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Forecasting urban traffic states is crucial to transportation network monitoring and management, playing

an important role in the decision-making process. Despite the substantial progress that has been made in

developing accurate, efficient, and reliable algorithms for traffic forecasting, most existing approaches fail

to handle sparsity, high-dimensionality, and nonstationarity in traffic time series and seldom consider the

temporal dependence between traffic states. To address these issues, this work presents a Hankel tempo-

ral matrix factorization (HTMF) model using the Hankel matrix in the lower-dimensional spaces under a

matrix factorization framework. In particular, we consider an alternating minimization scheme to optimize

the factor matrices in matrix factorization and the Hankel matrix in the lower-dimensional spaces simul-

taneously. To perform traffic state forecasting, we introduce two efficient estimation processes on real-time

incremental data, including an online imputation (i.e., reconstruct missing values) and an online forecasting

(i.e., estimate future data points). Through extensive experiments on the real-world Uber movement speed

dataset in Seattle, USA, we empirically demonstrate the superior forecasting performance of HTMF over

several baseline models and highlight the advantages of HTMF for addressing sparsity, nonstationarity, and

short time series.

Key words : Urban transportation network, traffic state forecasting, machine learning, matrix factorization,

Hankel matrix

History : August 13, 2024

1. Introduction

Traffic states of urban road networks reveal the efficiency of transportation systems, pro-

viding insights into urban transportation management. To enhance decision-making and

system efficiency, it is essential to collect historical and real-time traffic states from urban

road networks in a fine-grained spatiotemporal resolution and then produce reliable fore-
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casts for the near-future traffic states. Recent transportation innovations have significantly

simplified data collection processes, making real-world traffic data accessible. For instance,

the development of sensing technologies enables the installation of location-based sensors

on ridesharing vehicles to gather the traffic states of urban road networks (Furuhata et al.

2013). In particular, Uber has launched the Uber movement project to collect data on

hourly traffic speeds from thousands of road segments (Hu et al. 2022).

To guarantee that high-quality decisions can be produced based on predictions, a suffi-

cient number of samples is needed, meaning that a large number of ridesharing vehicles is

expected for sensing city-wide traffic states (Treiber and Kesting 2013, Zheng 2015). How-

ever, challenges such as insufficient sampling of ridesharing vehicles in total traffic (Chen

et al. 2022) and spatiotemporal sparsity of human mobility patterns (Liu et al. 2022) lead

to the prevalent issue of missing data, being a substantial barrier to the prediction work.

This phenomenon is formally introduced as sparsity, where only a small portion of the data

is observed due to limitations in the data collection process (Qin et al. 2021, Chen et al.

2022). Another challenge is the high-dimensionality problem. High-dimensional traffic data

often exhibit the characteristic that most relevant information is concentrated in only a

few dimensions, necessitating dimensionality reduction algorithms.

Moreover, traffic states exhibit strong temporal dependence, with the current state being

influenced by previous states and likely to impact future states. This dependence arises

due to factors including traffic congestion, fluctuating travel demand, and the dynamic

nature of traffic flow. For example, peak-hour congestion can trigger traffic cascades that

persist throughout the day. Modeling temporal dependence is crucial for capturing the

underlying dynamics and trends that shape urban traffic states. Thus, to extract valuable

insights from future traffic forecasts, addressing the issues of sparsity, high-dimensionality,

and temporal dependence is essential. However, these aspects, especially the temporal

dependence between traffic states, have received limited attention, and the key challenges

persist.

Matrix factorization, a data-driven machine learning approach, can effectively learn from

sparse data and accurately reconstruct missing or unobserved values. It also shows poten-

tial in modeling spatiotemporal traffic states. However, matrix factorization models alone

lack temporal correlations, unsuitable for forecasting future traffic states. On multivariate

time series, integrating autoregressive processes into matrix factorization has revealed the
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power of identifying temporal patterns from incomplete or even sparse time series data (Yu

et al. 2016, Chen and Sun 2021, Chen et al. 2022). This is because autoregressive processes

enable the establishment of temporal correlations on time series data. However, real-world

time series are usually nonstationary, demonstrating clear changing levels, periodicity, or

seasonality. Hence, it is unreasonable to directly build up an autoregressive process on

latent temporal factors in matrix factorization (Chen et al. 2022), as the autoregressive

processes are well-suited to the time series that are relatively stationary. Fortunately,

alternative methodologies have been developed considering temporal dependence in the

context of high-dimensional data without necessitating stationary patterns. For instance,

Zhang et al. (2021) propose a dynamic recommender system to forecast grocery store sales.

They employ non-parametric smoothing techniques and extrapolation methods on latent

temporal factors to capture the temporal dynamics. In this work, we propose using a Han-

kel matrix within the matrix factorization framework to establish temporal correlations.

This is because the Hankel matrix is flexible for automatically characterizing temporal

correlations and dynamics using factorization or nuclear norm minimization. In contrast,

autoregression should be well-designed in the matrix factorization considering complicated

time series behavior. Moreover, the Hankel matrix shows great potential for short time

series forecasting due to the principle of Hankel completion.

Hankel matrix arises from algebraic problems and has inspired considerable

matrix/tensor completion algorithms (Cai et al. 2019, Sedighin et al. 2020). Its adoption

in both machine learning and signal processing has many advantages: 1) it is an automatic

delay embedding transformation (Yokota et al. 2018), 2) it enables an effective matrix

completion and recovery (Cai et al. 2019), and 3) it demonstrates the capability of cor-

recting corrupted columns in matrix completion tasks (Zhang and Wang 2019). Hankel

structure has found diverse applications, such as visual data inpainting (e.g., missing slices)

(Yokota et al. 2018) and time series forecasting (Shi et al. 2020, Sedighin et al. 2020).

It is naturally combined with low-rank matrix completion (Cai et al. 2019, Zhang and

Wang 2019). Nevertheless, Hankel matrix factorization/completion has its limitations for

large-scale problems due to the explicit construction of large-scale Hankel structures.

In this work, to address the high-dimensionality issue, we utilize the Hankel structure and

build up a Hankel matrix in the lower-dimensional latent spaces under a matrix factoriza-

tion framework. We develop a novel Hankel temporal matrix factorization (HTMF) model,
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which offers several advantages over existing methods such as those proposed in Yu et al.

