 2-separation contains no Y -edges, then we can replace it
by a single edge that is not in Y . Lemma 26 does something similar in the setting where the Y -edges on
one side constitute a particular cut of that side; in this case, one can replace this side of the 2-separation
by a single edge that is then added to Y , which intuitively represents this cut.

Lemma 26. Let G be a 2-connected multigraph with spanning tree T and let Y ⊆ E(G) \T be non-empty.
Let (E1, E2) be a 2-separation of G with separating vertices u and w and the corresponding graphs G1 and
G2 such that Pu,w(T ) ⊆ E1, Y ∩ E1 ̸= ∅ and Y ∩ E2 = P−1

u,w(G,T ) ∩ E2 hold. Let G′ be G1 augmented by
a new edge e = {u,w} and define Y ′ := (Y ∩ E1) ∪ {e}. Then, the following hold:

1. A vertex v ∈ V (G) is Y -splittable with respect to G if and only if v ∈ V (G1) and v is Y ′-splittable
with respect to G′.

2. For any v ∈ V (G1) that is Y -splittable, let Ĝ be the graph obtained by applying Lemma 11 to v.

Let Ĝ′ be the graph obtained by applying Lemma 11 to v in G′, and let Ĝ′′ be the graph obtained by
replacing e with G2 in Ĝ′. Then, Ĝ′′ = Ĝ.

Proof. First, consider a vertex v ∈ V (G2) \ V (G1) and let y ∈ Y ∩ E1. By Lemma 21, Py(T ) ⊆ E1, and
by Lemma 9, all Y -splittable vertices lie on Py(T ). We conclude that v is not Y -splittable.

Second, observe that P−1
u,w(G,T )∩E2 is the set of edges from G2 that connect Vu with Vw. Also observe

that the set is non-empty since otherwise u or w would be an articulation vertex of G, contradicting 2-
connectivity of G. Note that by the assumption from the lemma, this set is equal to Y ∩ E2.

Third, consider a vertex v ∈ V (G1)\V (G2). Since both trees Tu and Tw are part of Gv
Y , the connected

components hu and hw that contain u and w, respectively, cover all vertices in V (G2). These components
are connected by an edge in Y ∩ E2. Moreover, by the arguments above, all edges in Y ∩ E2 connect hu

with hw. Similarly, the connected components h′
u and h′

w of G′v
Y ′ that contain u and w, respectively, are

connected by the new edge e ∈ Y ′. All other connected components of Gv
Y and G′v

Y ′ are identical since
they are disjoint from V (G2). This shows that Hv

Y (G) and Hv
Y (G′) are isomorphic by identifying hu with

h′
u and hw with h′

w. We conclude that v is Y -splittable with respect to G if and only if v is Y ′-splittable
with respect to G′.

Fourth, consider the case v = u; the only remaining case v = w is similar. Again, the tree Tw is part
of Gv

Y and hence the connected component hw that contains w covers Vw. Let Hu denote the set of all
connected components of Gv

Y that contain vertices from Vu \ {u}. Each such component hu ∈ Hu contains
only vertices from Vu\{u} and is not disconnected just by removal of v = u since otherwise the latter would
be an articulation vertex. Hence, there exists an edge y′ ∈ Y that connects hu to some other component
h. Since y′ must lie in P−1

u,w(G,T ) ∩ E2, we must have h = hw. Similarly, let h′
w denote the connected

component of G′v
Y ′ that contains w. All other connected components of Gv

Y and G′v
Y ′ are identical since

they are disjoint from V (G2). This shows that Hv
Y ′(G′) and the graph obtained from Hv

Y (G) by removing
vertices Hu are isomorphic by identifying hw with h′

w. Since all vertices hu ∈ Hu of Hv
Y (G) have degree 1,

this implies that Hv
Y (G) is bipartite if and only if Hv

Y ′(G′) is bipartite. We conclude that v is Y -splittable
with respect to G if and only if v is Y ′-splittable with respect to G′.

Let us now prove the second statement. First, note that Ĝ′′ and Ĝ have the same edge set and the
same number of vertices. Thus, it suffices to show that the incident edges for each vertex are equal. For
both Ĝ′′ and Ĝ we obtained the graph from G by performing operations that only change the end-vertices
of edges incident to v and distribute these edges over v1 and v2. In particular, replacing E2 by e and
replacing e by E2 again does not change the edges incident to vertices V (G2) \ {u,w}. Thus, it suffices to
check for the vertices v1 and v2 obtained from the neighborhood split of v in G, and v′1 and v′2 obtained
from the neighborhood split of v in G′ that δĜ(v1) = δĜ′′(v

′
1) holds.

Because G and G′ are 2-connected, Hv
Y (G) and Hv

Y (G′) both have a unique bipartition by Corollary 19,
which we denote by (I, J) and (I ′, J ′) respectively. In particular, I and I ′ both contain the same connected
components (after identification) of Gv

Y and G′v
Y . Moreover, we have shown already that I and I ′ contain

exactly the same vertices of V (G1), such that δĜ(v1) = δIG(v) and δĜ′(v
′
1) = δI

′
G′(v) hold. Since E1 and E2

partition the edges of the graph, δIG(v) ∩ E1 and δIG(v) ∩ E2 form a partition of δIG(v).

Consider δIG(v)∩E1. Then, δIG(v)∩E1 = δI
′

G′(v)∩E1 holds, because I and I ′ contain the same vertices

of V (G1). By applying Definition 10, we have that δI
′

G′(v)∩E1 = δĜ′(v
′
1)∩E1, which is equal to δĜ′′(v

′
1)∩E1

because replacing e by E2 does not affect the edges of E1. Thus, we have δIG(v) ∩ E1 = δĜ′′(v
′
1) ∩ E1.

Secondly, we consider δIG(v) ∩ E2. First, note that if v /∈ {u,w}, that δIG(v) ∩ E2 = ∅ = δĜ′′(v
′
1) holds

since then v is not incident to E2 or to e in any of the graphs. Next, consider the case v ∈ {u,w}, and
let v′ = {u,w} \ {v}. First, since Y ∩ E2 = P−1

u,w(G,T ) ∩ E2, any edge connecting v to Vv′ must be in
Y . Then, Vv′ is contained in one connected component h, since Tv′ connects all these vertices. Because
Y ∩ E2 = P−1

u,w(G,T ) ∩ E2, h must be connected in Hv
Y (G) to any component hv ∈ Hv where hv contains

vertices in Vv.
Since Hv

Y is bipartite, this shows that these edges must be on opposite sides. By, Y ∩E2 = P−1
u,w(G,T )∩

E2, there can exist no edges in Y connecting v to any node in Vv. Thus, in E2, v can only connect to nodes
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in Vv using edges that are not in Y and v can only connect to nodes in Vv′ using edges in Y , and all vertices
in Vv and Vv′ are on opposite sides of the bipartition (I, J). Thus, we either have δG(v) ∩ E2 ⊆ δIG(v) or
δG(v) ∩ E2 ⊆ δJG(v). From this, it follows that either δIG(v) ∩ E2 = δG(v) ∩ E2 or δIG(v) ∩ E2 = ∅ holds.

Because we defined I and I ′ to have similar vertices, we have e ∈ δI
′

G′(v) if and only if δG(v) ∩ E2 =

δIG(v) ∩ E2. We observe that if e ∈ δI
′

G′(v) holds, then e ∈ δĜ′(v
′
1) holds too. Then, in Ĝ′′, all edges from

δG(v) ∩ E2 are exactly placed incident to v′1, i.e., δG(v) ∩ E2 = δĜ′′(v
′
1) holds. Then, by the above, it

follows that δIG(v) ∩ E2 = δĜ′′(v
′
1). Similarly, if e /∈ δI

′
G′(v) then δIG(v) ∩ E2 = ∅ = δĜ′′(v

′
1) ∩ E2 holds

because all edges are placed incident to v′2, instead.
We obtain δĜ(v1) = δIG(v) = (δIG(v)∩E1)∪ (δIG(v)∩E2) = (δĜ′′(v

′
1)∩E1)∪ (δĜ′′(v

′
1)∩E2) = δĜ′′(v

′
1),

which shows that Ĝ = Ĝ′′ holds.

Although we argued that all three reductions are valid on the graph, it is not immediately clear that
they are also applicable to the SPQR tree. However, the important conditions for the reductions that
either require E1 ∩ Y = ∅ or E2 ∩ Y = ∅ (Lemmas 22 and 23 ) or require that Y ∩ E2 = P−1

u,w(G,T ) ∩ E2

(Lemma 26), are invariant under performing reversals at the 2-separations given by u and w. Thus, we
can also apply them to the SPQR tree.

It is worth to mention that it is in general nontrivial to check the condition Y ∩E2 = P−1
u,w(G,T )∩E2

of Lemma 26. However, in the case where G2 is a component of type (S), (P) or (Q) this is not a problem,
as then it simply amounts to checking whether Y = E \ T . For nodes of type (R) we show that this can
be done by testing for splittability.

Lemma 27. Let G be a simple 3-connected graph with spanning tree T , let Y ⊆ E(G) \ T be non-empty,
and let {u,w} ∈ T be a tree edge. Then Y = P−1

u,w(G,T ) holds if and only if u and w are both Y -splittable.

Proof. We first show necessity. Let Tu and Tw be the subtrees of T \ {{u,w}} containing u and w,
respectively, and let Vu and Vw be their respective sets of vertices. Due to Y ̸= ∅ there is an edge y ∈ Y .
Since G is simple, y ̸= {u,w} holds, so there exists a vertex v ∈ V (G) \ {u,w} with y ∈ δ(v). Our
assumption Y = P−1

u,w(G,T ) implies that the only edge from E \ Y that connects Vu with Vw is {u,w}.
Let hw denote the connected component of Gu

Y consisting of the vertices Vw and let H denote the set of
all other components, whose vertices form a partition of Vu \ {u}. Now, consider any edge y′ ∈ Y \ δ(u).
Since {u,w} ∈ Py′(T ) holds, the two end-vertices of y′ belong to both Vu and Vw, which means that they
belong to hw and to one of the components in H. This proves that H and {hw} form a bipartition of Hu

Y ,
so we conclude that u is Y -splittable. The proof that w is Y -splittable is similar.

To show sufficiency, let u and w be Y -splittable for (G,T ). By Lemma 9, both u and w must lie
on the intersection of the paths Py for all y ∈ Y (which is again a path due to Y ̸= ∅). This implies
Y ⊆ P−1

u,w(G,T ). Assume that there exists an edge e ∈ P−1
u,w(G,T ) \ Y , i.e., {u,w} ∈ Pe(T ) and e /∈ Y

hold. Since G is simple, e ̸= {u,w} holds, which implies that at least one of Gu
Y or Gw

Y must contain e.
Without loss of generality we assume that this is the case for Gu

Y since the argument for Gw
Y is similar.

Now consider the connected components of Gu
Y and let he be the connected component containing edge

e. Note that since he is connected to Tw, Tw is also contained in he. Since T is connected and disjoint
from Y , every connected component of Gu

Y must be connected to u by some tree edge in T . Denote the
set of connected components other than he by H := V (Hu

Y )\{he}. In particular, this implies that for each
h ∈ H, V (h) ⊆ Vu. Since e is not incident to u, there must exist some u′ ∈ Vu \ {u} to which e is incident.
Let Gu,w

Y be the graph G with vertex set V (G) \ {u,w} and edge set E(G) \ (δ(u)∪ δ(w)∪ Y ), and denote
by Vu′ and Eu′ the vertices and edges of its connected component containing u′.

Then |δ(u) ∩ δ(Vu′)| ≥ 1 holds since the set must contain a tree edge connecting to Vu′ by the above
argumentation. Similarly, |δ(w) ∩ δ(Vu′)| ≥ 1 holds: if there is some vertex w′ ∈ Vw \ {w} contained in
Vu′ , then there must exist a tree edge by the above reasoning. Otherwise, e = {u′, w} must hold since
w is the only vertex in Tw within Eu′ , which shows that e ∈ δ(w) ∩ δ(Vu′). In the following, we will
argue that E1 := Eu′ ∪ (δ(u) ∩ δ(Vu′)) ∪ (δ(w) ∩ δ(Vu′)) and E2 := E \ E1 form a 2-separation of G with
separating vertices u and w, which contradicts 3-connectivity of G. Note that |δ(u) ∩ δ(Vu′)| ≥ 1 and
|δ(w) ∩ δ(Vu′)| ≥ 1 together imply |E1| ≥ 2.

Next, observe that Eu′ ⊆ E[he] holds since Gu,w
Y is a subgraph of Gu

Y . Since u is Y -splittable, he has
no self- loops. In particular, this implies there is no edge in Y that connects Vu′ with Tw (and thus with
Vw). Since w is also Y -splittable, the component containing Tu in Hw

Y has no self-loops and hence there
are also no edges in Y that connect Vu′ to Vu (since Vu′ ⊆ Vu). Note that δ(u) ∩ δ(Vu′) and δ(w) ∩ δ(Vu′)
connect Eu′ to u and w, and that by the above argumentation there are no edges in Y incident to any
vertex from Vu′ since Vu ∪ Vw = V spans all possible vertices. Additionally, since we defined Eu′ as a
connected component of Gu,w

Y , there can be no other edges connecting Vu′ to vertices in V \ (Vu′ ∪{u,w}).
Thus, we can then conclude that E1 and E2 are only adjacent in u and w.

In the case where Eu′ is the only connected component of Gu,w
Y , he is the only connected component

of Gu
Y . Similarly, Gw

Y also consists of a single connected component. Since u and w are both Y -splittable,
these components cannot have self-loops. This implies that Y \ δ(u) = ∅ and Y \ δ(w) = ∅. As G is simple,
there is no edge in y ∈ Y , with y = {u,w}, which contradicts the assumption Y ̸= ∅.

In the alternative case, Gu,w
Y has more than one connected component, which implies that there exists

some vertex q ∈ V \ (Vu′ ∪ {u,w}). Now 3-connectivity of G implies |δ(q)| ≥ 2, and δ(q) ⊆ E2 implies
|E2| ≥ 2, which in turn implies that E1 and E2 form a 2-separation of G. This contradicts 3-connectivity
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of G. We conclude that there exists no edge e ∈ P−1
u,w(G,T ) \ Y , and consequently that Y = P−1

u,w(G,T )
holds. This completes the proof.

The application of Lemma 27 is primarily in that we can use it to efficiently check the condition of
Lemma 26 for SPQR tree nodes of type (R) (where G = G2 as stated in Lemma 26). Lemma 27 hints
at an important fact; rather than figuring out the intersection of all paths over G, it is sufficient to check
splittability of the vertices of the smaller graph G2 augmented by a single edge. In fact, we will later see
that this intuition holds more generally, and that we only need to test for splittability of vertices in the
skeletons of the SPQR tree, rather than on one of the represented graphs.

Although we have argued that the reduction is valid, it is still difficult to apply to 2-separations that are
not leaves of the SPQR tree. The following lemma shows that the reduction from Lemma 26 is applicable
only if every other 2-separation contained in it is also reducible. This shows that it is sufficient to only
consider leaf nodes of the reduced SPQR tree to find all reductions.

