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Abstract

We provide new theoretical insight on the generation of linear and non-convex cuts for
value functions of multistage stochastic mixed-integer programs based on Lagrangian du-
ality. First, we analyze in detail the impact that the introduction of copy constraints, and
especially, the choice of the accompanying constraint set for the copy variable have on the
properties of the Lagrangian dual and the obtained cuts. We show that the well-known
tightness result for Lagrangian cuts in stochastic dual dynamic programming (SDDiP)
crucially depends on this choice, and not on the introduction of copy constraints in itself.
Afterwards, we generalize our results to the case where a Lipschitz regularization is ap-
plied to the value functions. In particular, we show a deep relation between norm-bounded
Lagrangian dual problems and the closed convex envelope of the regularized value func-
tions. For linear Lagrangian cuts, using an appropriate regularization, this result can be
used to enhance the tightness result from SDDiP to the regularized case. For the genera-
tion of non-convex cuts, we pick up on the lift-and-project idea proposed by Füllner and
Rebennack in their non-convex nested Benders decomposition (NC-NBD) method. We
generalize this cut generation idea to the stochastic case. We then show that by careful
choice of the norm used for regularization in the lifted space, Lipschitz continuity of the
obtained non-convex cuts can be guaranteed. By that, we resolve an open theoretical
question from the original NC-NBD paper. We highlight all our results by simple illustra-
tive examples. Our work allows for a profound understanding of how and to which effect
copy constraints and regularization may be used in decomposition methods in stochastic
mixed-integer programming.

1 Introduction

1.1 Motivation and prior work

In many practical applications, sequential decisions have to be made over a finite num-
ber of stages, while some of the problem data of the following stages are subject to
uncertainty. Such decision-making processes can be modeled as multistage stochastic
programs. Often it is assumed that the number of scenarios describing the uncertain
data is finite. In this case, such stochastic problems can be reformulated as large-scale
deterministic problems. However, for a practically relevant number of scenarios, these
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problems get too large to be solved by off-the-shelf solvers. Therefore, they are usually
approached by decomposition methods.

For multistage stochastic linear programs (MS-LP), these decomposition methods
have a long tradition and are well-studied. Among the most prominent ones are nested
Benders decomposition (NBD) [6] and stochastic dual dynamic programming (SDDP)
[21]. One of their key ideas is to decompose the original multistage problem by stage
and scenario into subproblems, which are linked by state variables and (expected) value
functions. These functions are piecewise-linear and convex, and thus can be iteratively
approximated by linear cutting-planes. Finitely many such cuts are sufficient to ensure
(almost sure) convergence.

However, in many applications, some of the decisions have to be integer or binary,
which yields a multistage stochastic mixed-integer linear program (MS-MILP). Prob-
lems of this class are very hard to solve, as they combine the challenges of dynamic and
stochastic programming with the non-convexity of mixed-integer programs. In partic-
ular, the value functions become non-convex and discontinuous, which aggravates their
approximation.

Various strategies have been proposed to solve MS-MILPs. A natural approach is to
relax the integer constraints to obtain an MS-LP that can be solved by existing meth-
ods. However, in that case not the original MS-MILP is solved, which may hamper the
practical benefit of this approach. The same issue occurs if the expected value functions
are statically or dynamically convexified [9, 26, 25]. Another approach is to approxi-
mate the original value functions with linear Benders cuts [4, 29] or Lagrangian cuts [32]
without convexifying the problem. In general, these cuts only yield a non-exact convex
approximation of the expected value functions. Therefore, in such cases, convergence
of decomposition methods is not guaranteed. As a relief, in two-stage stochastic pro-
gramming linear cuts are often incorporated into branch-and-bound approaches, where
convergence is guaranteed by additional branching [8, 10]. However, for multistage
problems this is computationally intractable.

Still, two strategies have been proposed recently on how linear cuts can be used
to solve stochastic MILPs to arbitrary precision. The first one is to use scaled cuts
which are guaranteed to recover the convex envelope of the expected value functions
[28]. This approach has only been applied to the two-stage case so far. The second
one is to use stochastic dual dynamic integer programming (SDDiP) in a lifted space
[32]. The SDDiP method uses special Lagrangian cuts to approximate the expected
value functions of MS-MILPs. These cuts are tight, and thus ensuring convergence if all
state variables are binary (or bounded integer). For general MS-MILPs it is therefore
proposed to approximate the state variables using a static binary expansion [32]. Then,
in the lifted binary state space, linear cuts can be used to approximate the expected
value functions. In this case, however, not the original MS-MILP, but an approximation
is solved. While it is possible to derive theoretical results on the approximation quality
[32], it is not immediately clear how the static binary expansion should be chosen in
practice.

The special Lagrangian cuts in SDDiP rely on the introduction of copy constraints,
adding local copies of the state variables, which are then dualized in the Lagrangian
relaxation. Even though this is barely discussed in [32], these copy constraints are
accompanied by additional constraints for the new variables. Importantly, different
choices of these constraints may lead to distinct cuts with different approximation qual-
ity. In this paper, we study this aspect in more theoretical detail and by that provide
a new, generalized perspective on the generation of Lagrangian cuts.
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Only recently, more focus has been put on deriving non-convex approximations (also
called non-convex cuts) for the non-convex and discontinuous value functions. In [22],
step functions are used instead of cutting-planes to approximate them, presuming their
monotonicity. In stochastic Lipschitz dynamic programming (SLDP) [2], Lipschitz cuts
are proposed under the assumption of Lipschitz continuity of the value functions, as
well as knowledge of a Lipschitz constant. Moreover, non-convex cuts can be generated
by solving augmented Lagrangian dual problems [2] instead of classical Lagrangian dual
problems. However, the approach in [2] requires a strong recourse assumption, namely
the complete continuous recourse.

In [30], the authors propose a new class of SDDP-type algorithms for solving mul-
tistage stochastic mixed-integer nonlinear programs with non-Lipschitzian value func-
tions. In particular, the paper proposes a new cut generation framework using gener-
alized conjugacy with regularization, which is guaranteed to obtain a global optimum
without the assumption of complete recourse. This significantly generalizes SDDP, SD-
DiP, and SLDP. A complete oracle complexity analysis is also achieved in the paper. In
[31], SDDP-type algorithms are extended to multistage distributionally robust convex
optimization and a new type of SDDP algorithm that adaptively chooses the forward or
backward direction at each node is proposed with complete oracle complexity analysis.

An alternative approach to obtain non-convex cuts is to use the binary approx-
imation idea from [32] in a dynamic and temporary fashion, paired with Lipschitz
regularization. This is one of the key ingredients of the non-convex nested Benders
decomposition (NC-NBD) method proposed in [14], where MILP relaxations are solved
iteratively in order to solve an MINLP. In the backward pass of this iteration, the
state variables are temporarily lifted to a binary space, where tight Lagrangian cuts are
generated as in SDDiP. These linear cuts are then projected back to the original state
space, which yields a tight non-convex approximation of the value functions. Under
some strong technical assumption, it is shown that these approximations are Lipschitz
continuous. In order to improve the approximation quality, the binary approximation
precision is iteratively refined if required. We generalize these results to the stochastic
case in this paper and explore the regularization in more detail, which allows us to drop
the technical assumption taken in [14].

Whereas regularization is particularly helpful for deriving non-convex, but Lipschitz
continuous approximations of non-Lipschitzian value functions, it may also be useful
when generating linear Lagrangian cuts. It naturally ensures feasibility of the subprob-
lems, so that there is no need for an additional recourse assumption. Also, as shown in
[13, 30], under mild conditions, regularization of an MS-MILP ensures exact solution of
the original MS-MILP. Despite these amenities, there exists no study yet focusing on
the effects and the theoretical backbone of using Lipschitz regularization in MS-MILPs
in order to derive linear Lagrangian cuts. We close this scientific gap in this work.

1.2 Contribution

In this paper, we investigate in detail the effects of copy constraints and Lipschitz
regularization on the generation and properties of linear and non-convex cuts for the
value functions of MS-MILPs, which are constructed based on Lagrangian duality. Our
results allow for a more profound understanding of how copy constraints and Lipschitz
regularization may be utilized in multistage stochastic programming.

As we provide new theoretical insight on Lagrangian cuts and duality, our work can
be considered as complementary to the work on Lagrangian cuts by Zou et al. [32], on
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conjugacy cuts and regularization by Zhang and Sun [31, 30], on augmented Lagrangian
duality by Feizollahi et al. [13] and on Lagrangian-based non-convex cuts by Füllner
and Rebennack [14].

With respect to linear Lagrangian cuts we make the following key contributions.

1. In Sect. 3, we thoroughly explore the role of copy constraints when deriving La-
grangian cuts. More precisely, we show that accompanying the new copy vari-
ables with different types of constraints leads to cuts with different approximation
characteristics. This way, we provide a new theoretical perspective on Lagrangian
relaxation and cuts in general. In particular, we show that the well-known tight-
ness result for Lagrangian cuts in SDDiP [32] actually relies on the accompanying
constraints more than on the introduction of copy constraints itself.

2. In Sect. 4, we consider the case of Lipschitz regularization and generalize our
previous results to this case. We prove a deep relation between norm-bounded
Lagrangian dual problems and primal convexifications of the regularized subprob-
lems in MS-MILPs, in the sense that they yield the same optimal value if dual
norms are used in both cases. While such relation is known for non-regularized
problems and unbounded Lagrangian duals, we are not aware of any literature
covering this result for the regularized case.

3. We use this result to show that the obtained Lagrangian cuts are tight for the
closed convex envelope of the regularized value functions. This also clarifies which
kind of cuts are constructed if (artificial) multiplier bounds are introduced in La-
grangian dual problems in practice. Furthermore, for the 1-norm penalty function,
tightness for the true regularized value functions can be achieved as long as all
state variables are binary. This generalizes the tightness result from SDDiP [32]
to the regularized case.

With respect to non-convex cuts we make the following key contributions.

4. We significantly extend the idea from the NC-NBD method by Füllner and Reben-
nack [14] to compute linear Lagrangian cuts in a lifted binary state space and to
project them back to the original state space to obtain non-convex approxima-
tions of the value functions. First, we generalize this cut generation idea from the
deterministic to the stochastic case. Additionally, we show that by using appro-
priate weighted norms in the Lipschitz regularization and in the Lagrangian dual,
Lipschitz continuity of the obtained non-convex cuts is ensured. This is crucial to
guarantee convergence of NC-NBD. In doing that, we show that the technical As-
sumption (A4) in [14] can be dropped, and thus close an open theoretical question
from [14].

We underline all our results by providing illustrative examples.

1.3 Structure

This paper is structured as follows. In Sect. 2 we start with formulating the MS-
MILP and stating some basic concepts and assumptions. In Sect. 3 we discuss classical
Lagrangian duality and cuts, but with special focus on the impact of the chosen copy
constraint approach. In Sect. 4 we first introduce Lipschitz regularization in a formal
way. Then, we present our main result on norm-bounded Lagrangian duality and the
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associated Lagrangian cuts. In Sect. 5 we recapitulate the NC-NBD approach by Füllner
and Rebennack [14] with special focus on the applied regularization. We enhance the
cut generation idea to the stochastic case and show how Lipschitz continuity of the
non-convex cuts can be ensured. We finish with a conclusion in Sect. 6. For reasons of
clarity some technical proofs are shifted to the appendix.

2 Problem formulation

We consider MS-MILPs with a finite number T ∈ N of stages, where some of the problem
data is uncertain and evolves according to a known stochastic process ξ := (ξ1, . . . , ξT )
with deterministic ξ1. We assume that the random data vectors ξt, t = 1, . . . , T, are
discrete and finite, and thus the uncertainty can be modeled by a finite scenario tree.

Let T = (N , E) denote a finite scenario tree with a set of nodes N and a set of
edges E . For each node n ∈ N , the unique ancestor node is denoted by a(n) and the
set of child nodes is denoted by C(n). The probability for some node n to realize is
pn > 0 and assumed to be known. The transition probabilities between adjacent nodes
n,m ∈ N (i.e., edges (n,m) ∈ E) can then be determined as pnm := pm

pn
. For the root

node r, we assume a(r) = ∅ and pr = 1. We define N := N \ {r} to address the set of

nodes without the root node and ‹N to address the set of nodes without the leaf nodes.

2.1 Dynamic programming equations

The MS-MILP can be expressed recursively by its dynamic programming equations (for
details see Zou et al. [32]). For the root node, we obtain

v∗ := min
xr ,yr

fr(xr, yr) +QC(r)(xr)

s.t. (xr, yr) ∈ Fr(xa(r))
(1)

with xa(r) = 0, and v∗ is the optimal value of the MS-MILP. Let R := R ∪ {+∞}. For

all n ∈ ‹N , the expected value function QC(n)(·) : Rda(n) → R is defined by

QC(n)(xn) :=
∑

m∈C(n)

pnmQm(xn), (2)

with the value function Qn(·) : Rda(n) → R defined by

Qn(xa(n)) := min
xn,yn

fn(xn, yn) +QC(n)(xn)

s.t. (xn, yn) ∈ Fn(xa(n))
(3)

for all n ∈ N . For the leaf nodes n ∈ N \ ‹N , we set QC(n)(xn) ≡ 0. Moreover, we set
Qn(xa(n)) = +∞ if Fn(xa(n)) = ∅, and denote by

dom(Qn) :=
{
xa(n) ∈ Rda(n) : Qn(xa(n)) < +∞

}
the effective domain of Qn(·). The same applies to QC(n)(·).

For each node n ∈ N , we distinguish the state variables xn ∈ Rdn , which enter the
child nodes’ subproblems, and the local variables yn ∈ Rd̃n . Moreover, xa(n) is the state
variable from the ancestor node of n and is a fixed parameter in (3) of node n. Further-
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more, fn(·) denotes the objective function and Fn(xa(n)) denotes the feasible set which
depends on the state xa(n). As we consider an MS-MILP, we assume that fn(xn, yn) is
a linear function in xn and yn, and that Fn(xa(n)) is a mixed-integer polyhedral set for
all xa(n). More precisely, we assume it to be defined by

Fn(xa(n)) :=

®
(xn, yn) ∈ Rdn × Rd̃n :

xn ∈ Xn, yn ∈ Yn,

Anxa(n) +Bnxn + Cnyn ≥ bn

´
. (4)

Here, An, Bn, Cn, bn denote appropriately defined data matrices and vectors. The sets
Xn and Yn comprise constraints only associated with xn or yn, e.g., box constraints or
non-negativity constraints. More precisely, we assume that both sets are intersections
of polyhedral sets X̄n, Ȳn and possible integrality constraints. In the following, we also
refer to Xn as the state space.

Remark 2.1. We make two comments on the definition of Qn(·) in (3). First, we
should emphasize that regarding Qn(·) as a function on Rda(n) is not necessarily standard
in stochastic programming. Often it is (implicitly) assumed to be defined only on the
domain Xa(n). However, from our view, allowing Qn(·) to be defined on Rda(n) with
extended real values proves beneficial when we discuss the impact of copy constraints
later on. Second, as the co-domain of Qn(·) is R, Qn(·) should be more rigorously
defined as the infimum of the objective values in problem (3). However, below we take
assumptions under which the minimization problem is bounded and finite infima are
always attained. Therefore, we stick to the min operator in (3) with the additional
definition of Qn(xa(n)) = +∞ given that Fn(xa(n)) = ∅. This approach is also chosen
for all other value functions throughout this paper.