(2016), Chen and Sun (2021), and Chen et al. (2022). These existing methods correlate

temporal factors through an autoregressive process in their temporal matrix factorization

(TMF) models, whereas our HTMF model leverages a Hankel matrix on latent temporal

factors to automatically achieve temporal modeling, which has the following benefits: 1)

handling real-world nonstationary time series that demonstrate strong cyclical patterns

and local time series trends; 2) estimating missing columns or even forecasting incoming

columns in terms of spatiotemporal traffic states, analogous to the capability of existing

TMF models; 3) presenting an efficient and economical representation on lower-dimensional

latent temporal factors and demonstrating the capability of handling large-scale and high-

dimensional data; 4) being suitable for short time series forecasting by using the latent

Hankel matrix, instead of using Hankel structures on the data space as in Yokota et al.

(2018), Sedighin et al. (2020), and Shi et al. (2020). To the best of our knowledge, most

Hankel matrix-related algorithms are built on the data space, and HTMF is the first matrix

factorization algorithm that establishes the Hankel matrix in the lower-dimensional spaces

of matrix factorization.

Overall, our work makes the following contributions: 1) We propose an HTMF model for

forecasting sparse, high-dimensional, and temporal-dependent traffic states. Hankel matrix

built on latent temporal factors of matrix factorization allows an efficient estimation of

temporal dynamics. To solve the model, we develop an alternating minimization scheme,

including the conjugate gradient routine for estimating the spatial and temporal factor

matrices and the hard thresholding process on the Hankel matrix. 2) We introduce both

online imputation and online forecasting methods for traffic state estimation with real-

time incremental data. The online imputation method reconstructs missing values in the

incremental data, while the online forecasting method forecasts near-future traffic states. 3)

We test the performance of HTMF using the Seattle Uber movement speed dataset, which

is high-dimensional and sparse. Results show that HTMF outperforms several baseline

models in handling nonstationarity, sparsity, and short time series.

In the rest of this paper, Section 2 reviews related studies. Section 3 introduces the

HTMF model based on matrix factorization and Hankel matrix. For traffic state forecast-

ing, we propose both online imputation and forecasting methods for real-time incremental

traffic state data. Section 4 reports numerical results. Section 5 concludes the paper.
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2. Literature Review

Substantial progress has been made in the past decades in developing computationally

efficient machine learning algorithms to forecast spatiotemporal traffic. Despite the con-

siderable growth and richness of the existing literature on traffic forecasting, a compelling

question persists: How can high-dimensional and sparse traffic time series be forecasted?

2.1. Time Series Forecasting with Missing Values

Recently, various time series forecasting approaches have been developed, including but

not limited to the classical statistical methods such as autoregressive models (Hamilton

1994) and deep learning methods (Lim and Zohren 2021). Nevertheless, most of these are

not well-suited to forecasting incomplete time series data, as the phenomenon of missing

data makes the forecasting task more complicated. Due to the difficulty of modeling sparse

time series, past efforts devoted to this topic are limited. Anava et al. (2015) provide an

autoregressive predictor for generating the time series from incomplete data. While some

preliminary research on deep learning finds a solution that first imputes missing values

and then forecasts time series on the reconstructed data (Che et al. 2018), Tang et al.

(2020) propose to jointly model local and global temporal dynamics of multivariate time

series from partial observations. These methods do not satisfy the modeling needs for

handling complicated missing data patterns (Chen and Sun 2021) and high-dimensionality

(Sen et al. 2019). In some cases, the high dimensionality could complicate the time series

forecasting with missing values, posing methodological challenges.

Complementary to the above methods, another direction stimulated by autoregression

and matrix/tensor factorization models shows great potential for modeling sparse time

series. Xiong et al. (2010) demonstrate the importance of temporal dynamics when mod-

eling collaborative filtering with tensor factorization and temporal smoothing. Following

that idea, Yu et al. (2016) present a temporal regularized matrix factorization by integrat-

ing a univariate autoregressive process into a matrix factorization framework, and Gultekin

and Paisley (2018) introduce an online matrix factorization that can learn low-dimensional

embeddings and produce recursive estimates through an autoregressive process. Such mod-

els address the sparsity issue and are well-suited to high-dimensional time series. Beyond

these models, Chen and Sun (2021) propose a Bayesian temporal matrix/tensor factoriza-

tion framework by utilizing the same principle, and the core of temporal modeling is the



Chen, Zhao, and Cheng: Forecasting Urban Traffic States with HTMF
6 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

vector autoregression (VAR) process. However, since the stationarity requirement of real-

world time series does not always hold, these methods still cannot fit the practical needs.

To this end, Chen et al. (2022) reinforce these methods and address the nonstationarity

issue by considering the differencing operations (e.g., seasonal differencing) when using

autoregressive processes in matrix factorization. The authors propose the TMF model that

tackles both high-dimensionality and sparsity; however, differencing operations such as

first-order differencing and seasonal differencing are not flexible enough to eliminate the

nonstationarity of time series.

2.2. Spatiotemporal Traffic Imputation and Forecasting

Spatiotemporal traffic data are usually incomplete due to spatial and temporal sparsity,

e.g., the sparsity characteristics of Uber movement data. Many approaches have been

proposed for imputing missing or unobserved traffic data in the spatiotemporal context.

Examples include principle component analysis (Li et al. 2013), multi-output Gaussian

process (Rodrigues et al. 2018), Bayesian tensor factorization (Chen et al. 2019), low-rank

tensor completion (Chen et al. 2020), Bayesian TMF (Chen and Sun 2021), etc. Beyond

the imputation task, TMF models with VAR in the lower-dimensional latent spaces are

illustrated to be effective for the spatiotemporal traffic forecasting on sparse data (Chen

and Sun 2021, Chen et al. 2022). TMF models bridge the gap between imputation and

forecasting with missing values because they can learn low-dimensional spatiotemporal

patterns and perform forecasting without imputation.

3. Problem Definition and Methodology

This section introduces the problem and develops an HTMF model for spatiotemporal

traffic state forecasting. The HTMF model consists of a spatial factor matrix, a temporal

factor matrix, and a Hankel matrix. In particular, HTMF establishes a Hankel matrix on

the temporal factor matrix for exhibiting lower-dimensional temporal patterns. To adopt

the proposed model to traffic state forecasting tasks, we finally elaborate on the forecasting

mechanism of HTMF, including both online imputation and online forecasting for real-time

incremental traffic state data.

3.1. Problem Definition

Let Y ∈ RN×T with columns y1, . . . ,yT ∈ RN represent the traffic state measurements

collected from N road segments with T time steps (i.e., time intervals with a certain
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resolution), and Ω denote the index set of observed entries in Y , then the goal is to

forecast yT+1, . . . ,yT+δ, δ ∈N+ (δ is the forecasting time horizon). Figure 1 illustrates the

forecasting task.

y1 y2 · · · yT

data

?

