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Abstract A new heuristic optimization algorithm is presented based on an analogy with the physical 
phenomenon of a projectile launched in a conformational space under the influence of a gravitational force. Its 
implementation simplicity and the option to enhance it with local search methods make it ideal for the 
optimization of non-linear systems of equations. The algorithm is applied to standard test cases where it 
successfully recovered known optima and discovered new ones. Suggestions for future development are made 
since the algorithm proved to be successful enough to warrant further investigation. 
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1   Introduction 
Heuristic optimization algorithms have been 
developed [1][2][3][4][5][6][7][8][9] to counter 
some of the drawbacks of traditional optimization 
techniques [10][11][12] like linear-programming 
(LP), non-linear programming (NLP) and dynamic 
programming (DP). These techniques have been 
used to solve problems in various fields of science 
and engineering where maximization and 
minimization of functions is required in order to 
achieve optimum operations and efficient designs. 
While a lot of work has been done in the case of 
local optimization very little progress has been 
observed in the case of global optimization 
especially in cases where convexity of the objective 
function cannot by established. The existence of 
local optima in objective functions adds to the 
difficulty of locating a global optimum. 
     Mathematically, global minimization 
(optimization) seeks a solution that minimizes a 
given objective function:  
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     A solution to this type of problems can 
effectively be handled at low-dimensional problems 
where rigorous methods based on interval analysis 
can be applied [13] [14] [15]. The situation changes 
dramatically as the number of dimensions increases 
were traditional techniques can only be applied to 

simple models that can only serve as abstract 
representation of the systems they represent. In 
addition solving equations that represent complex 
phenomena with traditional techniques involves 
converting these equations (mostly non-linear in 
form) in form (preferably linear) that can be 
manipulated by these techniques resulting many 
times in losses in the accuracy of the achieved 
solutions. Additional overhead in imposed due to 
our ignorance of an appropriate starting point (initial 
value) that could lead to local optima instead of 
global optima. 
     The challenge with any optimization algorithm is 
to avoid been trapped in local optima of the 
objective function. This issue can be aggravated in 
higher dimensions and especially when multiple 
local optima exist. The shape of the conformational 
space of the objective function is also a critical 
parameter that influences the ability of any method 
to overcome local optima and reach the global 
optimum. Methods that require the use of gradient or 
higher-order derivatives of the objective function 
suffer from exponential local convergence.  Another 
major issue is proving convergence to globally 
optimal solutions for any algorithm that will be 
expected to function in realistic conditions that 
involve high-dimensional problems. 
     To overcome the deficiencies and limitations of 
the traditional methods heuristic algorithms have 
been developed using most of the time analogies 
from the natural world (ant colony optimization, 
genetic algorithms, etc). In addition to the natural 
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world the physical world has been used as an 
inspiration to optimization methods with the most 
prominent example that of simulated annealing [16] 
The algorithm is based on an analogy of the physical 
annealing process where the temperature of a 
material is initial increased to follow a slow cooling 
so that the molecules of the material crystallize in 
optimum (compact) configurations. The major 
component that most of these algorithms introduce 
is that of randomness. Properly combined 
randomness and rules can accurately simulate a 
natural phenomenon and ensure eventual retrieval of 
the global extremum. Of course a major issue here is 
the execution time and computational cost of the 
developed heuristic. 
     In this paper an optimization algorithm will be 
presented that was inspired by the physical 
phenomenon of the motion of a projectile in the 
conformation space of the objective function under 
the influence of a gravitational force. The force 
always attracts objects towards lower potential states 
that correspond to minima of the objective function. 
For all purposes from now on we will be referring to 
function minimization. The rest of the paper is 
organized as follows. In the following paragraph a 
method will be presented that specifically target 
differentiable global optimization problems. This 
will be followed by a presentation of test cases 
where the method has been applied and the paper 
will end with conclusions and suggestions for future 
research. 
 
 
2.   Physical Model of Projectile Flight 
It is know from classical mechanics that all objects 
in nature try and reach an equilibrium state of lowest 
energy. To illustrate the point if an object of mass m 
was left to free fall (Figure 1) from a point A at 
height h in a gravitational field of strength g it will 
eventually rest (excluding at the moment collision 
effects with the surface) in the lowest point it can 
reach - point B. By analogy if the surface represents 
the objective function and the free falling object is a 
probe of unitary mass we will expect that the probe 
eventually will reach the local minimum at B. 
     This approach will easily be able to locate the 
local minimum in the area of the initial point A but 
it needs to be modified in order to avoid being 
trapped in the minima it reaches so it can increase 
the chances of exploring other areas of the 
conformation space of the objective function. One 
way to avoid being trapped in local minima is to 
assume elastic collisions with the objective function 
surface and a big enough initial height to provide the 

required energy to overcome the maxima around the 
initial point A. 
 