For the remainder of this article, we make some basic assumptions.

Assumption 1. The following conditions are satisfied by (1)-(4):

(A1) For all n ∈ N , the sets Xn and Yn are compact.

(A2) For all n ∈ N , all coefficients in An, Bn, Cn, bn, fn, X̄n and Ȳn are rational.

(A3) The MS-MILP has a feasible solution for each scenario, i.e., there exists some
(xn, yn)n∈N such that (xn, yn) ∈ Fn(xa(n)) for all n ∈ N .

Note that the boundedness in (A1) immediately implies that Fn(xa(n)) is bounded

for all xa(n) ∈ Rda(n) and n ∈ N . By (A1) and [19, Theorem 2.1], it follows that the
subproblems (1) and (3) are either infeasible or attain a finite infimum.

Furthermore, we obtain the following well-known properties for the value functions.
For completeness, we provide a proof in Appendix A.

Lemma 2.2. Under Assumption 1, for all n ∈ N , the value functions Qn(·), and for
all n ∈ N , the expected value functions QC(n)(·) are proper, lsc (lower semicontinuous),
and piecewise polyhedral with finitely many pieces. Moreover, dom(Qn) is closed.

By applying the properness reasoning to the root node, we conclude that v∗ is finite.

2.2 Closed convex envelopes

The main challenge in decomposition methods for MS-MILPs is that the (expected)
value functions are not guaranteed to be continuous or convex. Therefore, approxi-
mations of the value functions based on linear cutting-planes may at best yield their
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closed convex envelopes. To deal with this concept, we denote by conv(S) the con-
vex hull of some set S ⊆ Rd. For a function f : S → R, its closed convex envelope
co(f) : conv(S) → R (also called convex closure) is defined as the pointwise supremum
of all affine functions majorized by f on S [5].

In our setting, for all n ∈ N̄ the value functions Qn(·) are defined on Rda(n) . Hence,
co(Qn)(·) is the pointwise supremum of all affine functions defined on Rda(n) and ma-
jorized by Qn(·) on Rda(n) . With Qn(xa(n)) = +∞ for all xa(n) /∈ dom(Qn), the crucial
part is co(Qn)(xa(n)) ≤ Qn(xa(n)) for all xa(n) ∈ dom(Qn).

It is well-known that the closed convex envelope co(Qn)(·) is equivalent to the bicon-
jugate (Qn)

∗∗(·) of Qn(·) in this setting. For a formal definition of biconjugate functions
and a general introduction to the conjugacy theory we refer to [5].

Lemma 2.3. Under Assumption 1, for all n ∈ N̄ and all xa(n) ∈ Rda(n)

co(Qn)(xa(n)) = (Qn)
∗∗(xa(n)).

We provide a proof in Appendix B.

Remark 2.4. The pointwise supremum of all convex (not necessarily affine) functions
defined on Rda(n) and majorized by Qn(·) on Rda(n) is the convex envelope co(Qn)(·).
If dom(Qn) is compact, then from the lower semicontinuity of Qn(·) (Lemma 2.2) and
Lemma 2.3 it follows that

co(Qn)(xa(n)) = co(Qn)(xa(n))

for all xa(n) ∈ conv(dom(Qn)), see [12, Theorem 2.2].

3 The role of copy constraints in Lagrangian cuts

We revisit some central results on Lagrangian duality and its usage in decomposition
methods to generate cuts. In doing that, we focus specifically on the role that copy
constraints and constraints accompanying them have on the obtained results. This
yields a generalization of some known results from the literature.

3.1 Copy constraints and a family of value functions

We follow the SDDiP approach [32] and introduce local copies zn together with copy
constraints xa(n) = zn to all subproblems (3). Crucially, in addition, we also impose the
accompanying constraints zn ∈ Za(n) on zn to restrict their potential values, given some

set Za(n) ⊆ Rda(n) . This yields a family of subproblems and value functions

Qn|Z(xa(n)) := Qn(xa(n);Za(n)) := min
xn,yn,zn

fn(xn, yn) +QC(n)|Z(xn)

s.t. (zn, xn, yn) ∈ Fn

zn = xa(n)

zn ∈ Za(n)

(5)

for different choices of Za(n). Here,

Fn :=
¶
(xn, yn, zn) ∈ Rda(n) × Rdn × Rd̃n : (xn, yn) ∈ Fn(zn)

©
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and QC(n)|Z(xn) :=
∑

m∈C(n) pnmQm|Z(xn). We use the shortened notation Qn|Z(xa(n))
instead of Qn(xa(n);Za(n)) whenever the particular choice of Za(n) is negligible.

In order to not exclude feasible points, we should choose Za(n) ⊇ Xa(n). For any
xa(n) ∈ Za(n), subproblem (5) is equivalent to subproblem (3) due to the copy constraint.
However, for any xa(n) /∈ Za(n), the copy constraint accompanied with za(n) ∈ Za(n)

immediately induces infeasibility, and thus Qn|Z(xa(n)) = +∞.

Lemma 3.1. Let Xa(n) ⊆ Za(n) ⊆ Rda(n). Then, it follows

Qn|Z(xa(n)) =

®
Qn(xa(n)), for all xa(n) ∈ Za(n),

+∞ for all xa(n) /∈ Za(n),

and thus Qn(xa(n)) ≤ Qn|Z(xa(n)) for all xa(n) ∈ Rda(n).

This means that the additional constraints on zn provide a natural way to restrict
the effective domain of Qn(·) such that dom(Qn|Z) ⊆ Za(n). We can thus interpret
Qn|Z(·) as Qn(·) restricted to Za(n).

As long as Za(n) contains all feasible values of xa(n), the actual choice of Za(n) may
seem of minor importance at first glance. However, it turns out that it has an im-
portant effect on the considered closed convex envelope co(Qn)(·), and by that on the
quality of the obtained Lagrangian cuts (recall that co(Qn|Z)(·) underestimates Qn|Z(·)
on dom(Qn|Z), so the convex envelope changes with Za(n)). As we shall see, choosing
Za(n) appropriately is also the main secret behind the tightness results for Lagrangian
cuts in SDDiP [32] or Benders decomposition [23].

We discuss different choices for Za(n):

� Za(n) = Xa(n). This is the most intuitive choice, as it yields dom(Qn|Z) ⊆ Xa(n),
i.e., we restrict Qn|Z(·) to the actual state space. This choice also yields the best
possible polyhedral underestimators of Qn(·) on Xa(n). It has been considered in
[10, 23, 32] for instance.

� Za(n) = conv(Xa(n)). This choice may yield worse approximations of Qn(·)
on Xa(n), as it leads to valid under-approximators on the larger set conv(Xa(n)).
However, this property may also be exploited on purpose, as it is done in the
NC-NBD method [14] that we discuss in detail in Sect. 5. This choice is also
considered in the original SDDiP work [32], but without further explanation.

� Za(n) = X̄a(n). In this case, Za(n) is the LP relaxation of Xa(n), which has
the advantage that no additional integer variables have to be considered in the
reformulated subproblem (5).

� Za(n) = Rda(n) . This choice leads to the same Lagrangian cuts as if no copy
constraints are introduced at all, but instead the original coupling constraints
Anxa(n) +Bnxn + Cnyn ≥ bn are dualized in the Lagrangian relaxation.

We take the following assumption on Za(n), which is satisfied in most practical
applications.

Assumption 2. The set Za(n) is closed and either satisfies Za(n) = Rda(n) or is rational
MILP-representable.
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In the remainder of this paper, we use two recurring examples to illustrate our
results. We start with the first one to highlight the differences in the convex envelopes
for different choices of Za(n).

Example 3.2. Consider the value function

Q(x) = min
{
y1 + y2 : 2y1 + y2 ≥ 3x, 0 ≤ y1 ≤ 2, 0 ≤ y2 ≤ 3, y1 ∈ Z

}
(6)

with state space X = {0, 1} [32, Example 2]. We introduce the local variable z, the copy
constraint z = x, and constraint z ∈ Z. Depending on the choice of Z, the effective
domain of Q|Z(·) defined in (5) changes. If we set Z = X, then dom(Q|Z) = {0, 1}. If
we set Z = conv(X), then dom(Q|Z) = [0, 1]. And if we set Z = R (or do not introduce
copy constraints at all), then dom(Q|Z) = [0, 2]. Since co(Q|Z)(·) underestimates Q|Z(·)
on dom(Q|Z), the approximation quality on the actual state space X may vary. This is
illustrated in Fig. 1, where the approximation at x = 1 is highlighted by dots. Clearly,
co(Q|Z)(·) is tight for Q(·) at x = 1 in the first two cases, but not in the third one.

+∞

Q|Z
co(Q|Z)

0 0.5 1 1.5 2

1

2

3

4

5

x

(a) Z = {0, 1}.

+∞

Q|Z
co(Q|Z)

0 0.5 1 1.5 2

1

2

3

4

5

x

(b) Z = [0, 1].

Q|Z
co(Q|Z)

0 0.5 1 1.5 2

1

2

3

4

5

x

(c) Z = R.

Figure 1: Q|Z(·) on [0, 2] and co(Q|Z)(·) on dom(Q|Z) for different choices of Z in
Example 3.2.

For the second example, the value function is not only non-convex, but also discon-
tinuous.
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Example 3.3. Consider the value function

Q|Z(x) = min
y,z

y1 −
3

4
y2 +

3

4
y3 +

9

4
y4

s.t.
5

4
y1 − y2 +

1

2
y3 +

1

3
y4 = z

y1, y2, y3, y4 ≥ 0

y1, y2 ∈ Z
z = x

z ∈ [0, 2]

(7)

with continuous state space X = [0, 2], where we already introduced copy constraints with
Z = X. The value function and its closed convex envelope are illustrated in Fig. 2.

Q|Z

co(Q|Z)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

x

Figure 2: Q|Z(·) and co(Q|Z)(·) for Example 3.3.

In Appendix O, we provide a third, two-dimensional illustrative example, for which
choices Z = conv(X) and Z = X̄ lead to different results.

3.2 The approximate subproblem

In Benders-like decomposition methods for multistage problems such as SDDP or SD-
DiP, the functions QC(n)(·) are iteratively approximated by cutting-planes. For this
reason, in the recursion (5), QC(n)|Z(·) are replaced by polyhedral outer approximations
Qi

C(n)|Z(·), which are then iteratively updated over the iterations i. Due to the non-

convex character of QC(n)|Z(·), for MS-MILPs these approximations will not be tight in
general.

In each iteration i, in a forward pass, the tree T is traversed in forward direction.
For each node n ∈ N (or some sampled subset) and some given set Za(n), the subprob-
lems (5) are solved with QC(n)|Z(·) being replaced by Qi

C(n)|Z(·). This yields incumbents

xia(n) ∈ Xa(n) for each considered node n, which are handed as parameters to the child

nodes C(n). These incumbents are also used in a backward pass, where the tree T
is traversed in backward direction, and where the approximations Qi

C(n)|Z(·) are up-

dated to Qi+1
C(n)|Z(·) by constructing additional cuts. For the remainder of this paper, we

solely focus on this cut generation step. For more details on the complete algorithmic
procedure, we refer to [15, 32].

Whereas Assumption 1 guarantees the existence of a feasible solution for MS-MILP,
for some xa(n), the subproblems may become infeasible. In such a case, in addition to the
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previously mentioned optimality cuts also feasibility cuts are required, which iteratively
approximate dom(Qn|Z). Usually, this requirement is avoided by taking an appropriate
recourse assumption, such as:

Assumption 3 (Relatively complete recourse). For all n ∈ N , for all xa(n) feasible at
node a(n), there exist (zn, xn, yn) satisfying the constraints in subproblem (5).

In the backward pass of iteration i, in each considered node n ∈ N , subproblems
for the incumbent xia(n) and the updated outer approximation Qi+1

C(n)|Z(·) of QC(n)|Z(·)
are solved. By a partial epigraph reformulation, we shift Qi+1

C(n)|Z(·) to the constraints.
Then, the subproblems can be expressed as

Qi+1
n|Z(x

i
a(n)) := min

xn,yn,zn,θC(n)

fn(xn, yn) + θC(n)

s.t. (xn, yn, zn, θC(n)) ∈ Mi+1
n|Z

zn = xia(n),

(8)

where we define

Mi+1
n|Z :=

{
(xn, yn, zn, θC(n)) : zn ∈ Za(n), (xn, yn, zn) ∈ Fn, θC(n) ≥ Qi+1

C(n)(xn)
}
. (9)

The polyhedral outer approximation Qi+1
C(n)|Z(·) is defined as the pointwise maximum

of all linear cuts generated so far. To avoid unboundedness of subproblems (8), we
initialize each Q0

C(n)|Z(·) with a valid lower bound θC(n) > −∞. We refer to Qi+1
n|Z(·) as

the approximate value function given some set Za(n).
In the same vein as Assumption 2, we impose another requirement.

Assumption 4. For all n ∈ N and all iterations i, all linear cuts defining the polyhedral
set Qi+1

C(n)|Z(xn) are defined by rational coefficients.

Note that in practice where cut coefficients are computed numerically, this is always
satisfied.

Our assumptions on rationality of coefficients and MILP-representability yield the
following important result, which goes back to [19] and which we need later on.

Lemma 3.4 (Theorem 11.13 in [11]). Under Assumptions 1, 2, 4, the set conv(Mi+1
n|Z) is

a closed rational polyhedron, and the recession cones of conv(Mi+1
n|Z) and M̂i+1

n|Z coincide,

where the latter set denotes the continuous relaxation of Mi+1
n|Z .

Importantly, due to the cut constraints, however, neither Mi+1
n|Z nor conv(Mi+1

n|Z) has
to be bounded.

Similarly to Lemma 2.2, we obtain the following properties for the functions Qi+1
n|Z(·)

by additionally exploiting Assumptions 2 and 4 and that θC(n) is bounded from below:

Lemma 3.5. Let n ∈ N . If Assumptions 1, 2, 4 are satisfied, then Qi+1
n|Z(·) is proper, lsc,

and piecewise polyhedral with finitely many pieces. Moreover, dom(Qi+1
n|Z) = dom(Qn|Z),

and thus closed.
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3.3 The Lagrangian dual

In order to derive linear Lagrangian cuts to approximate the non-convex value functions
Qn(·), we consider a Lagrangian relaxation in which the copy constraints in subprob-
lem (8) are relaxed. For a given vector of dual multipliers πn ∈ Rda(n) for the copy
constraints, this yields the problem

Li+1
n|Z(πn) := min

xn,yn,zn,θCn
fn(xn, yn) + θC(n) − π⊤

n zn

s.t. (xn, yn, zn, θC(n)) ∈ Mi+1
n|Z ,

(10)

where we omit the constant π⊤
n x

i
a(n) in the objective. For varying πn, this relaxation

defines the dual function Li+1
n|Z(·). The problem of optimizing the dual function over the

dual multipliers πn is the Lagrangian dual problem

QD,i+1
n|Z (xia(n)) := max

πn
Li+1
n|Z(πn) + π⊤

n x
i
a(n). (11)

As (10) is a relaxation of the primal subproblem (8), it yields a lower bound for
Qi+1

n|Z(·) at x
i
a(n). Solving the dual problem (11) can be interpreted as finding the tightest

Lagrangian relaxation for (8), and thus the tightest such lower bound.

