Machine Learning for Optimization-Based
Separation: the Case of Mixed-Integer Rounding
Cuts

Oscar Guaje'”, Arnaud Deza', Aleksandr M. Kazachkov?,
Elias B. Khalil'

!Department of Mechanical & Industrial Engineering, University of
Toronto, Toronto, ON, Canada.
?Department of Industrial & Systems Engineering, University of Florida,
Gainesville, FL, USA.

*Corresponding author(s). E-mail(s): o.guaje@mail.utoronto.ca;
Contributing authors: arnaud.deza@mail.utoronto.ca;
akazachkov@Qufl.edu; khalil@mie.utoron.ca;

Abstract

Mixed-Integer Rounding (MIR) cuts are effective at improving the dual bound
in Mixed-Integer Linear Programming (MIP). However, in practice, MIR cuts
are separated heuristically rather than using optimization as the latter is pro-
hibitively expensive. We present a hybrid cut generation framework in which we
train a Machine Learning (ML) model to inform cut generation for a family of
similar instances. Our framework solves a MIP-based separation problem to gen-
erate high-quality MIR cuts, then learns to identify useful constraints that led
to these effective cuts. At test time, the predictions of the ML model allow us to
solve a reduced MIP-based separation problem. We present computational results
for this approach on datasets of randomly perturbed MIPLIB2017 instances.

Keywords: Integer Programming, Machine Learning, Cutting Planes

1 Introduction

Cutting planes are a critical component of Mixed-Integer Linear Programming (MIP)
solvers. There are many families of cutting planes whose mathematical properties

have been studied extensively and their effectiveness analyzed both in theory and
practice. One stream of research has explored the use of optimization for the cut
separation problem [1-4]. For example, for Mixed-Integer Rounding (MIR) cuts [5,
6], the family of interest in this work, a cut is obtained by a weighted aggregation
of a subset of constraints, followed by appropriate rounding of the resulting base
inequality’s coefficients. While finding cuts that maximally separate the vertex of
interest seems like a sensible choice, optimization-based separators are seldom used in
practice due to their prohibitive computational cost. Instead, MIP solvers often rely
on computationally inexpensive heuristics to generate cuts [7, 8.

In this work, we ask the following question: assuming access to samples of a distri-
bution of similar MIP instances, can one learn useful constraint selection models from
an expensive optimization-based separator for MIR cuts? Our work aims to test two
hypotheses: (i) information about effective cutting planes for a distribution of MIP
instances can inform the separation of cutting planes for similar but previously unseen
MIP instances; (ii) an optimization-based separator can be accelerated by carefully
fixing to zero some of its decision variables, i.e., eliminating some constraints from
consideration, at little sacrifice to the dual bound improvement obtained by the orig-
inal separator. Our approach can be seen as a hybrid of Machine Learning (ML) and
MIP: an ML model accelerates a MIP-based separator.

To that end, we frame the ML problem as one of supervised binary classification of
constraints. We opt for an experimental design that uses a few MIPLIB2017 instances
that have non-trivial integrality gaps. Each of these MIPLIB2017 instances is the basis
for an entire dataset obtained by randomizing the objective function coefficients to
find a large number of different initial fractional solutions that need to be cut off.
The MIP-based separator of Dash et al. [4] is executed for a number of rounds on
each training instance from the randomized set of instances, and binary “labels” are
assigned to each constraint depending on whether it was selected to generate a good
MIR cut or not. Given a MIP instance, a fractional vertex to be separated, and a
particular constraint, we devise and compute a set of 54 features that contextualize
the relationship between that constraint and the vertex, as well as that constraint
and other constraints of the problem. The supervised learning problem is then one of
finding an accurate mapping from features to labels. Given an unseen test instance
(i.e., a different point to cut off), the trained ML classifier selects a subset of promising
constraints and MIP-based MIR separation is restricted only to those constraints. On
three MIPLIB2017-derived instance datasets, we show that learning such a classifier
is indeed possible and can result in favorable performance compared to running the
separator with all constraints.

