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Abstract

In this work, we present an algorithm for computing an enclosure for multi-
objective mixed-integer nonconvex optimization problems. In contrast to existing
solvers for this type of problem, this algorithm is not based on a branch-and-
bound scheme but rather relies on a relax-and-refine approach. While this is an
established technique in single-objective optimization, several adaptions to the
multi-objective setting have to be made in order to exploit the full potential of this
idea. To that end, we propose an intensified individualization of the relaxations
to the respective parts in the image space resulting in a novel adaptive box-based
relaxation technique for nonconvex terms. We provide numerical tests for the
new algorithm that show both its strength and limitations.
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1 Introduction
Multi-objective mixed-integer optimization problems often arise in real-world applica-
tions due to their ability to respect conflicting objectives [17, 18, 28]. Unsurprisingly,
algorithmic treatment of linear as well as nonlinear versions of such problems has gained
a lot of attention recently; cf., e.g., [6, 14, 15, 23, 28, 34]. A general difficulty in solving
multi-objective optimization problems algorithmically is the presence of a potentially
infinite number of optimal (value) points [12] – in the image space as well as in the
preimage space. While having infinitely many global optimal solutions can also hap-
pen in the single-objective context, they all have the same optimal value. In contrast
to that, it is the core idea of even considering multiple objective functions to get an
as good as possible overview of all the different optimal value vectors – the so-called
nondominated set (cf. Definition 2.1) – in the image space. Consequently, even when
solely interested in finding the optimal value vectors, the corresponding solutions in the
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preimage space can be scattered widely across the feasible region. For instance, being
in the mixed-integer context, this can lead to the fact that many or even all integer
assignments could contribute to different optimal value vectors.
Unlike linear problems, it is in general not possible anymore to determine the full
nondominated set when dealing with nonlinear multi-objective optimization problems.
Therefore, similar to [14, 15, 16, 13, 28], our approach seeks to provide such an overview
in form of a superset – an enclosure – of the nondominated set (cf. Definition 3.1). The
underlying idea of such algorithms is successively shrinking an initially given set up
to a predetermined tolerance while staying a superset of the nondominated set. Since
our algorithm treats θ-feasible points [21] in the same way as feasible points it is not
guaranteed that the output is still an enclosure. This gives rise to the novel concept of
pseudo enclosures (cf. Definition 3.2).
While [14] utilizes a branch-and-bound framework for computing an enclosure for multi-
objective mixed-integer nonconvex problems, we tackle this problem class with a fun-
damentally different approach. To be more precise, we extend the approach introduced
in [28], where only nonconvex quadratic functions are allowed, to general nonconvex
problems. Instead of utilizing a branch-and-bound tree, the method from [28] is based
on ideas presented in [8, 31]. These single-objective methods successively refine mixed-
integer linear outer approximations to increase accuracy and therefore get tighter and
tighter lower bounds for the optimal value of the original problem. Such approaches
particularly benefit from a problem structure, where the dimensions of the variable do-
mains of the respective nonlinear functions are comparably small. For the remainder
of this work, we refer to this approach as relax-and-refine approach. In the single-
objective literature, there are plenty of different methods for solving MINLPs. We
refer to [3, 26] for a detailed overview.
The reason for considering relaxations in relax-and-refine approaches is an expected
advantage regarding the algorithmic handling compared to the original problem. As
already mentioned, we utilize mixed-integer linear relaxations, and therefore our algo-
rithm heavily relies on the availability of strong solvers for mixed-integer linear prob-
lems. However, as the relaxed problems get more complex with ongoing refinement –
and possibly even too complex for the strong solvers –, a crucial factor for the numer-
ical efficiency of relax-and-refine approaches is preventing the relaxed problems from
getting too complex. In this paper – besides extending to general nonconvex functions
–, we enhance the method from [28] with two features to promote low complexity of the
relaxed problems. Namely, adaptivity in the refinement process and applying domain
reduction techniques during the procedure – both well-known from the single-objective
literature.
In [8, 31], the refinement process is concentrated on the parts of the preimage space
that seem to influence the optimal value the most. As already encountered, these parts
can cover large areas of the – sometimes even full – feasible set when considering multi-
objective problems. Hence, naively applying this idea to multi-objective problems may
lose its effect.
However, to keep the spirit of this idea, we propose an approach that individualizes
the outer approximation problems with ongoing algorithmic progress to the specific
optimal regions in the image space. The underlying hope is that rather small parts of
the feasible set are relevant when approaching a specific part of the nondominated set.
While in [28], there was only an individualized decision for refinement of the relaxations,
we go one step further in the present work and also individualize the shape of the outer
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approximation according to the regions in the image space. For reasons of numerical
comparison, we present two variants of our approach: one using a uniform refinement
scheme similar to [28], and one being able to concentrate on the respective seemingly
optimal regions transferring the spirit of [8, 31] to the multi-objective setting. We call
them the uniform and adaptive approach, respectively.
The same hope – rather small parts of the feasible set become relevant when only con-
sidering a specific part of the nondominated set – motivates the use of domain reduction
techniques during the procedure. While this is a widespread tool for single-objective
tree-based algorithms [20, 35], it is novel for the kind of relax-and-refine approaches
like [8, 28, 31]. For instance, [31] employs so-called sequential bound tightening before
starting the refinement process based on domain partitioning. Despite this works very
well for the single-objective case, we again have the problem that possibly only small
parts of the feasible set can be dropped without specifying a region of interest in the
image space. This is exactly how our algorithm works in the image space: it succes-
sively specifies regions of interest – so-called search zones – in the image space. As
the simplex-based relaxation technique presented in [8] has limitations when combined
with dynamic bound tightening, we introduce a novel relaxation technique for general
nonlinear functions based on box representations. Note that also [21, 31] utilize a box-
based partitioning scheme although their problem formulation differs from ours and no
dynamic bound tightening is applied.
The remainder of this work is structured as follows. In Section 2 we introduce basic
notations and definitions. Afterwards, in Section 3 the main algorithmic framework is
described and its finiteness and correctness are proven in Section 4. The box-based re-
laxation technique is presented in Section 5 whereas the relaxation-refinement schemes
and the bound tightening techniques are provided in Section 6. Numerical experiments
are given in Section 7.

2 Definitions and notations
Throughout this paper, for vectors x, y ∈ Rr, the inequalities x ≤ y and x < y are
understood componentwise. The problems which we consider in the present paper are
of the following form:

min f(x) =


f1(x)

...
fr(x)

 s.t.



Ax ≤ b,

gj(xJj
) ≤ 0 for j ∈ [p],
x ∈ X,

xi ∈ Z for i ∈ I

(MOP)

with continuous objective functions fi : Rn → R, i ∈ [r] := {1, . . . , r}, continuous
nonlinear constraint functions gj : Rlj → R, j ∈ [p], where lj = |Jj| is the number of
gj’s arguments and Jj ⊆ [n] the index set of the variables on which gj depends. The
vector xJj

collects those components of the vector x ∈ Rn with j ∈ Jj. Further, we
have A ∈ Rq×n, b ∈ Rq, and an index set I ⊆ [n] determining the integer variables.
The vector xI ∈ R|I| collects those components of the vector x ∈ Rn with i ∈ I. We
introduce the compact n-dimensional box X = [xℓ, xu] := {x ∈ Rn | xℓ ≤ x ≤ xu}
describing the box constraints of the variables, where xℓ, xu ∈ Rn and xℓ < xu hold.
Without loss of generality, we may assume xℓ

I , xu
I ∈ Z|I|. If I = ∅, i.e., if there are

no integrality constraints for any variable, we call (MOP) a continuous multi-objective
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optimization problem, and if I = [n] we call it an integer multi-objective optimization
problem. If r = 1 we call (MOP) a single-objective optimization problem. Note that
the components of the occurring functions f and g are neither assumed to be linear
nor convex. However, without loss of generality, we assume that the fi’s are linear and
the gj’s are nonlinear. We denote the feasible set of (MOP) by

S :=
{
x ∈ X | Ax ≤ b, gj(xJj

) ≤ 0 for j ∈ [p], xI ∈ Z|I|
}

.

Allowing a small violation of the nonlinear constraints determined by some prescribed
tolerance θ > 0 yields another important set for the present work. Similar as in [21],
the so-called θ-feasible set is given by

Sθ :=
{
x ∈ X | Ax ≤ b, gj(xJj

) ≤ θ for j ∈ [p], xI ∈ Z|I|
}

⊇ S.

Note that even for seemingly small θ, the set Sθ can be very large compared to S. Re-
placing the original feasible set S in (MOP) by Sθ results in the following optimization
problem

min f(x) s.t. x ∈ Sθ, (MOP(θ))
which we call the θ-feasible version of (MOP). Due to the continuity of g together with
the compactness of X, we have that S and Sθ are compact sets. Further, we assume the
set S to be nonempty which then yields compact nonempty image sets f(S) and f(Sθ).
For a given integer assignment x̂I ∈ Z|I| we define the set Sx̂I

= {x ∈ S | xI = x̂I}, as
well as the corresponding continuous (possibly nonconvex) patch problem

min f(x) s.t. x ∈ Sx̂I
. (pMOP(x̂I))

Note that we have Sx̂I
̸= ∅ (and therefore feasibility of (pMOP(x̂I))) if and only if x̂I

is a so-called feasible integer assignment of (MOP).
Generally, a multi-objective optimization problem is characterized by the presence of
r > 1 conflicting objective functions. Conflicting means that, in general, there exists
no feasible point that minimizes all of these r objective functions at the same time.
This motivates the concept of (non-)dominance and efficiency (cf. [12]).
Definition 2.1 (i) Let y1, y2 ∈ Rr. Then, y1 dominates y2 if y1 ≤ y2, y1 ̸= y2.

(ii) Let y ∈ Rr and let N ⊆ Rr. We say that the set N is nondominated given y if
there exists no ŷ ∈ N such that y dominates ŷ.

We call a point ȳ ∈ f(S) a nondominated point of (MOP) if there exists no y ∈ f(S)
dominating ȳ. The set of nondominated points of (MOP) is called its nondominated
set and we denote it by N . Analogously, we denote the nondominated set of (MOP(θ))
by N θ. Given x ∈ S with f(x) ∈ N we call x an efficient solution of (MOP).
Similar to numerical methods for single-objective optimization, our method produces
only approximations of the optimal value, i.e., of the nondominated points. This gives
rise to the extension of ε-optimality to the multi-objective setting. For that we use the
all-one vector e := (1, . . . , 1)⊤ ∈ Rr.
Definition 2.2 Let ε > 0. A point ȳ ∈ f(S) is called an ε-nondominated point of
(MOP) if there exists no y ∈ f(S) such that y + εe dominates ȳ.
Instead of the all-one vector e one could also use another vector. This could be useful
if, for example, the magnitudes of the objective functions differ largely as this is often
the case for applications. However, one could also normalize the respective objective
functions and stick to the all-one vector.
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3 Main algorithm for computing an enclosure
The main objective of our algorithm is to provide an overview of the nondominated
set N of (MOP). This is realized by computing both, a set intended to cover (or
enclose) the nondominated set as well as a collection of points intended to represent
nondominated points. As it turns out, we cannot guarantee full coverage of the non-
dominated set which is why we call such a set a pseudo enclosure. The novel concept
of pseudo enclosures is closely related to and based on the concept of enclosures of the
nondominated set. As discussed in [13], enclosures are a very natural extension of the
approximation concept used in single-objective global optimization. While enclosures
were introduced in [13] using nonempty and compact sets of lower and upper bounds,
we use here the definition as in [15, 16, 28] which assumes these sets to be finite.
Definition 3.1 Let L, U ⊆ Rr be two finite sets with N ⊆ L + Rr

+ and N ⊆ U − Rr
+.