?
?

?

?

=⇒
model

forecasts

ŷT+1 · · · ŷT+δ

Figure 1 Illustration of the traffic state forecasting task on the incomplete data y1, . . . ,yT .

For traffic state forecasting, we aim at simultaneously handling the following character-

istics of traffic state data: 1) High-dimensionality : data is of high dimension and large scale

with thousands of road segments. 2) Sparsity : only a small fraction of data are observed. To

obtain satisfactory forecasting, we must address the following concerns: 1) How to perform

traffic state forecasting with a small fraction of observations? 2) How to apply the TMF

framework to a large-scale and high-dimensional setting?

Unlike the classical traffic forecasting approaches, which require fully observed data as

inputs, our work addresses traffic state forecasting on imperfect and sparse data. In the

following, we consider a data-driven approach by applying the low-rank matrix factoriza-

tion framework, expecting to simultaneously address the high-dimensionality and sparsity

issues in traffic state data.

3.2. Model Description

The collection of extensive traffic state data from urban road networks has necessitated

the exploration of data-driven methodologies for practical applications and prompted a

reevaluation of strategies to effectively address the challenges posed by high-dimensionality

and sparsity (Chen and Sun 2021). Given Y ∈RN×T , the objective is to reconstruct miss-

ing entries in Y with partial observations. Let PΩ(Y ) denote the orthogonal projection

supported on the observed index set Ω, defined as

[PΩ(Y )]it =





yit, if (i, t)∈Ω,

0, otherwise,
(1)
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where i = 1, . . . ,N and t = 1, . . . , T . Notably, [·]it denotes the (i, t)-th entry of a matrix.

Low-rank matrix factorization is one of the most classical approaches for achieving the

reconstruction objective (Mnih and Salakhutdinov 2007, Koren et al. 2009), taking the

form of

min
W ,X

1

2

∥∥PΩ(Y −W⊤X)
∥∥2

F
+

ρ

2
(∥W ∥2F + ∥X∥2F ), (2)

where R <min{N,T} is the low rank of this matrix factorization. W ∈ RR×N and X ∈
RR×T are spatial and temporal factor matrices, respectively. The symbol ∥ · ∥F denotes the

Frobenius norm of a matrix. ρ is the trade-off parameter for regularization.

However, the standard matrix factorization cannot incorporate local temporal correla-

tions into global low-rank patterns. To this end, Yu et al. (2016), Chen and Sun (2021),

and Chen et al. (2022) develop some TMF models that apply the dth-order VAR process,

which can be summarized as the following optimization problem:

min
W ,X,{A}dk=1

1

2

∥∥PΩ(Y −W⊤X)
∥∥2

F
+

ρ

2
(∥W ∥2F + ∥X∥2F )+

λ

2

T∑

t=d+1

∥∥∥xt −
d∑

k=1

Akxt−k

∥∥∥
2

2
, (3)

where the vector xt,∀t ∈ {1, . . . , T} is the t-th column (time snapshot) of X, and Ak ∈
RR×R, k= 1, . . . , d are the coefficient matrices of VAR on temporal factors. The symbol ∥·∥2
denotes the ℓ2-norm of a vector. ρ and λ are the trade-off parameters for regularization.

Since VAR is important in temporal modeling, TMF allows one to make accurate missing

data imputations and effective high-dimensional time series forecasting (Yu et al. 2016,

Chen and Sun 2021). However, one dominant assumption—stationarity of time series—

poses a bottleneck for the broad use of TMF.

In this work, we intend to seek an effective temporal modeling technique and take advan-

tage of the Hankel matrix in a TMF framework to address the nonstationarity of traffic

states. In particular, we construct a Hankel matrix on the temporal factor matrix X uti-

lizing Definition 1 (Zhang et al. 2018, Zhang and Wang 2019).

Definition 1 (Hankel matrix). Given a multivariate time series data matrix X ∈
RR×T with columns x1, . . . ,xT ∈RR and a window length d∈N+, let Hd :RR×T →R(dR)×m

be a linear operator which maps X into the following Hankel matrix:

Hd(X) =




x1 x2 · · · xm

x2 x3 · · · xm+1

...
...

. . .
...

xd xd+1 · · · xT



∈R(dR)×m, (4)
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with m= T − d+1.

As is well known in the time series analysis, VAR usually assumes the time series to be

stationary. Therefore, Hankel representation produces temporal correlations that VAR is

unable to produce efficiently, and it is reasonable to postulate that the Hankel matrix can

reinforce temporal modeling. In this work, our HTMF model follows the form:

min
W ,X

1

2

∥∥PΩ(Y −W⊤X)
∥∥2

F
+

ρ

2
(∥W ∥2F + ∥X∥2F )

s.t. rank(Hd(X)) =R,

(5)

where rank(·) denotes the rank of a matrix. Hd(X) is assumed to be rank-R with R ≤
T − d − 1. This implies that the (dR) × m Hankel matrix on lower-dimensional latent

temporal factors is an efficient and economical representation. Alternatively, if one builds a

Hankel matrix on the original traffic state data Y , there would be a Hankel matrix of size

(dN)×m, possibly consuming high memory usage and computational cost. Moreover, the

HTMF model captures temporal correlations within d window length through the Hankel

structure (i.e., the same blocks on the anti-diagonal), and the window length d is usually

smaller than the number of time steps per day or week; thus, the Hankel structure in HTMF

only captures local temporal correlations, which makes it possible for HTMF to handle

real-world nonstationary time series. Figure 2 illustrates the HTMF, whose ingredients

include a spatial factor matrix, a temporal factor matrix, and a Hankel matrix.

? ?

?
?

? ??

?
?

Y ∈ RN×T

︸ ︷︷ ︸

Traffic states

≈

W⊤ ∈ RN×R

︸ ︷︷ ︸

Spatial factor matrix

×

t− 2 t− 1 t t+ 1 t+ 2

Temporal factor matrix

· · ·
xt−2 xt−1 xt xt+1 xt+2

· · ·

Hankel matrix

Hd(·)

H−1
d (·)

Figure 2 Illustration of HTMF for modeling sparse traffic state data.