2 Related Work

In recent years, ML techniques have been used to enhance optimization solvers to
great success. In the context of general-purpose MIP solvers, ML has been used to
design branching strategies [9], and to decide when and which heuristics to run [10].
As for cutting planes, most work has been on selecting which cuts to add from a
pool of cuts [11-13], while a more recent paper has tackled the problem of deciding

whether to generate cuts only at the root node of the B&B tree. Balcan et al. [14]
study the sample complexity of learning Chvétal-Gomory (CG) constraint aggregation
coefficients. Lower bounds are derived for the number of instances on the same set of
variables and constraints with randomly varying constraint matrices and right-hand
side vectors that must be observed to accurately estimate the expected search tree
size resulting from adding cuts that use a specific set of CG coefficients. As for ML for
cut generation, Dragotto et al. [15] present a cutting plane algorithm that generates
split cuts based on a disjunction given by the output of a neural network. A more
comprehensive survey of ML for cuts literature was recently completed by Deza and
Khalil [16]. We note that ML-based approaches have also been used to exploit problem
structures and accelerate the solving process for specific classes of problems [17, 18].

3 Methodology
3.1 Separation of MIR cuts

Consider a MIP problem over integer variables x and continuous variables v:

min{fTe+g™v:Cv+ Ax =0b, xz,v >0,z € Z", v € RP}. (1)

A Mixed-Integer Rounding (MIR) cut is an inequality of the form
c+v+dx+3dx2/3’(5+1),

where ¢t > \C, ¢t >0, a+a > MA, f+B < \b,ac Z", B € Z,0 < @&, B3 < 1 for some
vector A [4]. The vector A can be interpreted as a set of multipliers that aggregate the
constraints of the MIP problem into a single inequality. MIR, cuts have been shown to
be effective in strengthening the linear relaxation of MIP [6, 7]. However, as there are
infinitely many aggregation vectors A, each of which would result in a valid cut, finding
the “best” cut to add is a non-trivial task. One approach to computing a “good” MIR,
cut is to formulate a MIP to find an aggregation vector that maximizes some measure
of violation of a cut by a fractional solution. Given a MIP instance and a fractional
solution (x*,v*), Dash et al. [4] propose the following MIP, referred to as MIR-Sep,
to obtain the MIR cut most violated by (a*,v*):

max Z exAg — (ctv* + az*) (2a)
KEK

st ¢t >AC (2b)

d+a> A (2)

B+B<Ab (2d)

ct>0 (2e)

0<a<1 (2f)

0<f<1 (28)

w

keK
=(B+1)—az* (2i)
A <A Vke K (2j)
A < Vke K (2k)
7 e {0,1}¥l (21)
aez" (2m)
B e (2n)

Since computing the violation of an MIR cut would yield a nonlinear model, this
model is an approximation that underestimates the violation € of a cut, by assuming it
to be a number representable over a set £ = {g, = 27% : k € K}. Any feasible solution
to MIR-Sep can be used to compute an MIR cut to add to the linear relaxation of the
problem. The reader is referred to [4] for a more complete account of this model.

What is of interest to us here is that MIR cuts empirically close large gaps and
can be separated exactly via a MIP. As cut separation is most useful at the root
node of a branch-and-bound tree, the de facto procedure for MIP solving, it is rather
impractical to solve another complex separation MIP to facilitate solving the original
MIP instance. However, since the number of variables in MIR-Sep depends on the
number of constraints in the original MIP, a straightforward way to reduce MIR-Sep’s
computational cost is to reduce the number of constraints to aggregate (i.e., fix some
entries of the vector A to zero a priori). This is what we will attempt to do by training
an ML classifier that identifies disposable constraints.

3.2 Populating a Pool of Cuts

Given a fractional point, MIR-Sep finds the most violated MIR cut. However, vio-
lation is only one cut quality metric (see [19] for more), and the most violated
cut does not necessarily close the most gap. The gap closed is defined in [1, 2] as

GapClosed = 100 (%), where z7, 21, p, and z represent the optimal objective val-
ues of the original MIP instance, its LP relaxation, and the LP relaxation with added
cuts, respectively. Then, to increase the chance of obtaining MIR cuts with large gap
closed via MIR-Sep, we use the fact that any feasible solution to MIR-Sep gives a valid
cut, and populate a pool of cuts using the off-the-shelf capability of modern solvers to
collect multiple feasible solutions to a MIP. These suboptimal (for MIR-Sep) cuts may
result in a larger gap closed than the most violated cut. Similarly to the approach in
[2] and [4], we populate the cut pool with all the incumbent solutions that the solver
finds while solving MIR-Sep, add all the cuts in the pool to the linear relaxation, get
a new fractional solution to separate, and repeat this procedure iteratively until MIR-
Sep is unable to find a separating cut. Algorithm 1 describes the complete cutting
loop; lines 8 and 9 are skipped when the classification model is not used, resulting in
the “full” separator that operates on all constraints.