Then L is called a lower bound set, U is called an upper bound set, and the set E
which is given as

E = E(L, U) := (L + Rr
+) ∩ (U − Rr

+) =
⋃
l∈L

⋃
u∈U,
l≤u

[l, u]

is called the enclosure of the nondominated set N of (MOP) given L and U .
In contrast to the above, in this work, we construct a set U for which we cannot
guarantee that N ⊆ U − Rr

+, but only N θ ⊆ U − Rr
+ for some predetermined θ > 0.

The role of the parameter θ throughout this work is to determine a tolerance for
the violation of the nonlinear constraints. More precisely, whenever we encounter a
point x ∈ Sθ, we consider it as feasible for the original problem (MOP) and treat it
accordingly. This idea has already been used in [8, 21] for the single-objective case and
in [28] for the multi-objective one. E.g., in [21] the authors call a global solution of a
single-objective version of (MOP(θ)) an approximate global solution. This gives rise to
an approximate nondominated set N θ in the multi-objective setting. Since (MOP(θ))
does not have a simpler structure than (MOP) – and therefore, N θ is not easier to
compute, approximate or enclose than N –, in [28] the authors choose a uniquely
determined set S̃ with S ⊆ S̃ ⊆ Sθ, compute an enclosure of the nondominated set Ñ
corresponding to S̃, and declare it to be an enclosure also of N due to the arbitrarily
small choice of θ. Now, by leaving the path of uniform refinement procedures – which
is one key contribution of the present work (see Sections 5 and 6 for details) –, the
unique choice of such a set S̃ is not possible anymore. This leads to the fact that
we do neither compute an enclosure of N nor of N θ nor of some nondominated set
corresponding to any a-priorily explicitly specified superset of S. This motivates the
introduction of so-called pseudo enclosures.
Definition 3.2 Let θ > 0 and let L, U θ ⊆ Rr be two finite sets with N θ ⊆ U θ − Rr

+
and L a lower bound set of N , i.e., N ⊆ L +Rr

+. Then, U θ is called a θ-pseudo upper
bound set, and the set Eθ given as

Eθ = E(L, U θ) =
⋃
l∈L

⋃
u∈Uθ,

l≤u

[l, u]

is called a θ-pseudo enclosure of the nondominated set N of (MOP) given L and U θ.
If no confusion is likely to arise, we just speak of pseudo enclosures and pseudo upper
bound sets, and denote them by E and U , respectively.
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Note that following Definition 3.2, in contrast to Definition 3.1, it is not ensured that
pseudo enclosures are in general nonempty. Indeed, it could be the case that there is
no single pair (ℓ, u) ∈ L × U with ℓ ≤ u. Hence, the respective algorithm has to take
care that one does not end up with an empty pseudo enclosure by, e.g., ensuring that
for any u ∈ U there exists at least one ℓ ∈ L with ℓ ≤ u.

Remark 3.3 Due to the compactness of f(Sθ) there always exist zℓ, zu ∈ Rr such that
N θ ⊆ f(Sθ) ⊆ int(B) for B := [zℓ, zu]. In particular, this means that both, the notion
of pseudo enclosures as well as of enclosures, make sense for the class of (MOP) we
consider in this work.

In order to determine the quality of a pseudo enclosure E, we use the same measure
as for classical enclosures, namely its width w(E). It is defined in [13] as the optimal
value of

max
l,u

s(l, u) s.t. l ∈ L, u ∈ U, l ≤ u, (3.1)

where s(l, u) := min {ui − li | i ∈ [r]} denotes the shortest edge length of the box [l, u].
It might seem surprising, especially with regard to single-objective global optimization,
that the shortest and not the largest edge length is used in this definition. However,
this definition ensures that all attainable points with respect to S contained in an
(pseudo) enclosure of width at most ε > 0 are also ε-nondominated points of (MOP),
see [13, Lemma 3.1]. For a more detailed discussion of the width as a quality measure,
we refer to [13, 16]. A commonly used method to compute the lower and upper bound
sets for an enclosure is to make use of so-called local upper bounds. These have been
introduced in [25] and are used in various enclosure algorithms, including [13, 14, 15,
16, 28]. Beyond that, the concepts from [25] are used in other solution algorithms for
multi-objective optimization problems as well, including [10, 32, 40]. These local upper
bounds depend on so-called stable sets. Thereby, a set Y ⊆ Rr is called stable if no
two elements in Y dominate each other, i.e., for any two distinct y1, y2 ∈ Y there exist
indices i, j ∈ [r] such that y1

i < y2
i and y2

j < y1
j . For the following, we fix θ > 0 and a

closed box B ⊆ Rr with f(Sθ) ⊆ int(B) whose existence is established in Remark 3.3.

Definition 3.4 Let N ⊆ int(B) be a finite and stable set. Then, the lower search
region for N is s(N) := {y ∈ int(B) | y′ ≰ y for every y′ ∈ N}, and the lower search
zone for some u ∈ Rr is given by c(u) := {y ∈ int(B) | y < u}. A set U = U(N) is
called local upper bound set given N if

s(N) =
⋃

u∈U(N)
c(u) and c(u1) ⊈ c(u2) for any u1, u2 ∈ U(N) with u1 ̸= u2.

Each point u ∈ U(N) is called a local upper bound (LUB).

Note that a local upper bound set U(N) depends solely on a stable set N and a box
B. This contrasts the definition of a θ-pseudo upper bound set U θ (cf. Definition 3.2)
which relies heavily on the nondominated sets N and N θ. Therefore, we do not have
to use the term pseudo when referring to a local upper bound set. For now, we denote
the stable set upon which the set of local upper bounds depends by N1. In the original
case from [25], the set N1 consists of attainable points, i.e., points f(x) with x ∈ S. In
our case, we cannot guarantee the attainability w.r.t. the set S of the points added to
the set N1 anymore, i.e., we might add a point f(x) to the set N1 with x ∈ Sθ \S. This
is the main reason why we need the concept of pseudo enclosures and therefore also the
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slight change in the definition of local upper bounds. While in [25] only the concept
of local upper bounds was presented, it can easily be transferred to lower bounds as
well, see also [16, Definition 3.4]. Note that there is no need to modify anything in the
definition of local lower bounds in the context of pseudo enclosures.

Definition 3.5 Let N ⊆ int(B) be a finite and stable set. Then, the upper search
region for N is S(N) := {y ∈ int(B) | y′ ≱ y for every y′ ∈ N} and the upper search
zone for some l ∈ Rr is given by C(l) := {y ∈ int(B) | l < y}. A set L = L(N) is
called a local lower bound set given N if

S(N) =
⋃

l∈L(N)
C(l) and C(l1) ⊈ C(l2) for any l1, l2 ∈ L(N) with l1 ̸= l2.

Each point l ∈ L(N) is called a local lower bound (LLB).

For now, we denote the stable set upon which the set of local lower bounds depends
by N2. In the present paper, the set N2 consists of points y ∈ Rr \ (f(S) + int(Rr

+))
which are either nondominated points of possibly different relaxations or points whose
attainability w.r.t. S can be ruled out. Details on that are provided in the upcoming
description of the algorithm. Indeed, with the described choices of the sets N1 and
N2 the local upper and local lower bound sets from Definitions 3.4 and 3.5 are ac-
tually pseudo upper and lower bound sets, respectively, for a pseudo enclosure of the
nondominated set of (MOP). The respective proofs in [16, Lemma 3.3, Corollary 3.6]
have to be adapted to the pseudo setting by replacing the original feasible set with the
θ-feasible set whenever it appears in relation to the upper bounding part.

Lemma 3.6 Let θ > 0 and let B ⊆ Rr be a closed box with f(Sθ) ⊆ int(B). Further,
let N1 ⊆ f(Sθ)+Rr

+ and N2 ⊆ Rr \(f(S)+int(Rr
+)) be finite and stable. Then, for the

finite local upper bound set U(N1) and the finite local lower bound set L(N2) it holds
that N θ ⊆ U(N1) − Rr

+ and N ⊆ L(N2) + Rr
+. Hence, E(L(N2), U(N1)) is a pseudo

enclosure of the nondominated set of (MOP).

Having the width measure in mind, the main task of our algorithm is to update the
two sets N1 and N2 from Lemma 3.6 such that they form smaller and smaller boxes
(w.r.t. the respective shortest edges). The role of the set N1 is realized by the set
N consisting of attainable points w.r.t. the θ-feasible set Sθ, i.e., N ⊆ f(Sθ), and is
driven towards the set N θ from above. The set N2 is embodied by a set Ñ consisting of
points that are nondominated by N which is why we call Ñ the set of utopian points.
Naturally, the set of utopian points Ñ is driven to N from below. This suggests that
one uses relaxations S̃ of S to obtain candidates for Ñ . Before explaining the idea
of our algorithm in detail we shortly clarify the term relaxation for the means of the
present paper.

Definition 3.7 Let (MOP) be given. Further, let S̃ be a set such that S ⊆ S̃. Then,
we call

min f(x) s.t. x ∈ S̃ (RMOPS̃)

a relaxed (MOP) and S̃ a relaxation of S. We denote the nondominated set of
(RMOPS̃) by N S̃.
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The relaxations relevant for this work are based on piecewise linear underestimation
functions for any nonlinear constraint function gj. Details on this are given in Section 5.
Note that the set Sθ is a relaxation of S according to Definition 3.7. Nevertheless,
the set Sθ has in fact the same structure as S and is therefore in general not easier
to treat algorithmically. Hence, Sθ does not serve as a relaxation according to the
above-described idea. Instead, it is used for determining if solutions coming from
relaxations in the classical sense are close enough to the original set S – and can
therefore be considered as feasible for (MOP). For the rest of this work, we summarize
any information regarding a relaxation S̃, i.e., any information regarding the description
of the set S̃, in a structure R. In our context, this means that for any nonlinear
constraint function gj, we have a substructure R.gj where any information of the
(piecewise) linear underestimator of gj is stored. By abuse of notation, we also identify
a relaxation by its information collection R, denote the corresponding feasible set by
SR and the corresponding nondominated set by N R.