Remark 3.6. In the light of Remark 2.1, note that unless Za(n) is bounded, the dual
function Li+1

n|Z(πn) may yield the trivial lower bound −∞ for some πn. However, based
on Assumption 1 and θC(n) being bounded from below, it is finite for πn = 0. Therefore,

QD,i+1
n|Z (·) is proper. Moreover, we shall see that QD,i+1

n|Z (xa(n)) is guaranteed to be finite-

valued for all xa(n) ∈ conv(dom(Qi+1
n|Z)).

A well-known result on Lagrangian relaxation for MILPs is that under some as-
sumptions the optimal value of the dual (11) is the same as that of the following con-
vexification of the primal subproblem (8)

QC,i+1
n|Z (xia(n)) := min

xn,yn,zn,θCn
fn(xn, yn) + θC(n)

s.t. (xn, yn, zn, θC(n)) ∈ conv(Mi+1
n|Z)

zn = xia(n).

(12)

Here, the part of the constraints which is not relaxed in (10) is convexified, while the
copy constraints keep their original form. We first derive an auxiliary result.

Lemma 3.7. Under Assumptions 1, 2, 4, the function QC,i+1
n|Z (·) is proper, lsc and

convex with dom(QC,i+1
n|Z ) = conv(dom(Qi+1

n|Z)). Moreover, on its effective domain it is

piecewise linear.

We provide a proof for this result in Appendix C.
Based on this lemma, the equivalence between the primal convexification (12) and

the dual (11) is given below.

Theorem 3.8 (Theorem 1 in [16]). Under Assumptions 1, 2, 4, the Lagrangian dual (11)
and the primal convexified problem (12) satisfy

QD,i+1
n|Z (xia(n)) = QC,i+1

n|Z (xia(n))

12



for all xia(n) ∈ conv(dom(Qi+1
n|Z)).

The main idea behind this result is that problems (11) and (12) are LP duals of each
other. Note that we even have QD,i+1

n|Z (xia(n)) = QC,i+1
n|Z (xia(n)) for all x

i
a(n) ∈ Rda(n) , since

both functions are bounded from below and may only take the value +∞ if non-finite.
This result motivates another interesting property of the Lagrangian dual, which

relates to the closed convex envelope of the approximate value function. This result is
widely known, but we give a self-contained proof in Appendix D.

Theorem 3.9. Under Assumption 1, the Lagrangian dual (11) satisfies

QD,i+1
n|Z (xia(n)) = co(Qi+1

n|Z)(x
i
a(n))

for all xia(n) ∈ conv(dom(Qi+1
n|Z)).

3.4 Lagrangian cuts

We now focus on the generation of Lagrangian cuts at points xia(n) ∈ conv(dom(Qi+1
n|Z))

using problem (11), as introduced in [32]. We first define these cuts formally.

Definition 3.10 (Lagrangian cut). For all n ∈ N , a Lagrangian cut is given by

θn ≥ Li+1
n|Z(π

i
n) + (πi

n)
⊤xa(n),

where πi
n denotes optimal dual multipliers in (11) for node n and some given xia(n) ∈

conv(dom(Qi+1
n|Z)).

Under relatively complete recourse, i.e., Assumption 3, within the decomposition
method it is ensured that for all iterations i and all nodes n ∈ N , the condition xia(n) ∈
dom(Qi+1

n|Z) ⊆ conv(dom(Qi+1
n|Z)) is satisfied, so there never occurs an xia(n) for which no

cut can be computed due to infeasibility.
In general, the Lagrangian cuts have the following important properties [see 32]:

Theorem 3.11. Under Assumptions 1, the Lagrangian cuts defined in 3.10 are

(a) valid lower approximations of Qn|Z(·) for all xa(n) ∈ Za(n) (and thus of Qn(·) for

all xa(n) ∈ Rda(n)),

(b) tight for co(Qi+1
n|Z)(·) at x

i
a(n),

(c) finite, i.e., only finitely many different cuts can be generated, if the dual multipliers
πi
n are dual basic solutions.

Proof. Properties (a) and (c) are proven in [32, Theorem 3], but without formalizing
the dependence on Za(n). The statement in brackets then follows from Lemma 3.1.
Tightness of Lagrangian cuts is directly proven for Qi+1

n|Z(·) in [32]. Property (b) is about

co(Qi+1
n|Z)(·) instead. But it directly follows from Theorem 3.9 and Definition 3.10.

Property (a) implies that for Za(n) = conv(Xa(n)) Lagrangian cuts underestimate
Qn|Z(·) not only on Xa(n), but also on the larger set conv(Xa(n)). Note that property
(a) even holds if the Lagrangian dual (11) is not solved to optimality, i.e., if suboptimal
dual multipliers are used in Definition 3.10.
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Since we want to approximate QC(n)(·) instead of approximating each Qm(·),m ∈
C(n), separately, we construct an aggregated cut from the cuts defined in 3.10. Using
these aggregated cuts, we express Qi+1

C(n)|Z(·) by

Qi+1
C(n)|Z(xn) := min

{
θC(n) ∈ R : θC(n) ≥

∑
m∈C(n)

pnm
(
Li+1
m|Z(π

r
m)+(πr

m)
⊤xn

)
∀r = 1, . . . , i+1

}
.

Using Theorem 3.11, the validity of Qi+1
C(n)|Z(·) follows immediately.

Corollary 3.12. Under Assumption 1, Qi+1
C(n)|Z(·) is a valid lower approximation of

QC(n)|Z(·) for all xn ∈ Zn (and thus of QC(n)(·) for all xn ∈ Rdn).

Importantly, we cannot directly generalize the tightness result from Theorem 3.11
to co(E[Qn]), since in general E[co(Qn)] ̸= co(E[Qn]) [28].

3.5 The case of tight Lagrangian cuts

In SDDiP [32], it is assumed that all state variables are binary, i.e., Xa(n) = {0, 1}da(n) ,

and thus conv(Xa(n)) = [0, 1]da(n) . This assumption has two key effects, which ensure
the almost sure finite convergence of SDDiP to an optimal policy of the considered
MS-MILP. First, Xa(n) is finite. Second, the Lagrangian cuts from Definition 3.10
are not only tight for co(Qi+1

n|Z)(·) at xia(n), but in fact for Qi+1
n|Z(·). This tightness is

directly proven in [32, Theorem 3]. However, our previous analyses allow for a different
perspective on this result, which is briefly mentioned in [32], but not used in the proof:
It holds because co(Qi+1

n|Z)(·) and Q
i+1
n|Z(·) coincide at xia(n). The main reason for this is

that Xa(n) is contained in the extreme points of Za(n). Therefore, this tightness result
crucially depends on the choice of Za(n). This perspective also allows to extend the
SDDiP tightness result to more general cases, as also touched upon in Remark 1 in [30].

Theorem 3.13. Under Assumptions 1, 2, 4, for any iteration i and any node n ∈ N ,
let Za(n) be bounded and let Xa(n) be contained in the set of extreme points of Za(n).
Then, for all xa(n) ∈ Xa(n) ∩ dom(Qi+1

n|Z), we have

co(Qi+1
n|Z)(xa(n)) = Qi+1

n|Z(xa(n)).

We present a proof in Appendix E.
Combined with the properties of the Lagrangian cuts from Theorem 3.11, Theo-

rem 3.13 directly implies a tightness result for the Lagrangian cuts.

Corollary 3.14 (Theorem 3 in [32]). Under Assumptions 1, 2, 4, for any iteration
i and any node n ∈ N , let Za(n) be bounded and let Xa(n) be contained in the set of
extreme points of Za(n). Then the Lagrangian cuts defined in Definition 3.10 are tight
for Qi+1

n|Z(·) at x
i
a(n).

Remark 3.15. Assume that Xa(n) = {0, 1}da(n) and that Za(n) = Xa(n) or Za(n) =
conv(Xa(n)) as in SDDiP [32] and that we have relatively complete recourse (Assump-
tion 3). Then, the conditions of Theorem 3.13 are satisfied, and for all feasible xa(n) the
known tightness result of SDDiP follows.

We highlight this result using the illustrative problems (6) and (7).
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Example 3.16. Consider the problem (6) with Z = X = {0, 1}. Solving the dual (11)
yields the cut θ ≥ 2x. This cut underestimates Q|Z(·) on {0, 1} and is tight for co(Q|Z)(·)
at x = 1, see Fig. 3a. We observe that it is even tight for Q|Z(·) at this point.

If we choose Z = conv(X) = [0, 1] instead, we obtain the cut θ ≥ −1 + 3x by
solving (11). This cut underestimates Q|Z(·) on [0, 1] and is tight for co(Q|Z)(·) at
x = 1, see Fig. 3b. Again, we observe tightness for Q|Z(·).

In contrast, as illustrated by Fig. 3c by the gap between the red square and the blue
dot, Theorem 3.13 is not guaranteed to hold if we choose Z = R or, equivalently, do not
introduce copy constraint in the subproblems.

+∞

Q|Z

co(Q|Z)

0 0.5 1

0

1

2

x

(a) Z = {0, 1}.

Q|Z

co(Q|Z)

0 0.5 1

0

1

2

x

(b) Z = [0, 1].

Q|Z
co(Q|Z)

0 0.5 1 1.5 2

1

2

3

4

5

x

(c) Z = R.

Figure 3: Lagrangian cuts for Q|Z(·) and different choices of Z in Example 3.16.

Example 3.17. Consider the problem (7) and the incumbent x = 6
5 . Recall that X =

Z = [0, 2], so the extreme point condition in Corollary 3.14 is not satisfied. Solving
the Lagrangian dual (11) yields the cut θ ≥ 4

5x. As Fig. 4 shows, this cut is tight for
co(Q|Z)(·) at x = 6

5 (blue dot), but not for Q|Z(·) (red square).

4 Lipschitz regularization and Lagrangian duality

In this section, we address the generation of linear Lagrangian cuts for QC(n)(·) when a
Lipschitz regularization of the original MS-MILP is considered. We have shown in the
previous section that such cuts can be generated even when no regularization is applied.
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Figure 4: Lagrangian cut for Q|Z(·) in Example 3.17.

In fact, regularization is particularly relevant for generating non-convex approximations
of QC(n)(·), which we consider in Sect. 5. However, it may still be applied in cases where
linear cuts are generated, for instance, to ensure feasibility of the subproblems. More-
over, the results for this case prove relevant to derive our results in Sect. 5. Therefore,
we address the case of linear cuts first.

4.1 Applying a Lipschitz regularization

First, we formally introduce the considered Lipschitz regularization.

Definition 4.1 (Regularization). For any n ∈ N , let σn > 0 and fix some norm ∥·∥.
Then we call

QR
n|Z(xa(n);σn∥·∥) := min

xn,yn,zn
fn(xn, yn) + σn∥xa(n) − zn∥+QR

C(n)|Z(xn;σC(n)∥·∥)

s.t. (zn, xn, yn) ∈ Fn

zn ∈ Za(n)

(13)
the regularized subproblem or the regularized value function for node n given some set
Za(n), respectively. The regularized expected value function is defined by

QR
C(n)|Z(xn;σC(n)∥·∥) :=

∑
m∈C(n)

pnmQ
R
m|Z(xn;σm∥·∥).

By writing σC(n), we indicate that QR
C(n)|Z(·;σC(n)∥·∥) depends on σm for all m ∈ C(n).

For the root node, where no regularization is required, we obtain

vR := min
xr ,yr

fr(xr, yr) +QR
C(r)|Z(xr;σr∥·∥)

s.t. (xr, yr) ∈ Fr(xa(r)).
(14)

Remark 4.2. The regularized problem defined by the recursion (13)-(14) can be inter-
preted as applying a special inf-convolution fn□(σn∥·∥), called Lipschitz regularization
or Pasch-Hausdorff envelope [3], to the objective function of the original MS-MILP, see
also [31, 30].

This regularization comes with two main advantages. First, it naturally ensures
feasibility of the considered subproblems, even if we take no recourse assumption for
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the original subproblems.

Lemma 4.3. Under Assumption 1, problem (13) is feasible for all xa(n) ∈ Rda(n) for

any choice of Za(n), i.e., dom(QR
n|Z ;σn∥·∥) = Rda(n).

In particular, we do not require the recourse assumption (Assumption 3) from
Sect. 3.

Second, using a Lipschitz regularization ensures that the considered value functions
are σn-Lipschitz continuous instead of only lsc. While related results have been shown
before, see [30], our assumptions differ a bit, so we provide a self-contained proof in
Appendix F.

Lemma 4.4. Under Assumptions 1, 2, for all n ∈ N , the regularized value func-
tion QR

n|Z(·;σn∥·∥) underestimates Qn|Z(·) and is proper and σn-Lipschitz continuous on

Rda(n).

Considering regularized MS-MILPs comes at the price that we do not necessarily
solve the original MS-MILP any longer. In general, vR ≤ v∗ [30, Proposition 2]. How-
ever, equality can be imposed by using a sufficiently large σn for all nodes n ∈ N , as
shown in [13, Theorem 5]:

Lemma 4.5. There exist finite σ̄n > 0 for all n ∈ N such that given σn ≥ σ̄n, for all n ∈
N , the penalty reformulation in (13) is exact, i.e., any optimal solution (xn, yn, zn)n∈N
of the regularized MS-MILP (13)-(14) satisfies zn = xa(n) for all n ∈ N .

Hence, for sufficiently large, but finite σn > 0, we have vR = v∗. This result also
implies that for any optimal solution (x∗n, y

∗
n)n∈N of the original MS-MILP (1)-(3) we

have QR
n|Z(x

∗
a(n);σn∥·∥) = Qn|Z(x

∗
a(n)) [30, Lemma 1].

Example 4.6 provides an illustration of regularized value functions and their prop-
erties.

Example 4.6. Consider the problem (7). We use the absolute value |·| as penalty
function in (13). The regularized value functions QR

|Z(·;σ|·|) are depicted in Fig. 5 for

different values of σ. It is visible that all of them underestimate Q|Z(·) for all x ∈ [0, 2],
that all of them are Lipschitz continuous and that they are monotonically increasing
in σ > 0. Assume that the optimal first-stage solution is x∗ = 1. Then an exact
penalization is achieved for any σ ≥ 1.

Another effect is that using an arbitrary norm, the regularized subproblems (13)
are no longer MILPs, but MINLPs. This is unfavorable from a computational perspec-
tive. However, at least for the (weighted) ℓ1-norm or ℓ∞-norm, an equivalent MILP
reformulation can be achieved, so we do not leave the class of MILP subproblems [2].