Lemma 28. Let G be a 2-connected multigraph with spanning tree T and let Y ⊆ E(G) \T be non-empty.
Let E1, E2 be a 2-separation of G with V (E1) ∩ V (E2) = {u,w} and P−1

u,w(T ) ⊆ E1. Let E′
1, E

′
2 be another

2-separation of G with V (E′
1) ∩ V (E′

2) = {u′, w′} and E′
2 ⊂ E2. Then Y ∩ E2 = P−1

u,w(G,T ) ∩ E2 implies
that Y ∩ E′

2 = P−1
u′,w′(G,T ) ∩ E′

2 or Y ∩ E′
2 = ∅ holds.

Proof. We distinguish two cases, depending on whether Pu′,w′(T ) uses edges from E1 or from E2.
First, suppose Pu,w(T ) ⊆ Pu′,w′(T ) holds. Consider any edge e ∈ E′

2. Note that Pu′,w′(T ) ⊆ Pe holds
if and only if Pu,w(T ) ⊆ Pe holds. Hence, e ∈ P−1

u′,w′(G,T ) holds if and only if e ∈ P−1
u,w(G,T ) holds. From

E′
2 ⊆ E2 it now follows that Y ∩ E′

2 = P−1
u,w(G,T ) ∩ E′

2 = P−1
u′,w′(G,T ) ∩ E′

2 holds.

Otherwise, Pu,w(T ) ̸⊆ Pu′,w′(T ) implies Pu′,w′(T ) ⊆ E2. Lemma 21 implies that for each edge e ∈ E′
2 \

T ⊆ E2\T we have Pe(T ) ⊆ E2 and thus Pu,w(T ) ̸⊆ Pe(T ). This implies ∅ = P−1
u,w(G,T )∩E′

2 = Y ∩E′
2.

In some sense, SPQR trees already naturally encode some reductions using the virtual edge pairs.
Consider a node µ of an SPQR tree T and let e be a virtual edge of µ that connects µ to some subtree TS

of T . In the reductions we replace one side of the 2-separation with a single edge; in the SPQR tree this
corresponds to replacing any realization of TS by e, which is equivalent to setting TR = T \TS and making
e non-virtual. Additionally, in case the reduction from Lemma 26 is used, we add e to Y and remove
any edges in TS from Y . Then e is virtual in T , but has become a regular edge in TR. In our algorithm,
we iteratively consider the leaves of TR, as Lemma 28 and Proposition 25 show that larger subtrees can
only be reduced if all 2-separations in the subtree can be reduced as well. Thus, if a leaf node cannot be
reduced, we can not reduce a larger subtree containing it, and thus it suffices to focus on the leaf nodes.

Because local 2-separations do not have an associated virtual edge pair, we instead replace 2 or more
regular edges that define a reducible local 2-separation by a single edge. For a local 2-separation of a node
µ ∈ V(T ), we can also view this as splitting µ into two members (of the same type as µ), dividing the
edges based on the 2-separation, adding a virtual edge pair, and then reducing the 2-separation using one
of the appropriate results.

First, let us define a Y -reduced SPQR tree, which is simply an SPQR tree that has been fully reduced.
We show a few properties that must hold, regardless of the algorithm used to derive the reduced SPQR
tree.

Definition 29 (Y -reduced SPQR tree). Let T be an SPQR tree. We say that T is Y -reduced if ∅ ̸=
Y ⊆ Ereg(T ) holds and if either T consists of a a single cycle skeleton or Lemmas 22, 23 and 26 are not
applicable to any 2-separation of any graph represented by T .

Note that Definition 29 has one notable exception, which is that if T consists of a single cycle skeleton,
that not necessarily all 2-separations are irreducible. We now present elementary properties of Y -reduced
SQPR trees.

Proposition 30. Every Y -reduced SPQR tree T satisfies these properties:

1. Each leaf µ of T satisfies Eµ ∩ Y ̸= ∅.
2. If |V(T )| ≥ 2, no leaf µ of T is of type (S).

3. If |V(T )| ≥ 2, then each µ ∈ V(T ) of type (S) satisfies |Ereg
µ (T )| ≤ 1.

Proof. The first statement follows from Y ̸= ∅ in case |V(T )| = 1 holds. Otherwise, a leaf µ ∈ V(T )
with Eµ ∩ Y = ∅ cannot exist since then one of Lemmas 22 to 24 would be applicable, in contradiction to
Definition 29.

For the second statement, consider a leaf µ of type (S) and assume |V(T )| ≥ 2. By the first statement,
we have Eµ ∩ Y ̸= ∅. Since |Tµ| = |Eµ| − 1 holds for nodes of type (S), the single edge e ∈ Eµ \ Tµ lies in
Y , which implies that Lemma 26 is applicable. Again this contradicts Definition 29.

For the third statement, assume for the sake of contradiction, that there exist at least two regular
edges e1, e2 ∈ Ereg

µ (T ). Clearly, {e1, e2} and E′ := Ereg
µ (T ) \ {e1, e2} form a local 2-separation (of µ),

where |E′| ≥ |Evirt
µ (T )| ≥ 2 holds because µ is, by the second statement, not a leaf. We now distinguish

two cases. If e1, e2 ∈ Tµ holds, then e1, e2 /∈ Y implies that Lemmas 23 and 24 are applicable. Otherwise,
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we can assume without loss of generality that e1 ∈ Tµ and e2 /∈ Tµ hold. Then Lemma 22 or Lemma 26
is applicable, depending on whether e2 /∈ Y or e2 ∈ Y holds. In all cases, applicability of the reductions
contradicts Definition 29.

Let us now present the complete reduction algorithm ReduceTree, which performs all possible reduc-
tions on T . It first tries to apply the reductions from Lemmas 22, 23 and 26 to leaf skeletons of the SPQR
tree. Then it performs the reductions given by ReduceSeries and ReduceParallel, which remove the
local 2-separations contained in (S) and (P) nodes. Fig. 7 shows an example of a run of ReduceTree.

The procedures for removing local 2-separations are given in ReduceSeries and ReduceParallel.
In particular, if |Yµ| ≥ 2 for an SPQR tree node µ of type (S) or (P), then Yµ can be replaced by a single
edge using Lemma 26. Similar reductions can be made using Lemmas 22 and 23 if |Eµ\(Ereg(TR)∪Y )| ≥ 2
holds.

Algorithm 1: Removing local 2-separations within (P)-nodes

Algorithm: ReduceParallel(µ, TR, YR)

Input: SPQR tree node µ of type (P), partially reduced SPQR tree TR, marked edges YR

Output: further reduced SPQR tree TR, marked edges YR

1 Let Yµ := YR ∩ Eµ.
2 if |Yµ| > 1 then replace Yµ by a new edge e in TR and update YR := (YR ∪ {e}) \ Yµ.

3 Let Z := Eµ \ (Evirt(TR) ∪ YR).
4 if |Z| > 1 then
5 replace Z by f in TR.
6 if Tµ ∩ Z ̸= ∅ then Update Tµ := (Tµ ∪ {f}) \ Z.

7 end

8 if Evirt(TR) = ∅ then change µ to type (Q).
9 return (TR, YR)

Algorithm 2: Removing local 2-separations within (S)-nodes

Algorithm: ReduceSeries(µ, TR, YR)

Input: SPQR tree node µ of type (S), partially reduced SPQR tree TR, marked edges YR

Output: further reduced SPQR tree TR, marked edges YR

1 Let Z := Eµ \ Evirt(TR).
2 if |Z| ̸= |Eµ| and |Z| > 1 then
3 Replace Z by a new edge e in TR.
4 Let Yµ := Z ∩ YR.
5 if Yµ ̸= ∅ then
6 YR := YR ∪ {e} \ Yµ

7 end
8 if Z ⊆ Tµ then Update Tµ := (Tµ ∪ {e}) \ Z.
9 else Update Tµ := Tµ \ Z.

10 end
11 return (TR, YR)
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Algorithm 3: Compute the reduced minimal SPQR tree TR of a minimal SPQR tree T .

Algorithm: ReduceTree(T , Y )

Input: Minimal SPQR tree T , edges Y
Output: Reduced SPQR tree TR, edges YR

1 Let TR := T and YR := Y .
2 Let L ⊆ V be a list of all leaves of TR.
3 Let LR := ∅.
4 while L ≠ ∅ and |V(TR)| ≥ 2 do // Reductions for Lemmas 22 and 23

5 Let µ ∈ L be an arbitrary leaf of TR.
6 Let ν be the unique neighbor of µ in TR.
7 Update L := L \ {µ}.
8 Let e ∈ E(Gµ) and f ∈ E(Gν) be the virtual edge pair connecting µ and ν.
9 if Eµ ∩ YR = ∅ then

10 Remove µ from TR.
11 Mark f as a non-virtual edge.
12 if ν is a leaf of TR then Update L := L ∪ {ν}.

13 else
14 Update LR := LR ∪ {µ}.
15 end

16 end
17 while LR ̸= ∅ and |V(TR)| ≥ 2 do // Reductions for Lemma 26

18 Let µ ∈ LR be an arbitrary leaf of TR.
19 Let ν be the unique neighbor of µ in TR.
20 Update LR := LR \ {µ}
21 Let e ∈ E(Gµ) and f ∈ E(Gν) be the virtual edge pair connecting µ and ν.
22 if e ∈ Tµ and Eµ ∩ YR = P−1

e (Gµ, Tµ) then
23 Remove µ from TR.
24 Mark f as a non-virtual edge.
25 if ν is a leaf of TR then Update LR := LR ∪ {ν}.
26 Update YR := (YR ∪ {f}) \ Eµ.

27 end

28 end
29 for µ ∈ V(TR) do // Reductions for Lemmas 22, 23 and 26 within skeletons

30 if µ is of type (S) then
31 Update (TR, YR) := ReduceSeries(µ, TR, YR).
32 else if µ is of type (P) then
33 Update (TR, YR) := ReduceParallel(µ, TR, YR).
34 end

35 end
36 return (TR, YR)
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µ1 P µ2 R

µ3 Sµ4 P µ5 P

µ6 P

µ7 S

(a) Original SPQR tree T with
edge set Y .

µ1 P µ2 R

µ3 S µ5 P

µ6 P

(b) T1 with edge set Y1 is obtained
from T by removing µ4 using
Lemma 23 and removing µ7

using Lemma 22.

µ2 R

µ3 S µ5 P

µ6 P

(c) T2 with edge set Y2 is obtained
from T1 and Y1 by removing µ1

using Lemma 26.

µ3 S µ5 P

µ6 P

(d) T3 with edge set Y3 is ob-
tained from T2 and Y2 by remov-
ing µ2 using Lemma 26.

µ3 S µ5 P

µ6 P

(e) T4, Y4 is obtained from
T3, Y3 by replacing two
edges in µ3 with one edge
by using Lemma 26, as in
ReduceSeries.

µ3 S µ5 P

µ6 P

(f) T5, Y5 is obtained from
T4, Y4 by replacing two edges
in µ5 by one edge using
Lemma 26 and by replacing
two more edges in µ5 with one
edge using Lemma 23, as in
ReduceParallel.

Figure 7: A sample run of ReduceTree, applying the reductions to the SPQR tree T from Fig. 5
for a particular set Y . SPQR trees T1, . . . T5, along with updated edge sets Y1, . . . Y5 are derived
from T by repeatedly applying reductions to T . Virtual edges in the SPQR tree are given by
dashed edges, tree edges are marked in bold and red and all other edges are marked in blue. Edges
in Y, Y1, . . . Y5 are indicated by two stripes.

In order to show that ReduceTree outputs an SPQR tree, it is crucial that we show that the node
labels of TR are correct. Thus, we need to consider ReduceSeries and ReduceParallel, which can
modify the skeletons and node labels.

Lemma 31. Let T be an SPQR tree, let Y ⊆ Ereg(T ) be non-empty and let (TR, YR) be obtained from
ReduceTree(T , Y ). Then each of the following holds:

1. Each µ ∈ V(TR) of type (S) has |Eµ| ≥ 3.

2. Each µ ∈ V(TR) of type (P) has |Eµ| ≥ 3.

3. If V(TR) = {µ}, then µ is not of type (P).

4. If V (TR) = {µ} of type (Q), then |Eµ| = 2.

Proof. The only part of ReduceTree where skeleton graphs are modified is the loop 29–35. Let T ′ and
Y ′ be the tree and the reduced edges before this loop. Note that T ′ is a minimal SPQR tree since it is a
subtree of T . We denote by ET ′

µ the set of edges of the skeleton Gµ before execution of the loop, and by

ETR
µ the set of edges after execution of the loop. Since T is a valid SPQR tree, we initially have |ET ′

µ | ≥ 3
for each µ ∈ V(T ′) of type (S) or (P).

First, consider the case in which V(T ′) = {µ} holds. If µ is of type (S), then ReduceSeries does not

modify ET ′
µ , which implies |ETR

µ | = |ET ′
µ | ≥ 3. In case µ is of type (P), then ReduceParallel changes

it to a node of type (Q). Because this is the only place in ReduceTree where a node’s type is changed,
it thus cannot occur that V(TR) = {µ} where µ is of type (P), which proves the third statement.

To show the fourth statement, first note that if T is a single node of type (Q) that then ReduceTree
does not change it. In the other case where TR is a single node that is changed to type (Q) by ReduceParallel,
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note that we must have Evirt
µ (TR) = ∅, which implies that Y ′ ∩ ET ′

µ and ET ′
µ \ Y ′ partition the edges of

Eµ. Since Tµ ̸= ∅, we have ET ′
µ \Y ′ ̸= ∅ is non-empty, and since the reductions preserve existence of edges

in Y , it follows that Y ′ ∩ET ′
µ ̸= ∅. Since both of these two sets are replaced by exactly one edge, we have

|ETR
µ | = 2, showing the fourth statement.

Second, consider the case in which |V(T ′)| ≥ 2 holds and µ is of type (S). Because Lemma 26 is
applicable if µ is a leaf of type (S), µ must have degree at least 2, since otherwise µ would have been

removed before reaching line 29. In particular, this implies |Evirt(T ′)∩ET ′
µ | ≥ 2. Since T ′ is a valid SPQR

tree, |ET ′
µ | ≥ 3 holds. Moreover, ReduceSeries does not remove edges in Evirt(T ′) ∩ ET ′

µ and retains at

least one edge Ereg(T ′) ∩ ET ′
µ (if present), which shows |ETR

µ | ≥ 3.
Third, consider the case in which |V(T ′)| ≥ 2 holds, and where µ is a leaf of type (P), which implies

|Evirt
µ (T ′)| = 1. Since µ is a leaf of T ′, the set Y ′

µ = Y ′∩Eµ must be non-empty. Additionally, we have that

Z = ET ′
µ \ (Evirt(T ′)∪Y ′), as defined in line 3 of ReduceParallel, is non-empty, as otherwise Lemma 26

could be applied to µ since Eµ contains exactly one virtual tree edge with all other edges in Y . Note that
each reduction in ReduceParallel preserves exactly one edge from Yµ and from Z. Then, ETR

µ contains

exactly one edge from each set and the single edge in Evirt(T ′) ∩ ET ′
µ , which shows |ETR

µ | = 3.
Finally, consider the case where |V(T ′)| ≥ 2 holds, and where µ is of type (P), but not a leaf, which

implies |Evirt(T ′) ∩ ET ′
µ | ≥ 2. Since ET ′

µ has at least 3 edges, there must exist a third edge e′ which lies
in either Y ′

µ, Z (as defined in line 3 of ReduceParallel) or Evirt(T ′) ∩ ET
µ . Since ReduceParallel

preserves at least one edge from Y ′
µ or Z and keeps the edges from Evirt(T )∩ET

µ , this shows that |ETR
µ | ≥ 3

holds.