General scheme

We now turn to the general framework used for this work. In fact, the framework
is based on an algorithm that was presented in [28, Algorithm 5] in the context of
computing an enclosure of the nondominated set of quadratically constrained prob-
lems. In this work, we use the general idea from that method but extend it to general
nonconvex MINLPs and pseudo enclosures. In Algorithm 1, the general framework of
this approach is provided. Starting the method requires a feasibility parameter θ > 0

Algorithm 1 General scheme for computing a pseudo enclosure
Input: feasibility parameter θ > 0, initial box B = [zℓ, zu] ⊆ Rr with f(Sθ) ⊆ int(B),

termination tolerance εencl > 0, offset factor δ ∈ (0, εencl), initial relaxation R1

1: Initialize set of attainable points N = ∅ and set of local upper bounds U = {zu}
2: Initialize set of utopian points Ñ = ∅ and set of local lower bounds L = {zℓ}
3: Initialize the set D(U) = {(u, R1) | u ∈ U}
4: while w(E(L, U)) > εencl do
5: Uloop = U
6: for u ∈ Uloop do
7: if there exists ℓ ∈ L with ℓ ≤ u and s(ℓ, u) ≥ εencl then
8: [Ñ , N, L, U, D(U)] = improve_region(u − δe, Ñ , N, L, U, D(U))
9: end if

10: end for
11: end while
Output: Pseudo enclosure E(L, U) satisfying w(E) < εencl and set N consisting

of εencl-nondominated points and nondominated points given N coming from θ-
feasible points

and an initial box B ⊆ Rr with f(Sθ) ⊆ int(B). According to Remark 3.3, such an
initialization always exists. This initial enclosure gets iteratively refined during the
procedure. Furthermore, a termination tolerance εencl > 0 as well as an offset factor
δ ∈ (0, εencl) is required, the role of which becomes clear later on. Lastly, one requires
an initial relaxation R1.
We start the method by initializing the set of attainable points N as an empty set
as we have no attainable point found yet. The same for the set of utopian points Ñ
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which is driven toward the nondominated set N from below. Moreover, we initialize
the set of local upper bounds as U = {zu} and the set of local lower bounds as
L = {zℓ}. Lastly, and this is one important contribution of [28, Algorithm 5], we
introduce the set D(U). It is initialized as D(U) = {(u, R1) | u ∈ U} and serves as
an information mediator between the preimage space and the image space. Namely, it
associates specific relaxations (preimage space information) with search zones (image
space information). The importance of this exchange of information becomes clearer
later on. Note that in the present work, this connection is deepened in comparison to
[28, Algorithm 5].
After the initialization phase, the method enters the so-called outer loop intending to
iteratively decrease the width of the pseudo enclosure below a desired tolerance εencl.
In each iteration of the outer loop, the algorithm loops through every currently present
local upper bound u ∈ Uloop checking if it belongs to a box having a too-large shortest
edge. If this is the case, the method interprets this local upper bound u as a search
zone which has to be improved. We say that a search zone is improved if we either
close the search zone or find an attainable point f(x) ∈ f(Sθ) lying in the search zone.
If one of these is the case, we can replace (some of) the boxes belonging to u with
smaller ones.

Improve within a search zone

We now turn to the procedure improve_region presented in Algorithm 2. Besides the

Algorithm 2 improve_region routine
Input: shifted local upper bound determining the search zone u − δe, set of utopian

points Ñ , set of attainable points N , set of local lower bounds L, set of local upper
bounds U , relaxation collection D(U)

1: Set Rcurrent = Ru, where (u, Ru) ∈ D(U)
2: Set improved = false
3: while improved = false do
4: if there exists f(x̃) ∈ N SRcurrent with f(x̃) ≤ u − δe then
5: [improved, Ñ , N, L, U, D(U)] = find_points(x̃, u − δe, Ñ , N, L, U, D(U))
6: if improved = false then
7: Rcurrent = refine_relaxation(u − δe, Rcurrent, x̃)
8: end if
9: else

10: Update Ñ and L w.r.t. u − δe
11: Set improved = true
12: end if
13: end while
Output: updated sets Ñ , N, L, U, D(U)

current assignments of the sets Ñ , N, L, U and D(U), the method needs knowledge of
the search zone of interest. This information is passed by the point u − δe ∈ Rr, i.e.,
the current local upper bound of interest shifted by δe. On the one hand, the offset
factor δ serves to overcome numerical issues arising when employing the (original)
search region constraint f(x) < u. As this formulation is numerically more or less
intractable, it is replaced by f(x) ≤ u − δe. On the other hand, it is used to ensure
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large enough progress of the method, i.e., to satisfy the decrease condition presented
in the forthcoming Proposition 4.4.
At the beginning of Algorithm 2 the relaxation Ru corresponding to the current search
zone is chosen, i.e., Rcurrent = Ru, and the improved-flag is set to false. Then, another
while-loop is entered which we call the inner loop of the general framework. This loop
is repeated until the improved-flag is set to true. As mentioned earlier, the method
wants to either find a new attainable point f(x) ∈ f(Sθ) in the current search zone or
declare it to be sufficiently explored.
The chosen relaxation has two different jobs. Firstly, it should suggest if there is a
chance of finding an attainable point f(x) ≤ u − δe with x ∈ S. This first task is
incorporated in the if-statement asking if there exists f(x̃) ∈ N SRcurrent with f(x̃) ≤
u − δe. One can check for that by using, e.g., the Pascoletti-Serafini scalarization
[33] or the weighted-sum scalarization together with the search zone constraint f(x) ≤
u − δe, as explained in [28, Section 3]. Using a scalarization, even the weighted-sum
scalarization with arbitrary weights despite the overall problem being nonconvex, is
satisfying here, as finding any arbitrary nondominated point is sufficient.
If this is not the case, i.e., if there exists no such f(x̃), then due to S ⊆ SRcurrent there
is no attainable point with regard to S in the current search region, i.e., in particular
u − δe ∈ Rr \ (f(S) +Rr

+). Then, the set of utopian points Ñ as well as the set of local
lower bounds L is updated w.r.t. the point u − δe. This can be realized by using [28,
Algorithm 4] for updating (and preserving the stability of) Ñ and [16, Algorithm 2]
for L. By conducting these update procedures the search region corresponding to u is
declared to be sufficiently explored and is therefore closed. This is because any box of
the pseudo enclosure E(L, U) with upper bound u after this update of the lower bound
set L has a shortest edge length smaller or equal to δ and therefore particularly smaller
than εencl.
On the contrary, if there exists f(x̃) ∈ N SRcurrent with f(x̃) ≤ u − δe the relaxation
Rcurrent suggests that there may be an attainable point f(x) ≤ u−δe with x ∈ S. Recall
that we focus on linear relaxations. This means that Rcurrent represents a MOMILP
and x̃I ∈ Z|I|. Hence, we can interpret the existence of such f(x̃) as an indicator
for the existence of an attainable point f(x) with xI = x̃I and x ∈ S. To verify
that suggestion and eventually find such a point, the algorithm calls the find_points-
routine. If the suggestion was wrong, i.e., no such point was found based on the
information of the relaxation Rcurrent, the find_points-routine returns improved =
false and the algorithm decides for refinement of Rcurrent which is conducted by the
refine_relaxation-routine. Details regarding this routine are given in Sections 5
and 6. If the suggestion was right, the find_points-routine returns improved = true
and the improve_region-routine terminates.

Find attainable points

We now turn to the description of the find_points-routine provided in Algorithm 3.
This routine intends to verify the relaxation’s suggestion of the existence of an attain-
able point in the current search zone determined by u−δe. To do so, it uses information
provided by the solution x̃ of the relaxed problem. Firstly, it checks if this solution
can be considered feasible, i.e., if x̃ acceptably violates the nonlinear constraints and
therefore x̃ ∈ Sθ. If that is the case, we consider x̃ as feasible for (MOP) and therefore
want to add f(x̃) to the set of attainable points N .
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Algorithm 3 find_points routine
Input: solution x̃ ∈ SRcurrent with f(x̃) ≤ u−δe, shifted local upper bound determining

the search region u − δe, set of utopian points Ñ , set of attainable points N , set of
local lower bounds L, set of local upper bounds U , relaxation collection D(U)

1: if x̃ ∈ Sθ then
2: if Ñ is nondominated given f(x̃) then
3: Update Ñ and L w.r.t. f(x̃)
4: else
5: Set Ñ = {y ∈ Ñ | y is not dominated by f(x̃)} ∪ {f(x̃)}
6: Rebuild L w.r.t. Ñ
7: end if
8: Update N and U w.r.t. f(x̃)
9: Set improved = true

10: else
11: if Ñ is nondominated given f(x̃) then
12: Update Ñ and L w.r.t. f(x̃)
13: if exists x feasible for (pMOP(x̂I)) with f(x) ≤ u − δe and x̂I = x̃I then
14: Update N and U w.r.t. f(x)
15: Set Ru = Rcurrent for any new local upper bound u, i.e., update D(U)
16: Set improved = true
17: else
18: Set improved = false
19: end if
20: else
21: Set improved = false
22: end if
23: end if
Output: improved and (possibly) updated sets Ñ , N, L, U, D(U)

Before that, we have to ensure that there are no points in the set of utopian points Ñ
which are dominated by f(x̃). Such a situation may arise if there is a point f(x̃′) ∈ Ñ
with x̃′ /∈ Sθ and x̃′ /∈ SRcurrent . In general, that can happen if there are pairwise non-
including relaxations present, i.e., if for two appearing relaxations S̃ and S̃ ′ we neither
have S̃ ⊆ S̃ ′ nor S̃ ′ ⊆ S̃. Given that one uses a nonmonotone refinement scheme, i.e.,
it is not guaranteed that SRcoarse ⊇ SRrefined , this can even occur in single-objective
optimization if x̃ ∈ (SRrefined \ SRcoarse) ∩ Sθ and x̃′ ∈ SRcoarse \ (SRrefined ∪ Sθ). On top of
that, the transition to multiple objective functions creates another serious possibility
for encountering such a scenario. This is because in the multi-objective setting, several
utopian points may be active coming from several differently shaped relaxations. This
opposes the single-objective case where the set of utopian points Ñ and the set of
local lower bounds both collapse to the singleton of the currently best available lower
bound. Therefore – even using a monotone, but nonuniform relaxation scheme –, the
active utopian points may come from pairwise nonincluding relaxations resulting in the
above-described situation.
However, if the set of utopian points Ñ is nondominated given f(x̃) we can simply
update Ñ and L w.r.t. f(x̃) using [28, Algorithm 4] and [16, Algorithm 2], respectively.
If otherwise there exists ỹ ∈ Ñ dominated by f(x̃), we remove all of them from Ñ and
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add f(x̃) resulting in an updated and stable set of utopian points Ñ . We now have
to rebuild the set of local lower bounds L corresponding to the updated set Ñ from
scratch. This means, we start with L = {zℓ} and iteratively use [16, Algorithm 2] for
each point in Ñ . Note that if we dispense the above steps, i.e., not caring about the
fact that the declared attainable point f(x̃) dominates some utopian points from Ñ and
just update N and U w.r.t. f(x̃), this would yield the situation, where for an incoming
local upper bound u there is no local lower bound ℓ ∈ L with ℓ ≤ u. After we ensured
that f(x̃) ∈ Ñ and Ñ is stable, we are ready to update the set of attainable points N
and the corresponding set of local upper bounds U w.r.t. f(x̃) using [28, Algorithm 3]
and [25, Algorithm 3], respectively. Afterward, since we improved the search zone by
finding an attainable point, the improved-flag is set to true.
If otherwise, the solution of the relaxed problem x̃ violates the constraints by too much,
i.e., if x̃ /∈ Sθ, the second task of the relaxation comes into play. This is to also improve
the lower bounding procedure of the method, i.e., to move the set of utopian points Ñ
and therefore also the set of local lower bounds L in the direction of the nondominated
set N by updating them w.r.t. f(x̃). In fact, this is successful if Ñ is nondominated
given f(x̃) which is checked in line 11 of Algorithm 3. If that is not the case, we do
not expect the relaxation to provide any helpful information, and in particular, its
suggestion of finding an attainable point to be not very trustworthy. Consequently, the
find_points-routine returns improved = false and a refinement step is conducted.
If otherwise, f(x̃) improves the set Ñ towards N , both, Ñ and L, are updated w.r.t.
f(x̃) using [28, Algorithm 4] and [16, Algorithm 2], respectively.
After checking a possible update of the set of utopian points, the relaxation’s suggestion
is verified in line 13. The verification is executed by checking if there exists x ∈ S with
xI = x̃I and f(x) ≤ u − δe by finding a feasible point of the continuous but non-
convex multi-objective optimization problem (pMOP(x̂I)) with additional search zone
constraint. This can be done again by using, e.g., the Pascoletti-Serafini scalarization
[33] or the weighted-sum scalarization together with the search zone constraint f(x) ≤
u − δe as in [28]. Note that, e.g., if one goes for the weighted sum approach, it suffices
to solve the resulting NLP only to feasibility. Of course, solving to local or even global
optimality might speed up the procedure in terms of iterations but it is not necessary
since all we want to achieve is encoded in the search zone constraint f(x) ≤ u − δe.
If the corresponding (pMOP(x̂I)) together with the search zone constraint is feasible,
we found a new attainable point f(x) which is used to update the sets N and U using
[28, Algorithm 2] and [25, Algorithm 2].
In particular, this means that the relaxation Rcurrent mimics the behavior of (MOP)
in the search region good enough. This is why the relaxation Rcurrent is assigned to
the incoming local upper bounds after the update procedures of U and N w.r.t. f(x).
In this step, the information mediation between the image space information of search
regions and the preimage space information of relaxations takes place. We set the
improved-flag to true, terminate the improve_region-routine, and move on to the
next search zone within the outer loop of the procedure.
If otherwise, (pMOP(x̂I)) together with the search zone constraint is not feasible, the
relaxation’s suggestion was wrong, we set the improved-flag to false and go for a
refinement step within the improve_region-routine.
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4 Correct and finite termination
This section is dedicated to proving correctness and finiteness of Algorithm 1. We start
with correctness, meaning we show that E(L, U) forms a pseudo enclosure of (MOP)
according to Definition 3.2 throughout Algorithm 1.