Lemma 4.7. If the norm ∥·∥ used in (13) is the (weighted) ℓ1-norm or ℓ∞-norm, the
problem remains MILP-representable.

4.2 Special regularized value functions

We introduce different variations of regularized subproblems and value functions which
we require in the next few subsections. Moreover, we cover some of their basic properties.
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Figure 5: Regularized value functions QR
|Z(·;σ|·|) in Example 4.6 for different σ and

Z = [0, 2].

� Similarly to (8) in the non-regularized case, we define approximate regularized
value functions for each n ∈ N as

QR;i+1
n|Z (xia(n);σn∥·∥) := min

xn,yn,zn,θC(n)

fn(xn, yn) + θC(n) + σn∥xia(n) − zn∥

s.t. (xn, yn, zn, θC(n)) ∈ Mi+1
n|Z .

(15)

We also define QR;i+1
C(n) (xn;σC(n)∥·∥) :=

∑
m∈C(n) pnmQ

R;i+1
m

(xn;σm∥·∥) as the ex-

pected approximate regularized value function for all xn ∈ Rdn .

� Similarly to (12) in the non-regularized case, for each n ∈ N we consider the
convexified regularized value function

QCR;i+1
n|Z (xia(n);σn∥·∥) := min

xn,yn,zn,θC(n)

fn(xn, yn) + θC(n) + σn∥xia(n) − zn∥

s.t. (xn, yn, zn, θC(n)) ∈ conv(Mi+1
n|Z).

(16)

� We denote the closed convex envelope of the approximate regularized value function
by co(QR;i+1

n|Z ;σn∥·∥)(·). This function underestimates QR;i+1
n|Z (·;σn∥·∥) on Rda(n) .

The following properties are relevant to prove our main results in the next subsec-
tions.

Lemma 4.8. Under Assumptions 1, 2, 4, given some arbitrary norm ∥·∥ and some
σn > 0, for all n ∈ N ,

(a) the function QR;i+1
n|Z (·;σn∥·∥) is finite-valued and σn-Lipschitz continuous on Rda(n),

(b) the function QCR;i+1
n|Z (·;σn∥·∥) is finite-valued, convex and σn-Lipschitz continuous

on Rda(n),

(c) the function co(QR;i+1
n|Z ;σn∥·∥)(·) is finite-valued and convex on Rda(n),

(d) the function QCR;i+1
n|Z (·;σn∥·∥) is equivalent to (QCR;i+1

n|Z ;σn∥·∥)∗∗(·) on Rda(n).

Moreover, we need the following auxiliary result.
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Lemma 4.9. For all xa(n) ∈ Rda(n) we have

(QR;i+1
n|Z ;σn∥·∥)∗∗(xa(n)) = (QCR;i+1

n|Z ;σn∥·∥)∗∗(xa(n)).

Lemma 4.8 and Lemma 4.9 are proven in Appendix G and Appendix H, respectively.

4.3 A primal convexification result

In the remainder of Sect. 4, we focus on the generation of linear Lagrangian cuts in the
context of regularized subproblems and value functions (13).

Recall that in the non-regularized case (see Sect. 3.4), these cuts are generated
based on a relaxation of the copy constraints. This approach cannot be applied in
the regularized case, as the copy constraints are already relaxed and penalized in the
regularized subproblems (13). However, we show that still cuts with similar properties
can be obtained by considering specific bounded Lagrangian dual problems.

As a first key step, we introduce a primal convexification result for bounded La-
grangian dual problems. More precisely, we show that the convexified regularized prob-
lem (16) is closely related to the bounded Lagrangian dual problem

QDR;i+1
n|Z (xia(n);σn∥·∥) := max

πn
Li+1
n|Z(πn) + π⊤

n x
i
a(n)

s.t. ∥πn∥∗ ≤ σn,
(17)

where ∥·∥∗ denotes the dual norm to the norm ∥·∥ used in the regularized subproblem.

Theorem 4.10. Under Assumptions 1, 2, and 4, given some arbitrary norm ∥·∥ and
some σn > 0, the bounded Lagrangian dual (17) satisfies

QDR;i+1
n|Z (xia(n);σn∥·∥) = QCR;i+1

n|Z (xia(n);σn∥·∥).

Proof. In this proof, we use sup and inf operators to be rigorous with regard to suprema
and infima being attained. For notational simplicity, we set λn := (xn, yn, θC(n)) and
then define

c⊤nλn := fn(xn, yn) + θC(n) (18)

with an appropriate coefficient vector cn. Using this notation, the value function to the
Lagrangian dual becomes

QDR;i+1
n|Z (xia(n);σn∥·∥) = sup

∥πn∥∗≤σn

Li+1
n|Z(πn) + π⊤

n x
i
a(n)

= sup
∥πn∥∗≤σn

inf
(zn,λn)∈Mi+1

n|Z

{
c⊤nλn + π⊤

n (x
i
a(n) − zn)

}
= sup

∥πn∥∗≤σn

inf
(zn,λn)∈conv(Mi+1

n|Z)

{
c⊤nλn + π⊤

n (x
i
a(n) − zn)

}
.

(19)

The last line follows since the objective of the inner problem is linear.
We now consider the dual problem where we swap the sup and inf operators. As we
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discuss below, strong duality holds.

= inf
(zn,λn)∈conv(Mi+1

n|Z)
sup

∥πn∥∗≤σn

{
c⊤nλn + π⊤

n (x
i
a(n) − zn)

}
= inf

(zn,λn)∈conv(Mi+1
n|Z)

ß
c⊤nλn + σn sup

∥πn
σn

∥∗≤1

{(πn
σn

)⊤
(xia(n) − zn)

}™
= inf

(zn,λn)∈conv(Mi+1
n|Z)

ß
c⊤nλn + σn∥xia(n) − zn∥

™
.

(20)

Here, we used the definition of dual norms. As is shown in Appendix G, in problem (16)
always a finite infimum is attained, so in the last line we may replace the infimum with a
minimum. Substituting cn and λn with their definitions, we obtain exactly the definition
of the function QCR;i+1

n|Z (xia(n);σn∥·∥).
It remains to be shown that we have strong duality between problems (19) and

(20). First, according to Lemma 3.4, the set conv(Mi+1
n|Z) is a closed polyhedron. By

its relaxation property and Assumption 1, it is also non-empty. Therefore, both sets
conv(Mi+1

n|Z) and
{
πn ∈ Rda(n) : ∥πn∥∗ ≤ σn

}
are closed convex and non-empty, with

the latter also bounded. Moreover, the objective is linear in πn for fixed (zn, λn) and
vice versa. Hence, we can apply the minimax theorem from [24, Corollary 37.3.2] to
infer strong duality.

Remark 4.11. While the duality between multiplier bounds and a Lipschitz regulariza-
tion (based on the duality of norms) is known in the literature on multistage stochastic
programming, see for instance [18, Proposition 4.2], [31, Proposition 5], [30, Lemma 2],
to our knowledge the result with respect to convexification in Theorem 4.10 has never
been discussed and explicitly proven before. Also in the literature on convex analysis,
e.g. [3, 5, 24], we are not aware of any mentioning of the above result, as the discussion
is usually limited to results for unbounded Lagrangian dual problems, or exactness of
general augmented Lagrangian dual problems with respect to the original primal problem,
not its Lipschitz regularization or convexification. A related result to Theorem 4.10 is
presented in [30, Proposition 4] for the true regularized value function QR

n|Z(·;σn∥·∥) in-
stead of its closed convex envelope, given that Za(n) = Xa(n) is compact and that Qn|Z(·)
is convex. Similar results are proven in [31] in a distributionally robust setting. An-
other related, but different result is the primal characterization for general augmented
Lagrangian dual problems in [13, Theorem 1].

4.4 Convex envelopes from bounded Lagrangian duals

An important question is whether the primal convexification result from Theorem 4.10
can also be linked to the closed convex envelope co(QR;i+1

n|Z ;σn∥·∥)(·), as it was the case

for the non-regularized case (cf. Theorems 3.8, 3.9). We prove this now.

Corollary 4.12. Consider the regularized subproblem (15) and the corresponding bounded
Lagrangian dual (17) given some arbitrary norm ∥·∥ and some σn > 0. Under Assump-
tions 1, 2, 4, for all xia(n) ∈ Rda(n) we have

QDR;i+1
n|Z (xia(n);σn∥·∥) = co(QR;i+1

n|Z ;σn∥·∥)(xia(n)).
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Proof. From Lemma 4.8 (d) and Lemma 4.9 we can conclude that for all xa(n) ∈ Rda(n)

we have

QCR;i+1
n|Z (xa(n);σn∥·∥) = (QCR;i+1

n|Z ;σn∥·∥)∗∗(xa(n)) = (QR;i+1
n|Z ;σn∥·∥)∗∗(xa(n)). (21)

Furthermore, from Lemma 4.8 (c) we know that co(QR;i+1
n|Z ;σn∥·∥)(·) is proper. By

Proposition 1.6.1 (d) in [5] we then have co(QR;i+1
n|Z ;σn∥·∥)(xa(n)) = (QR;i+1

n|Z ;σn∥·∥)∗∗(xa(n))
for all xa(n) ∈ Rda(n) . Hence, with (21) it follows that

QCR;i+1
n|Z (xia(n);σn∥·∥) = co(QR;i+1

n|Z ;σn∥·∥)(xia(n))

for all xia(n) ∈ Rda(n) . The primal convexification result in Theorem 4.10 yields

QDR;i+1
n|Z (xia(n);σn∥·∥) = co(QR;i+1

n|Z ;σn∥·∥)(xia(n)).

Corollary 4.12 directly implies the following result for Lagrangian cuts that are
computed using the bounded Lagrangian dual problem.

Corollary 4.13. Consider Lagrangian cuts as defined in Definition 3.10, but with op-
timal multipliers πi

n for the bounded Lagrangian dual problem (17). Then, these cuts
are

(a) valid lower approximations of QR
n|Z(·;σn∥·∥), and thus also for Qn|Z(·) for all

xa(n) ∈ Za(n),

(b) tight for co(QR;i+1
n|Z ;σn∥·∥)(·) at xia(n).

We illustrate Corollary 4.13 with an example.

Example 4.14. Consider the problem (7) with incumbent x = 6
5 . We use absolute value

|·| as the penalty function in (13) and to bound the dual multipliers in (17). Solving the
Lagrangian dual problem for σ ≥ 4

5 , we obtain the cut θ ≥ 4
5x. For σ < 4

5 , in contrast,
the resulting cut is θ ≥ σx. Fig. 6 displays these cuts (blue broken lines) for σ = 1 and
σ = 1

2 . As we can see, in both cases, the cut is tight for co(QR
|Z ;σ|·|)(·) at x = 6

5 (blue

dots).

4.5 The case of Lipschitz continuous value functions

We consider the special case, where for all n ∈ N , the value functions Qn|Z(·) are
already Lipschitz continuous, e.g., because a strong recourse assumption like complete
continuous recourse is satisfied [2, 32]. In that case, a regularization of the MS-MILP is
not required. However, we may still state a theoretical relation between the regularized
and the non-regularized problem.

Lemma 4.15. For all n ∈ N , let Qn|Z(·) be Lipschitz continuous on dom(Qn|Z) with
respect to some norm ∥·∥ with Lipschitz constant αn. Then for σn ≥ αn we have

QR
n|Z(xa(n);σn∥·∥) = Qn|Z(xa(n))
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Figure 6: (Regularized) value functions and Lagrangian cuts derived from (17) for
Example 4.14.

for all xa(n) ∈ dom(Qn|Z). Analogously, for all xa(n) ∈ dom(Qi+1
n|Z)

QR;i+1
n|Z (xa(n);σn∥·∥) = Qi+1

n|Z(xa(n)).

For leaf nodes n ∈ N , this result follows immediately from [3, Corollary 12.18],
considering that the regularized value functions are the Pasch-Hausdorff envelopes of
the non-regularized ones. For other nodes in N it can then be shown inductively.

As already noticed in [31], this result shows that computationally regularization
may even prove beneficial if the original value functions are already guaranteed to be
Lipschitz continuous. First, the Lagrangian dual problem can be bounded. Second,
cuts with larger Lipschitz constant than the value function can be excluded from its
approximation.

Additionally, Lemma 4.15 has a helpful implication that we use in the next section
when discussing the SDDiP setting again. It can be used to show that for sufficiently
large σn, the lower convex envelopes of the regularized and non-regularized approximate
value functions do coincide.

Lemma 4.16. Under Assumptions 1, 2, and 4, for all n ∈ N , there exists some σn > 0
such that for all xa(n) ∈ conv(dom(Qi+1

n|Z))

co(QR;i+1
n|Z ;σn∥·∥)(xa(n)) = co(Qi+1

n|Z)(xa(n)).

We provide a proof in Appendix I.

Example 4.17. As an illustration for Lemma 4.16, see Example 4.6 and Fig. 5. We
can see that for σ ≥ 1, co(Q|Z)(·) and co(QR

|Z ;σ|·|)(·) do coincide.

4.6 The case of tight Lagrangian cuts

We consider cases where tightness for function QR;i+1
n|Z (·;σn∥·∥), and not only its closed

convex envelope co(Qi+1
n|Z)(·), can be obtained using Lagrangian cuts. This includes the

case of binary state variables from SDDiP [32].
Note that we already discussed similar cut generation results for the true value

functions in Sect. 3.5, without the requirement of Lipschitz continuity of Qn|Z(·) or
Qi+1

n|Z(·). For this reason, considering a Lipschitz regularization in this case or similar
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cases may seem superfluous. However, we still briefly discuss it in this section, as
some of the results prove beneficial later in Sect. 5 when we deal with non-convex
approximations of the value functions.

Importantly, compared to Sect. 3.5, the extreme point argument used in the proof
of Theorem 3.13 is no longer valid in the regularized setting. The two functions
co(QR;i+1

n|Z ;σn∥·∥)(·) and QR;i+1
n|Z (·;σn∥·∥) share the effective domain Rda(n) , and hence,

it is not clear whether they coincide for all xa(n) ∈ Xa(n). Nonetheless, under some
assumptions, the intended tightness result can be established.

Case 1: Using sufficiently large σn. For sufficiently large, but finite regulariza-
tion parameters σn > 0, we immediately obtain the tightness result using Lemma 4.16.

Lemma 4.18. Under Assumptions 1, 2, 4, for any iteration i and any node n ∈ N ,
let Za(n) be bounded and let Xa(n) be contained in its extreme points. Let ∥·∥ be some
arbitrary norm and σn > 0 sufficiently large for all n ∈ N . Then, for all xia(n) ∈
Xa(n) ∩ dom(Qi+1

n|Z) we have

QDR;i+1
n|Z (xia(n);σn∥·∥) = Qi+1

n|Z(x
i
a(n)) = QR;i+1

n|Z (xia(n);σn∥·∥).

We provide a proof in Appendix J.
This result is not surprising considering the exact penalization result for Lipschitz

regularization from Lemma 4.5. Interestingly, in the SDDiP case of binary state vari-
ables xa(n), tightness for the regularized value function can even be obtained independent
of σn, as we show next.