The basic idea of HTMF is closely related to the low-rank Hankel matrix completion

proposed by Cai et al. (2019). Matrix completion refers to recovering a matrix from its

partially revealed entries. With no further assumptions, matrix completion is an ill-posed
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problem that does not even have a unique solution. Thus, to develop efficient solution

algorithms, researchers often have to exploit the inherent simplicity of the target matrix. A

prominent example is the low-rank matrix completion, where the target matrix is assumed

to be low-rank (Chen et al. 2021). Based on the property of low-rankness, various efficient

algorithms are designed (Chen and Chi 2018). Going back to the HTMF, the constraint

in the optimization problem (5) is expected to achieve temporal modeling through the

low-rankness of the Hankel matrix. To solve the optimization problem in (5), we introduce

an auxiliary variable F ∈RR×T to guarantee the low-rankness of the Hankel matrix. The

model now becomes

min
W ,X,F

1

2

∥∥PΩ(Y −W⊤X)
∥∥2

F
+

ρ

2
(∥W ∥2F + ∥X∥2F )+

γ

2
∥F −X∥2F

s.t. rank(Hd(F )) =R,

(6)

where γ is the trade-off parameter for the additional regularization.

Regarding this model, we consider an alternating minimization scheme. Let f denote

the objective function of problem (6), then our scheme can be basically summarized as

follows, 



W ℓ+1 = {W | ∂f
∂W

= 0},

Xℓ+1 = {X | ∂f
∂X

= 0},

F ℓ+1 = argmin
rank(Hd(F ))=R

1

2
∥F −Xℓ+1∥2F ,

(7)

where ℓ is the iteration counter.

In our original optimization problem, we have two variables, i.e., spatial factor matrix

W and temporal factor matrix X. However, the variable X is associated with both par-

tially observed matrix factorization and low-rank Hankel matrix constraints. Thus, finding

a closed-form solution for X becomes challenging. Problem (6) presents a readily imple-

mentable formula that incorporates a weight parameter γ to guarantee that X and F are

as close as possible. If F is a numerical approximation of X, depending on γ, then problem

(6) is consistent with problem (5).

The partial derivative of f with respect to W can be written as

∂f

∂W
=−XP⊤

Ω (Y −W⊤X)+ ρW , (8)
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where ∂f
∂W

= 0 admits a closed-form least-squares solution with respect to W (Koren et al.

2009). Alternatively, we can use the conjugate gradient method to obtain an approximated

numerical solution to W from the generalized Sylvester equation (Chen et al. 2022):

XP⊤
Ω (W

⊤X)+ ρW =XP⊤(Y ). (9)

If one uses the conjugate gradient method to find an approximated solution to the above

equation, it should convert the matrix equation into a standard system of linear equations.

First, we introduce an operator to represent the left-hand side of the equation as follows,

Lw(W )≜ vec(XP⊤
Ω (W

⊤X)+ ρW ), (10)

where vec(·) denotes the vectorization operator. Then, with this definition in place, we

apply the conjugate gradient method (Golub and Van Loan 2013) as an efficient matrix

equation solver. Since (10) is a standard system of linear equations whose matrix is real

symmetric and positive-definite, it satisfies the criteria of the conjugate gradient method.

As revealed by Rao et al. (2015), the conjugate gradient-based alternating minimization

scheme for matrix factorization is efficient and scalable to large applications. Notably,

the conjugate gradient method is known to search for the solution to a system of linear

equations with a relatively small number of iterations (e.g., 5 or 10). We summarize the

algorithm of the conjugate gradient for estimating spatial factor matrix W in Algorithm 1.

With respect to the temporal factor matrix X, we can write down the partial derivative

of f and obtain the solution to X from the following matrix equation:

∂f

∂X
=−WPΩ(Y −W⊤X)+ ρX + γ(X −F ) = 0, (11)

or equivalently,

WPΩ(W
⊤X)+ (ρ+ γ)X =WPΩ(Y )+ γF . (12)

To solve this matrix equation with the conjugate gradient method, we can also define an

operator that represents the vectorization of the left-hand part of the equation:

Lx(X) = vec(WPΩ(W
⊤X)+ (ρ+ γ)X), (13)

then we follow a similar routine as shown in Algorithm 1 for estimating the approximated

solution to X.
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Algorithm 1 Conjugate gradient for estimating spatial factor matrix W

Input: Data matrix Y , Ω as the observed index set, initialized spatial factor matrix W ,

temporal factor matrix X, and the maximum iteration nw.

Output: Estimated spatial factor matrix W .

1: Initialize w0 by the vectorized W .

2: Compute residual vector r0 =vec(XP⊤
Ω (Y ))−Lw(W ), and let q0 = r0.

3: for ℓ= 0 to nw − 1 do

4: Convert vector qℓ into matrix Qℓ.

5: Compute αℓ =
r⊤
ℓ rℓ

q⊤
ℓ Lw(Qℓ)

.

6: Update wℓ+1 =wℓ +αℓqℓ.

7: Update rℓ+1 = rℓ −αℓLw(Qℓ).

8: Compute βℓ =
r⊤
ℓ+1rℓ+1

r⊤
ℓ rℓ

.

9: Update qℓ+1 = rℓ+1+βℓqℓ.

10: end for

11: Convert vector wnw into matrix W .

12: return Spatial factor matrix W .

In HTMF, rank-R Hankel matrix Hd(F ) in the constraint allows one to build tempo-

ral correlations implicitly, and it follows a hard singular value thresholding (HSVT, see

Definition 2) process (Cai et al. 2019).

Definition 2 (HSVT). For any X ∈Rm×n, the hard thresholding operator Tr(·) with
positive integer r <min{m,n} is defined as

Tr(X) =
r∑

k=1

σkukv
⊤
k , (14)

where X =
∑min{m,n}

k=1 σkukv
⊤
k is the singular value decomposition (SVD) of X and its

singular values are sorted as σ1 ≥ σ2 ≥ · · · ≥ σmin{m,n}.

Definition 3 (Inverse Hankel matrix). Following Definition 1, given any matrix

Z ∈R(dR)×m,m= T − d+1, the (i, j)-th entry of H−1
d (Z)∈RR×T is defined as follows,

[H−1
d (Z)]ij =

1

wj

∑

k1+k2=j+1

z(k1−1)R+i,k2, (15)

where wj denotes the number of elements in the j-th anti-diagonal of a d×m matrix.
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Let the SVD of Hd(X) be

Hd(X) =UΣV ⊤ =

min{dR,m}∑

r=1

σrurv
⊤
r , such that σ1 ≥ σ2 ≥ · · · ≥ σmin{dR,m}, (16)

then the HSVT with any positive integer R<min{dR,m} can be written as follows,

TR(Hd(X)) =

R∑

r=1

σrurv
⊤
r . (17)

In the iterative process, the result of (17) is used to update the temporal factor matrix:

F :=H−1
d (TR(Hd(X))), (18)

where H−1
d : R(dR)×m → RR×T is the inverse operator of Hd : RR×T → R(dR)×m. Since Hd is

injective, H−1
d follows from Zhang and Wang (2019) that the entry of inverse Hankel matrix

is the average of certain anti-diagonal entries in the Hankel matrix (see Definition 3). Once

the result of HSVT is available, the inverse operator can convert a given Hankel matrix

into the expected form.