Algorithm 1: Cutting loop (optionally with ML)

Input: An ML model ¢ (optional)
A MIP instance P in the form (1)
1 LP + The LP relaxation of the input instance
(z*,v*) < Solve(LP)
cutting < true
2 while cutting do

3 if 2* € Z" then

4 ‘ cutting < false

5 else

6 featuresc < get_features(P, z*,v*)

7 A+ ((featuresc) ; /* A are constraints (predicts to be

useful */

8 C < Solve MIR-Sep(z*,v*, A) ; /* C is a set of cuts */
9 if C =0 then

10 ‘ cutting < false

11 else

12 LP+ LPUC; /* Add cuts to LP */
13 (z,0) < Solve(LP)

14 if (z,0) = (z*,v*) then

15 ‘ cutting <— false

16 else

17 | (@*,0%) < (&,0)

18 end

19 end
20 end
21 end

3.3 Learning for MIR cuts
3.3.1 Data Generation

To conduct supervised learning, one must assume access to a sample over a distribu-
tion of similar MIP instances. While these may be available in a variety of application
domains or through synthetic generators for specific families of combinatorial prob-
lems, we have opted to generate perturbations of instances from the MIPLIB2017
library of benchmark MIP instances [20]. We will now detail that generation process.

Consider a MIP instance P in the form (1) and let d = [f; g] be the vector
containing all the cost coeflicients. If the original MIP instance contains inequality
constraints, we explicitly add continuous slack variables, and we add variable upper
bounds as rows of the constraint matrix. We generate a new instance P : min{ fTz +
g7w:Cv+ Az = b,x € Z™,v € RP z,v > 0} such that the optimal solution to the
linear relaxation of P and P are different by generating random vectors f and g.
Let d*) and d(~) be the positive and negative components of d, respectively; then
d) = min{0, u}, where u is a random number drawn from a normal distribution with

mean g+ and standard deviation o4+); and d) = max{0, u}, where u is a random
number drawn from a normal distribution with mean p,—) and standard deviation
Tq(-)-

We can repeat this procedure an arbitrary number of times until we populate a set
P of instances. We denote as P the instance family generated from P. Note that MIR-
Sep for any pair of variations P;, P; € P only differs in the objective function (2a) and
in constraint (2i). Now, as per Algorithm 1, for every instance P € P, we solve its
linear relaxation to obtain a fractional solution (z*,v*)?. We then solve MIR-Sep to
obtain a set of MIR cuts that we add to the linear relaxation to obtain a new solution
(x*,v*)L. If this solution is fractional, we update MIR-Sep and solve it to obtain a new
set of cuts. We repeat this procedure until we find a feasible solution to the original
MIP instance, or MIR-Sep cannot find a cut that separates the last fractional solution.
For simplicity, we consider only rank-1 cuts, so the only difference between MIR-Sep
for rounds ¢ and i 4 1 is the objective function (2a) and constraint (2i). Finally, after
each run of MIR-Sep, we record the multiplier vector A for each cut in the solution
pool.

3.3.2 Classification Models

To test both our hypotheses, we train an ML model that uses information about a
MIP instance and a fractional solution and predicts a subset of constraints that will
be useful in generating MIR cuts. Each observation in our dataset corresponds to a
constraint of a variation P and a round of separation, e.g., for a set of variations P
with [P| = 10, constructed from a base instance P with 5 constraints, for which the
cutting loop did 2 rounds, the dataset would have 10 x 5 x 2 = 100 observations. We
constructed a set of features based on previous work on ML for MIP [9], and on mea-
sures that are traditionally used to score cuts [19], which we describe in Table 1. These
features describe the instance itself (e.g., through statistics of the cost coefficients),
the constraint itself (e.g., the right-hand side value b;), and the relationship between
the fractional point of interest and the constraint (e.g., the value of the correspond-
ing slack variable, the distance between the constraint’s hyperplane and the point).
This results in a set of 54 features that will serve as input to the binary classification
model. In Algorithm 1, the features are computed in line 8.

As for the labels, the observation corresponding to constraint j on any round is
assigned a positive label if |\;| > € for any cut in the cut pool of that round of
separation, and a negative label otherwise. This gives us a dataset that can be used
for the traditional binary classification task in ML.