Proposition 4.1 Let θ > 0, B = [zℓ, zu], εencl > δ > 0, and R1 be the input parameters
of Algorithm 1. Then, the set E(L, U) is a pseudo enclosure of (MOP) throughout the
whole procedure.

Proof. Due to Lemma 3.6 it suffices to show that N ⊆ f(Sθ) + Rr
+ and Ñ ⊆ Rr \

(f(S) + int(Rr
+)) throughout the algorithm. The set of attainable points N only gets

updated in lines 8 and 14 of Algorithm 3. In both cases, N is updated w.r.t. a point
f(x) ∈ f(Sθ) – note that x ∈ S ⊆ Sθ for the update in line 14 – and therefore
particularly N ⊆ f(Sθ) + Rr

+. Stability of N throughout these updates follows by the
correctness of [28, Algorithm 3] shown in [28, Lemma 4.6]. On the other hand, the
set of utopian points Ñ gets only updated in line 10 of Algorithm 2 and in lines 3, 5
and 12 of Algorithm 3. Except the update in line 5 of Algorithm 3, all these updates are
conducted using [28, Algorithm 4] which is correct by [28, Lemma 4.7], i.e., in particular
stability of Ñ is ensured. In line 10 of Algorithm 2, the set Ñ is updated w.r.t. u−δe and
the guarantee (s. line 4 of Algorithm 2) that there exists no x̃ ∈ S̃ with f(x̃) ≤ u − δe
for some relaxation S̃ ⊇ S. Consequently, we have that u − δe ∈ Rr \ (f(S) + int(Rr

+)),
as required. For all update steps in Algorithm 3, the set Ñ is updated w.r.t. a point
f(x̃), where x̃ ∈ S̃ and f(x̃) ∈ N S̃ for some relaxation S̃ ⊇ S. By the relaxation
property of S̃ w.r.t. S and the fact that f(x̃) is a nondominated point of a relaxed
(MOP), there exists no y ∈ N dominating f(x̃), i.e., f(x̃) ∈ Rr \ (f(S) + int(Rr

+)), as
required. For the update in line 5 of Algorithm 3, all points in Ñ which are dominated
by f(x̃) are removed to preserve stability of Ñ – which is also done in [28, Algorithm 4]
but written explicitly here for clarity.

Finiteness heavily depends on the specific technique in the refine_relaxation-rou-
tine. As there are plenty of different possibilities for that, and we want to highlight
this aspect of our framework, we formulate an assumption on the refinement technique
which is sufficient for finite termination of Algorithm 1.

Assumption 4.2 Let {(Rk, x̃k)}k∈N be a chain of relaxations and relaxation-feasible
points produced by the chosen refinement scheme, i.e., the refine_relaxation-routine.
That means, starting with an initial relaxation R1 = R1 and a given relaxation-feasible
point x̃1 ∈ SR1, the refinement scheme produces a relaxation R2. Then, using another
(arbitrarily chosen) relaxation-feasible point x̃2 ∈ SR2 the refinement scheme produces
a relaxation R3 and so on. Then, for any θ > 0, we assume that there exists K ∈ N
such that x̃K ∈ Sθ and is therefore considered feasible for (MOP).

Assumption 4.2 allows us to prove that the improve_region-routine terminates after
finitely many steps.

Proposition 4.3 Let u − δe, Ñ , N , L, U and D(u) be the input of Algorithm 2.
Further, let Assumption 4.2 be satisfied for the chosen relaxation-refinement scheme.
Then, Algorithm 2 terminates after finitely many steps.
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Proof. We have to show that after finitely many iterations of the while-loop in Algo-
rithm 2, we have that improved = true holds. Assume for a contradiction that this is
not the case. Then, in each iteration we enter the if-statements in lines 4 and 6 since
otherwise improved = true in line 11. For any k ∈ N, we denote by Rk and x̃k ∈ SRk

the relaxation and relaxation-feasible point, respectively, at the beginning of the k-th
iteration. For any k ∈ N, we have that Rk+1 is obtained by the refine_relaxation-
routine. Consequently, we have an infinite chain of relaxations R1 = R1, R2, R3, . . .
produced by the refine_relaxation-routine with corresponding relaxation-feasible
points x̃k ∈ SRk for all k ∈ N. By Assumption 4.2, we know that there exists K ∈ N
such that x̃K ∈ Sθ, i.e., is considered feasible for (MOP). Hence, in the K-th iteration
we enter the if-statement in line 1 of the find_points-routine in Algorithm 3 and
set improved = true in line 9, a contradiction. Thus, Algorithm 2 terminates after
finitely many steps.

Proposition 4.3 is one of two key ingredients for proving finiteness of Algorithm 1. The
other one is a guaranteed decrease regarding the edge lengths of the boxes belonging
to the enclosure before and after one call of the outer loop of Algorithm 1, see also [28,
Theorem 5.9].

Proposition 4.4 Let Lstart and U start be the set of local lower and local upper bounds,
respectively, at the beginning of some iteration of the outer loop during Algorithm 1.
Analogously, denote by Lend and U end the bound sets at the end of this iteration. Fur-
ther, let Assumption 4.2 hold for the chosen relaxation refinement scheme.
Then, for any ℓe ∈ Lend and any ue ∈ U end with ℓe ≤ ue there exist ℓs ∈ Lstart and
us ∈ U start such that the following hold:

(i) ℓs ≤ ℓe ≤ ue ≤ us, i.e., the width does not increase during one iteration.

(ii) There exists an index i ∈ [r] such that (ue − ℓe)i < max {(us − ℓs)i − δ, εencl},
i.e., for any pair (ℓe, ue) we obtain a decrease w.r.t. the edge length for at least
one edge i ∈ [r].

This finally allows us to state and prove finite convergence and correctness of Algo-
rithm 1 by applying the convergence result from [28].

Theorem 4.5 Let θ > 0, εencl > δ > 0, R1 and B = [zℓ, zu] ⊆ Rr be the input
parameters of Algorithm 1 and let Assumption 4.2 hold. We define

∆ := max{∥zu − zℓ∥∞, εencl} and κ := r

⌈
∆ − εencl

δ

⌉
+ 1 < ∞.

Then the number of iterations of the outer loop of Algorithm 1 is bounded by κ, i.e.,
Algorithm 1 terminates after finitely many steps. Furthermore, a pseudo enclosure E
of the nondominated set N satisfying w(E) < εencl is returned.

Proof. The finiteness part is analogous to [28, Theorem 5.10, Corollary 5.11]. The
correctness part follows by Proposition 4.1.
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5 Box-based piecewise linear relaxations
In this section, we present one key contribution of this work. Namely, a novel method
for relaxing general nonconvex terms by using only piecewise linear functions which is
closely related to methods proposed in [8, 21]. While we tackle, in view of the feasible
set, the same problem class as [8], we differ in not using a simplex partitioning scheme
(triangulation) of the variable domain. Instead, we use a box-based one similar to
[21] where – in contrast to our case – the nonlinear constraints are not assumed to be
given explicitly but the respective global Lipschitz constants. We leverage the box-
based scheme because it facilitates the use of bound tightening as a refinement step
in our algorithm. One disadvantage of using a simplex partitioning scheme is that a
triangulation of the variable domain cannot easily be transferred to a new one with
tightened bounds. This is because in general, either new simplices are necessary for
getting a triangulation of the tightened domain or a completely new triangulation has
to be computed. An exemplary situation is depicted in Figure 1 for a two-dimensional
box domain – the simplest case that may occur where boxes and simplices do not
coincide. One can see that one either introduces new simplices to keep some structure
of the former triangulation, or one has to use a completely new triangulation.

x

y

S1

S2

x

y

S1

S2

x

y

S1

S2

Figure 1: Left: initial triangulation of two-dimensional box domain and tightened
box domain (blue). Mid: possible triangulation of tightened box domain based on
information from former triangulation. Right: new triangulation of tightened box
domain.

Furthermore, both options have serious drawbacks: with the first option, one increases
the number of binary variables – which contradicts our idea of applying bound tight-
ening. The second one requires building new partitions (or triangulations) of a domain
which is not an easy task at all, especially in higher dimensions. To bypass these
difficulties, we stick to a box-based relaxation scheme of the nonlinear constraints.
Additionally, the idea of simplex-based partitions comes originally from the idea of
approximating a nonlinear function on a given domain [2, 27, 30]. For doing that,
simplices are very well suited due to their ability to interpolate any nonlinear func-
tion by piecewise-linear functions with interpolation points being their vertices. This
interpolation property gets lost when turning to box-based partitions. But as we are
aiming at relaxations instead of approximations, i.e., we are inexact in most of the
cases anyway, the inexactness at the vertices is not a problem.
Subsequently, we describe the relaxation scheme for a nonlinear function gj, j ∈ [p].
Proceeding like that for any j ∈ [p], one obtains an MILP relaxation of (MOP).
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Therefore, let j ∈ [p]. We denote by XJj
⊆ Rlj the projection of the box X to the lj

components appearing in gj determined by the index set Jj ⊆ [n].
Finally, we describe how a relaxation of the constraint gj(xJj

) ≤ 0 is obtained by getting
an underestimator of gj on the box XJj

. Later on, we apply the same procedure on
subboxes B ⊆ XJj

to get an underestimator of gj also on subboxes B of XJj
. Note

that the key ingredient for refining the resulting relaxations is an ongoing partitioning
of the variable domain box XJj

into smaller and smaller subboxes.
We use the vertices/corner points v1, . . . , v2lj ∈ Rlj of XJj

to set up a linear least
squares problem

min
w∈Rlj +1

∥Aw − b∥2, (LSq)

where the 2lj rows of A are formed by the vectors (vs, 1), s = 1, . . . , 2lj , and the vector
b collects the corresponding values gj(vs), s = 1, . . . , 2lj . Given a solution w̄ ∈ Rlj+1 of
(LSq), we define a linear function Lw̄

gj
on the box XJj

with a slope determined by the
values of gj at the corners of the box. This linear function is defined as

Lw̄
gj

: Rlj → R, x 7→ w̄⊤
(

x
1

)
. (LSq-F)

To simplify the notation, we write Lgj
instead of Lw̄

gj
for the remainder of this work.