Theorem 32. Let T be a minimal SPQR tree, Y ⊆ Ereg(T ) be non-empty and let (TR, YR) be obtained
from ReduceTree(T , Y ). Then, TR is a YR-reduced and minimal SPQR tree. Moreover, there exists
a graph that is represented by T that has a Y -splittable vertex if and only if there exists a graph that is
represented by TR that has a YR-splittable vertex.

Proof. First, observe that the loop in lines 4–16 of ReduceTree performs the reductions described in
Lemmas 22 and 23, where for the latter Lemma 24 shows that the possible existence of a YR-splittable
vertex in TR is preserved. Additionally, after line 16 we have that every leaf µ ∈ V(TR) has Eµ ∩ YR ̸= ∅.
In particular, this also shows that after the loop exits, no 2-separations that are given by the edges of the
SPQR tree can correspond to a reduction as in Lemma 22 or Lemma 23, as then both subtrees of the tree
formed by removing the edge must contain an edge in YR, as argued by Proposition 25.

Lines 17–28 perform the reduction described in Lemma 26 on the remaining tree TR. In particular,
this implies that after exiting the loop, each leaf µ of TR cannot be reduced using Lemma 26. Note that
Lemma 26 preserves the existence of a YR-edge in every leaf, which implies that we do not need to check
Lemmas 22 and 23 again. Lemma 28 shows that it is sufficient to only consider the reduction in Lemma 26
to the leaf nodes of the SPQR tree. In particular, it shows that if a 2-separation given by an edge {µ, ν} ∈ T
is reducible using Lemma 26 then all leaves on one side of the subtree formed by removing {µ, ν} from
T must be reducible. Thus, once the loop terminates, no edges of the SPQR tree can be further reduced
using Lemma 26.

Finally, in lines 29–35 we ensure that none of the skeletons Gµ has local 2-separations that can be
reduced by applying Lemmas 22, 23 and 26 to Gµ itself. Note that we do not check nodes of type (R)
as these are 3-connected, and nodes of type (Q) can occur only when the SPQR tree consists of a single
skeleton Gµ with |Eµ| ≤ 2, and thus has no 2-separations at all.

There is one case, where ReduceParallel can perform a reduction that we have not explicitly shown
to be valid. In particular, if µ is a node of type (P) and Evirt

µ (T ) = ∅, i.e. µ is the only node in T , and
|Eµ| = 3 holds, then we do still apply the reduction from Lemma 23 and Lemma 26 to it, even though we
do not have a 2-separation. However, it can easily be seen that both nodes in Vµ are star-nodes, and that
their Y -splittability is preserved by replacing two edges by a single edge as done in ReduceParallel.

For technical reasons, there is one notable exception, which is that ReduceSeries does not perform
local reductions on nodes µ of type (S) when Eµ ∩Evirt(TR) = ∅. In this case, TR must consist of a single
cycle skeleton µ, which implies that TR is still YR-reduced.

To show that TR is an SPQR tree, we show that each node µ ∈ V(TR) is correctly labeled. Since T
is an SPQR tree, initially all nodes µ ∈ V(T ) are correctly labelled. Hence, we only need to check those
nodes for which the skeleton Gµ or the label changes. Then, Lemma 31 proves that the node labels of TR

are still correct.
To observe minimality of TR, note that the node labels of T are not modified, unless we have V(TR) =

{µ} where µ is of type (P) in ReduceParallel. In this case TR consists of a single (Q)-node by Lemma 31,
which is clearly minimal. Thus, since T is minimal, TR must be minimal, too.

By Proposition 16, all 2-separations of any graph G represented by T are either local 2-separations
or given by an SPQR tree edge. Consequently, after line 35 the algorithm has applied the reductions
Lemmas 22, 23 and 26 to all 2-separations of T where these could be applicable. Since each of the
reductions preserves the existence of a YR-splittable vertex in any represented graph G, it follows that TR

is YR-reduced.
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ReduceTree does not present the most efficient way to perform the reductions. In particular, they
can be performed more efficiently by starting with the smallest SPQR subtree that contains the edges Y .
Doing so, one implicitly performs the reductions where Ei∩Y = ∅ for i = 1, 2. Thereafter, such reductions
cannot happen because each leaf will have an edge from Y , and this property is preserved when applying
Lemma 26.

Note that we have not yet discussed how to test in line 22 of ReduceTree whether Lemma 26 is
applicable. Lemma 27 shows that it suffices to determine all Y -splittable vertices of the 3-connected
skeleton. In the following sections, we will discuss how to (efficiently) find the Y -splittable vertices in
further detail. More precisely, we will characterize when the reduced SPQR tree TR represents a graph
that contains a YR-splittable vertex, and describe the structure of such a graph.

First, we will treat the case where TR consists of a single node. Afterwards, we consider the case where
TR consists of multiple nodes. Throughout the following sections, we consider the reduced tree TR and its
marked edges YR. For ease of notation, we use T and Y rather than TR and YR to indicate the reduced
tree and its marked edges.

5.2 Updating a single skeleton

First, we consider the case where V(T ) = {µ}. The algorithms that we present in this section do not
immediately add a new edge, but rather modify Gµ, and return a set of two vertices between which the
new tree edge can be added. We will say that an SPQR tree that represents such a modified Gµ is an
Y -processed SPQR tree. In Definition 33, we formally define Y -processed SPQR trees.

Definition 33 (Y -processed tree). Let T = (V, E) be an SPQR tree and let Y ⊆ Ereg(T ). We call another
tree T ′ = (V ′, E ′) with vertices v1, v2 ∈ Vµ of a skeleton µ ∈ V ′ the Y -processed tree of T if

(a) the tree T ′
that arises from T ′ by adding an edge e′ between v1 and v2 (in skeleton µ) is an SPQR

tree,

(b) T ′
represents the set of graph-tree pairs (G′, T ′) for which there exists a graph-tree pair (G,T )

represented by T such that applying the construction of Lemma 11 to any Y -splittable vertex yields
G′ and T ′, and

(c) T ′
is a minimal SPQR tree.

The following lemma highlights that we need to show less than property (b).

Lemma 34. In order to establish Definition 33 (b) it suffices to consider only one graph-tree pair (G,T )
that is represented by T and only one Y -splittable vertex v of G such that the resulting graph-tree pair
(G′, T ′) is represented by T ′

.

Proof. By Theorem 17, the graphs G with spanning trees T represented by T are those with the same
matrix M := M(G,T ). By Theorem 12, applying the construction of Lemma 11 to each such G yields
a graph G′ with spanning tree T ′, which corresponds to the augmentation of M with the binary vector
b⊺ with supp(b) = Y as in (1). By construction, the unique resulting matrix M ′ represents each of the
graph-tree pairs (G′, T ′). Again by Theorem 17, these are represented by the unique minimal SPQR tree

T ′
.

In a few algorithms, the virtual edges Evirt
µ (T ) connecting to skeletons of the reduced tree, are men-

tioned. While in our case Evirt
µ (T ) = ∅ holds, this will turn out to be useful later because we will re-use

the algorithms in the setting where the reduced tree has more than one node.
First, let us treat the case where µ is of type (Q) or (S) after applying ReduceTree. It is not difficult

to see that in this case, we can extend µ by elongating the existing cycle with the new edge to create a
longer cycle.

Proposition 35. Let T be a Y -reduced SPQR tree with V(T ) = {µ} and let µ be of type (Q) or (S). Let
G′

µ,v be the graph obtained by applying the construction of Lemma 11 to Gµ, Tµ at vertex v ∈ V (G). For
all v ∈ V (G), v is Y -splittable and G′

µ,v is a cycle of length |E(Gµ)| + 1.

Proof. Since Y is nonempty and µ has a unique edge {e} = Eµ \ Tµ, we must have Y = {e}. Because Gµ

is of type (Q) or (S), Tµ forms a path. Applying the construction of Lemma 11 to any internal vertex of
the path Tµ, which has degree 2 and has two edges from Tµ incident to it, we observe that the resulting
graph always places exactly one edge in δI(v) and one edge in δJ(v). This implies that G′

µ,v is indeed a
cycle of length |V (G′

µ)| + 1. The reasoning for the end-vertices of Tµ is similar, where a single tree edge
and e must always be placed in different neighborhoods of δI(v) and δJ(v).

Note that Proposition 35 shows that ExtendSeries is simply a specialized version of the construction
of Lemma 11 for cycles. In particular, we could also simply use BipartiteSplit. SplitSkeleton contains
the complete algorithm for splitting a single skeleton.
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Algorithm 4: Extend a series skeleton with a new edge

Algorithm: ExtendSeries(T , µ)

Input: SPQR tree T with skeleton µ of type (Q) or type (S)
Output: Y -processed tree T ′ with vertices v1, v2

1 Obtain T ′ from T by splitting an arbitrary vertex v ∈ V (Gµ) into two vertices v1 and v2 such that both
have degree 1 in Gµ.

2 return (T ′, {v1, v2})

Algorithm 5: Find all Y -splittable vertices in a skeleton

Algorithm: FindSplittableVertices(T , µ, Y )

Input: SPQR tree T , a skeleton µ, edges Y ⊆ Ereg
µ (T ) \ Tµ

Output: Set X ⊆ V (Gµ) of Y -splittable vertices of µ
1 if Y = ∅ or µ is of type (Q), (S) or (P) then return V (Gµ)
2 Let X ⊆ V (Gµ) be the set of vertices v to which all y ∈ Y are incident.
3 if |X| = 2 then return X
4 Let Q := V (Gµ) ∩

⋂
y∈Y

V (Py(Tµ)) be the intersection of the vertices of Py(Tµ) for all y ∈ Y .

5 Let A ⊆ V (Gµ) be the articulation vertexs a of E(Gµ) \ Y that also satisfy a ∈ Q.
6 for a ∈ A do
7 Construct Ha

Y .
8 if Ha

Y is bipartite then X := X ∪ {a}
9 end

10 return X

Algorithm 6: Find all Y -splittable vertices in a skeleton that are incident to all virtual
edges

Algorithm: FindTreeSplittableVertices(T , µ, Y )

Input: SPQR tree T , a skeleton µ, edges Y ⊆ Ereg
µ (T )

Output: Set X ⊆ V (Gµ) of Y -splittable vertices of µ that are incident to all virtual edges
1 X :=FindSplittableVertices (T , µ, Y )

2 for e ∈ Evirt
µ (T ) do X := X ∩ e

3 return X

Algorithm 7: Split a vertex as in Lemma 11

Algorithm: BipartiteSplit(T , µ, Y, v)
Input: SPQR tree T , a skeleton µ, edges Y ⊆ Ereg

µ (T ) and a vertex v ∈ Vµ

Output: Y -processed tree T ′ with vertices v1, v2
1 Construct the bipartite graph Hv

Yµ
with bipartition I, J ⊆ V (Hv

Y ).

2 Obtain T ′ from T by the following modifications.
3 Add the new vertices v1 and v2 to Gµ.
4 for e = {u, v} ∈ δ(v) do
5 if either e ∈ Yµ or there is a component h ∈ I such that u ∈ h then
6 replace e’s end-vertex v by v1.
7 else
8 replace e’s end-vertex v by v2.
9 end

10 end
11 Remove v from Gµ.
12 return (T ′, {v1, v2})

Lemma 36. Let T be a Y -reduced SPQR tree with V(T ) = {µ} and let µ be of type (Q) or (S). Then
the tree resulting from SplitSkeleton(T , µ, Y ) is Y -processed with respect to the vertices returned by the
algorithm.

Proof. Proposition 35 shows that ExtendSeries indeed correctly updates T . Note that if µ is of type (Q)
and has |Eµ| = 2 adding an edge to Eµ creates a cycle of length 3, which shows that µ must indeed become
a (S) node. Clearly, the returned SPQR tree is minimal since it consists of only µ.

The remaining case where µ is of type (R) is also the most complex one. First, we investigate the
structure of Y -splittable vertices in 3-connected graphs. More precisely, we show that there are only a few
vertices in a 3-connected graph that may be Y -splittable.

22



Algorithm 8: Construct Y -processed tree using a Y -splittable vertex that belongs to a
given skeleton and is incident to all virtual edges

Algorithm: SplitSkeleton(T , µ, Y )

Input: SPQR tree T , a skeleton µ, edges Y ⊆ Ereg
µ (T ) \ Tµ

Output: Y -processed tree T ′ with vertices v1, v2 or (T , ∅) if splitting is impossible
1 Let A := FindTreeSplittableVertices(T , µ, Y ).
2 if µ is of type (Q) then
3 if |Eµ| = 2 then Change µ to type (S).
4 return ExtendSeries(µ)

5 else if µ is of type (S) then
6 if A = V (Gµ) then return ExtendSeries(µ)
7 else if |A| = 1 then
8 Let a ∈ A be the unique Y -splittable vertex.
9 return BipartiteSplit(T , µ, Y, a)

10 else return (T , ∅)
11 else if µ is of type (P) then
12 Pick an arbitrary a ∈ A.
13 return BipartiteSplit(T , µ, Y, a)

14 else if µ is of type (R) then
15 if |A| = 0 then return (T , ∅)
16 else if |A| = 1 then
17 Let a ∈ V (Gµ) be such that A = {a}.
18 return BipartiteSplit(T , µ, Y ∩ Eµ, a)

19 else if |A| = 2 then
20 Let a1, a2 ∈ V (Gµ) be such that A = {a1, a2}.
21 Let e = {a1, a2} be the edge connecting a1 and a2.
22 Create a new series node ω and move e from Gµ to Gω .
23 Create a virtual edge pair (f, g) between µ and ω such that f has a1 and a2 as end-vertices.
24 if e ∈ Tµ then Update Tµ := (Tµ ∪ {e}) \ {f}.
25 return ExtendSeries(ω)

26 end

27 end

Lemma 37. Let G = (V,E) be a 3-connected graph with spanning tree T ⊆ E. Consider a non-empty set
Y ⊆ E \ T and let Q :=

⋂
y∈Y Py(T ) be the intersection of the fundamental paths of all Y -edges. Then all

inner vertices of Q that are articulation vertexs of G \ Y must be adjacent on Q. In particular, there are
at most two such vertices.

Proof. First note that, due to Y ̸= ∅, Q is a path. Let a1, a2 ∈ V (Q) be two inner vertices of Q that are
both articulation vertices of G \ Y , and let u1 and u2 be the end-vertices of Q such that a1 comes first
when traversing Q from u1 to u2. Suppose that a1 and a2 are not adjacent on Q, which means that the
sub-path of Q from a1 to a2 has an inner vertex m.

Since G is 3-connected, G − {a1, a2} is connected, which implies that each connected component of
(G \ Y ) − {a1, a2} is connected to some other component via an edge y ∈ Y . However, Q ⊆ Py(T ) and
the fact that a1, a2 lie on Q imply that each of these components contains one end-vertex of Q. It follows
that (G \ Y ) − {a1, a2} has at most two connected components. For i = 1, 2, let Ci be the component
that contains ui. Assume, without loss of generality, that m ∈ C1 holds. When adding back a2, that
is, considering (G \ Y ) − {a1}, the components C1 and C2 are merged into one. This contradicts the
assumption that a1 is an articulation vertex of G \ Y , which concludes the proof.