3.4 Solving a Reduced Separator

We can use the output of the ML model to predict which constraints will be useful
to generate MIR cuts. Then, at each iteration of the cutting loop in Algorithm 1,
we compute the features for the current fractional solution on line 8, and use the
ML model to classify each constraint on line 9. We use the predicted class for each
constraint to update MIR-Sep and fix A; = 0 for those constraints that the ML model
classified in the negative class.

Table 1 Features for the " constraint Cjv+ Ajxz = b; and a fractional solution (z*,v*) of a MIP.

Feature Description Count
Right-hand side (RHS) The raw value of b; and a categorical feature if it is non-zero 2
Slack The raw value of the slack variable and a categorical feature 2
if it is non-zero
Dual The value of the dual variable in the optimal LP solution 1
Degree The number of variables with non-zero coefficients in the 3
constraint: considering all the variables, only the variables
that are nonzero at (z*,v*), only the variables that are zero
at (z*,v*), and only the variables that are at their upper
bound at (z*,v*)
Sense One-hot encoding of the sense of the constraint 2
Stats of the coefficients Mean, standard deviation, minimum, and maximum of the 16
coefficients: considering all the variables, only the variables
that are nonzero at (z*,v*), only the variables that are zero
at (z*,v*), and only the variables that are at their upper
bound at (z*,v*)
Stats of the ratios Mean, standard deviation, minimum, and maximum of the 16
ratios between the coefficients and the RHS: considering all
the variables, only the variables that are nonzero at (z*,v*),
only the variables that are zero at (z*,v*), and only the
variables that are at their upper bound at (z*,v*)
Euclidean distance to (z*,v*) From [19]. 1
Relative violation From [19]. 1
Adjusted distance to (z*,v*) From [19]. 1
Objective function parallelism From [19]. 1
Stats of the cost vector Mean, standard deviation, minimum, and maximum of the 4

cost coefficients of the variables with non-zero coefficients in

the constraint.

‘We normalize the absolute value of the cost vector, and com- 4
pute the number of variables on the top 1, 5, 10, and 20%

of the costs that appear with non zero coefficient in the con-

straint.

Total count 54

4 Experimental Results

4.1 Setup and Model Training

To evaluate the impact of a set of cuts, we use the percentage of gap closed as defined
in Section 3.2. We implemented the pipeline described above and tested it on instance
families derived from three instances in the benchmark set of MIPLIB2017 [20]:
binkar10_1, genip0054, and neos5.

These three “base instances” were selected out of 37 MIPLIB2017 “Benchmark”
instances for which two conditions are satisfied: (1) random perturbations of the
objective function coeflicients lead to 1,000 distinct LP relaxation optima; (2) Algo-
rithm 1 closes at least 5% gap on average across the random variations. The three base
instances used here were selected on the basis of diversity. As can be seen in Table 2,
binkar10_1 and neosb are mixed-integer whereas genip0054 is pure; binkar10_1 has
more than 2,000 variables and 1,000 constraints, whereas the two other base instances
are smaller. While additional MIPLIB2017-based datasets could be considered for
experimentation, we note that for each of the 1,000 instances, the cut generation loop
of Algorithm 1 runs for up to three hours. As we compare the full and reduced separa-
tors on each instance, this necessitates thousands of CPU hours (or roughly one CPU

year) per dataset. We conducted what we believe is a sufficient amount of experiments
within the computational resources available to us.

For each instance family, we ran Algorithm 1 on 1,000 variations, and set the
time limit to 10 minutes for each individual run of MIR-SEP, and three hours for
all the cutting loop. After running the cutting loop, we discarded (for the first set of
experiments that will be discussed next) perturbed instances that had less than 5%
gap closed, and split the rest into training and test sets for machine learning. Table 2
shows the number of variables/constraints and perturbations in each of the training
and test sets for the three instance families.

Table 2 Descriptive statistics for the three instance sets.

Instance set Constraints Continuous vars. Integer vars. Training Test

binkar10_1 1026 2128 170 478 120
genip0054 27 0 30 416 104
neos5 63 10 53 611 153

For each instance set, we used the corresponding training data to fit a gradient-
boosted tree ensemble using sklearn’s [21] implementation with default hyperparam-
eters except for increasing the maximum tree depth from 3 to 5. Table 3 shows that
the trained models are fairly accurate as measured by the raw accuracy, the preci-
sion (fraction of constraints predicted to be useful that are labeled as useful), and the
recall (fraction of constraints labeled as useful that are predicted to be useful) on the
training set.