The linear function Lgj
is in general neither an underestimator nor an overestimator of

gj on XJj
and also not an interpolation function. By shifting it using so-called under-

and overestimation errors as done in [7, 8, 19], one obtains an over- and underestimator,
respectively. As we only consider nonlinear inequality constraints of the form gj(xJj

) ≤
0, we are only interested in finding underestimators and therefore in computing the
overestimation error. In fact, one computes the overestimation error θo by solving the
optimization problem

θo := max
x∈XJj

(
Lgj

(x) − gj(x)
)

. (OEP)

Shifting Lgj
by −θo, i.e. Lu

gj
(x) := Lgj

(x) − θo, yields that Lu
gj

is an underestimator of
gj on XJj

Note that (OEP) is in general a nonconvex continuous optimization problem.
In [19], the authors show that θo can be computed by solving lj convex optimization
problems. However, these results rely on a simplex-based partition of the domain
or, more precisely, on the interpolation property of the linear approximations on the
vertices of the simplex. Hence, these results are not straightforwardly applicable to our
box-based partitioning.
If there is an adequate global solver for (continuous) nonconvex problems available,
one can directly solve the problem (OEP) (as it is done in the implementations for
the present paper). On the other hand, if we do not have an adequate global solver,
one could instead use convex relaxation techniques, e.g., the αBB method [1], in order
to compute an upper bound on θo. Naturally, one has to ensure that the constraint
functions gj satisfy the requirements of the chosen solution technique. For instance, to
apply the αBB method the functions gj have to be twice continuously differentiable.
Now, by replacing any appearance of gj(xJj

) in (MOP) with the term Lu
gj

(xJj
), we

obtain the desired linear relaxation of the nonlinear constraint function gj.
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For the upcoming theory, we need the concept of the aforementioned underestimation
error θu. It is given by

θu := max
x∈XJj

gj(x) − Lgj
(x). (UEP)

By shifting Lgj
by θu, i.e., Lo

gj
(x) := Lgj

(x) + θu, one obtains an overestimator Lo
gj

(x)
of gj(x) on XJj

.
Summarizing the above, we relax any nonlinear constraint function gj, j ∈ [p], using
the described procedure. As explained before, for any nonlinear constraint gj we collect
the relaxation information in the structure R.gj. Note that proceeding like that yields
a relaxation R of S in the sense of Definition 3.7. As already mentioned, the above-
described relaxation technique is similar to the ones in [8, 21] but differs in essential
aspects. Therefore, the results from [8, 21] cannot be applied which is why we provide
the subsequent proofs. To the best of our knowledge, these results cannot be found in
the literature.
We start with considering these relaxations within the context of the θ-feasible set Sθ.

Definition 5.1 Let R be a relaxation of S and let x̃ ∈ SR. For any gj, j ∈ [p], we
define the constraint satisfaction error θR

gj
(x̃) of the relaxation-feasible point x̃ w.r.t.

the constraint function gj and the relaxation R as

θR
gj

(x̃) := max
{
gj(x̃Jj

), 0
}

.

Similarly, we define the constraint satisfaction error θR(x̃) of x̃ and the relaxation R
as

θR(x̃) := max
{
θR

gj
(x̃) | j ∈ [p]

}
.

Note that for any j ∈ [p], we have that θR
gj

(x̃) ≤ max{gj(x̃Jj
) − Lu

gj
(x̃Jj

), 0} for any
relaxation-feasible point x̃. Using the constraint satisfaction error of a given x̃ ∈ SR

one can determine if x̃ ∈ Sθ and therefore can be considered as feasible for (MOP).

Proposition 5.2 Let θ > 0, R be a relaxation of S, and let x̃ ∈ SR. If θR(x̃) ≤ θ,
then x̃ ∈ Sθ.

To show that the constraint satisfaction error decreases with ongoing refinement of the
corresponding relaxations, we give an overestimate of the constraint satisfaction error.

Lemma 5.3 Let R be a relaxation of S and let x̃ ∈ SR. Further, let j ∈ [p] and
B ⊆ XJj

be a box with x̃Jj
∈ B. We denote by Lo,B

gj
and Lu,B

gj
the linear overestimation

and underestimation function, respectively, and by θo,B
gj

and θu,B
gj

the solutions of (OEP)
and (UEP), respectively, w.r.t. the box B. Then, we have that

θR
gj

(x̃) ≤ θu,B
gj

+ θo,B
gj

.

Proof. We first note that Lu,B
gj

(x) ≤ gj(x) ≤ Lo,B
gj

(x) for all x ∈ B by definition. W.l.o.g.
assume that gj(x̃Jj

) ≥ 0. We calculate

θR
gj

(x̃) ≤ gj(x̃Jj
) − Lu,B

gj
(x̃Jj

) ≤ Lo,B
gj

(x̃Jj
) − Lu,B

gj
(x̃Jj

) ≤ θu,B
gj

+ θo,B
gj

,

which shows the result.
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The goal for the rest of this section is to show that we can control the errors θu
gj

and
θo

gj
in the sense that we can bring them to zero by successively partitioning the original

box XJj
into smaller and smaller boxes. To that end, we are referring only to such

partitioning schemes when talking about refinement schemes for the remainder of this
work.
Let B ⊆ Rn be a box. Recall that a collection of boxes B1, . . . , Bs, s ∈ N, is called a
box-partition of B, if B = ⋃

i∈[s] Bi and if for any i, i′ ∈ [s] with i ̸= i′, we have that
int(Bi) ∩ int(Bi′) = ∅. Now, let j ∈ [p] and let B1, . . . , Bs be a partition of the box
XJj

= [xℓ
Jj

, xu
Jj

]. Then, the boxes are of the form

Bi := [xℓ,i
Jj

, xu,i
Jj

] ⊆ [xℓ
Jj

, xu
Jj

],

where i ∈ [s]. Now, for each of these boxes Bi we proceed as before and get linear
underestimation functions Lu,i

gj
. Furthermore, we introduce indicator variables bi ∈

{0, 1} which switch on and off the corresponding linear underestimator constraints we
have seen before. This is realized via the formulation∑

i∈[s]
bi · Lu,i

gj
(xJj

) ≤ 0.

In addition to that, to determine which is the current active box (and thus, which
underestimator has to be used), we add the constraints

bi(xℓ,i
l − xl) ≤ 0 and bi(xl − xu,i

l ) ≤ 0,

for all i ∈ [s] and l ∈ Jj. Finally, to ensure that there is exactly one active box,
we add the constraint ∑i∈[s] bi = 1 (which can be implemented using the help of
Special-Ordered-Set 1 constraints [2, 39]). The goal of successively partitioning the
variable domain is to refine the relaxation, i.e., starting with an initial relaxation
R1 = R1 we want to end up with a relaxation R2 that is finer than R1 in some sense.
Note that the relaxation-refinement procedures (see Section 6) do not guarantee that
SR2 ⊆ SR1 – consequently, in the present work we are not talking about inclusion of the
respective feasible sets concerning the term refinement of relaxations. Instead, refining
a relaxation means refining the corresponding partitions of the variable domains as
defined in the following.

Definition 5.4 Let (Bi)i∈[s] be a partition of a box B. We call another partition (B̃i)i∈[s̃]
of B finer than (or a refinement of) (Bi)i∈[s] if for any i ∈ [s] there exists i′ ∈ [s̃] with
B̃i′ ⊆ Bi. We call (B̃i)i∈[s̃] strictly finer if it is finer than (Bi)i∈[s] and there exists i′ ∈ [s̃]
with B̃i′ ⊊ Bi for some i ∈ [s].

Furthermore, we want the relaxation-refinement technique to satisfy Assumption 4.2
and therefore yield finite termination of Algorithm 1. We give a reformulation of
Assumption 4.2 to our setting based on Proposition 5.2.

Assumption 5.5 (Reformulation of Assumption 4.2) Let R1 = R1 be the initial re-
laxation defined on the original variable domain boxes XJj

for all j ∈ [p]. Further, let
{(Rk, x̃k)}k∈N be a chain of relaxations and relaxation-feasible points produced by the
chosen refine_relaxation-routine like in Assumption 4.2. Then, for any θ > 0, we
assume that there exists K ∈ N such that after K refinement steps it holds that

θRK (x̃K) ≤ θ.
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To prove that Assumption 5.5 holds for a given refinement scheme, we use a slightly
different notion of δ-preciseness as introduced in [8]. But before introducing it, we
need the notion of the longest edge λ(B) of a box B = [xℓ, xu] ⊆ Rn. It is defined as
λ(B) := maxl∈[n]{xu

l − xℓ
l }. In fact, δ-preciseness for a refinement scheme means that

we obtain arbitrarily small boxes with ongoing refinement.
Definition 5.6 Let (Rk)k∈N be a chain of relaxations produced by a refinement proce-
dure and let (x̃k)k∈N be an arbitrary sequence of points with x̃k ∈ SRk . The relaxation
refinement procedure is called δ-precise if for any δ > 0 and for any j ∈ [p] there exists
K ∈ N such that

λ
(
Bk

Jj

)
< δ

for any k ≥ K, where (Bk
Jj

)k∈N denotes the sequence of active boxes within the respective
partition of XJj

, i.e., x̃k
Jj

∈ Bk
Jj

for any k ∈ N.
For the remainder of this section we keep the notations of Definition 5.6, i.e., (Rk)k∈N
denotes a chain of relaxations produced by a δ-precise refinement procedure, (x̃k)k∈N a
sequence of points with x̃k ∈ SRk , and, for any j ∈ [p], the sequence (Bk

Jj
)k∈N denotes

the sequence of active boxes within the respective partition of XJj
, i.e., x̃k

Jj
∈ Bk

Jj
for

any k ∈ N. Subsequently, we prove that given a δ-precise refinement scheme, Assump-
tion 5.5 holds. We start with the notion of the maximal elongation of a continuous
function f : Rn → R over a compact domain A ⊆ Rn. We denote it by d(f, A) and
define it by

d(f, A) := max
x∈A

f(x) − min
x∈A

f(x).

The first observation given a δ-precise refinement procedure is that for every j ∈ [p] it
holds that d(gj, Bk

gj
) → 0 for k → ∞.

Lemma 5.7 Let j ∈ [p] and ε > 0. Then, there exists K ∈ N such that for any k ≥ K
we have

d(gj, Bk
Jj

) < ε.

In particular, for Vk := {v ∈ Bk
Jj

| v is corner point of Bk
Jj

}, we have that d(gj, Vk) <
ε.
Proof. By the Extreme Value Theorem, we have that gj attains its minimum and
maximum value on all boxes Bk

gj
, i.e., the function d is well-defined on each of these

boxes. Now, for given ε > 0 there exists δ > 0 such that for x, x′ ∈ XJj
with

∥x − x′∥ < δ we have that |gj(x) − gj(x′)| < ε. In particular, by δ-preciseness of the
refinement scheme, there exist K ∈ N such that ∥x − x′∥ < δ for any x, x′ ∈ Bk

Jj
for

any k ≥ K. This shows the first statement and the second one follows immediately by
the fact that Vk ⊆ Bk

Jj
.