Corollary 38. Let G = (V,E) be a 3-connected graph with spanning tree T ⊆ E. Consider a non-empty
set Y ⊆ E \T and let Q :=

⋂
y∈Y Py(T ) be the intersection of the fundamental paths of all Y -edges. There

are at most four vertices on Q that are articulation vertices of G \ Y or the center of a Y -star. Moreover,
this upper bound is tight.

Proof. By definition, only end-vertices of Q can be the center vertex of a Y -star. Then considering the
two end-vertices of Q and the two internal vertices of Q as given by Lemma 37, the result follows.

An example with exactly four vertices is shown in Fig. 8, which proves tightness.

In [32], subroutine TEST C, Truemper claims that a 3-connected graph has a graphic row update if
and only if it has a single articulation vertex or a star vertex. However, Fig. 8 is a direct contradiction to
this claim, since it contains 4 articulation vertices, of which the two internal to Q are both Y -splittable.
In the following results, we explore the structure corresponding to a pair of Y -splittable vertices.

Lemma 39. Let G be a connected multigraph with spanning tree T and let Y ⊆ E(G) \ T be such that
u is Y -splittable with respect to G. Let v ∈ δ(u) be an adjacent vertex. If the neighborhood split of u is
such that one part of it is non-empty and contains only edges between u and v, then v is Y -splittable with
respect to G.
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(a) G (b) G′ after splitting one of the internal Y -
splittable vertices on Q

Figure 8: A graph-tree pair where G \ Y has four articulation vertices on Q. Edges in T are
marked red and bold, all other edges are marked blue. Edges in Y are marked by two stripes. The
articulation vertices are marked in white in a). The newly added row edge is marked extra bold.

Proof. Let I and J denote the bipartition of Hv
Y such that δI(u) is non-empty and only consists of edges

between u and v. We apply the construction of Lemma 11 to u and obtain the graph G′ by splitting u
into i and j with new edge r⋆ = {i, j}, updated tree T ′ := T ∪ {r⋆} and reassigned edges δ(u). Note that
all edges from δ(u) are reassigned to j, except for those in δI(u). By the assumptions of the lemma, vertex

i only has the two neighbors j and v. We now create the graph G
′

from G′ by reassigning the end-vertex
of each edge incident to i to the respective other vertex from {j, v}. Thereby, edge r⋆ = {i, j} is turned

into r⋆ = {i, v} and every edge e ∈ {i, v} is turned into e = {i, j}. Let T ′
:= T ∪ {r⋆}. First, note that

the sets of fundamental cycles of G′ with respect to T ′ and of G
′

with respect to T ′
are identical. Second,

contracting r⋆ of G
′

also yields G. This implies that also v must be Y -splittable, where application of
Lemma 11 yields the graph G

′
.

Note that the statement of Lemma 39 is only is about sufficiency. If we additionally require that G
is 3-connected and that Y is nonempty, we can show that the condition is also necessary. Although this
result is not crucial to our main argument, it can be used in practice to speed up the algorithm. Thus, the
proof can be found in Appendix A.

In the next few results, we show that a pair of Y -splittable vertices must be adjacent in 3-connected
graphs, which we will need to prove correctness.

Lemma 40. Let G be a 3-connected graph with spanning tree T and a non-empty set Y ⊆ E(G)\T . Let v1
and v2 be distinct Y -splittable vertices, where v1 is an articulation vertex of G \ Y . Let Q :=

⋂
y∈Y Py(T )

be the intersection of the fundamental paths of all Y -edges. Then v1 and v2 must be adjacent on Q.

Proof. First, note that by Lemma 9, both v1 and v2 must lie on Q. We distinguish two cases, depending
on the structure of Y .

Case 1: Y ⊆ δ(v2). Since G is 3-connected, G−{v1, v2} = (G\Y )−{v1, v2} must be connected. Since v1
is an articulation vertex of G\Y , Gv1

Y = (G\Y )−v1 is disconnected. The connectivity of (G\Y )−{v1, v2}
implies that v2 must be disconnected from all other vertices in Gv1

Y . Thus, we must have in particular that
δ(v2) ⊆ δ(v1) ∪ Y . However, since T ∩ Y = ∅ and T is a spanning tree, there must exist a spanning tree
edge in δ(v1) ∩ δ(v2), which clearly belongs to Q since v1 and v2 are on Q. Thus, v1 and v2 are adjacent
on Q.

Case 2: Y ̸⊆ δ(v2). For the sake of contradiction, assume that v1 and v2 are not adjacent on Q. Then
there exists a vertex m on Q that lies between v1 and v2. Since v2 is Y -splittable, v2 must be an articulation
vertex of G \ Y by Lemma 8. Since G is 3-connected, G − {v1, v2} is connected, which implies that each
connected component of (G \ Y ) − {v1, v2} is connected to some other component via an edge y ∈ Y . Let
y⋆ ∈ Y be an edge that connects the component C1 containing m to another component C2. Because
v1 and v2 and m lie on Q, there can be no edge in Y that connects to the nodes of the component of
T \ (δ(v1) ∪ δ(v2)) containing m.

Then, by symmetry of v1 and v2, we can assume without loss of generality that the unique vertex
u ∈ C1 ∩ y⋆ has the property that the u-m-path within T traverses through v1. The other end node
w ∈ C2 ∩ y⋆ must have a unique w-m path in T . Because we defined u is in the same component as M ,
there exists a u-m path P in (G \ Y )−{v1, v2}. Clearly, P also exists in G \ Y −{v1}. When adding back
v2 along with its incident edges, that is, considering Gv1

Y = (G \ Y ) − {v1} , the w-m path in T connects
w with m again. However, then y⋆ induces a loop in Hv1

Y that is given by the w-m path, P and y⋆ itself,
contradicting that v1 was Y -splittable. This concludes the proof.
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Lemma 41. Let G be a 3-connected graph with at least four edges, a spanning tree T and a non-empty
set Y ⊆ E(G) \ T . Then G has at most two Y -splittable vertices. Additionally, if G has two Y -splittable
vertices then these must be adjacent.

Proof. Consider two Y -splittable vertices v1 and v2. If Y ⊆ δ(v1) ∩ δ(v2) then v1 and v2 are connected by
some edge from Y ̸= ∅, showing that they are adjacent. Otherwise, Lemma 8 shows that one of them is
an articulation vertex of GY in which case Lemma 40 shows that v1 and v2 are connected by an edge from
T . This proves the second statement.

Assume, for the sake of contradiction, that there exist three Y -splittable vertices v1, v2 and v3. since T
is a tree, they cannot be pair-wise connected via edges from T , which implies that we have Y ⊆ δ(vi)∩δ(vj)
for some i, j ∈ {1, 2, 3}. Let k ∈ {1, 2, 3} \ {i, j} be the third index. Note that this implies Y ̸⊆ δ(vk),
and hence vk is connected to vi and vj by an edge from T . Since G has at least four edges, none of which
are parallel due to its 3-connectivity, there must exist a fourth vertex v4 ∈ V (G) \ {v1, v2, v3}. Since G
is 3-connected, G − {vi, vk} and G − {vj , vk} are both connected, which implies that there exist paths
Pi and Pj from v4 to vi and to vj that do not traverse any of the other two vertices {vj , vk} or {vi, vk},
respectively. Hence, the path Pi ∪ Pj connects vi with vj (via v4) within Gv3

Y , which induces a self-loop in
Hv3

Y , which in turn contradicts our assumption that v3 is Y -splittable.

In Lemma 41, we fully explored the cases where a 3-connected graph G can have multiple Y -splittable
points. Now, we are ready to prove correctness of the proposed algorithms.

Lemma 42. Let T be a Y -reduced tree that contains a node µ of type (R). Then algorithm
FindSplittableVertices(T , µ, Y ) correctly identifies all Y -splittable vertices of Gµ.

Proof. For the first step which checks if Y = ∅, Corollary 7 shows that if Y = ∅ holds, that the algorithm
functions correctly. In the next steps, we check if Y is a star for Proposition 6, and we find all articulation
vertices of Gµ \ Y that lie on Q (to check Lemma 9). Then we simply check if the auxiliary graph Ha

Y is
bipartite for each articulation vertex a of G\Y that lies on Q. By Lemma 8, this is an exhaustive procedure
for finding all Y -splittable vertices of Gµ. Corollary 38 shows that we need to construct the auxiliary graph
for at most four vertices, and Lemma 41 guarantees that we can find at most two Y -splittable vertices.

Lemma 43. Let T be a Y -reduced tree with V(T ) = {µ} and let µ be of type (R). Let T ′, X :=
SplitSkeleton(T , µ, Y ). If X = ∅, then T does not represent a graph G that contains a Y -splittable
vertex v. Otherwise, X = {v1, v2} and T ′ is a Y -processed SPQR tree with respect to v1 and v2.

Proof. First, note that Evirt(T ) = ∅ implies that FindTreeSplittableVertices(T , µ, Y ) simply re-
turns FindSplittableVertices(T , µ, Y ). By Lemma 42, FindSplittableVertices(T , µ, Y ) finds all
Y -splittable vertices of Gµ. By Lemma 41, there are at most two such Y -splittable vertices, and if there
are two, they are adjacent to each other. Let us make a case distinction on |A|, as in the algorithm.

If |A| = 0, i.e., A = ∅, then G has no Y -splittable vertex. Hence, T does not represent any graph G
that contains a Y -splittable vertex.

If |A| = 1, then there is a unique Y -splittable vertex a for G. In this case, Theorem 51 shows that
the application of BipartiteSplit, together with the newly added row edge, gives a new graph G′ which
is still of type (R). Clearly, the updated SPQR tree T ′ obtained by adding this edge is minimal, as it
contains a single (R)-node.

Finally, if |A| = 2, we know by Lemma 41 that exactly one edge e (since G is simple) is incident to
both vertices in A. Additionally, by combining Lemma 39 and Lemma 11, we observe that {e} forms one
side of the neighborhood partition for both Y -splittable vertices in A. If we then apply the construction
of Lemma 11 to G, we end up with a graph G′ where e is replaced by e and the new row edge r, put in
series. The order of e and r depends on the vertex in A to which Definition 10 was applied. Then we
observe that the SPQR tree of G then consists of µ, where e is replaced by a virtual edge which connects
to a new node ν of type (S). Here, Eν consists of a virtual edge connecting to µ, e, and the new row edge.
Since the structure of Gµ did not change, Gµ is still 3-connected and simple. Moreover, |Eν | = 3 holds, so

that ν is indeed of type (S). Clearly, T ′
is minimal since it contains only a single (R)–(S) connection.

For |A| = 1 and |A| = 2, we obtain a graphic realization G′ by splitting a Y -splittable vertex in G by
Lemma 11.

This shows that Definition 33 (b) is satisfied. Additionally, we have shown that in both cases, T ′
is a

minimal SPQR tree. Thus, T ′ is a Y -processed SPQR tree with respect to v1 and v2 if X ̸= ∅.

Theorem 44. Let T be a Y -reduced SPQR tree with V(T ) = {µ} and consider the pair (T ′, X) :=
SplitSkeleton(T , µ, Y ). If X = ∅, then T does not represent a graph G that contains a Y -splittable
vertex v. Otherwise, X = {v1, v2} holds and T ′ is a Y -processed SPQR tree with respect to v1 and v2.

Proof. By Proposition 30, µ must be of type (Q), (S) or (R). If µ is of type (Q) or (S), then Lemma 36
shows that X ̸= ∅ and that T ′ is a Y -processed tree with respect to v1 and v2. If µ is of type (R), then
Lemma 43 shows the result.

Note that the proof of Lemma 43 refers to Theorem 51, which we have not yet explored. Theorem 51
shows that if G has a unique Y -splittable node, that it remains 3-connected. The theorem provides a
more general statement than needed for Lemma 43, and will be explored in the next section, where we will
discuss the more complicated case in which |V(T )| ≥ 2 holds.
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5.3 Updating multiple skeletons by merging

In this section, we will consider what happens when the Y -reduced tree T has |V(T )| ≥ 2.W start by
showing that it suffices to test Y -splittability of the individual skeleton nodes of the SPQR tree. To do
so, we first consider a 2-separation of any graph represented by T . Then we show that any Y -splittable
vertex must be one of the two separating vertices of the 2-separation.

Lemma 45. Let G be a 2-connected multigraph that has a 2-separation (E1, E2) with separating vertices
{u,w}. For i = 1, 2, let Gi denote the graph with vertex set V (Ei) and edge set Ei ∪ {ei} for a new edge
ei := {u,w}, and let Yi := Y ∩ Ei. Then v ∈ {u,w} is Y -splittable in G if and only if v is Yi-splittable in
Gi for i ∈ {1, 2}.

Proof. Since the statement of the lemma is symmetric in u and w, we only show it for v = u. First, observe
that G− v has the articulation vertex w and that G− v can be obtained from G1 − v and G2 − v by taking
their union and identifying the vertex w that belongs to both graphs. Let C, C1 and C2 denote the sets
of connected components of Gv

Y = (G \ Y ) − v, (G1 \ Y1) − v and (G2 \ Y2) − v, respectively. Moreover,
let hw, h1

w and h2
w denote the component of C, C1 and C2, respectively, that contains the vertex w. From

V (G1 − v) ∩ V (G2 − v) = {w} we obtain that C \ {hw} is the disjoint union of C1 \ {h1
w} and C2 \ {h2

w}.
Finally, each y ∈ Y belongs to some Ei for some i ∈ {1, 2} and thus connects only components that both
belong to Ci. This shows that in the auxiliary graph Hv

Y (G), the component hw is also an articulation
vertex (or contains V (Gi) for some i ∈ {1, 2}). We conclude that Hv

Y (G) is bipartite if and only if Hv
Yi

(Gi)
is bipartite for both i = 1, 2, which yields the claimed result.

Lemma 46. Let G be a 2-connected multigraph with spanning tree T and Y ⊆ E(G) \ T . Let (E1, E2) be
a 2-separation of G with separating vertices u and w such that Pu,w(T ) ⊆ E1, such that Lemmas 22, 23
and 26 are not applicable. Let (G1, T1) be the graph-tree pair given by E1 augmented by an edge e = {u,w}
with T1 = E1 ∩ T and let (G2, T2) be the graph-tree pair formed by E2 augmented by an edge e2 = {u,w}
with T2 = (E2 ∩ T ) ∪ {e}. Then no vertex V (G) \ {u,w} is Y -splittable, and v ∈ {u,w} is Y -splittable if
and only if v is (Y ∩ Ei)-splittable in (Gi, Ti) for i = 1, 2.