We illustrate the alternating minimization scheme for the HTMF model in Figure 3.

For the spatial factor matrix W and the temporal factor matrix X, we use the conjugate

gradient method to approximate the least-squares solution. To fulfill the temporal modeling

on temporal factors, we first implement HSVT on the Hankel matrix and then update

the temporal factor matrix by the result of HSVT. The detailed algorithm of HTMF is

summarized in Algorithm 2.

Inputs W X

Hd(X) TR(Hd(X))

F Outputs

Hankel
operation HSVT

Inverse Hankel
operation

Conjugate gradient

Conjugate gradient

Figure 3 Illustration of the alternating minimization scheme for implementing HTMF. Starting from the input

data and initial parameters, we learn an HTMF model by updating the involved variables iteratively.

Figure 4 presents the empirical time complexity of HTMF (rank R= 10) under various

data lengths. The synthetic data is generated randomly with the size NT = 1× 107,2×
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Algorithm 2 HTMF(Y ,Ω, d,R,n)

Input: Data matrix Y ∈ RN×T , Ω as the observed index set, d as the window length, R

as the low rank (R≤min{N,T − d− 1}), and n as the maximum iteration.

Output: Spatial factor matrix W and temporal factor matrix X.

1: Initialize W ,X.

2: for ℓ= 0 to n− 1 do

3: Compute W from (9) with conjugate gradient.

4: Compute X from (11) with conjugate gradient.

5: Implement HSVT on Hd(X) by (17).

6: Update F by (18).

7: end for

107, . . . ,10× 107. The window length of HTMF is set as d= 10 and 20, respectively. The

results indicate that the time complexity exhibits a near-linear pattern in relation to the

data size. This finding implies that the computing time of HTMF is expected to increase

linearly as the dataset size expands, thereby demonstrating the predictability of computing

time with respect to data volume.

1 2 3 4 5 6 7 8 9 10
Data size (×107)

50

100

150

200

Ti
m

e 
(s

)

d= 10

d= 20

Figure 4 Empirical time complexity of HTMF on the synthetic data. The HTMF model is tested 10 times on

each randomly generated data, and average results are reported. Note that the data size is NT where

N = 103 and T ∈ {1× 104,2× 104, . . . ,10× 104}.

3.3. Forecasting Algorithm

To cater for real-world traffic state forecasting needs, we focus on a rolling forecasting task

as the mechanism illustrated in Figure 5. As can be seen, the incremental input data are

{y1, . . . ,y3},{y1, . . . ,y5},{y1, . . . ,y7}, corresponding to the first, the second, and the third
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rolling times, respectively. At each rolling time, the forecasting time horizon is set to δ= 2

and therefore we can finally gather {ŷ4, . . . , ŷ9} as forecasts in the rolling forecasting task.

y1 y2 y3 y4 y5 y6 y7 y8 y9

0
1
2
3

snapshot

ro
lli

ng
w

in
do

w

Figure 5 Graphical scheme of the rolling forecasting on traffic states. The snapshot yt ∈RN ,∀t∈ {1, . . . , T} refers

to the t-th column of Y ∈RN×T .

Since the incremental input data have a certain number of missing values, the estima-

tion tasks include both online imputation and online forecasting processes. Regarding the

imputation process, the online imputation model is required to reconstruct missing values

from the real-time incremental observations efficiently. To carry out an efficient estimation,

we assume that the online imputation admits a matrix factorization, formulated as

min
X

1

2
∥PΩ̃(Ỹ −W⊤X)∥2F +

ρ

2
∥X∥2F , (19)

where Ỹ is the incremental traffic state data and Ω̃ is the corresponding observed index

set. The fixed variable W is estimated from the original traffic state data. Clearly, this

optimization problem is convex and thus X has an optimal solution. Let g denote the

objective of this optimization problem, then we have the following matrix equation:

∂g

∂X
=−WPΩ̃(Ỹ −W⊤X)+ ρX = 0. (20)

This is similar to the above problem associated with the temporal factor matrix. In this

matrix equation, we estimate variable X through the conjugate gradient method. Accord-

ingly, the missing entries in Ỹ can be reconstructed by W⊤X.

The online forecasting in this work has two procedures. We first build an augmented

temporal factor matrix as X̃ =
[
X 0R×δ

]
in which the last δ columns are filled with zeros

(i.e., corrupted columns). In a Hankel matrix representation, the estimation of the last

δ unknown columns is equivalent to the reconstruction of Hd(X̃) from partially revealed
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entries. Therefore, the online forecasting process admits a Hankel matrix factorization,

which is formulated as follows,

min
V

1

2
∥PΩx(Hd(X̃)−UV )∥2F , (21)

where Ωx stands for the observed index set of the Hankel matrix Hd(X̃). In particular,

we use U ∈R(dR)×R that consists of the left singular vectors {u1, . . . ,uR} of Hd(X) as the

fixed variable (obtained in Algorithm 2). The solution to (21) can be derived from the

following matrix equation:

U⊤PΩx(UV ) =U⊤PΩx(Hd(X̃)). (22)

Let

Lv(V ) = vec(U⊤PΩx(UV )), (23)

be an operator associated with variable V , then we can estimate the solution to V through

the conjugate gradient method. In this case, together with the inverse Hankel operation,

estimating V allows one to produce the forecasts of the last δ columns in X̃. Thus, the

Hankel matrix is an effective representation for automatically filling in the last δ columns

of the temporal factor matrix X̃, due to its inherent anti-diagonal structure. Both online

imputation and online forecasting processes do not consume too much computing resources.

The convex problems can be solved efficiently in the rolling forecasting task.

Finally, we emphasize that online imputation is unnecessary for the online forecasting

task. However, in the rolling forecasting scheme, it becomes essential to capture the tem-

poral factors from the input incremental data that contains missing values. This process

enables us to obtain low-dimensional latent temporal factors represented as a sequence of

time series. By leveraging the Hankel structure, we can directly forecast future latent tem-

poral factors and subsequently employ the multiplication of spatial and temporal factors

to generate traffic state forecasts.