The analog of Lemma 5.7 also holds for the linear functions defined in (LSq-F).
Lemma 5.8 Let j ∈ [p] and ε > 0. For any k ∈ N, let Lk : Bk

Jj
→ R be a linear

function as defined in (LSq-F) w.r.t. Bk
Jj

and gj. Then, there exists K ∈ N such that

d(Lk, Vk) < ε

for any k ≥ K and Vk as defined in Lemma 5.7. In particular, this means also that
d(Lk, Bk

Jj
) < ε.
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Proof. We prove the first claim by showing that d(Lk, Vk) can be bounded depending
on d(gj, Vk) and subsequently applying Lemma 5.7. To do so, we show that the max-
imal distance between Lk and gj attainable on the corner points Vk can be bounded
depending on d(gj, Vk). This is mainly shown by exploiting the norm-minimizing prop-
erty of Lk w.r.t. (LSq) in contrast to constant functions taking the value gj(vk) for some
vk ∈ Vk.
Therefore, for any k ∈ N, we choose some vk ∈ Vk to define the constant function
L̃k : Bk

Jj
→ R, x 7→ gj(vk) and let w̃k ∈ Rlj+1 be such that

L̃k(x) = (w̃k)⊤
(

x
1

)
,

i.e., (w̃k)⊤ = (0, . . . , 0, gj(vk)). Let C > 0 be such that ∥x∥∞ ≤ C∥x∥2 for any x ∈ R2lj .
We recall that bk = (gj(v1), . . . , gj(v2lj ))⊤, denote the solution of (LSq) used for Lk by
w̄k and note that

max
v∈Vk

|Lk(v) − gj(v)| = ∥Akw̄k − bk∥∞,

since for any l ∈ [2lj ] there exists some v ∈ Vk with Ak
l w̄k = Lk(v) and vice versa by

definition of Lk. Consequently, by the minimization-property of w̄k w.r.t. (LSq), we
obtain that

max
v∈Vk

|Lk(v) − gj(v)| ≤ C∥Akw̄k − bk∥2 ≤ C∥Akw̃k − bk∥2 ≤ C
√

2lj d(gj, Vk).

Now, by Lemma 5.7, there exist K1 ∈ N such that d(gj, Vk) < ε/2 for any k ≥ K1 and
K2 ∈ N such that C

√
2l d(gj, Vk) < ε/4 for any k ≥ K2. We set K := max{K1, K2}

and obtain

d(Lk, Vk) ≤ max
v∈Vk

Lk(v) − min
v∈Vk

Lk(v)

≤ max
v∈Vk

(Lk(v) − gj(v)) + max
v∈Vk

gj(v) + max
v∈Vk

(−Lk(v) + gj(v) − gj(v))

≤ max
v∈Vk

(Lk(v) − gj(v)) + max
v∈Vk

gj(v) + max
v∈Vk

(gj(v) − Lk(v)) + max
v∈Vk

−gj(v)

≤ d(gj, Vk) + 2 max
v∈Vk

|Lk(v) − gj(v)| <
ε

2 + ε

2 = ε,

for any k ≥ K. The second claim follows by the fact the Lk is linear and therefore
attains its maximal and minimal values at a corner point of Bk

Jj
.

Furthermore, for a given constraint function gj, j ∈ [p], a linear function L as defined
in (LSq-F) w.r.t. a box B ⊆ XJj

at least touches the function gj in some point x ∈ B,
i.e., there exists x ∈ B such that gj(x) = L(x). This is derived from the optimality of
the defined linear function and applying the Intermediate Value Theorem.

Lemma 5.9 Let j ∈ [p] and B ⊆ XJj
be a box. Furthermore, let L : B → R be a linear

function as defined in (LSq-F) w.r.t. B and gj. Then, there exist corner points v1 and
v2 of the box B such that gj(v1) ≤ L(v1) and L(v2) ≤ gj(v2). In particular, there exists
x ∈ B with gj(x) = L(x).

We use the previous results to show that the under- and overestimation error of Lk

w.r.t. gj on a box B ⊆ XJj
are bounded and converge to zero for ongoing partitioning

of the box.
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Lemma 5.10 Let j ∈ [p]. For any k ∈ N, let Lk : Bk
Jj

→ R be a linear function as
defined in (LSq-F) w.r.t. Bk

Jj
and gj. Furthermore, for any k ∈ N, let θo,k and θu,k be

the solutions of (OEP) and (UEP), respectively, w.r.t. Lk, gj and Bk
Jj

. Then, for any
k ∈ N, we have that

max{θo,k, θu,k} ≤ d(gj, Bk
Jj

) + d(Lk, Bk
Jj

).

In particular, for any ε > 0 there exists K ∈ N such that max{θo,k, θu,k} < ε for
k ≥ K.

Proof. Let k ∈ N and x ∈ Bk
Jj

. By Lemma 5.9 there exists x⋆ ∈ Bk
Jj

with gj(x⋆) =
Lk(x⋆). Clearly, we have that |gj(x) − gj(x⋆)| ≤ d(gj, Bk

Jj
) and |Lk(x⋆) − Lk(x)| ≤

d(Lk, Bk
Jj

). Together with the fact that gj(x⋆) = Lk(x⋆) this yields

|gj(x) − Lk(x)| ≤ d(gj, Bk
Jj

) + d(Lk, Bk
Jj

). (5.1)

Now, since (5.1) holds for any x ∈ Bk
Jj

, we have that

max{θo,k, θu,k} ≤ max
x∈Bk

Jj

|gj(x) − Lk(x)| ≤ d(gj, Bk
Jj

) + d(Lk, Bk
Jj

),

which shows the first part of the result. Let ε > 0. Then, by Lemma 5.7 there exists
K1 ∈ N such that d(gj, Bk

Jj
) < ε/2 for any k ≥ K1 and by Lemma 5.8 there exists

K2 ∈ N such that d(Lk, Bk
Jj

) < ε/2 for any k ≥ K2. Setting K := max{K1, K2} yields
the second result.

Using the previous results, we can prove that Assumption 5.5 holds for a δ-precise
relaxation refinement scheme.

Theorem 5.11 Let θ > 0. Then, there exists K ∈ N such that we have θRK (x̃K) < θ,
i.e., Assumption 5.5 holds.

Proof. For any nonlinear constraint function gj, j ∈ [p], we show that there exists
Kj ∈ N such that

θ
Rkj
gj (x̃kj ) < θ for any kj ≥ Kj.

Note that by setting K := max{Kj | j ∈ [p]}, one obtains the statement. Let j ∈ [p].
By Lemma 5.10, we know that there exists Kj ∈ N such that

max{θu,k
gj

, θo,k
gj

} <
θ

2 for any k ≥ Kj,

where θo,k
gj

and θu,k
gj

denote the solutions of (OEP) and (UEP), respectively, w.r.t. gj,
Lk

j and Bk
Jj

. By Lemma 5.3 we have that

θRk
gj

(x̃k) ≤ θu,k
gj

+ θo,k
gj

<
θ

2 + θ

2 = θ for any k ≥ Kj,

so that the claim follows.

Theorem 5.12 Algorithm 1 with a δ-precise refinement scheme terminates correctly
after finitely many steps.

Proof. Theorem 5.11 shows that Assumption 5.5 and therefore Assumption 4.2 hold.
Thus, finite and correct termination of Algorithm 1 follows by Theorem 4.5.

21



6 Relaxation-refinement schemes
Whereas in the previous section, we encountered how the relaxations of the feasible set
look like, the upcoming section is dedicated to the relaxation-refinement procedures.
Using the concept of δ-preciseness we have seen that reaching a certain accuracy relies
on successively partitioning the variable domain boxes XJj

, j ∈ [p]. As for each of
these subboxes, a binary variable enters the relaxed problem, the complexity of these
problems increases with ongoing refinement. Surely, increasing complexity is an inher-
ent consequence when contemplating the resolution of MINLPs through progressively
refined MILP relaxations. The pivotal question revolves around the magnitude of this
inherent complexity and the possibility of mitigating it.

Remark 6.1 Note that one can decrease the number of binary variables in relation
to the number of used boxes by employing some different formulation techniques; cf.
[39]. Naturally, all of these different formulations perform differently in numerical
experiments [5].

Subsequently, we present different approaches to keep the relaxed problems’ complexity
as low as possible. The two core ideas – namely longest-edge bisection of active boxes
and employing bound tightening – are well-known from the single-objective context.
However, to unleash their full potential in the multi-objective setting, some adaptions
have to be made as described in the following.

Refine the partitions

The first idea to be adapted to the multi-objective setting comes from [7, 8, 31] where
only these parts of the respective variable domain are refined which seem to influence
optimality the most. As already mentioned before, when considering multiple objective
functions these parts may be widely distributed across the feasible set due to the
presence of (often infinitely) many optimal value vectors. Therefore, we individualize
the relaxations to specific parts of the nondominated set in the image space. The
underlying hope is that specifying regions of interest restricts the relevant areas in the
preimage space. This then allows us to concentrate refinement efforts only on these
relevant areas.
Like [8, 11, 31] we realize this by performing a longest edge bisection of the active
box of the current relaxation, i.e., the box Bk

Jj
with x̃k

Jj
∈ Bk

Jj
, where k denotes the

refinement step. While the sole longest edge bisection of active boxes is well-known
from the single-objective setting, we do not only have one incumbent lower (and upper)
bound in the multi-objective setting. Therefore, the adaption to the multi-objective
case lies in choosing the relaxed solution x̃k determining the active box in a meaningful
way as well as keeping track of the respective relaxations. We do this by mitigating
information between the image and preimage space. In fact, every time the algorithm
decides for refinement this is done while considering a specific search zone represented
by a local upper bound u and having a relaxation-feasible solution x̃k coming from a
relaxation which is assigned to u. We have that f(x̃k) ≤ u−δe, i.e., the area around x̃k

seems to influence optimality w.r.t. the search zone determined by u. Consequently, we
use x̃k to determine the active boxes and perform the well-known longest edge bisection.
By doing so, image space information in the form of the search zone local upper bound u
influences the way the respective relaxation is refined. Since the relaxations associated
with different search zones are independent of each other, this yields differently shaped
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relaxations associated with different parts of the image space. We call this procedure
an adaptive refinement scheme.
To make the effect of this individualization visible through numerical experiments, we
also introduce a more basic – a uniform – refinement scheme. We call it uniform
because the longest edge bisection is performed for any box appearing in a partition
instead of only for the active one as in the adaptive scheme below. Therefore, like in
[28], only the decision for refinement is individualized across the image space – but
not the decision on how to refine. This is why we claim that the adaptive refinement
technique deepens the mitigation of information between image and preimage space in
comparison to [28].
The algorithm outlining the adaptive refinement scheme is detailed in Algorithm 4.

Algorithm 4 adaptive_refinement routine
Input: current relaxation information Rcurrent, current solution x̃ of relaxed problem,

constraint satisfaction tolerance θ, longest edge tolerance δedge
1: Set Rnew = ∅
2: for j ∈ [p] do
3: if θRcurrent

gj
(x̃) < θ then

4: Set Rnew.gj = Rcurrent.gj

5: else
6: Set Rnew.gj = ∅
7: for B appearing in Rcurrent.gj do
8: if B is active, i.e., x̃Jj

∈ B then
9: if λ(B) ≥ δedge then

10: Choose longest edge with smallest index l′ ∈ [lj]
11: Compute midpoint ml′ = (xu

l′ −xℓ
l′ )/2

12: Append box B1 defined by B with xu
l′ replaced by ml′ to Rnew.gj

13: Append box B2 defined by B with xℓ
l′ replaced by ml′ to Rnew.gj

14: else
15: Set Rnew.gj = Rcurrent.gj

16: break
17: end if
18: else
19: Append B to Rnew.gj

20: end if
21: end for
22: end if
23: end for
Output: refined relaxation Rnew

The only difference between the uniform refinement scheme and the adaptive one is
that one bisects the longest edge of every box instead of only the one of the active box,
i.e., one omits the if-else-statement in lines 8 and 19 in Algorithm 4. We refer to
that as the uniform variant of Algorithm 4.
It is worth noting that when the longest edge length tolerance δedge and θ are appropri-
ately selected, a largest edge length smaller than δedge guarantees a maximal constraint
satisfaction error less than θ. As a consequence, asking if θRcurrent

gj
(x̃) < θ, can be

omitted in Algorithm 4 as well as for its uniform variant. Nevertheless, we retain this
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notation to emphasize the possibility of the procedure terminating even before reaching
the δedge-criterion. We obtain the following correctness and finiteness results in regard
to Algorithm 4.