Case 2: Regularization with the ℓ1-norm. Suppose we use the (weighted) ℓ1-
norm in the regularization. Then we can derive the following auxiliary result, which
has already been proven in [14, Lemma 3.8] in a slightly different form. The proof is
given in Appendix K.

Lemma 4.19. Let Xa(n) = {0, 1}da(n) for all n ∈ N and Za(n) = Xa(n) or Za(n) =

conv(Xa(n)). Then, for any iteration i, any node n ∈ N and any σn > 0, the regularized
subproblem (15) and the bounded Lagrangian dual (17) for the ℓ1-norm satisfy

QDR;i+1
n|Z (xia(n);σn∥·∥1) ≥ QR;i+1

n|Z (xia(n);σn∥·∥1). (22)

Using this lemma, we obtain the intended tightness result.

Corollary 4.20. The inequality in Lemma 4.19 is satisfied with equality.

Proof. From Lemma 4.19 we have relation (22). On the other hand, from Corollary 4.12
and the definition of the closed convex envelope

QDR;i+1
n|Z (xia(n);σn∥·∥1) = co(QR;i+1

n|Z ;σn∥·∥1)(xia(n)) ≤ QR;i+1
n|Z (·;σn∥·∥1).

We illustrate the previous results using problem (6) below.

Example 4.21. Consider the problem (6) with incumbent x = 1 and Z = conv(X) =
[0, 1]. We use the absolute value |·| as penalty function in (13) and set σ = 2. Fig. 7
shows that the regularized value function QR

|Z(·;σ|·|) is monotonically increasing outside
of Z, and thus coincides with its convex envelope outside of Z. For this reason, both
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Figure 7: Lagrangian cut for the regularized value function with σ = 2 in problem (6).

functions also coincide at extreme points of Z, such as x = 1. The obtained Lagrangian
cut θ ≥ −1

3 + 2x is tight for QR
|Z(·;σ|·|) at x = 1, in accordance with Corollary 4.20.

We note that in the multidimensional case for norms different than ∥·∥1, this is not
necessarily true. We present an example for this in Example 5.15 (3) in the next section.

5 Lipschitz regularization and non-convex cuts

In the previous section we pointed out that Lagrangian cuts for regularized value func-
tions can be generated by solving bounded Lagrangian dual problems. These cuts are
tight for the closed convex envelopes of the regularized value functions, as long as the
dual problem is solved to optimality. Just as in the non-regularized case, in general,
these cuts are not guaranteed to be tight for the true value functions, though, and thus
cannot guarantee convergence of decomposition methods for MS-MILPs.

In this section, we deal with the alternative approach to generate non-convex approx-
imationsQi+1

C(n)(·) of the expected value functionsQC(n)(·) in order to ensure convergence,
again by exploiting Lipschitz regularization. We specifically focus on the alternative lift-
and-project approach from [14], which is part of the NC-NBD method presented in the
same paper. We first give a brief introduction into its main concepts and then present
its theoretical backbone in a rigorous way. In particular, we close an open question on
how to ensure Lipschitz continuity of the obtained non-convex approximations. This
allows us to drop the technical Assumption 4 in [14]. While NC-NBD in [14] assumes a
deterministic problem, we enhance its ideas to the stochastic setting here.

5.1 The lift-and-project idea

As a basis to describe the lift-and-project cut generation idea, we consider the approx-
imate regularized value function from Sect. 4 for some node n ∈ N .

QR;i+1
n|Z (xia(n);σn∥·∥◦) = min

xn,yn,zn,θC(n)

fn(xn, yn) + θC(n) + σn∥xia(n) − zn∥◦

s.t. (xn, yn, zn, θC(n)) ∈ Mi+1
n|Z .

(23)

The incumbents xia(n) for all nodes n ∈ N are computed in a forward pass through the

scenario tree, which we do not describe in detail here. The objective function fn(·) and
all but the cut constraints in (23) are still linear. The only difference in (23) compared
to Sect. 4 is that we now assume that the approximation Qi+1

C(n)|Z(·) of QC(n)|Z(·), which
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is contained in the set Mi+1
n|Z , is non-convex. However, we assume that it can still be

approximated by mixed-integer linear constraints, see Sect. 5.7 and [14], so Mi+1
n|Z has

the same properties as in Sect. 4. Notation-wise, the notation ∥·∥◦ is introduced to
distinguish the norm used for regularization in the original state space from a second,
possibly deviating norm ∥·∥• that is used in the lifted space where cuts are generated
later on.

Original state space Lifted state space

Incumbent

Regularized subproblem
(5.1)

Lifted regularized subproblem
(5.5)

Bounded Lagrangian dual
(5.7)

Tight linear Lagrangian cut
(5.8), (5.13)

Tight non-convex cut
(cut projection closure)

(5.14), (5.15)

Non-convex approximation
(5.16)

Lifting

Dual perspective

Cut generation

Projection

Update

Update

Figure 8: The lift-and-project approach used in [14].

The main concept of the cut generation approach from [14] is illustrated in Fig. 8. In
each iteration i, instead of directly generating Lagrangian cuts in the original state space,
the subproblems and value functions, e.g., problem (23), are first temporarily lifted to a
binary state space. According to Corollary 4.20, by solving a bounded Lagrangian dual
problem then tight linear Lagrangian cuts can be computed for the regularized value
functions. However, these cuts are expressed in the lifted state space. In order to use
them in the original state space, they are projected back to that space. The pointwise
maximum of this projection, which we refer to as the cut projection closure (CPC), can
be interpreted as a non-convex cut, and, as we show, it is tight for QR;i+1

n|Z (·;σn∥·∥◦).
Another key feature of this cut generation method is that we allow for the construc-

tion of cuts at points xiB,n differing from the current incumbents xin. These points are
called anchor points in [14]. This also means that the non-convex cuts, i.e., the CPC,
is guaranteed to be tight for QR;i+1

n|Z (·;σn∥·∥◦) at xiB,n only. But as long as the distance

between xin and xiB,n can be controlled, we shall see that the approximation error of the

non-convex cuts at xin can be controlled as well.

5.2 Sufficient non-convex approximations

In order to ensure convergence of decomposition methods employing this lift-and-project
cut generation approach, for instance the NC-NBD method in [14], the non-convex
approximations Qi+1

C(n)(·) have to satisfy three main properties. We call a non-convex
approximation satisfying these properties sufficient.

Definition 5.1. Let n ∈ N and consider some arbitrary iteration i ∈ N. Given some
anchor point xiB,n, some norm ∥·∥◦ and some σn > 0 used in the regularized subprob-

lem (23), a non-convex approximation Qi+1
C(n)(·) is called sufficient if it

25



(S1) is a valid under-approximation of QC(n)(·), i.e., for all xn ∈ Xn:

Qi+1
C(n)(xn) ≤ QC(n)(xn),

(S2) overestimates the expected approximate regularized value function at the anchor
point:

Qi+1
C(n)(x

i
B,n) ≥ QR;i+1

C(n) (xiB,n;σC(n)∥·∥◦),

(S3) is Lipschitz continuous with respect to the norm ∥·∥◦ used in subproblem (23) with
a finite Lipschitz constant (independent of i).

The reasoning behind these properties is the following: Using similar arguments
as in Lemma 4.8, it can be shown that QR;i+1

C(n)|Z(·;σC(n)∥·∥◦) is Lipschitz continuous.

As Qi+1
C(n)|Z(·) is also Lipschitz continuous according to (S3), using property (S2), the

approximation error at the incumbent xin can be bounded by the Lipschitz constants
and the distance between xin and xiB,n [see 14, Lemma 4.1]. In our case, the anchor

points xiB,n are determined using a binary approximation of xin which goes along with

the lifting to the binary state space, see Sect. 5.3. Thus, the distance between xin
and xiB,n can be controlled by refining the approximation precision βn if required. As a

result, also the cut approximation error at xin can be controlled, and reduced sufficiently
[see 14, Lemma 4.2]. Together with the validity (S1), this ensures exactness and finite
convergence of the decomposition method [see 14, Theorem 4.3]. For more details on
NC-NBD and its convergence proof, we refer to [14].

In the remainder of this section, we focus on showing how sufficient non-convex
approximations can be obtained in the lift-and-project framework. In [14], it is already
shown how properties (S1) and (S2) can be achieved for the deterministic case, but we
extend these results to the scenario tree setting. Ensuring property (S3), on the other
hand, is more sophisticated. Whereas it can be easily shown that it holds for a fixed
precision βn of the binary approximation [14], we have to make sure that the Lipschitz
constant does not diverge for βn → 0. Otherwise, the reduction in distance between xin
and xiB,n may be redeemed by an increasing Lipschitz constant. In other words, we have
to bound the Lipschitz constant in (S3) independently of βn (and by that i). Instead of
showing how this can be achieved, in [14] a technical assumption is taken (Assumption
(A4) in [14]). We close this theoretical gap in this section. The key idea is to use a
tailor-made norm ∥·∥• for the regularization in the lifted space.

5.3 Lifting to the binary space

We lift the subproblems and value functions to a different space by temporarily apply-
ing a binary approximation of the state xa(n) [17]. For simplicity, we assume that all
components of xa(n) satisfy bounded box constraints with a zero lower bound. Then,
any component xa(n),j ∈ [0, Uj ], j = 1, . . . , da(n), can be approximated by

xa(n),j = βa(n),j

Ka(n),j∑
κ=1

2κ−1λa(n),κj + ra(n),j , (24)

with a discretization precision βa(n),j ∈ (0, 1) if xa(n),j is continuous and βa(n),j = 1

if it is integer. ra(n),j ∈
[
−βa(n),j

2 ,
βa(n),j

2

]
denotes the approximation error. For some
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vector xa(n), this requires Ka(n) =
∑da(n)

j=1 Ka(n),j binary variables λa(n),κj , with Ka(n),j =

⌊log2
(

Uj

βa(n),j

)
⌋+ 1.

We define a (da(n) ×Ka(n))-matrix Ba(n) containing all the coefficients of the binary

approximation and collect all binary variables in one large vector λa(n) ∈ {0, 1}Ka(n) .
Then, the binary expansion can be written compactly as

xa(n) = Ba(n)λa(n) + ra(n). (25)

For some index k ∈ Ka(n), let j(k) denote the component in the original space associated

with k. Then we define κ(k) := k −∑j(k)
ℓ=1 Ka(n),ℓ to access the correct κ in (24).

By applying (25) to a trial point xia(n) and omitting the error term, we define the
anchor point as the approximation

xiB,a(n) := Ba(n)λ
i
a(n). (26)

Example 5.2. Again, we consider problem (7) with incumbent xi = 6
5 . For different

values of β or K, respectively, we obtain the anchor points

K = 2, β =
2

3
: xiB =

2

3
(20 · 0 + 21 · 1) = 4

3
,

K = 3, β =
2

7
: xiB =

2

7
(20 · 0 + 21 · 0 + 22 · 1) = 8

7
,

K = 4, β =
2

15
: xiB =

2

15
(20 · 1 + 21 · 0 + 22 · 0 + 23 · 1) = 6

5
,

which are also illustrated in Fig. 9. As we see, for K = 4 and β = 2
15 , the approximation

of the incumbent is exact.

xi xi
BK = 2 λi = (0, 1)⊤

0 1 2

xixi
BK = 3 λi = (0, 0, 1)⊤

0 1 2

xi = xi
BK = 4 λi = (1, 0, 0, 1)⊤

0 1 2

Figure 9: Binary approximation for Example 3.3.

Instead of problem (23), we now consider QR;i+1
n|Z (xiB,a(n);σn∥·∥◦), i.e., we do not

consider the approximate regularized value function at the incumbent xia(n), but at the

anchor point xiB,a(n).

Using relation (26) we can interpret λia(n),j , j = 1, . . . ,Ka(n), as the state variables

in a lifted binary state space. We can thus express the function QR;i+1
n|Z (xiB,a(n);σn∥·∥◦)

in terms of these binary state variables. To this end, we also set

zn = Ba(n)zn (27)
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with auxiliary variables zn ∈ [0, 1]Ka(n) . Additionally, we define the norm ∥λn∥B :=
∥Ba(n)λn∥. This yields the reformulation of the regularized subproblem (23):

QR;i+1
B;n|Z (λ

i
a(n);σn∥·∥◦B) := min

xn,yn,zn,θC(n),zn
fn(xn, yn) + θC(n) + σn∥(λia(n) − zn)∥◦B

s.t. (xn, yn, zn, θC(n)) ∈ Mi+1
n|Z

zn = Ba(n)zn

zn ∈ [0, 1]Ka(n) .

(28)

This reformulation is exact in the sense that

QR;i+1
B;n|Z (λ

i
a(n);σn∥·∥◦B) = QR;i+1

n|Z (xiB,a(n);σn∥·∥◦). (29)

In the same vein, we may defineQB;n|Z(·) as the true value functionQn|Z(·) expressed
as a function in the lifted state space.

Remark 5.3. In view of (26) and Sect. 3.1, the reformulation used in (28) can be
interpreted as first introducing and then relaxing copy constraints for each binary variable
λia(n),j , j = 1, . . . ,Ka(n), separately, with an accompanying set Za(n) = [0, 1]Ka(n).

Remark 5.4. Recall our discussion on different choices of Za(n) and their impact in
Sect. 3.1. While the choice of Za(n) in the original state space is not particularly rel-
evant in our lift-and-project setting now, the choice of bounding zn in the lifted space
using the convex hull [0, 1]Ka(n) instead of {0, 1}Ka(n) as the accompanying set Za(n) is
crucial if some components of xa(n) are continuous. First, in contrast to (26) the refor-
mulation (27) of zn is exact given this choice, even for continuous variables. Second, it
ensures that linear cuts generated in the lifted binary state space are valid for the non-
convex expected value functions on the whole set [0, 1]Ka(n). This is inevitable in order
to obtain non-convex cuts in the original state space which are valid underestimators
of QC(n)|Z(·) even for points in Xa(n) that cannot be exactly represented by the current
binary approximation.

5.4 Generating Lagrangian cuts in the lifted space

To generate Lagrangian cuts in the lifted binary state space, we follow Sect. 4 and
consider a bounded Lagrangian dual problem

QDR;i+1
B;n|Z (λia(n);σn∥·∥•) := max

∥πn∥•∗≤σn
Li+1
B;n|Z(πn) + π⊤

n λ
i
a(n). (30)

The dual function Li+1
B;n|Z(·) is defined by

Li+1
B;n|Z(πn) := min

xn,yn,zn,θC(n),zn
fn(xn, yn) + θC(n) − π⊤

n zn

s.t. (xn, yn, zn, θC(n)) ∈ Mi+1
n|Z

zn = Ba(n)zn

zn ∈ [0, 1]Ka(n) .