 
 
Figure 1. Two dimensional case of an object’s 
free fall in a gravitational field 
 
     In the physical world situation the total energy 
of the mass m in a gravitational field of constant 
strength is the always the sum of its kinetic and 
dynamic energy. Assuming elastic collisions with 
the surface (no loss of energy during collision) the 
total energy will always remain the same. With 
Figure 1 in mind the total energy ET at point A is 
only dynamic energy ET =ED=mgh while at point B 
the object has both dynamic and kinetic 
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where v is the velocity of the object at point B. At 
the lowest point M (global minimum) the object will 
have only kinetic energy.  
     The assumption that the collision of the object 
with the surface is elastic eliminates any energy 
losses and ensures the object has enough energy to 
bounce around the conformational space for ever or 
in our case until and desired minimum (global 
minimum) is reached. The only requirement is that 
the initial height h of the object should be higher 
that the maximum point C of the objective function 
in the area of the initial point we are interested in 
locating the “global” minimum D ( Chh > ). 

Obviously if we were to search larger spaces we 
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need to ensure that the initial height H will be higher 
than the highest surface point N ( NhH > ). 

 

 
 
Figure 2. Vector analysis of motion variables in 
two dimensions 
 
     To develop the formulas that will model the 
phenomenon we need to work out the equations of 
motion and the collision equations. For the two 
dimensional case (Figure 2) the equations of motion 
that show the displacement and velocity of the 
object after time t for the horizontal axis x’x and the 
normal axis y’y have as follows:  
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Figure 3. Vector analysis of velocity before and 
after collision 
 
     By applying the theorem of conservation of 
momentum for the collision at a point B (Figure 3)  

for an x’x axis parallel to the collision surface and a 
y’y axis we have: 

yy

xx

vvyy

vvxx

−=

=

':'

':'
 

A necessary step that also posses the major 
computational challenge for the method is the 
calculation of the collision angle that in essence 
requires the calculation of the derivative of the 
objective function at the collision point.  
     While the above equations describe the two-
dimensional case they can easily be expanded to 
describe the phenomenon in higher dimensions. A 
pictorial depiction of a hypothetical trajectory in 
three dimensions is shown in Figure 4. 
 

 
 
Figure 4. Object trajectory in 3D space  
 
 
3.   Computational Model of Projectile 
Flight 
Developing the computational algorithm that 
implements the physical model is a straightforward 
operation. The steps of the algorithm can be briefed 
as follows: 
 
Step 1. Random selection of initial point within the 
boundaries of the conformational space 
 
Step 2. Identify collision point on the objective 
function surface and apply elastic collision rules 
 
Step 3. Repeat the following until a collision occurs: 
Step 3.1. Calculate the position after time t 
(increment by a standard time interval Δt) 
Step3.2 Calculate the energy (objective function) at 
the position and compare with the lower found 
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value. If current value lower than minimum value 
the update minimum 
Step3.3 If the new height of the object is smaller 
than the height of the surface then a collision 
happens 
 
Step 4. Go to step 2 and repeat until the maximum 
number of execution time is reached 
 
Step 5. Report global minimum 
 
Different positions of the object in a three 
dimensional example can be seen in Figure 4. 
 
 
3.1   Variations of Computational Model 
     Given the simplicity of the method variations can 
be easily developed. Some of them will be described 
now. A very important assumption in the previous 
physical and computational representation was that 
the collision of the moving object with the objective 
function surface was an elastic collision with no loss 
of energy. In the physical world though, that is 
rarely the case. Surfaces and objects are not ideal so 
we always observe losses of energy. Figure 5 depicts 
such a situation. While this process might be ideal 
for local optimization since it will accelerate the 
time it takes for the object to reach its “local” 
minimum energy state (the case will be treated in a 
follow up publication) it is unlikely to help in 
reaching the global minimum. 
 

 
 
Figure 5. Object trajectory with friction between 
object and surface 

     Another observation from the physical world 
might serve as a more appropriate inspiration for the 
case of global minimization. As anyone who has 
observed the free fall of an object knows, it is 
usually followed by a breakdown of the object 
during collision. This can be easily transferred 
computationally by simulating the object explosion 
during impact with the objective function surface. 
Figure 6 depicts such a situation where the object 
breaks in 5 fragments. One of the fragments follows 
the trajectory that the original object would follow 
while the other four scatter in random directions. 
This way we preserve the initial physical model 
while at the same time we explore the area in the 
vicinity of the explosion with the smaller fragments. 
This operation can be successfully implemented in 
cases when parallel execution on different CPUs is 
allowed. 
 