4. Experiments on Uber Movement Speed Data

In this section, we use the Seattle Uber movement speed dataset to evaluate our method.

The nature of traffic state measurements, like the Uber movement data capturing hourly

speed per road segment, often exhibits a pronounced indication of potential periodic and

seasonal temporal patterns due to different mechanisms. These mechanisms encompass
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distinct time ranges as well as weather and seasonality. Each mechanism operates on differ-

ent time scales within periodic cycles, with some exhibiting long-term patterns and others

displaying short-term variations. However, matrix factorization serves as a similarity-based

model. For instance, it can leverage users’ latent factors in recommender systems to esti-

mate the potential ratings of users with similar preferences. Thus, it can be used to predict

traffic states. Specifically, in the HTMF model, latent factors are employed to capture the

global seasonality and trends of urban traffic states. The Hankel structure within HTMF

further enhances the local trends observed in time series data. Consequently, the proposed

forecasting method can consider both global (long-term) and local (short-term) time series

trends of urban traffic states.

We compare the proposed HTMF model with state-of-the-art baseline models. Our

experiments used a hardware setup featuring a T4 GPU with 16GB of RAM. We use the

mean absolute percentage error (MAPE) and the root mean square error (RMSE) as the

performance metrics, defined as follows,

MAPE=
1

n

n∑

i=1

|yi − ŷi|
yi

× 100, RMSE =

√√√√ 1

n

n∑

i=1

(yi− ŷi)2,

where n is the total number of estimated values, and yi and ŷi are the actual value and

the estimate, respectively.

4.1. Sparse Urban Traffic State Dataset

The Uber movement speed dataset collects hourly traffic speeds from thousands of road

segments in urban areas. However, due to the insufficient sampling and the limited pen-

etration of ridesharing vehicles in total traffic, we only have access to a small fraction of

observed speeds, even in an hourly resolution. We use the Seattle Uber movement speed

data collected from 63,490 road segments during the first ten weeks of 2019 (i.e., 1680

hours) for the following experiments, and therefore the size of this dataset is 63490×1680.

The dataset is sparse and only contains 12.65% speed observations, implying that 87.35%

entries in the data matrix are unobserved.

Figure 6 shows the missing rates of the dataset changing over time during the ten weeks,

where each missing rate at time t corresponds to the ratio of missing entries in yt (the t-th

column of Y ). It reveals a clear pattern that the dataset has more traffic speed observations

during peak hours than during off-peak hours. This is because urban road networks usually
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Figure 6 The missing rate curve of the Seattle Uber movement speed dataset.

Table 1 Summary of the ratio of road segments with data with minimum observation rate of the Uber

movement speed data sets. # seg. stands for the number of road segments.

Missing rate # seg. Ratio Missing rate # seg. Ratio

(0,10%] 579 0.91% (50%,60%] 1,765 2.78%
(10%,20%] 1,273 2.01% (60%,70%] 1,951 3.07%
(20%,30%] 1,088 1.71% (70%,80%] 2,687 4.23%
(30%,40%] 1,248 1.97% (80%,90%] 5,892 9.28%
(40%,50%] 1,629 2.57% (90%,100%] 45,378 71.47%

serve more vehicles during peak hours. The extreme case is that the missing rates almost

reach 100% at midnight, and it seems to be the blackout missing at some consecutive time

steps (i.e., corrupted columns). In particular, we summarize the missing rate of the dataset

at each road segment in Table 1. The ratio is determined by the division of the number of

road segments in a certain missing rate range by the total number of road segments.

From Table 1, we observe that only 2.92% road segments have more than 80% speed

observations, i.e., 0.91%+2.01%= 2.92%. There are 71.47% road segments that reveal the

missing rates greater than 90%. Thus, it poses both practical and methodological challenges

for performing time series forecasting on such sparse traffic state data.

In the following experiments, we first evaluate the model with 9-week data as the training

set and one-week data as the test set. We set the forecasting time horizons as δ= 1,2,3,4,

respectively. Then, to test the model on shorter time series, we set the training set as

8-week data, 7-week data, 6-week data, 5-week data, and 4-week data, respectively. When
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implementing Algorithm 2, we initialize the factor matrices W and X with small Gaussian

random values, i.e., 1
100

N (0,1), where N (·) denotes the Gaussian distribution.

4.2. Baseline Models

To evaluate the performance of our HTMFmodel, we compare it with 1) Temporal Regular-

ized Matrix Factorization (TRMF) proposed by Yu et al. (2016), 2) Bayesian TMF (BTMF)

proposed by Chen and Sun (2021), 3) Nonstationary TMF (NoTMF) proposed by Chen

et al. (2022), and 4) Circulant Tensor Nuclear Norm Minimization (CTNNM) proposed

by Liu and Zhang (2022) and Liu (2022). NoTMF integrates the VAR process on seasonal

differenced temporal factors into the matrix factorization, which can overcome both non-

stationarity and high-dimensionality issues. NoTMF has been empirically demonstrated to

be state-of-the-art over other TMF models such as TRMF and BTMF. Another reason for

using the NoTMF as the baseline is that the comparison allows one to reveal the signifi-

cance of Hankel structure on temporal factors. To reproduce the results, readers can refer

to the IJOC GitHub software repository (https://github.com/INFORMSJoC/2022.0197).

4.3. Forecasting Results

We now discuss HTMF’s forecasting performance. Since the values of rank R and win-

dow length d are critical to HTMF’s performance, we first tune these hyperparameters

by setting R= 10,20,30,40,50,60 and d= 6,12,18,24. Table 2 reports the results, where

the best results are highlighted in bold fonts. It shows that the best forecasting perfor-

mance is mostly achieved with the rank R = 60. In HTMF with a relatively large rank

R, the constructed Hankel matrix on latent factors would contribute to more accurate

forecasting performance because the complicated time series trends can be characterized

by latent factors, including dominant and secondary factors with an appropriate rank R.

It should be noted that while it is possible to further increase the value of R, the perfor-

mance improvement becomes marginal as R increases. Additionally, a higher rank poses a

greater risk of overfitting, which can adversely impact the model’s performance despite the

increased computational cost. Therefore, in practical applications, it is advisable to select

an appropriate rank, rather than aiming for the peak value of R. If the forecasting task has

a relatively small time horizon (e.g., δ = 1), HTMF with different window lengths shows

no significant differences. When the time horizon changes to δ = 3 and 4, HTMF with a

longer window length performs significantly better than that with a shorter window length.

https://github.com/INFORMSJoC/2022.0197
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The window length d of HTMF is significant for capturing time-evolving coefficients of

latent factors implicitly, and its setting also depends on forecasting purposes. Based on the

results here, we set R= 60 in the subsequent experiments. The setting of window length d

depends on the forecasting horizon δ, and we can usually set d > δ. Both parameters can

be easily validated from a small set of candidate parameters.