Proof. First, let us show that no vertex in V (G) \ {u,w} can be Y -splittable. Without loss of generality,
assume that Pu,w(T ) ⊆ E1. As Lemmas 22 and 23 are not applicable, there exists yi ∈ Y ∩Ei for i = 1, 2.
Then by Lemma 21, Py1(T ) ⊆ E1 implies that no vertex in V (G2) \ {u,w} can be Y -splittable. Next,
consider the case v ∈ V (G1) \ {u,w}. If there exists a y ∈ Y ∩ E2 such that v /∈ Py(T ) then by Lemma 9
v is not Y -splittable. Otherwise, we must have that v ∈ Pu,w(T ) and Y ∩ E2 ⊆ P−1

u,w(G,T ) ∩ E2, which
shows that y2 ∈ P−1

u,w(G,T )∩E2. Since equality does not hold as Lemma 26 is not applicable, there exists
an edge c ∈ P−1

u,w(G,T ) ∩E2. However, then Hv
Y has a self-loop given by c, Tu and Tw and y2 as y2 and c

both connect Tu to Tw which implies that v is not Y -splittable.
Finally, application of Lemma 45 to v ∈ {u,w} shows the desired result.

In Lemma 47 we show that it is sufficient to check the Y -splittability for each skeleton separately,
which we prove by repeatedly applying Lemma 45.

Lemma 47. Let T be a Y -reduced SPQR tree with at least two nodes, and let G be represented by T using
the mapping ΦG in Definition 15. Then v ∈ V (G) is Y -splittable if and only if for each µ ∈ V(T ), the
skeleton Gµ contains a (Y ∩ Eµ)-splittable vertex vµ such that ΦG(vµ) = v holds.

Proof. We define T0 as the SPQR tree T in which the skeletons µ of type (S) are reordered as in step 1
of Definition 15. For i = 1, 2, . . . , k, we define Ti as the tree obtained from Ti−1 by carrying a single
step 2 from Definition 15 using the mapping ΦG of vertices for an arbitrary edge of Ti−1. Consequently,
Tk consists of a single node whose skeleton is equal to G. We consider the following statement for all
i = 0, 1, . . . , k:

for each µ ∈ V(Ti), Gµ contains a (Y ∩ Eµ)-splittable vertex vµ with ΦG(vµ) = v. (3)i

We now show that (3)i implies (3)i + 1, where i ∈ {0, 1, . . . , k − 1}. Let {µ, ν} ∈ E(Ti) be the unique
edge of Ti that does not belong to Ti+1, and whose skeletons Gµ and Gν are merged into a new skeleton
Gξ. Let vµ be the (Y ∩Eµ)-splittable vertex with ΦG(vµ) = v and let vν be the (Y ∩Eν)-splittable vertex
with ΦG(vν) = v. Since for each skeleton, Φ is injective, vµ and vν must be identified to the same vertex
in Gξ, which we call vξ. This means that vξ is one of the separating vertices of the 2-separation of Gξ

that corresponds to the SPQR tree edge {µ, ν}. Lemma 45 implies that also vξ is (Y ∩Eξ)-splittable. The
claim follows from Φ(vξ) = Φ(vµ) = v.

By induction, we obtain that (3)0 implies (3)k, which proves sufficiency for v ∈ V (G) being Y -splittable.

For necessity, let v ∈ V (G) be Y -splittable and consider any skeleton µ ∈ V(T ). Due to |V(T0)| ≥ 2
there exists a virtual edge {u,w} ∈ Eµ ∩ Evirt(T0), which corresponds to a 2-separation of G, having
ΦG(u) and ΦG(w) as separating vertices. Since T is Y -reduced, so is T0, and Lemma 46 is applicable
to this 2-separation of G, which implies v ∈ {ΦG(u),ΦG(w)}. This shows that every skeleton Gµ of T0

contains a unique vertex vµ with ΦG(vµ) = v. When applying step 1 of Definition 15, two such vertices are

26



merged into one of the resulting skeleton. Hence, by induction on i, also every skeleton Gµ of Ti contains
a unique vertex vµ with ΦG(vµ) = v.

We now show that (3)i + 1 implies (3)i, where i ∈ {0, 1, . . . , k − 1}. Let again {µ, ν} ∈ E(Ti) be the
unique edge of Ti that does not belong to Ti+1, and whose skeletons Gµ and Gν are merged into a new
skeleton Gξ. From the previous paragraph we know that vξ must be one of the separating vertices of the
2-separation of Gξ that corresponds to the SPQR tree edge {µ, ν}. Again, Lemma 45 implies that also vµ
is (Y ∩ Eµ)-splittable and that vν is (Y ∩ Eν)-splittable. The claim follows.

By induction, we obtain that (3)k implies (3)0. The latter statement, i.e., that each skeleton Gµ of T0

has a (Y ∩Eµ)-splittable vertex vµ with ΦG(vµ) = v is clearly equivalent to the statement for the original
SPQR tree T , i.e., that each skeleton Gµ of T has a (Y ∩Eµ)-splittable vertex vµ with ΦG(vµ) = v. This
concludes the proof.

Lemma 47 shows that the structure of represented graphs G that contain a Y -splittable vertex v is
quite restricted. In particular, v must be obtained by mapping all individual Y ∩ Eµ-splittable vertices
into one. Next, we show that this implies that each vµ must be incident to all virtual edges within its
skeleton. The immediate algorithmic consequence of this characterization is that it can be checked locally
in each skeleton.

Lemma 48. Let T be a Y -reduced SPQR tree with at least two nodes. Then T represents a graph G
with a Y -splittable vertex v if and only if each skeleton µ ∈ V(T ) contains a (Y ∩ Eµ)-splittable vertex
vµ ∈ V (Gµ) such that vµ is incident to each virtual edge in Evirt

µ (T ).

Proof. For necessity, let G be any graph represented by T with a Y -splittable vertex v. Applying Lemma 47,
each µ ∈ V(T ) contains a (Y ∩ Eµ)-splittable vertex vµ such that ΦG(vµ) = v. Since Definition 15 only
alters ΦG for vertices that are merged, which are exactly the vertices that are incident to virtual edges,
this implies that each vµ must be incident to each virtual edge of Evirt

µ (T ).
For sufficiency, assume that each µ ∈ V(T ) contains a (Y ∩ Eµ)-splittable vertex vµ such that vµ is

incident to each virtual edge in Evirt
µ (T ). For a node µ of type (S), any vertex vµ has two incident edges,

which implies |Evirt
µ (T )| ≤ 2. Since µ is of type (S), |Eµ| ≥ 3 holds, and thus Proposition 30 implies

|Evirt
µ (T )| = 2 and |Eµ| = 3. We create a realization G of T by mapping vµ to vν for each 2-separation

given by an edge {µ, ν} of the SPQR tree. We can ignore the permutation of series members in Definition 15
since reorienting any series member with |Eµ| = 3 does not change the realized graph. Since we map all
the Y ∩ Eµ-splittable vertices into one vertex, it follows that ΦG(vµ) = v holds for some vertex v ∈ V (G)
and for all µ ∈ V(T ). The result follows by applying Lemma 47.

When proving sufficiency, we observed that all nodes of type (S) had degree 2. We show that this is
indeed necessary and that in this case the Y -splittable vertex must be unique.

Corollary 49. Let T be a Y -reduced SPQR tree with a node µ ∈ V(T ) of type (S). If µ has degree 2 in
T , any graph G represented by T has at most one Y -splittable vertex. Additionally, if µ has degree at least
3, then no graph G represented by T has a Y -splittable vertex.

Proof. First, consider the case where µ has degree at least 3. Since every node of Gµ has degree 2, but
|Evirt

µ (T )| ≥ 3 holds, there cannot exist a vertex v that is incident to each virtual edge in Evirt
µ (T ). Thus,

Lemma 48 implies that there does not exist a graph represented by T that contains a Y -splittable vertex
v.

Second, consider the case where µ has degree 2 and let G be any graph represented by T . Since
|Evirt

µ (T )| = 2 holds, it follows from |Eµ| ≥ 3 that |Eµ| = 3 holds by Proposition 30. Thus, there is exactly
one vertex vµ in Gµ that is incident to both virtual edges Evirt

µ (T ). Let v be a Y -splittable node in G. By
Lemma 47, we have that ΦG(vµ) = v holds. Since vµ is the unique (Y ∩ Eµ)-splittable vertex in Gµ that
is incident to each virtual edge in Evirt

µ (T ) and since ΦG is surjective, v must be unique as well.

Next, we will argue that the previous results imply that minimal SPQR trees T with |V(T )| ≥ 2 admit
at most one Y -splittable vertex.

Lemma 50. Let T be a minimal Y -reduced SPQR tree with at least two nodes. Then every graph G
represented by T contains at most one Y -splittable vertex.

Proof. Let G be a graph represented by T . If T contains a (S)-node, it has degree 2 or greater by
Proposition 30. Then, G contains at most one Y -splittable vertex by Corollary 49. Thus, we can assume
that T does not have an (S)-node.

By minimality of T , it does not contain two adjacent (P)-nodes, and must thus contain some node
of type (R). Now, suppose that T has a leaf node µ of type (R). Let {u,w} be the vertices of the 2-
separation in G given by the edges Ereg

µ (T ) and Ereg(T ) \ Ereg
µ (T ). Since Lemma 26 was not applicable,

Y ∩Eµ ̸= P−1
u,w(G,T )∩Eµ holds. Then Lemma 27 implies that at most one of u and w can be Y -splittable.

Consequently, Lemma 46 implies that at most one vertex of G can be Y -splittable, as u and w are the
only possible Y -splittable vertices of G.

It remains to show the statement for the case in which all leaves are of type (P). Since T is minimal,
(P)-nodes are not adjacent in T . Hence, there must exist a non-leaf node ν of type (R) with degree at
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least 2. This implies that ν has at least two virtual edges. Since ν is of type (R), Gν is simple, and hence
there is at most one vertex of Gν that is incident to every virtual edge, since Gν must have at least two
virtual edges. By applying Lemma 46 to each 2-separation of G that corresponds to a virtual edge in Gν ,
only such a vertex may be Y -splittable. This concludes the proof.

We now utilize the previous uniqueness results. In particular, we show that if a graph G represented
by a Y -reduced SPQR tree has a unique Y -splittable vertex, that its updated graph G′ is simple and
3-connected. This implies that in the SPQR tree T is merged into a single node of type (R) when we
perform the neighborhood split.

Theorem 51. Let G be a 2-connected multigraph with spanning tree T ⊆ E(G) and a non-empty set of
edges Y ⊆ E(G) \T with a unique Y -splittable vertex v. Let G′ be the graph constructed by splitting v into
v1 and v2, reassigning the edges according to Lemma 11 and adding the new edge r = {v1, v2}. Then G′ has
at least four edges. Additionally, if no 2-separation (E1, E2) of G satisfies the conditions of Lemmas 22,
23 or 26, then G′ is simple and 3-connected.

Proof. Assume that |E(G′)| < 4, which implies that |E(G)| < 3. Since Y is non-empty and G contains
a spanning tree T with T ∩ Y = ∅, we must have |E(G)| = 2. Since G is 2-connected, G consists of two
parallel edges. Because both vertices in G are symmetric, G cannot have a unique Y -splittable vertex,
which is a contradiction. We conclude that |E(G)| ≥ 3 and thus |E(G′)| ≥ 4 holds.

Assume, for the sake of contradiction, that G′ is not 3-connected or not simple. In either case, G′ has
a k-separation (E′

1, E
′
2) for k ∈ {1, 2} with separating vertices {u′, w′} and the corresponding graphs G′

1

and G′
2, where we allow u′ = w′ in case k = 1. Without loss of generality we can assume r ∈ E′

1 and
denote by E1 := E′

1 \ {r} and E2 := E′
2 a partition of the edge set of G := G′/r. These edge sets belong

to the graphs G1 := G′
1/r and G2 := G′

2, respectively. We denote by u and w the vertices u′ and w′ after
contraction of r, respectively. Let T ′ := T ∪ {r} denote the spanning tree of G′ that is obtained from T
via Lemma 11.

First, observe that G2 = G′
2 and G1 = G′

1/r together imply that V (G1) ∩ V (G2) = {u,w} holds, i.e.,
contraction of r cannot enlarge the set of vertices shared by the two subgraphs.

Second, since (E′
1, E

′
2) is a k-separation of G′ we have |E2| = |E′

2| ≥ k. Similarly, |E1| = |E′
1|−1 ≥ k−1

follows. For the case k = 1, |E1| = k−1 = 0 would imply E′
1 = {r}. Together with the fact that u′ = w′ is

an articulation vertex of G′ this would induce a degree 1 vertex in G, which contradicts 2-connectivity. For
the case k = 2, |E1| = k− 1 = 1 would imply E1 = {e} for some edge e. Since u,w, v ∈ V (G1) hold, these
vertices cannot be distinct, say, v = u as well as e = {u,w}, would hold. Moreover, we would have that G′

1

is a path of length 2 from u′ = v1 to w′ via edges r and e with inner vertex v2. However, the neighborhood
split of v (in G) must have been of the form δI(v) = {e} and δJ(v) = δ(v) \ {e}, implying Y -splittability
of w due to Lemma 39, which contradicts uniqueness of the Y -splittable vertex v ̸= w. We conclude that
|E1| = k− 1 is not possible, and thus that (E1, E2) form a k-separation of G. Clearly, 2-connectivity of G
yields that k = 1 is impossible, and hence k = 2 must hold.

Third, our assumptions imply that Lemmas 22 and 23 were not applicable to the 2-separation (E1, E2),
which implies Y ∩E2 ̸= ∅. Let y ∈ Y ∩E2 and note that r ∈ Py(T ′) holds. If Py(T ) ⊆ E2 would hold, then v1
and v2 would both belong to V (G′

2) and to V (G′
1) (due to r ∈ E′

1), which would imply {v1, v2} = {u′, w′}.
However, the contraction of r would yield an articulation vertex u = w in this case, contradicting that
{u,w} is a 2-separation. We conclude that Py(T ) ̸⊆ E2, i.e., that Pu,w(T ) ⊆ E1. Since this holds for any
choice of y ∈ Y ∩ E2, we also have Y ∩ E2 ⊆ P−1

u,w(G,T ) ∩ E2.
Fourth, our assumptions imply that Lemma 26 is not applicable to the 2-separation (E1, E2), which

implies that Y ∩ E2 ⫋ P−1
u,w(G,T ) ∩ E2 holds, i.e., there exists an edge e ∈ (P−1

u,w(G,T ) \ Y ) ∩ E2. If
v /∈ {u,w} would hold, then the fact that (T ∩ E2) ∪ {e} forms a spanning tree of G2 implies that all
vertices V (G2) would belong to the same connected component of Gv

Y . Moreover, each of the edges
y ∈ Y ∩ E2 would induce a self-loop in the bipartite graph Hv

Y , contradicting that v is Y -splittable. We
conclude that v ∈ {u,w} holds.

Without loss of generality, we can assume that v1 = u′ and that v2 ∈ V (G′
1) \ V (G′

2) holds. Let
f1, f2 ∈ δ(v) be the unique edges of the cycle Pe(T ) ∪ {e} that are incident to v. Since Pu,w(T ) ⊆ Pe(T )
holds, exactly one of these two edges belongs to Pu,w(T ) and the other belongs to E2. We assume without
loss of generality that f1 ∈ Pu,w(T ) and f2 ∈ E2. Note that by Lemma 11 we have r /∈ Pe(T ′) and hence
f1 and f2 have v1 in common in G′, so that f1 is reassigned to v1. This implies that Pu′,w′(T ′) = Pu,w(T )
holds.

