A Multi-Reference Relaxation Enforced
Neighborhood Search Heuristic in SCIP

Suresh Bolusanl*l[OOOO 0002—5735— 3443] Gioni MeXII[OOOO 0003—0964— 9802]
Mathieu Besangon [0000—0002—6284— 3033] and Mark Turnerl[OOOO 0001—-7270— 1496]

1 Zuse Institute Berlin, Germany
2 Qrenoble Alpes University, Inria, LIG
{bolusani, mexi, turner}@zib.de, mathieu.besancon@inria.fr

Abstract. This paper proposes and evaluates a Multi-Reference Re-
laxation Enforced Neighborhood Search (MRENS) heuristic within the
SCIP solver. This study marks the first integration and evaluation of
MRENS in a full-fledged MILP solver, specifically coupled with the
recently-introduced Lagromory separator for generating multiple refer-
ence solutions. Computational experiments on the MIPLIB 2017 bench-
mark set show that MRENS, with multiple reference solutions, improves
the solver’s ability to find higher-quality feasible solutions compared to
single-reference approaches. This study highlights the potential of multi-
reference heuristics in enhancing primal heuristics in MILP solvers.

Keywords: Mixed-integer optimization - Heuristics

1 Introduction

Primal heuristics aim to find feasible solutions to optimization problems at a
lower computational cost than their exact counterparts but without any guaran-
tees. For mixed-integer linear programming (MILP), two main use cases spur the
development of primal heuristics. First, as standalone methods, heuristics allow
practitioners to obtain feasible solutions in shorter amounts of time. Second, as
components of exact solution algorithms, heuristics provide feasible solutions for
various purposes in these algorithms, e.g., for pruning nodes in a branch-and-cut
algorithm.
In this work, we consider general MILP problems, which take the form:

min{cTz | Az >b, <z <u, veZl xRN, (1)
x

Heuristics in MILP solvers can broadly be classified into four categories:
rounding, diving, objective diving, and improvement heuristics. Interested read-
ers may refer to [3,1] for an overview. The first three categories require a frac-
tional solution as a reference solution, and the last category requires an incum-
bent feasible solution. The fractional solution is often obtained from the linear

* Corresponding author.

2 S. Bolusani et al.

programming (LP) relaxation of (1), which is defined as follows:
min{c'z | Ar 2b, |<xz<u, zeR"}. (2)

The usage of this fractional solution varies depending on the heuristic, e.g.,
relazation enforced neighborhood search (RENS) [3,1,4] and feasibility pump
(FP) [7,2,8]. Despite the existence of a wide variety of heuristics, there is one
common aspect among them, i.e., all of them require and use a single reference
solution for their execution.

The literature for MILP heuristics exploiting multiple reference solutions is
sparse. To the best of our knowledge, the only such work is [12] in which the
authors improved the FP heuristic by considering multiple reference solutions.
They proposed a new heuristic called mRENS and programmed it in a standalone
implementation of the FP heuristic. They observed performance improvements
on various MILP test sets. However, the idea was never tested and integrated
into a full-fledged MILP solver.

The lack of literature using multiple reference solutions in a heuristic setting
is also reflected in the optimization software landscape, where we are aware of
no open-source implementations of such heuristics in an MILP solver. Motivated
by this, along with the recent integration of a new relax-and-cut framework-
based separator in SCIP (more details in Section 2), we implement a new primal
heuristic that considers multiple reference solutions within the state-of-the-art
solver SCIP [5]. We call our new heuristic MRENS, similar to the heuristic in [12].

The differences between our proposed heuristic and the mRENS of [12] are
threefold. First, we consider the multiple fractional solutions generated as a
byproduct of the recently integrated Lagromory separator [5] in SCIP, whereas [12]
considers the multiple solutions generated in the pumping loop of the FP heuris-
tic. Second, the sub-MILPs of our heuristics differ in their feasible regions. Fi-
nally, we use the working limits of the RENS heuristic in SCIP [1], which are
different from those of [12].

In the rest of this paper, we present the details of our heuristic in Section 2,
our computational experiments and analysis in Section 3, and our conclusions
in Section 4.

2 Multi-Reference Relaxation Enforced Neighborhood
Search (MRENS)

RENS [3,1,4] is a rounding primal heuristic for MILPs that searches for an
(integral) primal feasible solution of (1) in the neighborhood of a given single
fractional solution, e.g., an optimal solution of (2). MRENS, multi-reference
relazation enforced neighborhood search, is a generalization of RENS in the sense
that MRENS considers multiple fractional solutions to define the neighborhood.
We will now describe MRENS in Section 2.1 and the generation procedure of
multiple reference solutions in Section 2.2.