Table 2 Forecasting performance (MAPE/RMSE) of HTMF with different ranks and window lengths.

Horizon Order R= 10 R= 20 R= 30 R= 40 R= 50 R= 60

δ= 1

d= 6 10.97/3.47 10.53/3.33 11.04/3.54 10.62/3.40 10.69/3.46 13.44/4.62
d= 12 11.25/3.59 10.54/3.36 10.33/3.30 10.25/3.27 10.18/3.23 10.17/3.26
d= 18 11.13/3.56 10.50/3.37 10.31/3.32 10.33/3.28 10.24/3.27 10.26/3.27
d= 24 11.21/3.58 10.70/3.43 10.42/3.33 10.33/3.31 10.30/3.29 10.26/3.27

δ= 2

d= 6 11.37/3.62 15.36/5.29 17.79/6.20 15.10/5.25 13.56/4.71 13.02/4.44
d= 12 11.40/3.62 10.73/3.44 10.54/3.38 10.48/3.37 10.54/3.42 10.51/3.42
d= 18 11.49/3.65 10.73/3.46 10.51/3.38 10.44/3.32 10.40/3.34 10.35/3.31
d= 24 11.38/3.62 10.78/3.47 10.62/3.40 10.44/3.36 10.53/3.37 10.38/3.32

δ= 3

d= 6 12.37/3.96 14.39/4.96 13.21/4.49 11.75/3.88 13.62/4.59 15.19/5.12
d= 12 11.58/3.68 11.87/3.90 10.78/3.53 10.72/3.50 10.98/3.61 11.55/3.82
d= 18 11.50/3.64 10.98/3.54 10.84/3.52 10.55/3.40 11.50/3.78 10.67/3.46
d= 24 11.31/3.63 10.99/3.54 10.65/3.43 10.52/3.39 10.49/3.38 10.53/3.38

δ= 4

d= 6 12.29/4.09 14.67/4.92 17.34/5.96 19.21/6.51 14.82/4.99 13.93/4.71
d= 12 11.50/3.70 11.54/3.84 10.74/3.53 12.29/4.12 11.18/3.74 10.88/3.59
d= 18 11.84/3.72 10.83/3.52 10.77/3.55 10.72/3.52 10.52/3.41 10.82/3.53
d= 24 11.58/3.66 10.98/3.55 10.84/3.50 10.69/3.45 10.66/3.49 10.50/3.39

In contrast to the autoregressive process, the Hankel structure is an automatic delay

embedding transform for time series modeling (Sedighin et al. 2020), which possibly shows

superior performance for forecasting short time series (Shi et al. 2020). In our specifi-

cation, we use training data of different time ranges to test HTMF and the other four

baseline models. Table 3 summarizes all the models’ forecasting performance with different

data ranges, where the best results are highlighted in bold fonts. When using the 9-week

and 8-week data as the training sets, it shows that HTMF achieves competitive results

as NoTMF at different time horizons. However, when fewer data are used for training,

HTMF significantly outperforms NoTMF in both performance metrics, highlighting the

importance of implicit Hankel completion for relatively shorter time series. Notably, in the

rolling forecasting process, the forecasting task is converted into a Hankel completion task

via the use of matrix factorization with a fixed dictionary matrix U . The superiority of

HTMF becomes remarkable over NoTMF when the training process only covers 7-week,
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6-week, 5-week, and 4-week data. Notably, as the length of training data becomes shorter,

HTMF does not show a significant performance loss as NoTMF. These empirically demon-

strate that compared to the VAR process in NoTMF, the Hankel structure in HTMF is

more effective for handling short time series. Table 3 also clearly shows the superiority of

HTMF over TRMF, BTMF, and CTNNM.

Table 3 Forecasting performance (MAPE/RMSE) of HTMF and baseline models.

Horizon 9-week 8-week 7-week 6-week 5-week 4-week

HTMF

δ= 1 10.26/3.27 10.26/3.26 10.31/3.29 10.34/3.32 10.52/3.37 10.50/3.41
δ= 2 10.35/3.31 10.40/3.32 10.49/3.35 10.52/3.36 10.52/3.39 10.63/3.47
δ= 3 10.53/3.38 10.46/3.36 10.55/3.39 10.61/3.40 10.64/3.45 10.69/3.50
δ= 4 10.50/3.39 10.52/3.41 10.65/3.43 10.66/3.44 10.74/3.49 10.74/3.52

NoTMF

δ= 1 10.39/3.31 10.54/3.36 10.64/3.41 10.81/3.47 11.16/3.60 11.59/3.76
δ= 2 10.41/3.34 10.52/3.38 10.62/3.42 10.79/3.48 11.12/3.61 11.66/3.82
δ= 3 10.44/3.35 10.53/3.41 10.71/3.46 10.83/3.51 11.10/3.61 11.69/3.84
δ= 4 10.47/3.37 10.56/3.42 10.68/3.46 10.88/3.54 11.15/3.65 11.45/3.76

TRMF

δ= 1 11.10/3.81 11.12/3.86 11.23/3.96 11.29/3.99 11.38/4.02 11.51/4.05
δ= 2 11.03/3.58 10.96/3.59 11.10/3.65 11.20/3.71 11.27/3.75 11.36/3.82
δ= 3 11.54/4.17 11.84/4.31 11.62/4.29 11.65/4.21 11.90/4.38 11.96/4.42
δ= 4 11.07/3.64 11.11/3.67 11.14/3.72 11.31/3.79 11.38/3.83 11.39/3.86

BTMF

δ= 1 12.44/4.03 12.31/4.01 12.50/4.06 12.95/4.27 13.16/4.23 12.44/4.00
δ= 2 12.79/4.23 12.59/4.03 12.70/4.10 12.75/4.14 13.44/4.33 12.71/4.09
δ= 3 12.22/3.87 12.12/3.85 12.51/3.96 13.02/4.16 12.87/4.13 12.03/3.88
δ= 4 12.24/3.95 12.23/3.91 12.66/4.04 12.64/4.03 13.09/4.30 12.35/3.95

CTNNM

δ= 1 12.74/3.83 12.18/3.71 12.52/3.81 12.76/3.87 13.21/4.03 13.92/4.29
δ= 2 12.97/3.90 12.46/3.78 12.81/3.88 13.16/3.96 13.56/4.08 14.09/4.28
δ= 3 13.36/3.97 12.82/3.85 13.13/3.94 13.66/4.06 13.82/4.12 13.99/4.22
δ= 4 13.58/4.03 13.14/3.92 13.38/3.99 13.73/4.07 13.82/4.14 13.92/4.23

For analyzing the convergence pattern of HTMF, we visualize the loss function values

in the iterative process with different ranks (i.e., R = 30,40,50,60) and different lengths

of training data in Figure 7. The figure shows that the loss function of HTMF decreases

rapidly in the first few iterations (e.g., smaller than 10 iterations). Then, in the subsequent

iterations, the changes in loss function values become marginal. Therefore, the proposed

HTMF model shows a very efficient convergence process. Observing the HTMF model with

different ranks, the loss function values are relatively smaller when a greater rank is given.