Additionally, there must also exist an edge y ∈ P−1
u,w(G,T ) ∩ E2 since Y ∩ E2 is non-empty. However,

since we have r ∈ E1 and r ̸∈ Pu′,w′(T ′) (since Pu,w(T ) = Pu′,w′(T ′)), it follows that r /∈ Py(T ′), which
contradicts that v was a Y -splittable node which was split using Lemma 11.

We conclude that G′ is indeed 3-connected and simple.

From the previous results we obtain a full characterization for the case where |V(T )| ≥ 2. Lemma 47
shows that T represents a graph G that contains a Y -splittable vertex v if and only if we can find a
Y -splittable vertex vµ in the skeleton Gµ for each node µ ∈ V(T ) such that we can map all vµ into one
vertex v. In Lemma 48 we show that this is equivalent to finding a Y -splittable vertex that is incident to
all virtual edges Evirt

µ (T ) for each µ ∈ V(T ). Lemma 50 shows that v must be unique, and Theorem 51
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then shows that the Y -processed SPQR tree must consist of a single node of type (R). This implies that
all skeletons of T are merged into one big skeleton graph G′ in the Y -processed tree. We can find the
specific realization G where splitting a Y -splittable vertex leads to a 3-connected graph by mapping all
splittable vertices into one node v, as in Lemma 47, and then applying the neighborhood split to v.

Although we could apply the splitting to the unique Y -splittable vertex v of the merged graph G to
obtain G′, this may be cumbersome as G may be quite big. Instead, we can already split vµ locally in each
skeleton, and map the resulting two vertices to the two vertices of G′ when performing the contraction
outlined in Lemma 47. We prove this claim in Corollary 52.

Corollary 52. Let G be a 2-connected multigraph that has a 2-separation (E1, E2) with separating vertices
{u,w}, where u is Y -splittable. For i = 1, 2, let Gi denote the graph with vertex set V (Ei) and edge set
Ei ∪ {ei} for a new edge ei := {u,w}, and let Yi := Y ∩Ei. Let G′

i be the graph created by splitting u into
ui
1 and ui

2 according to the neighborhood split of u, which is given by Ii, Ji ⊆ V (Hu
Yi

(Gi)). We distinguish
between Ii and Ji by assuming that the connected component of Hu

Yi
(Gi) that contains w is in Ii. Let G′ be

the graph formed by merging G′
1 with G′

2, identifying u1
1 with u2

1, u
1
2 with u2

2 and w with itself and removing
e1 and e2. Then G′ is equal to the graph obtained from G by performing the neighborhood split on u.

Proof. Lemma 45 shows that Hu
Y (G) is bipartite if and only if Hu

Yi
(Gi) is bipartite for i = 1, 2. Let hw

be the component of Hu
Y (G) containing vertex w and let, for i = 1, 2, hi

w be the component of Hu
Yi

(Gi)
containing vertex w. Then the proof of Lemma 45 shows that I = I1∪I2∪{hw}\{h1

w, h
2
w} and J = J1∪J2

hold.
In particular, we observe that

δI(u) := {{u, v} ∈ δ(u) | either {u, v} ∈ Y or there exists h ∈ I with u ∈ h}

can be partitioned as δI(u) =
⋃

i=1,2 δ
Ii(u) \ {ei}, where

δIi(u) = {{u, v} ∈ δ(u) ∩ Ei | either {u, v} ∈ Yi or there exists h ∈ Ii with u ∈ h}.

Similarly, we find that δJ(u) = δJ1(u) ∪ δJ2(u). Since δIi and δJi describe the neighborhood split of Gi,
this shows that the neighborhood split of G can be found by performing the neighborhood split on G1

and G2, identifying u1
i with u2

i for i = 1, 2 and w with itself and removing e1 and e2. This concludes the
proof.

First, we show that SplitSkeleton correctly finds and splits the Y -splittable vertices that are incident
to each virtual edge.

Lemma 53. Let T be a Y -reduced tree with |V(T )| ≥ 2. For any µ ∈ V(T ), let
(T ′, X) := SplitSkeleton(T , µ, Y ) and let Gµ and G′

µ be the skeleton of µ in T and T ′, respectively.
Then the following hold:

1. X = ∅ holds if and only if Gµ does not contain a (Y ∩ Eµ)-splittable vertex that is incident to each
virtual edge in Evirt

µ (T ).

2. If X ̸= ∅ holds, then X = {v1, v2} and G′
µ is the graph obtained from the neighborhood split of a

(Y ∩ Eµ)-splittable vertex vµ that is incident to each virtual edge in Evirt
µ (T ).

Proof. In SplitSkeleton, the sub-routine FindTreeSplittableVertices first finds all Y -splittable ver-
tices by Lemma 42, and then checks if any intersects all virtual edges Evirt

µ (T ). Note that A ̸= ∅ holds
if µ is of type (P), since the parallel structure implies that both end-vertices are always Y -splittable and
incident to each (virtual) edge. Since |V(T )| ≥ 2 holds, µ cannot be of type (Q). If µ is of type (R) or (S),
then we return X = ∅ when A = ∅ and return X ̸= ∅ otherwise. This shows the first statement.

For the second point, let us assume X ̸= ∅. If µ is of type (S), then it has at least one virtual edge,
which implies that the case A = V (Gµ) does not occur due to |Eµ| ≥ 3. If µ is of type (R), then the case
|A| = 2 cannot occur; if µ is a leaf of T , then Lemma 26 was not applicable, and Lemma 27 then shows
that at most one vertex incident to a virtual edge can be Y -splittable, as otherwise µ could have been
reduced. If µ is not a leaf of T , then there is at most one vertex in Gµ that is incident to all virtual edges
Evirt

µ (T ) since Gµ is simple. Since A ̸= ∅, we must have |A| = 1. Finally, if µ is of type (P), then both
vertices in Gµ are trivially Y -splittable and incident to each virtual edge in Evirt

µ (T ). Hence, in all cases
SplitSkeleton runs BipartiteSplit(T , µ, Y, vµ) on some (Y ∩ Eµ)-splittable vertex vµ that is incident
to each virtual edge in Evirt

µ (T ), which shows the second statement.

We are ready to state the full algorithm for the case where the Y -reduced tree T has |V(T )| > 1.
MergeTree contains the proposed merging algorithm. Fig. 9 contains an example of the execution of
MergeTree on the Y -reduced tree from Fig. 7f.
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Algorithm 9: Merging TR into a single node of type (R)

Algorithm: MergeTree(T , TR, YR)

Input: Reduced SPQR tree T , edges Y
Output: Y -processed SPQR tree T , vertex set X′ such that X′ = {v1, v2} or X = ∅

1 Let µ1, µ2, . . . , µn be an ordering of V(T ) such that µ1 is a leaf and every other µi is adjacent to exactly
one node µj with j < i.

2 Let (T ′, X′) := SplitSkeleton(T , µ1, Y )
3 if X′ = ∅ then return T , ∅
4 for i = 2, . . . , n do
5 Let (T ′, X) := SplitSkeleton(T ′, µi, Y )
6 if X = ∅ then return T , ∅
7 Let e, f denote the virtual edge pair connecting µ1 with µi.
8 Merge µi into µ1, identifying X′ ∪ f with X ∪ e such that f ∩X′ is identified with e ∩X, f \X′ is

identified with e \X and X′ \ f is identified with X \ e.
9 Remove the virtual edges e and f from T ′, Tµ1 and Tµi .

10 Update Tµ1 := Tµ1 ∪ Tµi .

11 end
12 Change µ1 to type (R).
13 return (T ′, X)

µ3 S µ5 P

µ6 P

(a) A Y -reduced SPQR tree T .

µ3 S µ5 P

µ6 P

(b) T ′
1 obtained from

SplitSkeleton(T , µ6, Y ).

µ3 S µ5 P

µ6 P

(c) T ′
2 obtained from

SplitSkeleton(T ′
1 , µ3, Y ).

µ6 P µ5 P

(d) T ′
3 obtained from T ′

2 by
merging µ3 into µ6.

µ6 P µ5 P

(e) T ′
4 obtained from

SplitSkeleton(T ′
3 , µ5, Y ).

µ6 R

(f) The Y -processed tree
T ′
5 obtained from T ′

4 by
merging µ5 into µ6 and
marking µ6 as type (R).

Figure 9: A run of MergeTree on the Y -reduced tree from Figure 7f. Virtual edges in the SPQR
tree are given by dashed edges, tree edges are marked in red and bold and all other edges are
marked in blue. Edges in Y are marked by two stripes.

Finally, we show that MergeTree indeed returns a Y -processed tree T , if one exists.

Theorem 54. Let T be a Y -reduced SPQR tree with |V(T )| ≥ 2, and consider the pair (T ′, X ′) :=
MergeTree(T , Y ). If X ′ = ∅, then T does not represent a graph that contains a Y -splittable vertex.
Otherwise, there exist distinct vertices v1 and v2 such that X ′ = {v1, v2} holds, and T ′ is a Y -processed
SPQR tree of T with respect to v1 and v2.

Proof. Let T ′
denote T ′ with additional edge e′ between v1 and v2. We note that, by the structure of

MergeTree, either X ′ = ∅ or V(T ′) = {µ} must hold, where µ is of type (R) after adding e′ between v1
and v2.

If X ′ = ∅, this can only occur if SplitSkeleton(T , µ, Y ) returns X = ∅ for some µ ∈ V(T ). Lemma 53
implies that Gµ does not contain a (Y ∩Eµ)-splittable vertex that is incident to each virtual edge in Evirt

µ (T ).
Thus, Lemma 48 shows that T does not represent any graph that contains a Y -splittable vertex.

If X ′ ̸= ∅, then applying Lemma 53 shows that, for each µ ∈ V(T ), the skeleton Gµ contains a
(Y ∩Eµ)-splittable vertex that is incident to each virtual edge in Evirt

µ (T ). Then Lemma 48 shows that T
represents a graph G that contains a Y -splittable vertex v. Lemma 50 shows that this Y -splittable vertex
must be unique in G, and then it follows from Theorem 51 that the graph G′ obtained after performing the
neighborhood split and adding the new edge must indeed be a skeleton of type (R) in T ′

. In particular,
we have a graph-tree pair (G,T ) that is represented by T with a Y -splittable node v. Then, we could
simply apply the split construction from Lemma 11 to obtain the updated graph-tree pair (G′, T ′). Then,
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in order to apply Lemma 34 to show property (b) of Definition 33, we only need to show that the final
graph Gµ1 obtained by MergeTree is equal to such a G′.

Lemma 53 shows that SplitSkeleton(T , µ, Y ) returns a graph G′
µ obtained from the neighborhood

split of a (Y ∩ Eµ)-splittable vertex vµ that is incident to each virtual edge in Gµ. In MergeTree we
exploit Corollary 52 to combine these neighborhood splits. Note that X ∩ e and X ′ ∩ f are well-defined
and have size 1 because each virtual edge in Evirt

µ (T ) must be incident to vµ. Since the neighborhood split
of a vertex moves each virtual edge to be incident to exactly one vertex of {v1, v2}, X ′ \ f and X \ e also
are single-vertex sets. It follows that e \ X and f \ X ′ are also single-vertex sets and well-defined. By
identifying X ∩ e with X ′ ∩ f , we exactly pick the realization G that maps all Y ∩Eµ-splittable vertices vµ
into one vertex. By using a connected ordering of V(T ), we ensure that the conditions of Corollary 52 hold
in subsequent steps, by maintaining one neighborhood split in µ1. Then, after MergeTree terminates,
Gµ1 must contain the neighborhood split of the graph obtained by merging all vµ into a single vertex v.

Thus, G′ = Gµ1 holds and T ′
does indeed represent G′, which shows property (b) of Definition 33.

Clearly, T ′
is a minimal SPQR tree since it consists of a single node of type (R) as shown by Theorem 51.

Thus, T ′ is a Y -processed tree with respect to v1 and v2.

6 Overall algorithm

In the previous sections we discussed how, given a new row b to add to the graphic matrix M , one can reduce

and update an SPQR tree T in order to represent the matrix M ′ =

[
M
bT

]
. Since this is a procedure that

we would like to be able to repeat, the SPQR tree T ′ that we find must be minimal and it must represent
M ′. In our algorithm, the SPQR tree T ′ obtained by performing ReduceTree and SplitSkeleton or
MergeTree might not explicitly represent M ′, because of the reductions performed in ReduceTree. In
particular, we have only shown that T ′ is Y -processed with respect to TR, the reduced tree, whereas our
actual goal is to obtain a Y -processed tree with respect to the original tree T . In order to do so, we can
reverse the reductions that we used to derive TR. We will use T̂ to denote the SPQR tree where these
reversions have been performed.

Since reversing the reductions is equivalent to reversing the SPQR tree operations of ReduceTree,
we will not describe them in full detail. Theorem 32 shows that the reductions preserved splittability of
vertices of any graph reprsented by T in T ′. Thus, if we perform Lemma 11 on some Y -splittable vertex
v of a graph G′ represented by T ′ and reverse the reductions, we obtain a graph Ĝ with a set of edges Ŷ
that are elongated, where Ŷ is precisely the original set of marked edges Y . In particular, Ĝ is realized by
T̂ . This is shown in detail by the second statements of Lemmas 22, 23 and 26, which precisely argue that
the sequence of performing the reduction, splitting a Y -splittable vertex and undoing the reduction yields
the same graph as when we split the Y -splittable vertex in the original graph.

We will sketch how T̂ can be obtained by reversing the reductions, undoing the operations from
ReduceTree. First, we reverse the local 2-separations that are removed by ReduceSeries and
ReduceParallel. In T̂ , these reductions are reversed by replacing the single edges by virtual edges
pointing to a skeleton of type (S) and type (P) for each reduction performed in ReduceSeries and
ReduceParallel, respectively.

Secondly, we undo the reductions that remove leaf nodes from T by simply making the relevant edge e
virtual again and adding back the removed node and its skeleton. Since T ′ is an SPQR tree, it is clear that
T̂ is too. However, although we have shown that T ′ is minimal, T̂ is not necessarily minimal, as reversing
the reductions may create new (S)-(S) or (P)-(P) connections. If this occurs, the adjacent nodes can be
merged into a single node of type (S) or (P), instead. In Lemma 55, we argue that we need at most one
such merge.

Lemma 55. Let T be a minimal SPQR tree with a set of Y -reduced edges that represents a graph G
that contains a Y -splittable vertex v. Let TR, YR := ReduceTree(T , Y ). If V(T ) = {µ}, let T ′, X :=

SplitSkeleton(TR, µ, YR), otherwise let T ′, X := MergeTree(TR, YR). Let T̂ be the SPQR tree obtained

by reversing the reductions from ReduceTree in T ′. Then, T̂ has at most one pair of adjacent (S)-(S)
or (P)-(P) nodes.

Proof. First, note that the minimality of T implies minimality of TR by Theorem 32, and that minimality
of TR implies minimality of T ′ by Theorems 44 and 54.

First, we consider the case where |V(TR)| > 1. Then, T ′ exists of a single node µ of type (R). Assume

that T̂ is not minimal, such that it contains an edge {ν, ω} where ν and ω are either both of type (S)
or (P). First, note that neither ν nor ω can be equal to µ, since they do not have type (R). In particular,

this rules out that ν or ω was added to T̂ by reversing a local 2-separation, since these become leafs in T̂
that are connected to µ. Thus, ν and ω must both have been reduced using an edge of the SPQR tree T .
However, this implies that the {ν, ω} edge also existed in T , which contradicts that T was minimal. Thus,

T̂ must be minimal if |V(TR)| > 1 holds.
Second, we consider the case where V(TR) = {µ}. We consider different cases based on the type of µ.