MRENS Primal Heuristic in SCIP 3

2.1 MRENS

Let Z(®) be a fractional optimal solution of (2). A trivial rounding heuristic
applied at z(®) may fail to find a primal feasible solution of (1) most of the
time because it ignores the linear constraints Az > b. RENS instead solves the
sub-MILP (3) and finds the best possible rounding of #(%) in the feasible region

of (1).
min{cTz | Az 2 b, | <z < u, [i;O)J < aj < [EEO)] VjeZ, xez x RV,
(3)

While constructing (3), the integer variables with integral values in z(?) are fixed
to these values, and the domains of remaining integer variables are changed
based on their fractional values in z(?). Consequently, the sub-MILP (3) can be
as computationally hard as the original MILP (1), contingent on the variable
fixings and domain changes. For example, if the original problem is a pure bi-
nary MILP, the sub-MILP constructed with a fully fractional reference solution
results in the same original problem. In practice, however, difficult sub-MILPs
occur infrequently, and it has been observed empirically [4] that RENS typically
produces over-restricted and thus infeasible sub-MILPs.

MRENS, by design, aims to overcome the observed issues of over-restricted

sub-MILPs through the use of multiple reference solutions {z(®), 21, (2 ..z}
Let J = {0,1,2,....k}, 2j_, = 12}}”5§) and x; = Héaj(j:§) Then, in

MRENS, we solve the sub-MILP (4) instead of the sub-MILP (3).
min{cTz | Az > b, | <z <u, xec ZZ x r121

[ZC]' min
l‘rj min
The sub-MILPs (4) and (3) are equivalent if we consider only the single fractional
solution z(*), and otherwise, (4) is a relaxation of (3). Accordingly, (4) may be

computationally more difficult to solve than (3) but also has a better chance of
producing primal feasible solutions of (1).

<z < |z VijeTl ifx; —x; . > 1.0, (4)
J Jmax Jmax Jmin
J < Ij < [‘rjmax] VJ € I lf xjmax - xjmin < 10}

2.2 Generation of Multiple Reference Solutions

Recently, the Lagromory separator (cutting plane generation routine) based on
the relax-and-cut framework [9] was implemented in SCIP 9.0 [5]. The following
steps describe one iteration of the execution process of this separator whenever
it is called at a fractional optimal solution z(®) of (2):

1. Generate Gomory mixed-integer (GMI) cuts that separate z(%).
Add the cuts to the objective function of (2) in a Lagrangian fashion.
Update the Lagrangian multipliers and modify the objective of the LP.
Solve this new LP to obtain its optimal solution Z(*) at iteration k.
If integral, save Z(F) as a feasible solution to (1). Otherwise, go to step 1.

Gk D

4 S. Bolusani et al.

Multiple such iterations are performed in a single call to the separator while
keeping the feasible region of (2) intact. This outputs a set of GMI cuts from
multiple LP feasible bases of (2). Since it solves multiple LPs, this separator
is computationally costly compared to other separators present in SCIP. This
computational cost motivated the search for ways to exploit different information
generated throughout the separation algorithm, particularly on the primal side.
Thus, we propose to use these bases as the multiple reference solutions.

Using too many reference solutions can cause the sub-MILP to have a large
feasible region inducing a prohibitive solving time. Therefore, we only consider
a maximum of three reference solutions, which follows the empirical results of
[12]. The reference solutions we select consist of the first solution #(®) and the
last two solutions Z(*~1) and z(*) from the sequence of solutions obtained by the
Lagromory separator.

3 Computational Results

We implemented and tested our heuristic in SCIP 9.0.0'. We did our experiments
on a cluster equipped with Intel Xeon Gold 5122 CPUs and a limit of 96GB of
RAM. We used the MIPLIB 2017 benchmark library [10] as our test set. To
mitigate the effects of performance variability [11], we solved each problem with
five different seeds, namely {0, 1,2, 3, 4}, resulting in a total of 1200 problem-seed
combinations, which we refer to as instances.

We solved each instance with a time limit of two hours and a memory limit
of 50 GB. We use the same working limits as RENS in SCIP, i.e., 5000 solving
node limit and 500 stalling node limit (the maximum number of nodes an MILP
solver can process without improving the incumbent solution of the sub-MILP).
We also require a minimum of 50% integer variable fixings for heuristic execution
while creating the sub-MILP and a minimum of 25% total variable fixings after
presolving the sub-MILP. We modified SCIP to deactivate the built-in RENS
heuristic and use the Lagromory separator as a routine for generating multiple
reference solutions.

In the following, we compare two settings, “MRENS” and “RENS”. In the
MRENS setting, we use three reference solutions as detailed in Section 2.2. In the
RENS setting, we use only the first solution Z(?), which is the optimal solution
of (2). Thus, the only difference between the RENS setting and the built-in
RENS heuristic of SCIP is the frequency of execution, i.e., the RENS setting is
only executed when the Lagromory separator generates a solution (refer to [5]
for additional details).

Table 1 provides a comparison of the two settings. As expected, MRENS fixes
fewer integer variables while constructing its sub-MILP (4) compared to RENS.
Accordingly, MRENS is executed less often than RENS because of the require-
ment of minimum 50% integer variable fixings. MRENS is also more successful
in finding feasible solutions than RENS. More importantly, MRENS finds the

1 SCIP commit hash: dadaf6a544b39ee20a64d1dde942b2b8b1164b7e

MRENS Primal Heuristic in SCIP 5

best-known solution more frequently than RENS, with success rates of 17.0%
and 12.3%, respectively.