Lemma 6.2 Let j ∈ [p] and let (Bi)i∈[s] be a partition of the original variable domain
box XJj

belonging to a relaxation Rcurrent. Furthermore, let x̃ ∈ SRcurrent, θ > 0 and
δedge > 0 be the input of Algorithm 4. Then, Algorithm 4 returns a partition (B̃i)i∈[s̃]
of XJj

for some s ≤ s̃ ≤ s + 1 which is a refinement of (Bi)i∈[s].

One can prove that both Algorithm 4 and its uniform variant are δ-precise. To do so,
one can closely follow the proofs of [8, Theorems 3.11 and 3.12]. Only the simplex-
based partitioning structure has to be replaced with the box-based one, and one has
to adapt to the slightly different notion of δ-preciseness used in the present work.

Proposition 6.3 The refinement procedure presented in Algorithm 4 and its uniform
variant are δ-precise.

By Theorem 5.12 this immediately implies finiteness and correctness of Algorithm 1
with Algorithm 4 or its uniform variant as refinement scheme.

Corollary 6.4 Algorithm 1 with Algorithm 4 or its uniform variant as refinement
scheme terminates correctly after finitely many steps.

Bound tightening

The second idea for keeping the complexity of the relaxed problems as low as possible
is utilizing domain reduction techniques. For a detailed overview of this topic, we refer
to [35]. Note that especially in many real-world applications no tight variable bounds
are a-priorily available and therefore reducing the domain might become a crucial step
towards successfully solving such problems. Obviously, having a smaller domain there
is the well-founded hope that fewer boxes – and therefore fewer additional binary
variables – are necessary to reach a relaxation with adequate accuracy.
The domain reduction technique relevant for this work is so-called optimization-based
bound tightening (OBBT). For any variable xl appearing in a nonlinear constraint
function gj, j ∈ [p] and a given relaxation R one solves the problems

min ±xl s.t. x ∈ SR. (OBBT(R)(l))

This method was first mentioned in the context of global optimization by [37] and sub-
sequently applied at the root node of several tree search-based optimization algorithms
(cf. [29, 36, 38]).
If one has an upper bound u on the optimal value, one can strengthen the effect of
OBBT by including the objective cut-off f(x) ≤ u into (OBBT(R)(l)) as introduced
in [41]. This yields problems like

min ± xl s.t. x ∈ SR, f(x) ≤ u. (OBBT(R, u)(l))

Note that since we assume the components of f to be linear, (OBBT(R, u)(l)) is a
MILP. In [41], this was applied at every node throughout a spatial branch-and-bound
tree yielding a so-called branch-and-contract framework. In [20], the authors present
numerical results showing that employing OBBT occasionally during a spatial branch-
and-bound tree search can have computational benefits – especially for large problems.
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To the best of our knowledge, when considering relax-and-refine approaches, bound
tightening procedures are only applied before successively refining the relaxations as
done in [31]. Instead of this two-phase approach – tighten the bounds first, partition
the domain afterward – we present a relax-and-refine framework for multi-objective
optimization that can switch between these two tasks. This is motivated by two reasons.
The first one are the results from [20] for tree-based algorithms. There, cutting away
irrelevant parts of the domain results in a possibly smaller number of subproblems
that have to be solved to close the optimality gap. Aiming for a smaller number of
subproblems that have to be solved in the tree-based algorithms transfers to aiming
for a smaller number of boxes that are needed for an adequately accurate relaxation in
our case.
The second reason originates from the differences between the single-objective and the
multi-objective case. In fact, when applying OBBT with an objective cut-off u, i.e.,
solving (OBBT(R, u)(l)), to a multi-objective problem one has to ensure that y ≤ u
for any y ∈ N . Otherwise, one would drop parts of the domain contributing to the
nondominated set. Therefore, when employing it as a first-phase method, one cannot
exclude any part of the domain containing an optimal solution – and they may be
widely distributed across the feasible set as explained earlier. Note that it might even
be the case that the whole feasible set contributes to the nondominated set. Thus,
utilizing an upper bound u with y ≤ u for any y ∈ N for OBBT may be not that
effective for significantly reducing the domain.
The idea is the following: when employing OBBT during the procedure, we may have
different objective cut-offs – e.g., local upper bounds – available each of which specifies
only a certain region in the image space. Consequently, with ongoing progress of the
algorithms, i.e., when the local upper bounds specify a smaller and smaller part of the
nondominated set, larger parts of the preimage space become irrelevant w.r.t. to the
respective objective cut-offs. On the other hand, applying OBBT with a local upper
bound u representing a specific search zone as objective cut-off makes the resulting
shrunk feasible set useless for any other search zone represented by another local upper
bound u′ with c(u′) ⊈ c(u) where c(u) denotes the lower search zone of u as introduced
in Definition 3.4. In particular, this means that the mediation of image and preimage
space information in order to individualize the relaxations to the specific search zones
intensifies even more.
To formalize the above, we introduce some theoretical notions. We call them theoretical
because we only need them to prove correctness of our procedure. We start with the
possibly shrunk feasible set Sy := {x ∈ S | f(x) ≤ y} w.r.t. a point y ∈ Rr. Given
y ∈ Rr such that the set Sy is nonempty, for any j ∈ [p] we denote by

Xy
Jj

= [xℓ,y
Jj

, xu,y
Jj

] ⊆ XJj

the admissible variable domain for gj within Sy. Having a local upper bound u, the set
Su consists of all feasible solutions satisfying the search zone constraint f(x) ≤ u. Note
that setting the optimal values of (OBBT(R, u)(l)) with SR = S as lower, respective
upper bounds to all variables xl, l ∈ [n], yields a superset of Su. Similarly, if we use a
relaxation SR ⊇ S and apply (OBBT(R, u)(l)) only to variables appearing in nonlinear
constraints gj, j ∈ [p], and denote the respective solutions and new variable bounds by
x

ℓ,(R,y)
l and x

u,(R,y)
l , where l ∈ Jj, we have that

xℓ
l ≤ x

ℓ,(R,y)
l ≤ xℓ,y

l ≤ xu,y
l ≤ x

u,(R,y)
l ≤ xu

l .
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Note that at this point we fix the order of the variables to be considered to one given in
Algorithm 5. That is, we start with j = 1 ∈ [p] and continue with l ∈ Jj in ascending
order according to the order within Jj ⊆ [n]. Afterward, we repeat with j = 2 ∈ [p].
As a direct consequence from the inclusion S ⊆ SR we have that Sy ⊆ S(R,y).

Corollary 6.5 Let y ∈ Rr, R be a relaxation of (MOP), and let R̃ be a relaxation
of S(R,y). Then, we have that f(Sy) ⊆ f(SR̃) and for any ỹ ∈ N SR̃ we have that
ỹ ∈ Rr \ (f(Sy) + int(Rr

+)).

In Algorithm 5 the procedure for applying optimization-based bound tightening is
presented.
Note that once new bounds for a variable xl are computed in line 7, all boxes, i.e.,
any box for any nonlinear constraint, are adapted or dismissed w.r.t. this new variable
bound. This is what happens from line 8 to line 25.

Lemma 6.6 Let Rstart, x̃, θ > 0, and û be the input of Algorithm 5. We denote the
relaxation after Algorithm 5 by Rend. Then, for any nonlinear constraint gj, j ∈ [p],
of (MOP), the elements of Rend.gj form a partition of the box domain X

(Rstart,û)
Jj

of gj

belonging to S(Rstart,û).

Proof. Let j ∈ [p]. We start by showing that the union of the boxes from Rend.gj

coincides with the box domain X
(Rstart,û)
Jj

. Let x′ ∈ S(Rstart,û). Then, there exists a box
Bstart belonging to Rstart.gj with x′ ∈ Bstart since S(Rstart,û) ⊆ SRstart . If Bstart belongs
to Rend.gj, then clearly x′ belongs to the union of the boxes in Rend. If otherwise,
Bstart does not belong to Rend.gj anymore, then Bstart was adjusted and/or removed.
We observe that for any variable xl appearing in gj we have xℓ,Bstart

l ≤ x′
l ≤ xu,Bstart

l

and x
ℓ,(Rstart,û)
l ≤ x′

l ≤ x
u,(Rstart,û)
l since x′ ∈ S(Rstart,û) ⊆ SRstart . This implies that

x
ℓ,(Rstart,û)
l ≤ x′

l ≤ xu,Bstart
l and xℓ,Bstart

l ≤ x′
l ≤ x

u,(Rstart,û)
l , and particularly that the

box Bstart was not removed without adjustment. Consequently, an adjustment of Bstart
belongs to Rend.gj or has been removed due to redundancy. If it was removed by
redundancy there exists at least one more box B′

start with x′ ∈ B′
start and the box itself

or an adjustment belongs to Rend.gj. By switching names, we may assume that an
adjusted box Bend of Bstart belongs to Rend.gj. For this box Bend and any l ∈ Jj,

xℓ,Bend
l = max

{
xℓ,Bstart

l , x
ℓ,(Rstart,û)
l

}
and xu,Bend

l = min
{
xu,Bstart

l , x
u,(Rstart,û)
l

}
hold and therefore x′ ∈ Bend as required.
To conclude this proof we note that for any box Bstart belonging to Rstart.gj there
exists at most one box Bend belonging to Rend.gj with Bend ⊆ Bstart. This is because no
splitting occurs during Algorithm 5 and the elimination of redundant boxes. Together
with the fact that the boxes in Rstart.gj yield a partition of the corresponding box
domain of gj, we obtain that for two boxes B1 and B2 belonging to Rend.gj it holds
that

int(B1) ∩ int(B2) = ∅.

Thus, the boxes appearing in Rend.gj form a partition of the box domain X
(Rstart,û)
Jj

of
gj belonging to S(Rstart,û).
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Algorithm 5 optimization-based bound tightening routine
Input: current relaxation information Rcurrent, current solution x̃ to relaxed problem,

constraint satisfaction tolerance θ > 0, local upper bound û representing the current
search zone

1: Set tightened_vars = [ ]
2: Set Rstart = Rcurrent
3: for j ∈ [p] do
4: if θRstart

gj
(x̃) ≥ θ then

5: for l ∈ Jj do
6: if xl not in tightened_vars then
7: Solve (OBBT(R, u)(l)) with u = û and R = Rstart and denote solu-

tions by x
ℓ,(Rstart,û)
l , x

u,(Rstart,û)
l

8: for j ∈ [p] do
9: if xl appears in gj then

10: for B appearing in Rcurrent.gj do
11: if xℓ,B

l < x
ℓ,(Rstart,û)
l ≤ xu,B

l then
12: Set xℓ,B

l = x
ℓ,(Rstart,û)
l

13: else if xu,B
l < x

ℓ,(Rstart,û)
l then

14: Remove B from Rcurrent.gj

15: continue
16: end if
17: if xℓ,B

l ≤ x
u,(Rstart,û)
l < xu,B

l then
18: Set xu,B

l = x
u,(Rstart,û)
l

19: else if x
u,(Rstart,û)
l < xℓ,B

l then
20: Remove B from Rcurrent.gj

21: end if
22: end for
23: Remove redundant boxes in Rcurrent.gj

24: end if
25: end for
26: Append xl to tightened_vars
27: end if
28: end for
29: end if
30: end for
Output: relaxation Rcurrent with tightened bounds

Applying the bound tightening scheme in Algorithm 5 is computationally expensive.
In fact, for any variable xl whose bounds should be tightened, one solves two MILP
relaxations of (MOP). Especially since these relaxations get finer and finer, the re-
laxed problems get more complex. On the other hand, putting effort into the bound
tightening procedure may prevent the relaxations from getting too complex or even
reduce their complexity. Having these two sides in mind, one has to carefully balance
the additional computational effort and the possible benefit in terms of complexity
regarding the relaxations. In [20], the authors discuss ideas when bound tightening is
most efficient during the optimization process. However, for this work, we restrict our-
selves to very basic variants as can be seen in Section 7 where numerical experiments
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are presented.