Note that µ can not be of type (P) by Lemma 31.
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µ6 R

(a) The Y -processed tree
T ′ (with respect to TR).

µ6 R µ5a R

(b) T ′
1 , obtained by undoing a local

2-separation reduction of µ5.

µ6 R µ5a P

µ5b P

(c) T ′
2 , obtained by undoing a local

2-separation reduction of µ5.

µ6 R µ5a P

µ5b P

µ3 S

(d) T ′
3 , obtained by undoing a local

2-separation reduction of µ3.

µ6 R µ5a P

µ5b P

µ3 S

µ2 R

(e) T ′
4 , obtained by undoing the reduction

of µ2.

µ6 R µ5a P

µ5b P

µ3 S

µ2 Rµ1 P

(f) T ′
5 , obtained by undoing the reduction

of µ1.

µ6 R µ5a P

µ5b P

µ3 S

µ2 Rµ1 P

µ4 P

µ7 S

(g) T̂ , obtained by undoing the reductions
of µ4 and µ7

Figure 10: Reversing the reductions from Fig. 7 on the Y -processed SPQR tree from Fig. 9f.
Virtual edges in the SPQR tree are given by dashed edges, tree edges are marked in red and bold
and all other edges are marked in blue. Edges in Y are marked by two stripes.
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First, consider the case where µ has type (Q) in TR. By Proposition 35, µ becomes a node of type (S)
in T ′. If µ is of type (Q) in TR, then µ must be of type (Q) or (P) in T . If µ was of type (Q) in T , there

are no 2-separations that can be reversed, so then T̂ is clearly minimal, too, since it consists of a single (S)
node.

If µ was of type (P) in T , at least one of two types of local 2-separations in ReduceParallel must
have been performed, since we know that Evirt

µ (TR) = ∅ and |ET
µ | ≥ 3 hold but |ETR

µ | = 2. Such a local
2-separation splits off a set of edges E′ from µ into a new (P) node ν. Since any virtual edges in E′ also

exist in T and T was minimal, any virtual edges in E′ do not connect to nodes of type (P) in T̂ . Because µ

is converted to a node of type (S) in T̂ , we create a new (S)-(P) connection this way between µ and ν, and

T̂ can thus not have any (P)-(P) connections by reversing the reductions. If both local 2-separations in

lines 2 and 5 of ReduceParallel were performed, then the minimality of T̂ follows from the minimality

of T . Otherwise, exactly one reduction was performed, and there can be one edge e′ ∈ ET̂
µ that could be

a virtual edge to a node of type (S) after reversing the reductions. This implies that T̂ contains at most
one (S)-(S) connection.

Secondly, we consider the case where µ has type (S) in TR. Then, Proposition 35 shows that µ stays a

node of type (S) in T ′ and T̂ . Then, since ReduceSeries does not perform local 2-separations when TR

is a single node of type (S), the node sets V(T ) and V(T̂ ) are the same and have identical types. Thus, T̂
is minimal because T is minimal.

Lastly, consider the case where µ has type (R) in TR. If |A| = 1 in SplitSkeleton, T ′ consists of a

single node of type (R) by Theorem 51, and we must again have that V(T ) = V(T̂ ) holds with identical

types, since no local reductions were performed because µ is of type (R). This implies that T̂ is minimal.
In the other case, we have |A| = 2, where an edge e connects two Y -splittable vertices in TR. Then, T ′

consists of µ and a new node ν of type (S), where e is put in series with the new row edge.

Since we create a new (S)-node, we may create a new (S)-(S) connection in T̂ . In particular, this case
occurs if e is a virtual edge pointing to a node of type (S) in T . Since e is the only edge in ν that can be
a virtual edge that is not pointing to µ, at most one (S)-(S) connection can be created in this way.

In ProcessTree, we present the complete algorithm for updating a single SPQR tree. In the last
step of ProcessTree, we reverse the reductions performed in ReduceTree and ensure that T̂ remains
minimal, by merging two adjacent (S) or (P) nodes if necessary.

Algorithm 10: Processing a single SPQR tree T
Algorithm: ProcessTree(T , Y )

Input: Minimal SPQR tree T , edges Y ̸= ∅
Output: Y -processed SPQR tree T̂ , vertex set X such that X = {v1, v2} or X = ∅

1 TR, YR := ReduceTree(T , Y )
2 if V(TR) = {µ} then
3 T ′, X := SplitSkeleton(TR, µ, YR)
4 else
5 T ′, X := MergeTree(TR, YR)
6 end
7 if X = ∅ then
8 return T , ∅
9 end

10 Let T̂ , X̂ be obtained by reversing the reductions that reduced T to TR.

11 return T̂ , X̂

Corollary 56. Let T ′ be a Y -processed tree with respect to vertices v1 and v2 obtained by ProcessTree.
Then v1 and v2 never lie in a node of type (P).

Proof. First, we note that T ′ was obtained using some Y -reduced tree TR. By Theorem 32, we cannot
have V(TR) = {µ} where µ is of type (P). If |V(TR)| > 1, MergeTree ensures that v1 and v2 must be in
a skeleton of type (R). Otherwise, SplitSkeleton only places v1 and v2 in nodes of type (S) or (R).

In Section 2 we argued that it is sufficient to consider the connected components of M separately, as
we could easily connect them in a realization by identifying the new row edges of each component with
one another. Since we have an SPQR tree for every connected component of M , we actually maintain an
SPQR forest consisting of the individual trees for each component. Interpreting Theorem 3 in terms of
SPQR trees, we observe that combining multiple connected components in M can be thought of as creating
a new node µ of type (P), that connects µ with a virtual edges in between the vertices of X = {v1, v2} for
each Y -processed SPQR tree. Additionally, it may be the case that we encounter a nonzero in a column
for the first time. Clearly, the resulting edge of such a column must always be placed in parallel with the
row edge. These cases are handled by our main algorithm, GraphicRowAugmentation.
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Algorithm 11: Processing a single row

Algorithm: GraphicRowAugmentation(M, b,F)

Input: Graphic Matrix M , new row b, SPQR forest F

Output: SPQR forest F ′ representing M ′ =

[
M
bT

]
or FALSE if M ′ is not graphic

1 Let Y := supp(b) ∩ Ereg(F) and let Y ′ := supp(b) \ Ereg(F).
2 Let YT := Y ∩ Ereg(T ) for each SPQR tree T ∈ F .
3 Let FY := {T ∈ F | YT ̸= ∅}.
4 if FY = {T } then
5 T ′, X := ProcessTree(T , YT )
6 if X = ∅ then return FALSE
7 if Y ′ = ∅ then
8 Add b between v1 and v2.
9 else

10 Create a new skeleton µ of type (P) with edges Y ′ ∪ {b} in T ′.
11 Connect µ and {v1, v2} in T ′ using a virtual edge pair.

12 end
13 F ′ := (F ∪ {T ′}) \ {T }
14 else if |FY | > 1 then
15 Let Tnew be an SPQR tree with a single member µ of type (P) with edges Y ′ ∪ {b}.
16 for T ∈ FY do
17 T ′, X := ProcessTree(T , YT )
18 if X = ∅ then return FALSE
19 Update Tnew by connecting Tnew with T ′, by connecting µ and v1 and v2 using a virtual edge pair.

20 end
21 F ′ := (F ∪ {Tnew}) \ FY

22 else
23 Create an SPQR tree T with a single skeleton µ of type (Q) (if |Y ′| = 1) or (P) with edges Y ′ ∪ {b}.
24 F ′ := F ∪ {T}
25 end
26 return F ′

Corollary 57. Let F be a minimal SPQR forest. Then every SPQR tree in F ′ returned by
GraphicRowAugmentation is minimal.

Proof. In the case where FY ̸= ∅ we always obtain a new SPQR tree Tnew by from a Y -processed SPQR
tree T ′ with respect to vertices. In particular, we either connect v1 and v2 with row edge or we connect
v1 and v2 using a virtual edge pointing to a new node µ of type (P). By Corollary 56, v1 and v2 can not
lie in a node of (P), and we can thus not create a new (P)-(P) connection in this manner. Then, since T ′

is Y -processed, the SPQR tree Tnew obtained by these operations is minimal. In the case where |FY | > 1,
we identify these minimal SPQR trees in µ, which clearly yields another minimal SPQR tree. In the case
where FY = ∅, we simply add a new SPQR tree to F ′ with a single node of type (Q) or (P), which is
clearly minimal.

Although our algorithmic description both detects graphicness of adding the row and updates the SPQR
tree at the same time, we note that these steps are easy to separate within an implementation. Similarly,
although the SPQR tree is frequently copied throughout our pseudocode, it is easy to avoid these copies
in an implementation. In particular, both the reductions from ReduceTree and the update steps in
SplitSkeleton and MergeTree can be performed on a single SPQR tree by editing a sub SPQR tree
in-place, and the reversals of the reductions are then performed implicitly. We have intentionally omitted
these details from the algorithmic description to keep it simpler.

As we aim to make our row-wise algorithm compatible with the column-wise algorithm formulated by
Bixby and Wagner [6], the merging of two skeletons Gµ and Gν should happen in a minimum amount of
time. In particular, Bixby and Wagner use disjoint set data structure [29] (also referred to as union-find)
and doubly linked-lists in order to represent the skeletons Gµ. A sequence of m disjoint set operations on
a set with n elements can be done in O(mα(n)) time [30]. This can be seen as being ‘almost linear’ in m
since in practice, α(n) ≤ 4 holds for any realistic input that can be described on a computer.

In an implementation of the algorithms described in our paper, we use the following data structures:

• The matrix is assumed to be a compressed sparse matrix given in row-major format, so that we can
obtain each row with k non-zero entries in O(k) time.

• There is an explicit mapping from matrix rows and columns to edge labels

• The SPQR tree node labels V (T ) are given by a disjoint set data structure.

• The skeleton vertex labels V (Gµ) are given by a disjoint set data structure over all vertices of the
SPQR tree T .

• The neighboring edges δ(v) of vertices v ∈ Gµ link to each other using a doubly-linked list.

• Each edge stores the SPQR tree node label it is initially located in. In order to find the edge’s
current skeleton, a find-operation on the disjoint set data structure of the SPQR tree node labels is
carried out.
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• Each edge stores its initial end-vertex labels. Similarly to the above, a find-operation is necessary
to find the correct adjacent vertices.

• For each skeleton, we store its type (among (S), (P), (Q) and (R))

• Each skeleton stores its edges in Y using a doubly-linked list.

• We distinguish different SPQR trees in the SPQR forest using a disjoint set data structure over the
SPQR tree node labels.

Moreover, we pick an arbitrary root node and represent T as a rooted arborescence. Each SPQR tree
node µ, except for the root, stores its parent ν, and each ‘child’ virtual edge e stores the corresponding
virtual edge f . The corresponding child member can be found by using a find-operation on the disjoint
set data structure of SPQR tree node labels.

Additionally, we note that it is not always necessary to explicitly maintain the skeleton graph. In
particular, the skeletons of type (S), (P) or (Q) always have the same structure, which means that it is
unnecessary to track the end-vertices of all edges. This is particularly convenient for (S)-nodes, whose
edges may be arbitrarily permuted.

Let m and n be the number of rows and columns of the matrix respectively. First, we show that the
size of an SPQR tree is linear with respect to the size of the graph that it represents. We can easily extend
this notion to SPQR forests, and show that the SPQR forest representing a m×n matrix always has linear
size. Note that any realization of a graphic m× n matrix is a graph G = (V,E) with |E| = m + n edges.

Proposition 58 (Hopcroft & Tarjan[19]). Let T = (V, E) be a minimal SPQR tree of a 2-connected graph
G = (V,E) with |E| ≥ 3. Then, the total number

∑
µ∈V |Eµ| of edges in the skeletons of T is at most

3|E| − 6.

Proposition 59. Let T = (V, E) be a minimal SPQR tree of a 2-connected graph G = (V,E) with |E| ≥ 3.
Then, we have |V| ≤ |E| − 2 for the number of skeletons of T . For the total number of vertices in the
skeletons of T ,

∑
µ∈V |Vµ| ≤ 3|E| − 6 holds.

Proof. Since |E| ≥ 3 holds, T consists only of nodes that are not of type (Q). Thus, each skeleton
Gµ = (Vµ, Eµ) then requires |Eµ| ≥ 3 by definition. For the first point, Proposition 58 implies that

|V| ≤ 3|E|−6
3

= |E| − 2. For the second point, we have that |Vµ| ≤ |Eµ| since Gµ is 2-connected and
|Eµ| ≥ 3. Then, Proposition 58 implies that

∑
µ∈V |Vµ| ≤

∑
µ∈V |Eµ| ≤ 3|E| − 6.

Using the above-mentioned data structures and bounds on the SPQR tree size, we consider basic
operations and their time complexities:

• Split a vertex v into two vertices and reassign its edges in O(|δ(v)|) time.

• Merge two vertices into one (identifying them) in O(α(m + n)) amortized time.

• Merge two SPQR tree node labels µ1 and µ2 in O(α(m + n)) amortized time.

• Find (one of) the end-vertices of an edge e in O(α(m + n)) amortized time.

• Add a vertex or edge to a skeleton in O(1).

• Add a new node with an empty skeleton to T in O(1) time.

• Given a virtual edge e ∈ Gµ that is paired with f ∈ Gν , find ν in O(α(m + n)) amortized time.

• Find the SPQR tree T that contains an SPQR forest node µ ∈ V (F) in O(α(m + n)) time.

Note that for many operations, we incur a α(m + n) overhead, that depends on the size of the whole
matrix (m+n), even though the size of the SPQR tree in which they occur might be smaller, if the matrix
has multiple blocks. In particular, this is because the used union-find data structures represent the whole
matrix, and not just a single SPQR tree.

Let us analyze the time complexity of the given algorithm in a bottom-up manner.

Lemma 60. FindSplittableVertices(T , µ, Y ) runs in O(α(m + n)|Eµ|) time

Proof. The check in line 1 can be done in O(1) time. In line 2 we find the set of incident vertices, which
can be done in O(α(m + n)|Y |) time. Note that the α(m + n) factor comes from the fact that we need to
perform find-operations for every end-vertex of the edge.

The intersection of all paths in line 4 is more complicated. We find the intersection of all paths in
Y using so-called lowest common ancestor (LCA) queries. First, we pick an arbitrary root vertex of Tµ

and orient Tµ so that Tµ becomes a rooted tree. Then we can answer LCA queries on vertices of Tµ in
O(1) by doing a O(|Tµ|) preprocessing phase (see [17, 4]). Using a constant number of LCA queries, we
can find the intersection of two paths Py(Tµ) and Py′(Tµ) in O(1). Since the intersection of two paths is
again a path, we can repeat this procedure (|Y | − 1)-times in total to find the intersection of all paths.
Thus, the total time complexity for this step is O(|Tµ| + |Y |). Note that by using the LCA queries, the
final path is not given explicitly, but rather it is given by its two end-vertices in Tµ. However, we can
again efficiently check in O(1) time if a given vertex v is on this path using LCA queries. In the above, we
assumed constant time vertex queries from the edges; since we do not have this luxury, the time complexity
becomes O(α(m + n)(|T | + |Y |)).
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The articulation vertices of Gµ can be found in O(|Eµ|+ |Vµ|) using a depth first search [28]. However,
this is assuming that the end-vertices of an edge can be queried in time O(1). Since we need to perform an
additional find-operation for each query, we have a O(α(m + n)(|Eµ| + |Vµ|)) running time. Constructing
Ha

Y , which involves finding the connected components of Ga
Y , can similarly be done in O(α(m+n)(|Eµ|+

|Vµ|)) time, and determining if Ha
Y is bipartite can also similarly be done using a depth first search over

Ga
Y in O(α(m + n)|)(|Eµ| + |Vµ|)). By Lemma 37, we need to compute Ha

Y for at most four candidates a,
which establishes the total time complexity for this step.