Table 3 Classification performance of the
trained classifiers on the training set.

Instance set Accuracy Precision Recall

binkar10_1 0.819 0.786 0.928
genip0054 0.878 0.839 0.778
neosb 0.940 0.776 0.820

4.2 Reducing the Separation Problem using the ML Classifier

We next use the output of the ML models to reduce the MIR-Sep problem on each
round of separation. Since we know a priori that the reduced separator closes more
than 5% gap in these variations, this is a more favorable comparison for the full
separator. Figures 1, 3 and 5 show the behavior of our approach for each instance
family. The subplots on the left- and right-hand sides show the train and test instances,
respectively. The subplots on the top show the gap closed with respect to the number
of rounds of separation, and the subplots at the bottom show the number of instance
variations for which the cutting loop had not terminated at each round.

binkarl0_1

Train instances Test instances
30 30
25 25
§ 20 20
D
2 15 15
C
210 10
Q
5 5
0 0
$ 102 102
(9]
c
]
(%]
=
£ 10! 10!
=]
10° ||| Hin - 10° |||||| H Hu

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

mmm Full separator mmm Reduced separator

Fig. 1 Behavior on base instance binkar10_1. Only variations where the full separator produces
more than 5% gap closed were considered. The horizontal axis represents the round of separation.
On the top plots the vertical axis represents gap closed, with the lines showing the mean gap closed,
and the error bars showing its standard deviation. On the bottom plots the vertical axis represents
the number of variations that made it to each round.

Recall that to construct our datasets so far, we discarded some instance variations
for which the total gap closed by running the cutting loop with the full separator was
less than 5%. We ran the cutting loop with the reduced separator on these instances.
Figures 2, 4 and 6 show the average gap closed and the number of instances that had
not terminated after each round of the cutting loop for only these discarded variations.

4.2.1 Instance family binkar10_1

Figure 1 shows the results for instance family binkar10_1. The gap closed by both
separators on the train instances behaves similarly in earlier rounds. However, the

binkarl0_1

25
20
15

10

Gap closed (%)

e

0 5 10 15 20 25 30 35 40 45 50

—— Full —— Reduced

N

10

T

10

Num. Instances

=)

10

Fig. 2 Behavior on base instance binkar10_1. Only variations where the full separator produces less
than 5% gap closed were considered. The horizontal axis represents the round of separation. On the
top plot the vertical axis represents gap closed, with the lines showing the mean gap closed, and the
error bars showing its standard deviation. On the bottom plot the vertical axes represent the number
of variations that made it to each round.

cutting loop terminates sooner when using the reduced separator, which results in less
gap closed by the end of the cutting loop. As for the test set, the reduced separator
still terminates after fewer rounds, but the gap closed is larger on average.

On the second experiment, shown in figure 2, the reduced separator outperformed
the full separator for all variations, and the cutting loop terminated in fewer rounds.

4.2.2 Instance family gen-ip054

Figure 3 shows the results for instance family gen-ip054. The behavior of both sep-
arators is fairly similar. On the test set, the cutting loop for the reduced separator

10

100

80

60

40

Gap closed (%)

20

o
e

1

Num. Instances

(=)
©

1

gen-ip054

Train instances

10
1
“hhh. 1
0 5 10 15

100

80

60

40

20

N

o
-

o
=)

Test instances

"“““““““““““nhL
0 5 10 15

mmm Full separator mmm Reduced separator

Fig. 3 Behavior on base instance gen-ip054. Only variations where the full separator produces more
than 5% gap closed were considered. The horizontal axis represents the round of separation. On the
top plots the vertical axis represents gap closed, with the lines showing the mean gap closed, and
the error bars showing its standard deviation. On the bottom plots the vertical axis represents the
number of variations that made it to each round.

terminates after fewer iterations in most cases. However, on the instances that do not
terminate early, the full separator closes more gap.

11

gen-ip054

120
100
80
60
40

20

Gap closed (%)

o
,_.

1

Num. Instances

o
o

1

0 5 10 1

—— Full —— Reduced

5

Fig. 4 Behavior on base instance gen-ip054. Only variations where the full separator produces less
than 5% gap closed were considered. The horizontal axis represents the round of separation. On the
top plot the vertical axis represents gap closed, with the lines showing the mean gap closed, and the
error bars showing its standard deviation. On the bottom plot the vertical axis represents the number
of variations that made it to each round.