 
 
Figure 6. Fragment creation at impact point 
 
3.2   A Combined Optimization Approach to 
Projectile Flight Simulation 
Many times in optimization problems we can 
combine various methods in a complimentary 
fashion [17]. For instance a global optimization 
method can organize the selection of “random” 
points in the conformational space while a local 
optimization method locates the local minimum near 
each point. This way an exploration of the whole 
space is ensured by the global method while the 
more reliable local method handles the local features 
of the space. The projectile flight simulation 
heuristic can easily be combined with local 
optimization methods. 
 
     In Figure 7 a situation is depicted where the 
projectile method acts as an iterative master process 
that selects points (collision points) in the 
conformation space of the objective function. A 
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lower-level method that in this case is a simple 
gradient descent method takes over at those points 
and locates the nearest minimum. This way the high-
level projectile method ensures the probe object can 
escape local maxima end eventually retrieve more 
local minima in the hope of retrieving the global 
minimum. In essence the global method allows 
worsening moves (similar to biases introduced by 
other heuristic methods) that could lead to better 
global minima. 
 

 
 
Figure 7. Applying gradient descent methods at 
impact points 
 
 
4.   Test Cases 
To illustrate the effectiveness of the proposed 
method a set of standards problems from Floudas 
and Pardalos, 1999 [18] was selected. The results 
are reported bellow. All tests were run on a desktop 
PC workstation with Pentium IV processor at 1GHz 
and 2Gb of memory running Slackware Linux. 
Since at the present time the effectiveness of the 
method in retrieving minima was important its 
efficiency with respect to time was not considered as 
all tests were allowed a 24 hour period to execute. 
All the variations described in the previous section 
were implemented and tested. 
 
Test Problem 1: Himmelblau function (Reklaitis and 
Ragsdell, 1983 [19])  
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Out of the nine known solutions [18] the method 
retrieved eight while an additional new one (3.3852 
,0.0739) was observed. 
 
Test Problem 2: Equilibrium Combustion (Meintjes 
and Morgan, 1990 
[20])
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The only known solution [18] was not retrieved by 
the method but a new one (0.0009264  0.0812761 
0.0510900 0.9990687 0.0001341) was observed and 
three other could easily be considered valid 
candidates. 
 
Test Problem 3: (Bullard and Biegler, 1991 [21]) 
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The only known solution [18] was retrieved and an 
additional new on (0.00001,11.47691) was 
observed. 
 
Test Problem 4: (Ferraris and Tronconi, 1986 [22]) 
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Both know solutions [18] were retrieved. 
 
Test Problem 5: (Kearfott and Novoa, 1990 

[23])
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One of the two known solutions [18] was retrieved 
while three new ones 
(0.954,0.954,0.978,0.960,1.189), 
(0.952,0.922,0.912,0.923,1.362) and 
(0.936,0.949,0.937,0.969,1.259) were observed. 
Further investigation is required to confirm whether 
these three solutions are different or they refer to the 
same local minimum. 

 
 
5.   Conclusions and Discussion 
In this paper we have presented a new global 
optimization method that simulates the motion of a 
projectile in a gravitational field of constant 
strength. A probe object is released in the 
conformational space of the objective function and 
its motion eventually leads to the discovery of local 
and global minima. Many alternatives can be 
implemented based on the availability of 
computational resources and the problem at hand.  
As seen in the previous paragraphs the algorithm is 
easy to describe and implement, whether on a single 
machine, or in a parallel architecture where 
execution threads can be assigned to difference 
processors. 
     Since convergence does not imply efficiency, the 
practical efficiency of the algorithm was tested by 
computational experiments. The observed results 
indicate that the method greatly contributes in the 
discovery of solutions to non-linear systems of 
equations. A necessary condition for the application 
of the method is the existence and computability of 
the derivatives of the objective function. In addition 

familiarity with the conformational space will be 
advantageous if we are to efficiently apply the 
algorithm. Sharp valleys and mountain tops will 
require greater initial heights than smoother surfaces 
(objective functions). 
     Unfortunate situations where the object can be 
trapped in repeating the same trajectory can happen 
when the collision (critical point) angle between the 
velocity of the object and the tangent to the surface 
is 90 degrees. In such cases the object will reverse 
its velocity and follow it up to the collision point 
trajectory in reverse entering an infinite loop of back 
and forth between its original free fall point and the 
critical collision point. 
     Future work will focus on the modification of the 
algorithm to successfully adapt the search to the 
problem’s landscape as it executes and improve its 
effectiveness on a wide category of problems. This 
way the algorithm will not anymore be blind, in the 
sense that it will use its current status to modify its 
search behavior. The modification will be done 
according to stagnation or progress encountered 
during search. A new initial height will be 
established based on the previous information. 
Additional experimentations that increase the 
randomness of the method will be explored like for 
example the introduction of wind that will drift the 
object in random directions 
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