Solving the dual problem (30) we obtain optimal multipliers πi
n. We can then build

the function

ϕB;n|Z(λa(n)) := Li+1
B;n|Z(π

i
n) + (πi

n)
⊤λa(n), (31)
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which defines a linear Lagrangian cut in the binary space {0, 1}Ka(n) .
The crucial part, and a new contribution compared to [14], is how we choose the

norm ∥·∥•∗ in problem (30) to bound the dual multipliers. Let ∥·∥ be an arbitrary norm

and ∥·∥∗ its dual norm. Furthermore, let W and Ŵ be some diagonal weight matrices
whose diagonal entries at row k and column k satisfy the relation ŵkk = w−1

kk (for

simplicity, we omit indices for W and Ŵ ). Then, ∥x∥w := ∥Wx∥ defines the weighted

norm and ∥x∥w∗ := ∥Ŵx∥∗ defines the dual weighted norm for some vector x.
For each component k = 1, . . . ,Ka(n) in the binary state space, we now define weights

wkk = 2κ(k)−1βa(n),j(k),

and choose ∥·∥• = ∥·∥w given some norm ∥·∥. The motivation behind this choice is to
bound the dual multipliers in such a way that the effects of the binary approximation
are compensated by the weights. Note that these bounds are tighter than the ones
originally proposed in [14] where no weighted norms are used.

With this construction, we observe that the matrix W and the matrix Ba(n) are
closely related. Both matrices contain the same non-negative entries, butW is a (Ka(n)×
Ka(n))-diagonal matrix, whereas Ba(n) is a (da(n) × Ka(n))-matrix where non-negative
entries corresponding to the same component j of the original state space occur in the
same row. Hence, we can define a matrix G such that Ba(n) = GW . This matrix
contains only ones and zeros, with several ones in each row, but only a single one in
each column.

For some matrix A, let ∥A∥ be the matrix norm induced by ∥·∥. Then, the consis-
tency of matrix norms and the inducing vector norm yields the relation

∥Ba(n)(λ
i
a(n) − zn)∥ = ∥GW (λia(n) − zn)∥ ≤ ∥G∥ ∥W (λia(n) − zn)∥

= ∥G∥ ∥λia(n) − zn∥w.
(32)

5.5 Properties of Lagrangian cuts in the lifted space

Recall Remark 5.4. As shown in [14], by choosing zn ∈ [0, 1]Ka(n) , the function ϕB;n|Z(·)
defined in (31) provides a valid underestimator for the true value function in the binary
state space, but also everywhere in the original state space. This is crucial to prove
property (S1) in the next section.

Lemma 5.5 (Lemma 3.7 in [14]). The function ϕB;n|Z(·) satisfies

QB;n|Z(λa(n)) ≥ ϕB;n|Z(λa(n)),

for all λa(n) ∈ [0, 1]Ka(n), and

Qn|Z(xa(n)) ≥ ϕB;n|Z(λa(n))

for all xa(n) ∈ Rda(n) and any λa(n) ∈ [0, 1]Ka(n), such that xa(n) = Ba(n)λa(n).

Next, we use the results from Sect. 4.6 to obtain some overestimation results with
respect to property (S2). Recall that one way to achieve tightness presented in Sect. 4.6
is to choose some sufficiently large but finite σn > 0. While this is sufficient to derive
cuts that satisfy properties (S2) and (S3) for some fixed binary precision βa(n),j , this
is not the case if we consider binary refinements. In that case, after each refinement
we may require a larger σn, such that the sequence of these values diverges. This is
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detrimental in ensuring property (S3). Therefore, we directly focus on the second case
in Sect. 4.6 and choose the ℓ1-norm. Importantly, Lemma 4.19 and Corollary 4.20 still
hold if we use a weighted ℓ1-norm.

Corollary 5.6. Choosing ∥·∥• = ∥·∥1,w in (30) it follows

ϕB;n|Z(λ
i
a(n)) = QR;i+1

B;n|Z (λ
i
a(n);σn∥·∥•). (33)

Equation (33) is sufficient to achieve the overestimation property (S2) in Defini-
tion 30 if ∥·∥◦ is any ℓp-norm, as we show now.

Lemma 5.7. Let ∥·∥• = ∥·∥1,w in problem (30) and let ∥·∥◦ in problem (23) be any
ℓp-norm. Then,

ϕB;n|Z(λ
i
a(n)) ≥ QR;i+1

n|Z (xiB,a(n);σn∥·∥◦).

Proof. For the maximum absolute column sum norm we have ∥G∥1 = 1, sinceG contains
at most a single one in each column. Hence, from (32) it follows

∥Ba(n)(λ
i
a(n) − zn)∥1 ≤ ∥G∥1 ∥λia(n) − zn∥1,w = ∥λia(n) − zn∥1,w. (34)

Moreover, we have

∥Ba(n)(λ
i
a(n) − zn)∥1 ≥ ∥Ba(n)(λ

i
a(n) − zn)∥p (35)

for any ℓp-norm. Combining some of our previous results and exploiting that ∥·∥◦ is an
ℓp-norm, we obtain

ϕB;n|Z(λ
i
a(n))

(33)
= QR;i+1

B;n|Z (λ
i
a(n);σn∥·∥1,w)

(34)

≥ QR;i+1
B;n|Z (λ

i
a(n);σn∥·∥1,B)

(35)

≥ QR;i+1
B;n|Z (λ

i
a(n);σn∥·∥◦B)

(29)
= QR;i+1

n|Z (xiB,a(n);σn∥·∥◦).

To derive a Lagrangian cut for QC(n)|Z(·), we aggregate the functions ϕB;m|Z(·) for
all m ∈ C(n):

ϕB;C(n)|Z(λn) :=
∑

m∈C(n)

pnm
(
Li+1
B;m|Z(π

i
m) + (πi

m)
⊤λn

)
=

∑
m∈C(n)

pnmLi+1
B;m|Z(π

i
m)︸ ︷︷ ︸

=:γiC(n)

+
( ∑

m∈C(n)

pnmπ
i
m︸ ︷︷ ︸

=:πi
C(n)

)⊤
λn (36)

The previous validity and overestimation results naturally extend to this aggregated
function.

Corollary 5.8. The function ϕB;C(n)|Z(·) satisfies

QC(n)|Z(xn) ≥ ϕB;C(n)|Z(λn)

for all xn ∈ Rdn and any λn ∈ [0, 1]Kn, such that xn = Bnλn.
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Corollary 5.9. Let ∥·∥• = ∥·∥1,w in (30) and let ∥·∥◦ in problem (23) be any ℓp-norm.
Then,

ϕB;C(n)|Z(λ
i
n) ≥ QR;i+1

C(n)|Z(x
i
B,n;σn∥·∥◦).

We now address the projection of these linear cuts back to the original state space.

5.6 The cut projection closure

As explained in Sect. 5.1, the lifting to the binary state space is carried out only tem-
porarily to generate tight linear Lagrangian cuts. Importantly, according to Corol-
lary 5.8, these cuts also allow us to obtain valid underapproximations of QC(n)|Z(·) for
all points xn ∈ Xn, even those which cannot be exactly represented by the current
binary approximation. More precisely, for some given xn ∈ Xn, each λn ∈ [0, 1]Kn

such that xn = Bnλn provides a valid underestimator for QC(n)|Z(xn) . For some given
xn ∈ Xn there may exist infinitely many such configurations for λn, and thus infinitely
many underestimators. We are interested in the pointwise supremum of all these un-
derestimators, that is, the tightest underestimating function that can be gained from
projecting the cut to xn. We refer to this supremum as the cut projection closure.

Definition 5.10 (Cut projection closure). Let ϕB;C(n)|Z : [0, 1]Kn → R be a cut-defining
linear function given in (36). Then, the cut projection closure (CPC) ϕC(n)|Z : Rdn → R
is defined as

ϕC(n)|Z(xn) := max
λn

{
γC(n) + π⊤

C(n)λn : Bnλn = xn, λn ≤ e, λn ≥ 0
}
. (37)

Here, e is a unit vector of dimension Kn.

By strong duality of linear programs, the CPC can be equivalently expressed as

ϕC(n)|Z(xn) = min
ηn,µn

{
γC(n) + x⊤n ηn + e⊤µn : B⊤

n ηn + µn ≥ πC(n), µn ≥ 0
}
. (38)

Importantly, the dual feasible region in (38) does not depend on xn and has a finite
number of extreme points for a given binary precision. Therefore, we can conclude:

Lemma 5.11. The CPC ϕC(n)|Z(·) is a piecewise linear and concave function in Rda(n).

The CPC is a piecewise linear function, and the slope of each piece is determined
by the value of ηn in an extreme point of (38). Therefore, we analyze these extreme
points in more detail. Based on our findings from the previous section, we choose ∥·∥•
as the weighted ℓ1-norm again. Additionally, we define σmax

n := maxm∈C(n) σm. Then,
as proven in Appendix L, we obtain:

Lemma 5.12. Let ∥·∥• = ∥·∥1,w in problem (30). Then, for any binary precision
βn,j ∈ (0, 1), j = 1, . . . , dn, any extreme point of problem (38) satisfies ∥ηn∥∞ ≤ σmax

n .

The crucial idea here is that by a careful choice of the weighted norm to bound
the Lagrangian dual (30), effects of the binary expansion are compensated, such that
each component of ηn can be bounded independently of the current binary precision
βn,j ∈ (0, 1), j = 1, . . . , dn, and the number Kn of binary variables. Therefore, this
bound remains valid for any refinement of the binary precision in NC-NBD [14], and
even with these refinements the CPC is prevented from becoming infinitely steep. This
is stated in the following lemma, which is proven in Appendix M.
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Lemma 5.13. Let ∥·∥• = ∥·∥1,w in problem (30). Then, for any norm ∥·∥◦, the CPC is
a σ̃C(n)-Lipschitz continuous function with σ̃C(n) > 0 independent of the binary precision
βn,j ∈ (0, 1), j = 1, . . . , dn.

5.7 Main result

For any node n ∈ N , using the CPC, we can now determine the non-convex outer
approximation of QC(n)|Z(·) as

Qi+1
C(n)|Z(xn) = min

{
θC(n) ∈ R : θC(n) ≥ ϕrC(n)|Z(xn) ∀r = 1, . . . , i+ 1

}
. (39)

Based on our previous findings we can now state conditions under which this non-
convex approximation is sufficient in the sense of Definition 5.1, which is the main result
of this section. We provide a proof in Appendix N.

Theorem 5.14. Let ∥·∥• = ∥·∥1,w in problem (30), let ∥·∥◦ in problem (23) be any
ℓp-norm and let σn > 0. Then, Qi+1

C(n)|Z(·) as defined in (39) is a sufficient non-convex

approximation of QC(n)|Z(·).

As pointed out in Sect. 5.2, a sufficient non-convex approximation of QC(n)|Z(·)
(with appropriately chosen set Za(n) ⊇ Xa(n)) is sufficient to guarantee convergence of
the NC-NBD inner loop, and by that of NC-NBD in total, without the requirement
of the technical assumption (A4) in [14]. The condition of setting ∥·∥• = ∥·∥1,w in
problem (30) in the lifted space to achieve such approximation is not really strict, since
it still allows to choose any ℓp-norm for the regularization in problem (23) in the original
state space.

Finally, let us emphasize that the CPC is a non-convex function outer approximat-
ing QC(n)|Z(·), and defined by the linear programs (37) and (38). Therefore, directly
incorporating it into Qi+1

C(n)|Z(·) in subproblem (8) leads to a non-convex bilevel prob-

lem. In order to resolve this issue, in [14] it is proposed to first express the CPC by its
KKT constraints. Using SOS-1 constraints or a Big-M formulation, this can be achieved
without leaving the class of mixed-integer linear programs.

5.8 Illustrative example

We highlight the key take-aways from this section with an illustrative example.

Example 5.15. Consider the problem (7) again, with Z = [0, 2].

(1) CPC for fixed σ and decreasing β. Let the incumbent be x = 6
5 . For the

regularization, let ∥·∥◦ = |·| and σ = 2. For the cut generation, we choose K = 3
(β = 2

7) and ∥·∥• = ∥·∥1,w as proposed. According to Example 5.2, the anchor
point becomes xB = 8

7 . By solving the Lagrangian dual problem (30) at that point,
we obtain the CPC

ϕ|Z(x) := max
λ

ß
− 1

2
− 4

7
λ1 −

8

7
λ2 +

12

7
λ3 :

2

7
(λ1 + 2λ2 + 4λ3) = x, λ ∈ [0, 1]3

™
.

We can apply the same procedure for K = 2 and K = 4. For all three cases,
the CPC is visualized in Fig. 10. Its value at xB is highlighted by a blue dot, the
value at x = 6

5 by a violet triangle and the true value Q|Z(
6
5) by a red square.

32



We see that in all three cases, the CPC is valid and the regularized value function
QR

|Z(·;σ|·|) is overestimated at xB. In fact, the overestimation is exact for the

given example. Moreover, the anchor point xB gets closer to x = 6
5 with increasing

the binary precision. For K = 4 both points coincide. This does not guarantee
to monotonically improve the approximation at x = 6

5 , though, as Fig. 10b and
Fig. 10c show.

Q|Z

QR
|Z

0 0.5 1 1.5 2
0

0.5

1

1.5

2

x

(a) K = 2.
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(b) K = 3.
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(c) K = 4.

Figure 10: CPC at x = 6
5 for σ = 2, ∥·∥• = ∥·∥1,w and different K in Example 5.15.

(2) CPC for increasing σ. Let the incumbent be x = 6
5 again. As for case (1), we

choose ∥·∥◦ = |·| and ∥·∥• = ∥·∥1,w. We fix the binary precision to K = 4 (β = 2
15)

and consider different values for σ. The obtained CPCs are visualized in Fig. 11.
We observe that in each case, the CPC is valid and the corresponding regularized
value function is (exactly) overestimated at x = 6

5 . Additionally, the slope of the
CPC is bounded by σ. For increasing values of σ, the approximation of the true
value function at x = 6

5 is improved.

(3) Using ∥·∥• = ∥·∥∞,w. Consider the same setting as for case (1), but with ∥·∥• =
∥·∥∞,w instead of the weighted 1-norm. In this case, we obtain the CPC

ϕ|Z(x) := max
λ

ß
− 2

7
λ1 −

4

7
λ2 + 1.10714λ3 :

2

7
(λ1 + 2λ2 + 4λ3) = x, λ ∈ [0, 1]3

™
.

As Fig. 12a shows, in this case, the overestimation property is not satisfied.
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(b) σ = 1.
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(c) σ = 5.

Figure 11: CPC at x = 6
5 for K = 4, ∥·∥• = ∥·∥1,w and different values of σ in

Example 5.15.

Setting σ = 1, we even observe a case in which QR
B|Z(·;σ∥·∥∞,w) and its closed

convex envelope co(QR
B|Z ;σ∥·∥∞,w)(·) do not coincide at λ = (0, 0, 1), which is the

binary representation of the anchor point xB. This underlines the significance of
choosing ∥·∥• = ∥·∥1,w.

(4) Using z ∈ {0, 1}K. Consider the same setting as for case (1), but with choosing
z ∈ {0, 1}K instead of z ∈ [0, 1]K as the accompanying set in the lifted space. The
CPC can be computed as

ϕ|Z(x) := max
λ

ß
0.914286λ3 :

2

7
(λ1 + 2λ2 + 4λ3) = x, λ ∈ [0, 1]3

™
.