On the second experiment, shown in figure 4, the reduced separator again outper-
formed the full separator for all instances and notably closed up to 100% of the gap
for some instance variations.

4.2.3 Instance family neos5

Finally, Figures 5 and 6 show our results for instance family neos5. In both exper-
iments the reduced separator consistently outperforms the full separator, and closes
up to 100% of the gap for some of the variations in the second experiment.

12

100

80

60

40

Gap closed (%)

20

10?2

Num. Instances

=]

10

neos5

Train instances

0

40

20

102

‘|||| | ‘ |
III|III1
5 10

01
00

Test instances

0 5 10

B Full separator W Reduced separator

Fig. 5 Behavior on base instance neos5. Only variations where the full separator produces more
than 5% gap closed were considered. The horizontal axis represents the round of separation. On the
top plots the vertical axis represents gap closed, with the lines showing the mean gap closed, and
the error bars showing its standard deviation. On the bottom plots the vertical axis represents the
number of variations that made it to each round.

13

neos5

100

80

60

40

Gap closed (%)

20

102

10!

Num. Instances

o

10

0 5

— Full —— Reduced

Fig. 6 Behavior on base instance neos5. Only variations where the full separator produces less than
5% gap closed were considered. The horizontal axis represents the round of separation. On the top
plot the vertical axis represents gap closed, with the lines showing the mean gap closed, and the error
bars showing its standard deviation. On the bottom plot the vertical axis represents the number of
variations that made it to each round.

14

4.2.4 Takeaways

Takeaway 1: Figures 1, 3 and 5 show that the reduced separator tracks the full
separator reasonably well on both training and test instances. Importantly, these
instances are ones for which we know that the full separator closes at least 5% of the
gap. Since the ML model at best imitates the cuts produced by the full separator
on the training instances, it is not surprising that the performance of the reduced
separator is upper bounded by that of the full separator.

Takeaway 2: These results are especially promising, as they show the potential for
incorporating ML into optimization-based separators. When optimizing purely for
violation, the total gap closed by the full separator is negligible, but when using the
information learned by the ML models, the (reduced) separator is able to correct for
that and generate cuts that close much of the gap, the true goal in cut generation.

5 Conclusion

We have demonstrated that a rather simple binary classification formulation for the
problem of reducing the set of constraints that are considered by an optimization-based
cut separator is promising. While more sophisticated ML models such as graph neural
networks or Transformers could be used instead of a gradient-boosted tree ensemble,
we have chosen the latter for its simplicity in terms of fitting and amount of training
data it requires. We are yet to achieve a significant improvement in the running time
of the reduced MIR separator as compared to the full separator. We believe this to be
an important step towards operationalizing this hybrid approach. Although we have
considered only three MIPLIB2017-derived instance datasets, we note that generating
the training data and evaluating both the full and reduced separators on the training
and test instances required hundreds of CPU days in computation. Expanding the
experiments to more instance sets both from MIPLIB2017 and other more structured
problem classes is of immediate interest.

References

[1] Fischetti, M., Lodi, A.: Optimizing over the first Chvéatal closure. Math. Program.
110(1), 3-20 (2007)

[2] Bonami, P., Cornuéjols, G., Dash, S., Fischetti, M., Lodi, A.: Projected Chvétal—
Gomory cuts for mixed integer linear programs. Mathematical Programming,
Series A 113(2), 241-257 (2008)

[3] Balas, E., Saxena, A.: Optimizing over the split closure. Mathematical Program-
ming 113 (2008) https://doi.org/10.1007 /s10107-006-0049-5

[4] Dash, S., Glinliik, O., Lodi, A.: MIR closures of polyhedral sets. Math. Program.
121(1), 33-60 (2010)

15

https://doi.org/10.1007/s10107-006-0049-5

[5]

[10]

[11]

Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization vol. 55.
John Wiley & Sons, New York (1999)

Marchand, H., Wolsey, L.A.: Aggregation and mixed integer rounding to solve
MIPs. Operations Research 49(3), 363-371 (2001)

Achterberg, T.: Constraint integer programming. Doctoral thesis, Technische
Universitdt Berlin, Fakultdt II - Mathematik und Naturwissenschaften, Berlin
(2007). https://doi.org/10.14279/depositonce-1634 . http://dx.doi.org/10.14279/
depositonce-1634