Since Y ⊆ Eµ and Tµ ⊆ Eµ hold, each step of FindSplittableVertices runs in O(α(m + n)(|Eµ| +
|Vµ|)) time. The claimed bound follows from 2-connectivity since this implies |Vµ| ≤ |Eµ|.

Proposition 61. SplitSkeleton(T , µ, Y ) runs in O(α(m + n)|Eµ|) time.

Proof. First, we run FindTreeSplittableVertices, which calls FindSplittableVertices. This takes
O(α(m + n)|Eµ|) time by Lemma 60. Note that by 2-connectivity at most |Vµ| = O(|Eµ|) vertices are
returned. Then it intersects the resulting vertices with at most |Eµ| virtual edges’ end-vertices. The
intersection of two sets can be found in time linear in their sizes. For the first edge, this takes O(|Eµ|)
time. However, since each virtual edge has two vertices, the intersection with the remaining virtual
edges takes O(1) time for each edge, since our set to intersect will have at most two vertices. Thus, the
intersection can be computed in O(|Eµ|) time, which yields a total running time of O(α(m + n)|Eµ|) for
FindTreeSplittableVertices.

Then let us consider the other operations of SplitSkeleton. In many cases, we execute ExtendSeries,
which runs in constant time since we only split a single vertex with two edges. In all other cases,
BipartiteSplit runs in O(|δ(v)|) since it reassigns |δ(v)| edges to new neighbors.

Clearly, all steps run in O(α(m + n)|Eµ|) time, which proves the desired result.

Lemma 62. ReduceTree(T , Y ) runs in O(α(m + n)|E|) time.

Proof. First, we find the leaves of T , which can be done in O(|V(T )|) = O(|E|) time by Proposition 59.
Then we consider the direct requirements for the reduction of each node µ ∈ V(T ). First, Yµ = ∅
can be checked in constant time. Second, for the more complicated requirement Yµ = P−1

e (Gµ, Tµ), we
distinguish several cases. If µ is of type (R) then the condition can be checked in O(α(m + n)|Eµ|) using
FindSplittableVertices by Lemma 27 and Lemma 60. If µ is of type (P) then we simply need to check
if |Yµ| = |Eµ|−1 holds, i.e., that all non-tree edges are in Yµ, which takes O(|Eµ|) time. Nodes of type (S)
are always propagated by Proposition 30, so deciding this takes O(1) time. The reductions performed
by ReduceParallel and ReduceSeries run in O(|Eµ|) time since they only iterate over the edges and
perform set operations. All other (sub-)steps are set operations that can be done in O(1) time using the
proposed data structures, and happen at most once for each node. Thus, the total time for processing each
node µ is bounded by O(α(m + n)|Eµ|). Summing up over all µ ∈ V(T ), we find that the total run time
is bounded by O(α(m + n)|E|) using Proposition 58.

Lemma 63. MergeTree(T , Y ) runs in O(α(m + n)|E|) time.

Proof. For each skSee report.eleton, we execute SplitSkeleton in O(α(m + n)|Eµ|) time by Proposi-
tion 61. Summing over all µ ∈ V(T ), we then find using Proposition 58 that this takes O(α(m+ n)|E|) in
total. Merging two skeletons into one, which includes identification of a constant number of vertices and
removal of the virtual edges, takes O(α(m + n)) amortized time. We do this at most |V(T )| − 1 times,
so that we obtain a O(α(m + n)|V(T )|) bound. By Proposition 59, this is equivalent to O((m + n)|E|).
Because X has size 2, all other set operations in the merging loop have constant time complexity and
thus take O(|V(T )|) = O(|E|) time in total. Thus, all steps can be done in O(α(m + n)|E|) time, which
concludes our proof.

Lemma 64. ProcessTree(T , Y ) runs in O(α(m + n)|E|) time.

Proof. First, ReduceTree runs in O(α(m + n)|E|) time by Lemma 62, and we obtain an SPQR tree TR

that represents a graph GR = (VR, ER) where |VR| ≤ |V | and |ER| ≤ |E|. In the case |V(TR)| = 1 holds,
SplitSkeleton runs in O(α(m+ n)(|Eµ|)) time by Lemma 60, which is dominated by O(α(m+ n)|ER|).
Otherwise, MergeTree runs in O(α(m + n)|ER|) time by Lemma 63. Then finally, we can reverse
the reductions from ReduceTree in the same time as it took to perform them. To restore minimality,
Lemma 55 shows we need at most one merge of adjacent nodes in T ′ which takes O(α(m + n)) time.
Clearly, all steps are dominated by the given time complexity O(α(m + n)|E|).

Considering the time bounds, we can roughly distinguish three cases in which the worst case time
complexity is attained. The first occurs when T consists of a single large node (of type (R)), where
FindSplittableVertices is responsible for the time bound. The second case occurs when the Y -reduced
tree T has a large number of nodes that need to be merged into one single large node, where the time
bound is given by the identification of these nodes in MergeTree. Finally, if the initial SPQR tree is
large and contains many reductions, ReduceTree attains the worst case time complexity.

Theorem 65. GraphicRowAugmentation runs in O((m + n) · α(m + n)) time and O(m + n) space.
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Proof. First, we distribute supp b over Y and Y ′, by checking if the associated column edge exists, which
takes O(| supp b|) = O(n) time. Then, for each y ∈ Y , we find the corresponding SPQR tree by first
finding the corresponding SPQR node in α(m + n) time, and then finding the corresponding SPQR tree
in α(m + n) time. Thus, this step takes O(nα(m + n)) time.

Now, consider various cases based on the size of FY . If FY = ∅, then we simply create a new SPQR
tree with |Y ′| + 1 edges. Clearly, this can be done in O(n) time.

If FY = {T }, then we call ProcessTree. Since T is a member of the SPQR forest that represents
M , any realization of T has at most m + n edges. Then, ProcessTree runs in O((m + n) · α(m + n))
time by Lemma 64. For the other steps in this branch, adding b and the edges Y ′, and initializing the data
structures for the new SPQR takes at most O(n) time.

If |FY | > 1, then we first create a new skeleton with |Y ′| + 1 edges, which can be done in O(n) time.
For all T ∈ FY , let GT be any graph represented by T . Because FY is a subset of the SPQR forest
representing M , it must be the case that

∑
T ∈FY

|E(GT )| ≤ m + n holds. Thus, if we run ProcessTree
for each T ∈ FY , the sum of their time complexities is of order O((m + n)α(m + n)). In the loop, we
additionally connect Tnew with T , which can be done in O(α(m + n)) time. We do this at most n times,
which gives us a time complexity of O(nα(m + n)), which is clearly dominated by the time complexity of
running ProcessTree for each tree.

We obtain that the first 3 lines and every branch of GraphicRowAugmentation can be done in
O((m + n)α(m + n)) time, which concludes the proof

Corollary 66. For a matrix M ∈ {0, 1}m×n, we can determine its graphicness using repeated calls of
GraphicRowAugmentation in O((m2 + mn) · α(m + n)) time.

Proof. We perform m calls of GraphicRowAugmentation, which gives us a total time complexity of
O((m2 + mn) · α(m + n)).

Note that the time complexity we obtain in Corollary 66 is strictly worse than the O(kα(k,m)) running
time that is achieved by Bixby and Wagner.

7 Discussion and recommendations for future research

In this paper, we formulated an algorithm for solving the graphic row augmentation problem in O(α(m +
n)(m + n)) time. By adding all rows sequentially we obtain a O((m2 + mn)α(m + n)) algorithm to
detect whether a matrix M is graphic. Note that this is strictly worse than the O(kα(k,m)) running
time achieved by Bixby and Wagner. However, we do suspect that the O((m + n)α(m + n)) running time
can be improved. In particular, we suspect one can use (modifications of) the dynamic connectivity data
structures from [21] and the dynamic LCA data structure from [27] to speed up FindSplittableVertices,
which attains the worst case bound if we have one big component of type (R). Additionally, for the purpose
of detecting graphicness of the entire matrix, one can use Proposition 59 to show that at most O(m + n)
pairs of skeletons in T are merged over multiple graphic row additions. This hints that the other worst
case where the Y -reduced SPQR tree T has many nodes is somewhat rare when one sequentially adds all
rows of a matrix. We hypothesize that using dynamic data structures, an implementation of the described
algorithms that is polynomial in k is possible. However, using dynamic data structures comes at the cost
of both space complexity and a more complex algorithmic implementation, which are the reasons why we
did not pursue this direction of research further in this work.

Although our method does not reach the best known running time for finding graphic matrices, it is,
to the best of our knowledge, the first complete algorithm for the graphic row augmentation problem.
The proposed algorithm can be combined with that of Bixby and Wagner [6] in order to find arbitrary
graphic submatrices. This can be advantageous for applications in mixed-integer linear programming,
where knowledge of (transposed) network submatrices in the problem may be useful to derive stronger
cutting planes, primal heuristics or integrality properties. An interesting new research direction would
be to investigate the presence of (transposed) network submatrices in mixed-integer linear programming
problems, and to examine their properties. An implementation of the row-wise and column-wise algorithm
for graphic matrices can be found in the repository: http://github.com/rolfvdhulst/matrec. As this
work primarily investigates the validity of the row-wise algorithm, we consider computational results to be
outside its scope. In future work, we plan to experimentally compare both methods and investigate the
presence of graphic/network submatrices in mixed-integer programming problems.

Another promising future research direction is to generalize the current results from graphic matrices
and undirected graphs to network matrices and directed graphs. In particular, we suspect that there exists
an SPQR tree type data structure that uniquely represents directed graphs with the same set of directed
cycles. Moreover, we hypothesize that both Bixby and Wagner’s column-wise algorithm and our proposed
row-wise algorithm can be modified to work in this generalized setting.

Furthermore, because graphic and network matrices are closely related to regular matroids and totally
unimodular matrices, this work, together with that of Bixby and Wagner in [6], can be a starting point for
the development of matrix augmentation algorithms maintaining regularity or total unimodularity.
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A Additional results

Lemma 67. Let G be a 3-connected multigraph with spanning tree T and let Y ⊆ E(G) \ T be non-empty
such that two adjacent vertices u, v ∈ V (G) are both Y -splittable. Then one side of the neighborhood split
of u is given by a set of edges that connects u to v.

Proof. Since G is 3-connected, G − {u, v} is connected. In particular, this implies that the connected
components of G \ Y − {u, v} are connected to each other by edges in Y .

Let (I, J) denote the neighborhood split of Hu
Y . If u and v are both Y -stars then we have Y ⊆ δ(u)∩δ(v),

and Hu
Y consists of only a single vertex. Without loss of generality, let this be in I. Then δJ(u) = Y holds,

which together with Y ⊆ δ(u) ∩ δ(v) shows that δJ(u) consists only of edges connecting u to v.
Otherwise, if not both u and v are Y -stars then Lemma 8 implies that at least one of them must be

an articulation vertex of G \ Y . By Lemma 40, u and v are adjacent on Q, and are thus connected by a
spanning tree edge t ∈ T . Since T is a spanning tree and u and v are connected by t ∈ T and T ∩ Y = ∅,
each connected component of G \Y −{u, v} must connect to either u or v using a spanning tree edge. Let
H be the connected components of G \ Y −{u, v}. We partition H into Hu and Hv, based on whether the
component connects to u or v. Let Hu,v

Y be the auxilliary graph where each vertex represents a component
of G \ Y − {u, v}. Two vertices u, v ∈ Hu,v

Y are connected by an edge if the components of G \ Y − {u, v}
are connected by a Y -edge.

Now consider Hv
Y . Since G \ Y − {v} can be obtained by adding back u to G \ Y − {u, v}, we observe

that the spanning tree edges connecting to u imply that Hu is merged into one component hu ∈ V (Hv
Y ).

Since Hv
Y is bipartite, hu has no self loops, and hence Hu must form an independent set in Hu,v

Y . Similarly,
Hv is also an independent set of Hu,v

Y .
We argued above that Hu,v

Y must be connected, and that Hu and Hv are independent sets in Hu,v
Y .

Since Hu and Hv partition the node set of Hu,v
Y , this shows that Hu,v

Y is bipartite with a unique bipartition
that is given by Hu and Hv. In particular, Hu

Y is a star centered at hu (the component formed by merging
all Hu), and the bipartition of Hu

Y is given by I = {hu} and J = V (Hu
Y ) \ {hu}.

Consider δJ(u), which consists of edges e = {u,w} for which either e ∈ Y holds or there exists h ∈ J
with w ∈ h. We show that for w ̸= v, that existence of a such an edge leads to a contradiction. In
particular, note that w ̸= v implies that w must lie in one of the vertices of the components of Hu ∪Hv.

First, consider the case where w ∈ h with h ∈ I and e ∈ Y . Since h ∈ I holds, we have w ∈ hu. Then,
considering Hv

Y , existence of edge e implies that hu has a self-loop, since there must also be a spanning
tree edge connecting to hu from u. This contradicts that v is Y -splittable.

Second, consider the case where w ∈ h with h ∈ J and e /∈ Y . Then, w must lie in one of the
components Hv. We make a case distinction, based on the cardinality of Hu.

Case 1: Hu = ∅. Since Hu,v
Y is bipartite and connected, we can conclude that Hv must consist of

a single component. In particular, this implies that u is a leaf node of the spanning tree T . Because we
have T ∩ Y = ∅, u cannot be an articulation vertex of G \ Y , as T spans the other nodes because u is a
leaf. Thus, we must have Y ⊆ δ(u). Since we assumed that not both u and v were articulation vertices of
G\Y , vertex v must be an articulation vertex of G\Y . Since Hv consists of a single connected component
h, this implies that G \ Y − {v} can only have two components if h and u are not connected using some
non-Y edge. However, then the existence of e contradicts that v is an articulation vertex of G \ Y since it
connects u to w, implying that we only have a single connected component.

Case 2: Hu ̸= ∅. Let h2 be the component of Hv in which w lies. Since Hu,v
Y is bipartite and

connected and Hu is non-empty, there must exist an member h′ ∈ Hu that is adjacent to h2 in Hu,v
Y .

Then, considering Hv
Y , we observe that h′ and h2 both connect to u using a edge not in Y , and Hv

Y

contains a self-loop for this component given by the Y edge connecting h′ and h2, which contradicts that
v is Y -splittable.

For w ̸= v, we obtained a contradiction in all cases of the case distinctions that we considered. Hence,
we conclude that δJ(u) can only contain edges {u, v}, which completes our proof.
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