As Fig. 12b shows, this is not a valid cut for the value function Q|Z(·) in the
original state space. The CPC is only guaranteed to be valid for points which can
be exactly represented in the lifted state space.

(5) Bounding the slope of the CPC. Let x = 1.249 now, i.e., very close to a point
of discontinuity of Q|Z(·). Let ∥·∥◦ = |·|, σ = 5, K = 8 for a sufficiently close
approximation, and ∥·∥• = ∥·∥1,w as proposed. As Fig. 13a illustrates, in this case,
we obtain a CPC that overestimates QR

|Z(·;σ|·|), but is bounded in slope by σ = 5

(blue dotted line).
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(a) σ = 2 and ∥·∥• = ∥·∥∞,w.
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(b) σ = 1, ∥·∥• = ∥·∥1,w, z ∈ {0, 1}K .

Figure 12: Non-sufficient CPCs for K = 3 at x = 6
5 in Example 5.15.
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(a) Using ∥·∥• = ∥·∥1,w.
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(b) Using ∥·∥• = ∥·∥1.

Figure 13: CPC at x = 1.249 for σ = 5 and K = 8 in Example 5.15.

In contrast, consider the case where we do not use the weighted norm ∥·∥• = ∥·∥1,w,
but the unweighted one ∥·∥• = ∥·∥1 instead. As proven in [14] we can then bound
the dual multipliers in (30) by σmaxj Uj to achieve the intended overestimation.
However, the CPC becomes extremely steep for K = 8 and is not bounded by σ = 5,
see Fig. 13b. In general, its Lipschitz constant may diverge for β → 0.

For completeness, we should mention that Lagrangian dual problems are often de-
generate with infinitely many optimal solutions. Therefore, given a trial point xia(n),

there may exist an infinite number of tight linear Lagrangian cuts (satisfying Corol-
lary 3.14) or tight CPCs (satisfying Theorem 5.14) with varying approximation quality
at xa(n) ̸= xia(n). For illustration, see the blue dashed, cyan dotted, and magenta dash-

dotted CPCs for problem (7) shown in Fig. 13a.

6 Conclusion

We provide new theoretical insight on the generation of linear and non-convex cuts for
value functions of MS-MILPs based on Lagrangian duality, and the effects that copy
constraints and a Lipschitz regularization of the subproblems have in this context. In
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particular, we point out the relation between bounded Lagrangian dual problems and
the convex envelope of the regularized value functions. We further show that by a careful
choice of the regularization, this relation can be exploited to generate non-convex cuts
with favorable properties.

As future work directions, a computational comparison of generating linear La-
grangian cuts using non-regularized and regularized problems could be of interest. While
the approximation quality is better in the first case, bounding the Lagrangian duals in
the latter might accelerate the cut generation process. For non-convex approximations,
the CPC from our lift-and-project approach could be compared in detail with the aug-
mented Lagrangian cuts proposed in [2]. Another challenge is to efficiently incorporate
the non-convex CPC into the subproblems within SDDP-like methods.
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A Proof of Lemma 2.2

Proof. Consider a leaf node n of N . Since fn(·) is linear and Fn(xa(n)) is bounded for all
xa(n) by Assumption 1 (A1), we conclude that Qn(·) is bounded from below. Moreover,
by feasibility assumption (A3), we have dom(Qn) ̸= ∅. Hence, Qn(·) is proper. For all
other nodes in N , a similar reasoning can be applied inductively.

The lsc of Qn(·) and the closedness of dom(Qn) follow from [20, Theorem 3.1] under
Assumption 1 (A2), based on the observation that, apart from the integrality require-
ments, Xn and Yn are representable by polyhedral constraints. The piecewise poly-
hedrality follows from the mixed-integer linear character of the subproblems, see also
[20].

By taking expectations the assertion also holds for QC(n)(·).

B Proof of Lemma 2.3

Proof. Since Qn(·) is bounded from below (see Appendix A), also co(Qn)(·) is bounded
from below (there exists a constant convex function underestimating Qn(·)). By As-
sumption 1 (A3), dom(Qn) ̸= ∅. As co(Qn)(·) underestimates Qn(·) on dom(Qn),
this implies that co(Qn)(·) is proper. Then the assertion follows from [5, Proposi-
tion 1.6.1].

C Proof of Lemma 3.7

Proof. Recall from Lemma 3.5 that the objective function of subproblem (8) is bounded
from below on Mi+1

n|Z . The objective function is the same for (12), and by Lemma 3.4

also the recession cones of Mi+1
n|Z and conv(Mi+1

n|Z) do coincide. Therefore, the objective

function is also bounded from below on conv(Mi+1
n|Z).

The result dom(QC,i+1
n|Z ) = conv(dom(Qi+1

n|Z)) follows by standard convexity argu-

ments considering the constraint set conv(Mi+1
n|Z) instead ofMi+1

n|Z . By Assumption 1 (A3),

we have dom(Qi+1
n|Z) ̸= ∅, and thus dom(QC,i+1

n|Z ) ̸= ∅. Together with the boundedness

from below, the properness follows.
Due to Lemma 3.4, problem (12) can be rewritten as a linear program, and therefore

the finite minimum is attained on conv(dom(Qi+1
n|Z)). Moreover, for linear programs, the

lower semicontinuity and convexity on Rda(n) (with QC,i+1
n|Z (xa(n)) = +∞ for all xa(n) /∈

conv(dom(Qi+1
n|Z))) and the piecewise linearity on dom(QC,i+1

n|Z ) follow from standard

results in stochastic programming, see [7, 20] for instance.

D Proof of Theorem 3.9

Proof. Applying the arguments from Lemma 2.3 toQi+1
n|Z(·), it follows that (Q

i+1
n|Z)

∗∗(xa(n)) =

co(Qi+1
n|Z)(xa(n)) for all xa(n) ∈ Rda(n) , so it is sufficient for us to consider the biconjugate.

For any πn ∈ Rda(n) , the conjugate of Qi+1
n|Z(·) is defined as

(Qi+1
n|Z)

∗(πn) = max
un

{
π⊤
n un −Qi+1

n|Z(un)
}
= −min

un

{
− π⊤

n un +Qi+1
n|Z(un)

}
,
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with un, πn ∈ Rda(n) [5]. Then, the respective biconjugate is equal to QD,i+1
n|Z (xia(n)), since

(Qi+1
n|Z)

∗∗(xia(n)) = max
πn

{
π⊤
n x

i
a(n)−(Qi+1

n|Z)
∗(πn)

}
= max

πn
min
un

{
π⊤
n (x

i
a(n)−un)+Qi+1

n|Z(un)
}
.

Inserting the definition of Qi+1
n|Z(·) and utilizing the copy constraint to replace un with

zn, we obtain the Lagrangian dual (11). In particular, this holds true for the case where
finite values are obtained, proving the assertion.

E Proof of Theorem 3.13

Proof. First, we notice that dom(Qi+1
n|Z) ⊆ Za(n) and bounded by assumption. By

Lemma 3.5 it is also closed, thus compact. Under this condition, according to Re-
mark 2.4, co(Qi+1

n|Z)(·) and co(Qi+1
n|Z)(·) do coincide on dom(Qi+1

n|Z). Therefore, it remains

to be shown that

co(Qi+1
n|Z)(xa(n)) = Qi+1

n|Z(xa(n))

for all xa(n) ∈ Xa(n) ∩ dom(Qi+1
n|Z).

Now choose xa(n) arbitrarily from this set. Since xa(n) ∈ Xa(n), by assumption xa(n)
is an extreme point of Za(n), meaning it cannot be expressed as a convex combination
of points in Za(n) different from itself [27]. However, we also have xa(n) ∈ dom(Qi+1

n|Z) ⊆
Za(n), so it cannot be expressed as a convex combination of points in dom(Qi+1

n|Z) different

from itself either. Therefore, xa(n) is an extreme point of dom(Qi+1
n|Z). According to [27,

Proposition 2.1], this implies that co(Qi+1
n|Z)(xa(n)) = Qi+1

n|Z(xa(n)) for all xa(n) ∈ Xa(n).

F Proof of Lemma 4.4

Proof. We prove all results for leaf nodes n ∈ N . For other nodes, the same reasoning
can be applied inductively, using that QR

C(n)|Z(·;σC(n)∥·∥) is Lipschitz and underestimat-

ing QC(n)|Z(·).
First, we show that the minimum in subproblem (13) is well-defined. The feasible

set is

MR;i+1
n|Z :=

{
(xn, yn, zn) : zn ∈ Za(n), xn ∈ Xn, yn ∈ Yn, Anzn +Bnxn + Cnyn ≥ bn

}
.

Under Assumptions 1 and 2, this set is closed as the intersection of closed sets.
By definition, QR

C(n)|Z(·;σC(n)∥·∥) ≡ 0 is Lipschitz continuous. Therefore, the objec-

tive function gn(xn, yn, zn) := fn(xn, yn) + σn∥xa(n) − zn∥ +QR
C(n)|Z(xn;σC(n)∥·∥) is lsc.

Together with the closedness of MR;i+1
n|Z , it follows that for any α ∈ R, the level set

levα(gn) =
{
(xn, yn, zn) ∈ MR;i+1

n|Z : gn(xn, yn, zn) ≤ α
}

is closed. Moreover, by Assumption 1, xn and yn are bounded, and by that fn(xn, yn)+
QR

C(n)|Z(xn;σC(n)∥·∥) is bounded from below by some finite constant α̃. The remaining

term σn∥xa(n) − zn∥ is bounded from below by 0 and bounded from above by α −
α̃. Therefore, within levα(gn), zn is bounded as well. In total, levα(gn) is compact.
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For α sufficiently large, it is also non-empty. Then, by extensions of the Theorem of
Weierstraß, a finite minimum is attained in subproblem (13). This immediately implies
properness of QR

n|Z(·;σn∥·∥).
Second, assuming that it exists, let (x∗n, y

∗
n, z

∗
n) be an optimal solution to the original

subproblem (5). Clearly, this point is feasible, but not necessarily optimal for subprob-
lem (13). Due to the copy constraint in subproblem (5), the term σn∥xa(n) − z∗n∥
vanishes in the objective, and the underestimation property follows. In contrast, if sub-
problem (5) has no feasible solution given xa(n), then we have Qn|Z(xa(n)) = +∞ and
the assertion is trivial.

Finally, we notice that QR
n|Z(·;σn∥·∥) can be interpreted as the Pasch-Hausdorff

envelope (or Lipschitz regularization) of Qn|Z(·) and σn∥·∥:

QR
n|Z(xa(n);σn∥·∥) = Qn|Z□(σn∥·∥)(xa(n)) = min

zn∈Za(n)

Qn|Z(zn) + σn∥xa(n) − zn∥.

By a similar reasoning as above, a finite minimum is attained. Since Qn|Z(·) is proper
and lsc according to Lemma 2.2 and since QR

n|Z(·;σn∥·∥) is proper as well, it follows that
QR

n|Z(·;σn∥·∥) is σn-Lipschitz by a general property of the Pasch-Hausdorff envelope, see

[3, Proposition 12.17].

G Proof of Lemma 4.8

Proof. (a) Problem (15) is a relaxation of problem (13). Hence, by Lemma 4.3, it is
feasible for all xa(n) ∈ Rda(n) . Additionally, xn, yn are bounded, whereas θC(n) and ∥·∥
are at least bounded from below. Therefore, QR;i+1

n|Z (·;σn∥·∥) is finite-valued, and by

that also proper. Using the same reasoning as in Appendix F, we can also show that
finite infima are attained.

The Lipschitz continuity can be shown by exploiting that QR;i+1
n|Z (·;σn∥·∥) is the

Pasch-Hausdorff envelope (or Lipschitz regularization) of Qi+1
n|Z(·) and σn∥·∥ for all n ∈

N . Since Qi+1
n|Z(·) is proper and lsc according to Lemma 3.5 and since QR;i+1

n|Z (·;σn∥·∥)
is proper as well, it follows that QR;i+1

n|Z (·;σn∥·∥) is σn-Lipschitz continuous by a general

property of the Pasch-Hausdorff envelope, see [3, Proposition 12.17].
(b) The convexity can be shown in a straightforward way given that the feasible set

and the objective are convex. As problem (16) is a relaxation of problem (15), feasibility
and boundedness of QCR;i+1

n|Z (·;σn∥·∥) from above follow from (a). Recall that xn, yn are

bounded and θC(n) is bounded from below in the set Mi+1
n|Z . By convexity properties, it

can be shown that these properties also must hold for elements in conv(Mi+1
n|Z). There-

fore, the objective function is bounded from below. It follows that QCR;i+1
n|Z (·;σn∥·∥) is

finite-valued, and by that also proper.
Using the same arguments as in (a) for QCR;i+1

n|Z (·;σn∥·∥) and QC,i+1
n|Z (·) together with

Lemma 3.7 we can conclude that QCR;i+1
n|Z (·;σn∥·∥) is σn-Lipschitz continuous on Rda(n) ,

and thus also closed.
(c) The function co(QR;i+1

n|Z ;σn∥·∥)(·) is convex by definition. As it underestimates

QR;i+1
n|Z (·;σn∥·∥), which is finite-valued, it is finite-valued as well.

(d) As shown in part (b), QCR;i+1
n|Z (·;σn∥·∥) is closed proper convex. Therefore,
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by [5, Proposition 1.6.1 (c)] it coincides with its biconjugate (QCR;i+1
n|Z ;σn∥·∥)∗∗(·) on

Rda(n) .

H Proof of Lemma 4.9

Proof. We define cn and λn as in (18). First, we consider problem (15), but introduce
an additional variable and copy constraint to obtain

QR;i+1
n|Z (xia(n);σn∥·∥) = min

λn,zn,un

¶
c⊤nλn + σn∥un∥ : (λn, zn) ∈ Mi+1

n|Z , un = xia(n) − zn
©
.

We relax the equality constraint, which yields the dual function

Φ|Z(πn) := min
λn,zn,un,wn

{
c⊤nλn + σn∥un∥+ π⊤

n (un − (xia(n) − zn)) : (λn, zn) ∈ Mi+1
n|Z

}
= min

(λn,zn)∈Mi+1
n|Z

c⊤nλn − π⊤
n (x

i
a(n) − zn) + min

un

σn∥un∥+ π⊤
n un

= min
(λn,zn)∈conv(Mi+1

n|Z)
c⊤nλn − π⊤

n (x
i
a(n) − zn) + min

un

σn∥un∥+ π⊤
n un.

The first equation follows from separability, while the second one follows from the
linearity of the objective in the first minimization problem.

Using the same steps for the convexified problem (16), we obtain the dual function
ΦC

|Z(πn), which satisfies Φ|Z(πn) = ΦC
|Z(πn) for all πn ∈ Rda(n) . As they are defined by

taking the supremum of Φ|Z(πn) or Φ
C
|Z(πn) over all πn respectively, also the biconjugates

(QR;i+1
n|Z ;σn∥·∥)∗∗(·) and (QCR;i+1

n|Z ;σn∥·∥)∗∗(·) are equivalent.