Lodi, A.: The Heuristic (Dark) Side of MIP Solvers, pp. 273-284. Springer, Berlin,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-30671-6_10 . https://doi.
org/10.1007/978-3-642-30671-6_10

Khalil, E., Le Bodic, P., Song, L., Nemhauser, G., Dilkina, B.: Learning to branch
in mixed integer programming. Proceedings of the AAATI Conference on Artificial
Intelligence 30(1) (2016) https://doi.org/10.1609/aaai.v30i1.10080

Chmiela, A., Khalil, E., Gleixner, A., Lodi, A., Pokutta, S.: Learning to sched-
ule heuristics in branch and bound. Advances in Neural Information Processing
Systems 34, 24235-24246 (2021)

Huang, Z., Wang, K., Liu, F., Zhen, H.-L., Zhang, W., Yuan, M., Hao, J., Yu,
Y., Wang, J.: Learning to select cuts for efficient mixed-integer programming.
Pattern Recognition 123, 108353 (2022)

Tang, Y., Agrawal, S., Faenza, Y.: Reinforcement learning for integer program-
ming: Learning to cut. In: International Conference on Machine Learning, pp.
9367-9376 (2020). PMLR

Turner, M., Koch, T., Serrano, F., Winkler, M.: Adaptive Cut Selection in Mixed-
Integer Linear Programming. Open Journal of Mathematical Optimization 4,
1-28 (2023) https://doi.org/10.5802/0jmo.25

Balcan, M.-F.F., Prasad, S., Sandholm, T., Vitercik, E.: Sample complexity of tree
search configuration: Cutting planes and beyond. Advances in Neural Information
Processing Systems 34, 4015-4027 (2021)

Dragotto, G., Clarke, S., Fisac, J.F., Stellato, B.: Differentiable Cutting-plane
Layers for Mixed-integer Linear Optimization (2023). https://arxiv.org/abs/
2311.03350

Deza, A., Khalil, E.B.: Machine learning for cutting planes in integer pro-

gramming: a survey. In: Proceedings of the Thirty-Second International Joint
Conference on Artificial Intelligence, pp. 6592-6600 (2023)

16

https://doi.org/10.14279/depositonce-1634
http://dx.doi.org/10.14279/depositonce-1634
http://dx.doi.org/10.14279/depositonce-1634
https://doi.org/10.1007/978-3-642-30671-6_10
https://doi.org/10.1007/978-3-642-30671-6_10
https://doi.org/10.1007/978-3-642-30671-6_10
https://doi.org/10.1609/aaai.v30i1.10080
https://doi.org/10.5802/ojmo.25
https://arxiv.org/abs/2311.03350
https://arxiv.org/abs/2311.03350

[17]

[18]

[19]

[20]

[21]

Larsen, E., Lachapelle, S., Bengio, Y., Frejinger, E., Lacoste-Julien, S., Lodi, A.:
Predicting tactical solutions to operational planning problems under imperfect
information. INFORMS Journal on Computing 34(1), 227-242 (2022)

Xavier, A.S., Qiu, F., Ahmed, S.: Learning to solve large-scale security-
constrained unit commitment problems. INFORMS Journal on Computing 33(2),
739-756 (2021) https:/ /doi.org/10.1287 /ijoc.2020.0976

Wesselmann, F., Suhl, U.H.: Implementing cutting plane management and
selection techniques. Technical report, University of Paderborn (2012)

Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T., Bastubbe, M., Berthold,
T., Christophel, P.M.,; Jarck, K., Koch, T., Linderoth, J., Liibbecke, M., Mit-
telmann, H.D., Ozyurt, D., Ralphs, T.K., Salvagnin, D., Shinano, Y.: MIPLIB
2017: Data-Driven Compilation of the 6th Mixed-Integer Programming Library.
Mathematical Programming Computation (2021)

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825-2830 (2011)

17

https://arxiv.org/abs/https://doi.org/10.1287/ijoc.2020.0976

	Introduction
	Related Work
	Methodology
	Separation of MIR cuts
	Populating a Pool of Cuts
	Learning for MIR cuts
	Data Generation
	Classification Models

	Solving a Reduced Separator

	Experimental Results
	Setup and Model Training
	Reducing the Separation Problem using the ML Classifier
	Instance family binkar10_1
	Instance family gen-ip054
	Instance family neos5
	Takeaways

	Conclusion