Figure 8 shows the aggregated forecasts achieved by HTMF against the ground truth

data with the 9-week training data. The results generated by HTMF are close to the

ground truth data, demonstrating the capability of HTMF to accurately forecast the sparse

traffic states. The forecasting results show both global (e.g., cyclical patterns) and local
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(b) On 8-week training data.
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(f) On 4-week training data.
Figure 7 The variations of HTMF’s loss functions with the iterations on different datasets.

(e.g., consistency of traffic flow) time series trends achieved by the Hankel completion in

HTMF. Figure 9 plots speed observations and HTMF forecasts of some road segments.

Considering the road segments with low missing rates, the forecasts achieved by HTMF

capture accurate temporal dynamics, mostly benefiting from the sparse learning process on

sparse time series data and the Hankel completion on latent temporal factors within HTMF.

For those road segments whose speed observations are very limited, the forecasts achieved

by HTMF are consistent with the traffic state fact; namely, speeds are relatively low

during peak hours and relatively high during off-peak hours. These findings also reveal the
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(d) Time horizon δ= 4.

Figure 8 Forecasting results of HTMF with different time horizons. Both ground truth data and HTMF forecasts

are averaged over 741 road segments whose missing rates on the test set are less than 10%.

effectiveness of integrating matrix factorization and Hankel representation for identifying

temporal dynamics from sparse traffic state data.
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Figure 9 Forecasting results of HTMF with δ= 4. The 14 example time series correspond to 14 road segments.

The orange scatters indicate the observed speeds, while the red curves indicate the HTMF’s forecasts.
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(a) Missing rate (0,10%], 741 road segments.
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(b) Missing rate (10%,20%], 1,650 road segments.
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(c) Missing rate (20%,30%], 1,432 road segments.
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(d) Missing rate (30%,40%], 1,551 road segments.
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(e) Missing rate (40%,50%], 1,712 road segments.
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(f) Missing rate (50%,60%], 1,769 road segments.
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(g) Missing rate (60%,70%], 2,076 road segments.
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(h) Missing rate (70%,80%], 3,365 road segments.
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(i) Missing rate (80%,90%], 6,602 road segments.
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(j) Missing rate (90%,100%], 42,592 road segments.

Figure 10 The histogram of ground truth data and forecasts achieved by HTMF with δ= 4 in the test set. The

missing rate implies the ratio of missing values of road segments in the test set.
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Figure 10 shows the statistical histograms of the ground truth data versus the forecasts

achieved by HTMF with different missing rate ranges. For each missing rate range, we

collect the speed observations of road segments whose missing rate of the test set is in

that range. For road segments with lower missing rates, e.g., (0,10%] and (10%,20%],

the histograms present two peaks. Specifically, one peak is around the speed of 20mph,

while another is around the speed of 60mph. This implies that for the road segments with

relatively complete speed observations, both lower speeds of the congested traffic (possibly

during peak hours) and higher speeds of the free-flow traffic (possibly during off-peak

hours) are measured, revealing the bi-mode traffic states. Figure 10 shows that HTMF can

accurately forecast both congested and free-flow traffic states. With the increase in missing

rates, the phenomena of bi-mode traffic states are weakened. Overall, we can summarize

that the forecasts achieved by HTMF are accurate to the ground truth data.

5. Conclusion

This study revisits the challenging task of urban traffic state forecasting and addresses the

sparsity and high-dimensionality issues inherent in city-wide traffic state data. To handle

the traffic state data involving multiple characteristics, we present an HTMF model for

sparse traffic state forecasting. The model consists of spatiotemporal factor matrices in

a matrix factorization framework and a Hankel matrix in lower-dimensional spaces. This

HTMF model differs from the prior NoTMF model because NoTMF integrates VAR into

the seasonal differenced temporal factors. In contrast, HTMF utilizes a Hankel matrix on

the lower-dimensional temporal factors to achieve temporal modeling. In this situation,

HTMF does not require the stationarity of traffic states.

In order to effectively leverage real-time incremental data and achieve efficient forecast-

ing, the proposed forecasting mechanism encompasses two key processes: online imputation

and online forecasting. In particular, online imputation reconstructs missing values in the

incremental data, while online forecasting utilizes Hankel matrix factorization to estimate

future traffic states. Notably, the approach is efficient and effective due to using the Hankel

matrix in the lower-dimensional latent spaces. The Hankel matrix can implicitly preserve

the temporal correlations for traffic states and provide insight into estimating future traffic

states automatically. Extensive numerical experiments were conducted using the real-world

Uber movement speed dataset from Seattle, USA, to validate the proposed methodol-

ogy. The results demonstrate the superior forecasting performance of the HTMF model
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compared to multiple baseline models. These findings provide compelling evidence for the

advantages of HTMF in effectively addressing challenges associated with sparsity, high-

dimensionality, and short time series in urban traffic state forecasting. Our proposed HTMF

model also holds potential for other prediction tasks as long as the real-world time series

forecasting exhibits two key characteristics: sparse time series with global/local trends and

low-dimensional patterns. These characteristics indicate that the high-dimensional time

series can be effectively compressed or represented using limited low-dimensional factors

and simultaneously take the expression of matrix factorization on the sparse data.

In this work, we empirically analyzed the convergence pattern of HTMF. Although

the convergence behavior of an algorithm is often affected by several factors, such as

the assumptions made in the model and the methods for initialization (Chi et al. 2019),

it is still crucial to analyze the convergence behavior of the algorithm with theoretical

guarantees. Thus, a potential direction for advancing this study is to investigate whether

theoretical performance guarantees can be derived under certain assumptions and specific

initialization schemes.
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