7 Numerical experiments
This section is dedicated to numerical experiments with the algorithms presented. All
numerical computations in this paper are realized using the Pyomo suite [9, 24] on
a machine with Intel Core i7-8565U processor and 32GB of RAM. While the general
framework is implemented using the Pyomo Modeling, we use the SCIP Optimization
Suite [4] for globally solving the continuous nonlinear problems arising when computing
the overestimation error in OEP. As MILP-solver we use Gurobi [22].
In the following, we consider problems, where not every component of the objective
function is linear. To deal with this algorithmically, we compute an underestimation
function for the nonlinear components as described above for nonlinear constraints.
Afterward, we replace the nonlinear objective component with the piecewise linear
underestimation function and preserve the lower bounding property of the relaxed
problems.
For each of the following test instances we utilize Algorithm 1 with the uniform refine-
ment scheme (UN), and the adaptive refinement scheme with (AD-BT) and without
bound tightening (AD). In the variant AD-BT we apply the bound tightening proce-
dure every third time a relaxation or its refinement is assigned to a new local upper
bound. In addition, we consider two variants for dealing with the reduced problem
(pMOP(x̂I)) in Algorithm 3. In the first variant, we only solve it to feasibility and in
the second one to global optimality.
Throughout this section, we use the following algorithm parameters: εencl = 0.1, δ =
0.095 and θ = 1e-4 as well as a time limit of maxtime = 3600s and a maximal number
of iterations of maxiter = 1000.
We start with an illustrative tri-objective mixed-integer non-convex non-quadratic
problem [14, P2]:

min
x

 x1 + x4
x2 − x4

x3 − exp(x4) − 3


s.t. x2

1 + x2
2 ≤ 1,

exp(x3) ≤ 1,

x1x2(1 − x3) ≤ 1,

x ∈ [−2, 2]3 × ([−2, 2] ∩ Z).

(P1)

The corresponding computational results are reported in Table 1.
One can see that using the uniform refinement scheme does not yield a satisfactory
result within the time limit for both NLP-variants. An average number of around
212.3, respectively, 554.3 additional binary variables indicates a significantly increased
complexity of the relaxed problems. In some cases, even over 5.000, respectively, 10.000
binary variables are added to the problem, making it comparably hard to solve. In
contrast to that, one observes an enormous advantage in computational time when
using the adaptive refinement scheme. Here, the size of the relaxed problems decreases
significantly. There are only around 36.3, respectively, 29.6 binary variables added
on average for the 5241, respectively, 469 MILP relaxations that have to be solved.
Applying bound tightening, the computational time decreases even more. The reason
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feasibility NLP global NLP
UN AD AD-BT UN AD AD-BT

CPU (in s) ⋆ 1760.6 1216.3 ⋆ 196.6 107.3
# of iterations 18 53 49 7 24 24

max # of preimage set boxes (MPSB) 5122 76 36 10257 59 26
average # of PSB (APSB) 212.4 36.3 14.9 554.3 29.6 12.3

# of solved relaxed problems (RP) 598 5241 3877+2443 140 469 467+399

Table 1: Numerical results for (P1). ⋆ stands for an exit of the method because of the
time limit. For the AD-BT variant we count the number of MILP relaxations solved for
tackling the search zones as well as the ones solved for tightening the variable bounds.

for this is a significantly smaller average of preimage set boxes, namely only around 14.9,
respectively, 12.3, i.e., again a reduction of size of the relaxed problems. This results in
a reduced computational time of 1216.3s, respectively, 107.3s with bound tightening
opposing 1760.6s, respectively, 196.6s without bound tightening. Furthermore one can
see a very significant advantage of solving the NLPs to global optimality instead of
just to feasibility. While there is no significant difference in the size of the relaxed
problems, there is a huge increase in the number of problems that have to be solved
when using the feasibility approach compared to the case of solving the reduced NLPs
to global optimality. One reason for this might be better progress in the image space
when using nondominated points of the patch problems (pMOP(x̂I)) instead of only
feasible ones for the updates of the potentially nondominated set as well as the set of
local upper bounds.
We continue with the attempt to illustrate the functionality of the adaptive refinement
scheme and the possibility of tightening the variable bounds during the procedure.
Note that for problem (P1), all five possible integer assignments contribute to the
feasible set. In Figures 2a and 2b, different domain partitionings of the variable do-
main [0, 1] × [−4, 1] of the function f3(x) = x3 − exp(x4) − 3 (depicted in Figure 3)
corresponding to different search zones are depicted. Figure 2a shows the respective
partitionings obtained by employing the adaptive refinement scheme, whereas Figure 2b
shows the partitionings when bound tightening is additionally applied. For each of the
two variants, we report the partitioning of the variable domain [0, 1]×[−4, 1] associated
with three different search zones. That is, the left partitionings belong to the respec-
tive relaxations associated with the search zone determined by the local upper bound
(−2.83, 1.64, −0.12)⊤, the midparts are associated with the search zone determined by
the local upper bound (0.30, −1.45, −7.01)⊤ and the right partitionings with the search
zone determined by the local upper bound (1.26, −2.45, −11.59)⊤.
One can clearly see the effect of bound tightening as for all three cases the partitions
consists of only one box contrasting multiple boxes for the sole adaptive refinement
scheme. Note further, that the bound tightening reduces the dimension of the boxes
as it fixes the values of the discrete variable x4 to the respective relevant values. Nev-
ertheless, one can also observe the concentration to only certain parts of the variable
domain box by the adaptive refinement scheme.
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Figure 2: Domain partitionings of the domain belonging to f3(x) = x3 − exp(x4) −
3 corresponding to different search regions in the image space as performed by the
Algorithm 1.

We continue with a scalable bi-objective quadratically constrained problem [14, P3]:

min
x

( ∑k/2
i=1 xi +∑k+l/2

i=k+1 xi∑k
i=k/2+1 xi +∑n

i=k+l/2+1 xi

)

s.t.
k∑

i=1
x2

i ≥ 1,
n∑

i=k+1
x2

i ≤ 9,

xi ∈ [0, 1] for i ∈ [k], xi ∈ [−3, 3] ∩ Z, i ∈ [n] \ [k].

(P2)

Problem (P2) is scalable in the even number k ∈ N of continuous variables as well
as in the even number l ∈ N of integer variables. This sums up to a number of
n = k + l variables in total. The numerical results for different configurations of (P2)
are displayed in Table 2.
One can see that the uniform approach is outperformed in terms of computational time
by the other two approaches for all configurations of (P2), except for (k = 2, l = 2)
together with the global NLP approach. In this case, the uniform refinement method
is faster than the AD-BT variant. However, one can observe that (for all correctly
terminated instances) using the UN approach, the number of MILPs that have to
be solved is smaller compared to the other approaches. This is not surprising at all
as the uniform partitioning approach bisects all of the boxes in one refinement step
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Figure 3: Surface of the function f3 = x3−exp(x4)−3 on the domain [−2, 2]×([−2, 2]∩
Z).

and therefore possibly fewer relaxed problems have to be solved to approximate the
relevant area in the preimage space fine enough compared to the adaptive approach.
Nevertheless, the results displayed in Table 2 show that the benefit of solving smaller
MILP relaxations is higher than the cost of solving more of them, i.e., the sparsity in
the partitionings is more important than the number of problems solved. Note at this
point that using the uniform refinement method, a lot more (OEP) have to be solved
globally, as each box belonging to the partition is bisected. The increased number of
(OEP) together with the increase in the size of the MILP relaxations are two reasons
for the obvious inferiority of the uniform approach compared to the other two.
This clarity does not transfer to the question of whether applying bound tightening
or not. While the positive impact of bound tightening is obvious when comparing
the average size of the MILP relaxations (APSB), it is not that clear when comparing
computational times. There are configurations of (P2) for each of the two adaptive
variants being superior to the other. However, especially in the case of solving the
NLPs (pMOP(x̂I)) to feasibility, the AD-BT variant outperforms the AD variant quite
clearly for most of the configurations – this might become apparent when the NLP
part of the MINLP in question is too hard for solving to global optimality.
When comparing the feasible NLP approach with the global one, one observes that
there is no significant difference in computational time for most configurations when
using the AD-BT variant. This opposes the other two refinement schemes, where the
difference in computational times is tremendous. For all cases the number of MILP
relaxations increases. This is due to weaker progress in the image space for the single
search zones visits as we only use feasible points instead of patch-nondominated ones
for the update of the potentially nondominated set.
The results in Table 2 indicate that it seems to be beneficial to apply bound tightening
when the number of continuous variables increases compared to the number of integer
ones. Note that no variant succeeded in solving any configuration of (P2) with l ≥ 8
within a reasonable time limit.
Note further that all of the continuous, respectively, integer variables appear in one of
the constraints. Consequently, k, respectively l, also determine the dimension of the
original variable domain of the corresponding constraint. Using, e.g., a simplex-based
partitioning scheme to triangulate the six-dimensional variable domain one would have
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to use at least 308 and in case of eight-dimensional variable domains more than 1500
simplices.

8 Conclusion
In the present paper, we have introduced an algorithm for computing pseudo enclosures
of the nondominated set of multi-objective mixed-integer nonconvex problems. The
algorithm allows to refine the piecewise linear outer approximations in an adaptive
manner guided by image space information. The piecewise linear outer approximations
are based on a novel box-based relaxation technique for general nonconvex terms which
allows to additionally apply bound tightening during the procedure using better and
better image space information in form of objective cut-offs.
While the proposed method performs overall very well for the above toy instances, it
has clear limitations when facing problems that either have a more complex structure
or are larger. To overcome this relevant issue, some numerical tuning has to be done
in the future. Possible ideas for that are the following: for larger problems it is not
a good idea to apply bound tightening to each and every variable appearing in a
nonlinear constraint every time. Therefore, strategies, e.g., based on the results in
[20], for determining when and which bound tightening problems should be solved
are needed. Furthermore, as proposed in [8], one can think of selection strategies of
the constraints for which a partioning refinement should be performed. Although the
box-based partitioning scheme is able to handle dimensions larger than two (see the
above results), it might be crucial of using expression trees for splitting constraints
where many variables appear. Lastly, when the fix-integer-assignment strategy fails to
find a feasible point, one might implement a feasibility version of the original problem
together with the search zone constraint. By doing so, one avoids a lengthy (and
costly) refinement-after-refinement sequence without any progress. First experiments
have shown that utilizing the last of the above modifications, the computational time
for the configuration (k = 2, l = 8) of (P2) could be reduced from no termination
within 10h to correct termination within around 1.000s.
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