I Proof of Lemma 4.16

Proof. We consider some arbitrary node n ∈ N . By Theorem 4.10 and Corollary 4.12
we have

QCR;i+1
n|Z (xa(n);σn∥·∥) = co(QR;i+1

n|Z ;σn∥·∥)(xa(n)) (40)

for all xa(n) ∈ Rda(n) . Analogously, by Theorem 3.8 and Theorem 3.9 for all xa(n) ∈
conv(dom(Qi+1

n|Z)) we have

QC,i+1
n|Z (xa(n)) = co(Qi+1

n|Z)(xa(n)). (41)

We now show that QCR;i+1
n|Z (xa(n);σn∥·∥) = QC,i+1

n|Z (xa(n)) is satisfied for all xa(n) ∈
conv(dom(Qi+1

n|Z)) to prove the assertion. For that, consider the definition of QC,i+1
n|Z (·)

in (12). According to Lemma 3.7, QC,i+1
n|Z (·) is a piecewise linear convex function, which

implies that it is Lipschitz continuous on conv(dom(Qi+1
n|Z)).

Finally, we notice that QCR;i+1
n|Z (·;σn∥·∥) is exactly the regularized function that we

obtain if we Lipschitz-regularize QC,i+1
n|Z (·) using parameter σn. Therefore, we may apply

the reasoning from Lemma 4.15 to these two functions. We conclude that if σn is chosen
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sufficiently large, then

QC,i+1
n|Z (xa(n)) = QCR;i+1

n|Z (xa(n);σn∥·∥) (42)

for all xa(n) ∈ conv(dom(Qi+1
n|Z)). Combining this with (40) and (41) proves the assertion.

J Proof of Lemma 4.18

Proof. For sufficiently large σn > 0, combining Corollary 4.12, Lemma 4.16 and the
definition of the closed convex envelope yields

QDR;i+1
n|Z (xia(n);σn∥·∥) = co(QR;i+1

n|Z ;σn∥·∥)(xia(n)) = co(Qi+1
n|Z)(x

i
a(n)) ≤ QR;i+1

n|Z (xia(n);σn∥·∥)

for all xa(n) ∈ conv(dom(Qi+1
n|Z)). Additionally, given the taken assumptions, by The-

orem 3.13, we have co(Qi+1
n|Z)(x

i
a(n)) = Qi+1

n|Z(x
i
a(n)) for all xa(n) ∈ Xa(n) ∩ dom(Qi+1

n|Z).

Hence, the first equality in the assertion follows for xia(n) ∈ Xa(n) ∩ dom(Qi+1
n|Z). This

directly implies

Qi+1
n|Z(x

i
a(n)) ≤ QR;i+1

n|Z (xia(n);σn∥·∥).

However, since we also have the opposite result for all xa(n) ∈ Rda(n) by definition (cf.
Lemma 4.4), the second equality in the assertion follows.

K Proof of Lemma 4.19

Proof. We construct a special feasible solution for the dual problem (17) to prove the
assertion. Suppose π̂n ∈ Rda(n) is a vector, for which each component j is defined by

π̂nj :=

{
σn if xia(n),j = 1

−σn if xia(n),j = 0.
(43)

Such construction is always possible, since xia(n) ∈ {0, 1}da(n) . The vector π̂n is feasible

for (17) with ℓ∞-norm. Therefore, we obtain

QDR;i+1
n|Z (xia(n);σn∥·∥1) = max

∥πn∥∗≤σn
min

zn∈Za(n)

Qi+1
n|Z(zn) + π⊤

n (x
i
a(n) − zn)

≥ min
zn∈Za(n)

Qi+1
n|Z(zn) + π̂⊤

n (x
i
a(n) − zn)

= min
zn∈Za(n)

Qi+1
n|Z(zn) +

da(n)∑
j=1

π̂tj(x
i
a(n),j − znj).

(44)

Now we exploit the binary nature of xa(n). Note that if xia(n),j = 1, from (43) it
follows

π̂tj(x
i
a(n),j − znj) = σn(x

i
a(n),j − znj) = σn|xia(n),j − znj |.

The last equality holds, since for xia(n),j = 1 and znj ∈ [0, 1] (or znj ∈ {0, 1}), the term
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xia(n),j − znj is always non-negative. Analogously, for xia(n),j = 0, from (43) it follows

π̂tj(x
i
a(n),j − znj) = −σn(xia(n),j − znj) = σn|xia(n),j − znj |.

Inserting this result in (44) yields

QDR;i+1
n|Z (xia(n);σn∥·∥1) ≥ min

zn∈Za(n)

Qi+1
n|Z(zn) +

da(n)∑
j=1

σn|xia(n),j − znj |

= QR;i+1
n|Z (xia(n);σn∥·∥1).

(45)

L Proof of Lemma 5.12

Proof. First we notice that the dual CPC problem (38) is separable in the dimensions
j = 1, . . . , dn of the original state space. Hence, we may analyze each case separately,
which yields

min
ηnj ,µnj

{
xnjηnj + e⊤µnj : ηnjbnj + µnj ≥ πC(n),j , µnj ≥ 0

}
.

bnj ∈ RKnj is a vector which contains the non-zero entries from the j-th column of B⊤
n .

The variable ηnj is one-dimensional, and πC(n),j ∈ RKnj contains all entries from πC(n)
referring to component j.

We introduce slack variables and split up ηnj to reformulate the constraints as:

η+njbnj − η−njbnj + µnj − νnj = πC(n),j

η+nj , η
−
nj , µnj , νnj ≥ 0.

(46)

The set defined by (46) has 2+2Knj variables. In a basic solution, 2+Knj variables
have to be zero and the Knj columns associated with the remaining variables have to
be linearly independent. We observe that for each row k = 1, . . . ,Knj , the variables
µnjk and νnjk cannot be in the basis together, because otherwise the basic columns are
not linearly independent. With the same reasoning, η+nj and η−nj cannot be in the basis

together. Moreover, for Knj > 1, it is not sufficient to have only η+nj or η
−
nj in the basis.

We now consider different cases of basic solutions.
Case 1. η+nj and η−nj both in the basis. Then η+nj = η−nj = 0, so obviously

ηnj = η+nj − η−nj = 0 ≤ σmax
n .

Case 2. η+nj in the basis. This implies η−nj = 0. The equation

η+nj =
πC(n),jk − µnjk + νnjk

2k−1βnj

has to be satisfied for all k = 1, . . . ,Knj simultaneously. However, since η+nj is in the

basis, for some k̄, both µnjk̄ and νnjk̄ have to be zero. Therefore, this k̄ determines
the value of η+nj . The largest possible value that η+nj ≥ 0 may take can be obtained by
maximizing over k:

η+nj ≤ max
k=1,...,Knj

max

ß
πC(n),jk

2k−1βnj
, 0

™
.
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If all πC(n),jk ≤ 0, then η+nj = 0 ≤ σmax
n . Otherwise,

η+nj ≤ max
k=1,...,Knj

πC(n),jk

2k−1βnj
. (47)

We now exploit the bounds in the Lagrangian dual problem (30). We choose
∥·∥• = ∥·∥1,w, hence for each m ∈ C(n), the dual multipliers are bounded by ∥πm∥∞,w ≤
σm. Recall that by our choice of the weight matrix W , this is equivalent to |πmk| ≤
σm2

κ(k)−1βn,j(k) for all k = 1, . . . ,Kn. Restricting to some component j, we have
|πmjk| ≤ σm2

k−1βnj for all k = 1, . . . ,Knj , and thus |πC(n),jk| ≤ σmax
n 2k−1βnj for all

k = 1, . . . ,Knj . Consequently, in (47) it follows η+nj ≤ σmax
n .

Case 3. η−nj in the basis. We can prove η−nj ≤ σmax
n by using the same reasoning

as for Case 2.
Since ηnj = η+nj − η−nj , but only one of both variables can be non-zero, we conclude

ηnj ≤ σmax
n .

Due to separability, the above reasoning can be applied for each j = 1, . . . , dn
separately, so it follows ηnj ≤ σmax

n for all j. Hence, ∥ηn∥∞ ≤ σmax
n . Note that the

above reasoning is completely independent of the values of βnj or Knj .

M Proof of Lemma 5.13

Proof. The CPC is defined as the minimum of finitely many linear functions, which we
enumerate by ℓ = 1, . . . , L. Each such function ψℓ

C(n)(·) is determined by an extreme

point (µℓ
n, ν

ℓ
n, η

ℓ
n) of (38). Consider two arbitrary points x1n, x

2
n ∈ Rdn . Using the Hölder

inequality and Lemma 5.12, we obtain

|ψℓ
C(n)(x

2
n)− ψℓ

C(n)(x
1
n)| = |(ηℓn)⊤(x2n − x1n)| ≤ ∥ηℓn∥∞∥x2n − x1n∥1 ≤ σmax

n ∥x2n − x1n∥1.

Hence, each ψℓ
C(n)(·) is Lipschitz continuous w.r.t. ∥·∥1 with Lipschitz constant σmax

n .
Taking the maximum of all Lipschitz constants over ℓ = 1, . . . , L, we obtain a Lipschitz
constant for the CPC, which is again σmax

n . By equivalence of norms in Rdn , for any
other norm than ∥·∥1, we can obtain a Lipschitz constant σ̃C(n) > 0 by multiplying σmax

n

with an appropriate positive constant.

N Proof of Theorem 5.14

Proof. We first prove validity property (S1). From Corollary 5.8 we have QC(n)|Z(xn) ≥
ϕB;C(n)|Z(λn) for all xn ∈ Rdn and any λn ∈ [0, 1]Kn , such that xn = Bnλn. Hence

QC(n)|Z(xn) ≥ max
λn

{
ϕB;C(n)|Z(λn) : λn ∈ [0, 1]Kn ,Bnλn = xn

}
= ϕC(n)|Z(xn)

for all xn ∈ Rdn , where the last equality applies the definition of the CPC in (37). Since
this result is true for all ϕrC(n)|Z(·), r = 1, . . . , i + 1, it also holds for their pointwise

maximum Qi+1
C(n)|Z(·).

Next, we prove the overestimation property (S2). From the definitions of xiB,n and

the CPC, it follows ϕiB;C(n)|Z(λ
i
n) = ϕiC(n)|Z(x

i
B,n). Hence, under our assumptions, Corol-
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lary 5.9 yields

ϕiC(n)|Z(x
i
B,n) ≥ QR;i+1

C(n)|Z(x
i
B,n;σC(n)∥·∥◦).

By definition of Qi+1
C(n)|Z(·) in (39) it directly follows

Qi+1
C(n)|Z(x

i
B,n) ≥ QR;i+1

C(n)|Z(x
i
B,n;σC(n)∥·∥◦).

Finally, we prove Lipschitz property (S3) using Lemma 5.13. Under our assumptions,
for any ∥·∥◦, each ϕrC(n)|Z(·), r = 1, . . . , i+ 1, is σ̃C(n)-Lipschitz continuous with σ̃C(n) >

0, finite and independent of βn,j ∈ (0, 1), j = 1, . . . , dn. The pointwise maximum of
Lipschitz continuous functions is Lipschitz continuous with its Lipschitz constant the
maximum of the individual constants. Therefore, Qi+1

C(n)|Z(·) is σ̃C(n)-Lipschitz continuous
w.r.t. ∥·∥◦.

O The role of copy constraints – 2D-example

Example O.1. Consider the value function

Q(x) = min
y,z

− 16y1 − 19y2 − 23y3 − 28y4

s.t. 2y1 + 3y2 + 4y3 + 5y4 ≤ 10− 1

3
x1 −

2

3
x2

6y1 + y2 + 3y3 + 2y4 ≤ 10− 2

3
x1 −

1

3
x2

y1, y2, y3, y4 ∈ {0, 1}

taken from [1], together with the two-dimensional state space

X =
{
(x1, x2) ∈ Z2 : x1, x2 ∈ [0, 5], x2 ≤

9

2
− x1

}
.

To generate Lagrangian cuts, we introduce copy constraints z = x together with
constraint z ∈ Z. We analyze the effect of different choices for Z on the cut tightness.
We consider X,R2 and the following sets in between as choices for Z:

conv(X) =
{
(x1, x2) ∈ R2 : x1, x2 ∈ [0, 5], x2 ≤ 4− x1

}
,

X̄ =
{
(x1, x2) ∈ R2 : x1, x2 ∈ [0, 5], x2 ≤

9

2
− x1

}
,

X̃ =
{
(x1, x2) ∈ R2 : x2 ≤

9

2
− x1

}
,

X ′ =
{
(x1, x2) ∈ Z2 : x1, x2 ∈ [0, 5]

}
,

conv(X ′) = X̄ ′ =
{
(x1, x2) ∈ R2 : x1, x2 ∈ [0, 5]

}
.

These sets are illustrated in Figure 14.
We generate cuts at three different incumbents: x̄ = (0, 4)⊤, x̄ = (3, 1)⊤, x̄ = (2, 1)⊤

which are highlighted with red circles. Depending on the choice of Z, these incumbents
may be located at an extreme point of Z (thus satisfying the sufficient condition for
tightness in Theorem 3.13), on the boundary of Z, or in the interior of Z (if Z is discrete,
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Figure 14: Different choices for Z in Example O.1.

we define ext(Z) := ext(conv(Z)) and bd(Z), int(Z) analogously). These relations and
the values of the obtained Lagrangian cuts at x̄ are summarized in Table 1.

Table 1: Cut value at x̄ for different choices of Z in Example O.1.

x̄ = (0, 4)⊤ x̄ = (3, 1)⊤ x̄ = (2, 1)⊤

Q|Z(x̄) = -44.0 Q|Z(x̄) = -47.0 Q|Z(x̄) = -47.0
Z rel. to Z cut value rel. to Z cut value rel. to Z cut value

X ∈ ext(Z) -44.0 ∈ bd(Z) -47.0 ∈ int(Z) -51.0
conv(X) ∈ ext(Z) -44.0 ∈ bd(Z) -47.0 ∈ int(Z) -51.0

X̄ ∈ bd(Z) -46.1 ∈ int(Z) -48.8 ∈ int(Z) -52.3

X̃ ∈ int(Z) -46.3 ∈ int(Z) -50.4 ∈ int(Z) -53.8

X ′ ∈ bd(Z) -44.0 ∈ bd(Z) -50.9 ∈ int(Z) -53.8
conv(X ′) = X̄ ′ ∈ bd(Z) -46.1 ∈ bd(Z) -51.1 ∈ int(Z) -53.8

R2 ∈ int(Z) -48.4 ∈ int(Z) -53.1 ∈ int(Z) -55.4

We can see that x̄ ∈ ext(Z) guarantees tight cuts with respect to Q|Z(·), whereas for
x̄ ∈ int(Z) tightness is never achieved. For x̄ ∈ bd(Z), tightness is achieved sometimes,
however, not guaranteed in general. This observation is in accordance with the sufficient
condition provided in Theorem 3.13.

In particular, we notice that computing cuts as tight as possible requires not only to
consider box and integrality constraints, but also the additional linear constraint x2 ≤
9
2 − x1 defining X, when imposing constraints on the copy variable z.
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