Table 1. Aggregated results comparing MRENS and RENS. The columns in order
of appearance: the heuristic setting used; the total number of heuristic calls over all
instances; the percentages of heuristic calls where the heuristic was executed (i.e.,
the calls where at least 50% of the integer variables were fixed in the sub-MILP),
successfully found a solution, and found a new best solution; and the percentage of
fixed integer variables in the sub-MILP averaged over all heuristic calls.

% of calls % of calls % of calls avg. % of fixed

sefting 7 calls heur. executed solution found best found int. variables

MRENS 1883 78.5% 30.5% 17.0% 73%
RENS 1848 83.0% 24.1% 12.3% 7%

In Table 2, we compare the overall performance of SCIP with MRENS and
RENS settings. Both settings solve almost the same number of instances within
the time limit. For the instances that were solved by both settings, MRENS is
faster by 5% and generates branch-and-bound trees with 3% fewer nodes. On
the affected instances where MRENS has impacted the solving process, MRENS
outperforms RENS significantly both in terms of solution time and tree size.
Specifically, MRENS is 23% faster and generates trees with 15% fewer nodes.

Table 2. Aggregated results comparing SCIP’s performance with MRENS and RENS
settings for the categories: all instances (“all”), instances solved by both settings (“both-
solved”), instances where the solving path is different (“affected”), and affected instances
solved by both settings (“affected-solved”). The columns refer to the number of instances
in each category, the number of solved instances for each setting, the geometric mean
of the runtime and nodes for each setting, and the relative quotients of those.

. MRENS RENS relative
subset instances

solved time mnodes solved time nodes time nodes

all 1192 632 1136 - 633 1168 - 097 -
both-solved 625 625 213 2608 625 224 2698 0.95 0.97
affected 142 134 322 - 135 411 - 0.78 -
affected-solved 127 127 228 5500 127 297 6475 0.77 0.85

Additionally, both settings are fast within the working limits; on average, they
require less than one second of execution time per instance without accounting
for the generation time of reference solutions. For the instances that were solved
to optimality, MRENS found an optimal solution for 38 out of 616, whereas
RENS found an optimal solution for 13 out of 617. For the instances that were

6

S. Bolusani et al.

not solved to optimality, MRENS found the best solution for 24 out of 562,
whereas RENS found the best solution for 15 out of 559.

4

Conclusion

Our results demonstrate that the MRENS setting finds both feasible and best-
known solutions for MILPs more often than the RENS setting without much
additional computational cost, indicating that using multiple reference solutions
in the RENS framework is beneficial. The concept may be extended to other
heuristics, such as RINS [6], or with other sources of reference solutions.

Acknowledgements

The work for this article has been conducted in the Research Campus MODAL
funded by the German Federal Ministry of Education and Research (BMBF)
(grant number 05M14ZAM).

References

1.
2.

3.

10.

11.

12.

Achterberg, T.: Constraint integer programming. Ph.D. thesis, TU Berlin (2007)
Achterberg, T., Berthold, T.: Improving the feasibility pump. Discrete Optimiza-
tion 4(1), 77-86 (2007)

Berthold, T.: Primal heuristics for mixed integer programs. Master’s thesis, Tech-
nische Universitdt Berlin (2006)

Berthold, T.: RENS: the optimal rounding. Mathematical Programming Compu-
tation 6, 33-54 (2014)

Bolusani, S., Besancon, M., Bestuzheva, K., Chmiela, A., Dionisio, J., Donkiewicz,
T., van Doornmalen, J., Eifler, L., Ghannam, M., Gleixner, A., et al.: The SCIP
optimization suite 9.0. arXiv preprint arXiv:2402.17702 (2024)

Danna, E., Rothberg, E., Pape, C.L.: Exploring relaxation induced neighborhoods
to improve MIP solutions. Mathematical Programming 102, 71-90 (2005)
Fischetti, M., Glover, F., Lodi, A.: The feasibility pump. Mathematical Program-
ming 104(1), 91-104 (2005)

Fischetti, M., Salvagnin, D.: Feasibility pump 2.0. Mathematical Programming
Computation 1(2), 201-222 (2009)

Fischetti, M., Salvagnin, D.: A relax-and-cut framework for Gomory mixed-integer
cuts. Mathematical Programming Computation 3, 79-102 (2011)

Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T., Bastubbe, M., Berthold,
T., Christophel, P., Jarck, K., Koch, T., Linderoth, J., et al.: MIPLIB 2017: data-
driven compilation of the 6th mixed-integer programming library. Mathematical
Programming Computation pp. 1-48 (2021). https://doi.org/10.1007/s12532-020-
00194-3

Lodi, A., Tramontani, A.: Performance variability in mixed-integer program-
ming. In: Theory Driven by Influential Applications, pp. 1-12. INFORMS (2013).
https://doi.org/10.1287 /educ.2013.0112

Mexi, G., Berthold, T., Salvagnin, D.: Using multiple reference vectors and objec-
tive scaling in the feasibility pump. EURO Journal on Computational Optimization
11, 100066 (2023)

