
Application of the Lovász-Schrijver Operator to Compact Stable
Set Integer Programs

Federico Battista∗1, Fabrizio Rossi†2, and Stefano Smriglio‡2

1Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA,
18015, USA

2DISIM, University of L’Aquila, Coppito (AQ), 67100, Italy

August 2, 2024

Abstract

The Lovász theta function θ(G) provides a very good upper bound on the stability number
of a graph G. It can be computed in polynomial time by solving a semidefinite program (SDP),
which also turns out to be fairly tractable in practice. Consequently, θ(G) achieves a hard-to-
beat trade-off between computational effort and strength of the bound. Indeed, several attempts
to improve the theta bound are documented, mainly based on playing around the application of
the N+(·) lifting operator of Lovász and Schrijver to the classical formulation of the maximum
stable set problem. Experience shows that solving such SDP-s often struggles against practical
intractability and requires highly specialized methods. We investigate the application of such an
operator to two different linear formulations based on clique and nodal inequalities, respectively.
Fewer inequalities describe these two and yet guarantee that the resulting SDP bound is at least
as strong as θ(G). Our computational experience, including larger graphs than those previously
documented, shows that upper bounds stronger than θ(G) can be accessed by a reasonable
additional effort using the clique-based formulation on sparse graphs and the nodal-based one
on dense graphs.

Keywords semidefinite programming · lift-and-project operator · stable set problem;
MSC 90C22 · 90C27 · 05C69;

1 Introduction

Given a simple undirected graph G = (V, E), with vertex set V and edge set E, a stable (or indepen-
dent) set in G is a set of pairwise non-adjacent vertices. A fundamental problem in combinatorial
optimization is the Stable Set Problem (SSP), which consists of computing a stable set of maximum

∗feb223@lehigh.edu
†fabrizio.rossi@univaq.it
‡stefano.smriglio@univaq.it

1

cardinality [33, 50]. This value, denoted by α(G), is the stability number of G. A weighted version
of this problem can be considered if a weight vector w ∈ Qn

+ is given. SSP is NP-hard in the strong
sense and even hard to approximate [35], it is equivalent to the Maximum Clique and Set Packing
problems [53] and has a wide range of applications in practical contexts [10, 11, 16, 14, 57, 68].
SSP is naturally formulated as a binary program by the so-called edge inequalities:

αw(G) = max ∑
i∈V wixi

s.t. xi + xj ≤ 1, {i, j} ∈ E, (1)
xi ∈ {0, 1}, i ∈ V.

As is customary in the literature, we denote by

FRAC(G) = {x ∈ [0, 1]|V | : (1) hold}

the fractional stable set polytope, while

STAB(G) = conv{x ∈ {0, 1}|V | : (1) hold}

denotes the stable set polytope, that is, the convex hull of the incidence vectors of all stable sets in
G. The intense study of STAB(G) has led, since the early seventies, to the identification of several
classes of valid inequalities, often associated with specific “facet-producing” sub-graphs [33, 11, 2,
15]. In practice, however, linear relaxations based on these inequalities often yielded rather weak
upper bounds on the stability number of unstructured graphs. As a consequence, basic branch-
and-cut algorithms are not particularly effective [49] and much more sophisticated cut generation
procedures [30, 31, 20, 19, 56, 55] are required to reduce the performance gap with fast combinatorial
exact algorithms, such as those devised in [58, 52, 62].

In his seminal paper, Lovász [42] introduced the celebrated theta number of a graph, denoted
by θ(G). It represents an upper bound for α(G), which can be computed in polynomial time (up
to arbitrary precision) by solving a Semidefinite Program (SDP) [33]. Since its introduction, θ(G),
along with the associated non-polyhedral convex theta body TH(G) [33], turned out to be powerful
tools. For instance, they allowed to prove that the SSP can be solved in polynomial time when G is
a perfect graph [33]. Indeed, the practical relevance of θ(G) is no less. On one side, it often turns
out to be a significantly stronger upper bound than those from linear relaxations [28, 39]. On the
other side, the structure of the associated SDP relaxation often mitigates numerical difficulties that
typically affect SDP algorithms. As a consequence, θ(G) realizes a very good trade-off between the
quality of the upper bound and computational effort, which makes it attractive to be incorporated
within branch-and-bound algorithms, as studied by, e.g., Wilson [67] and more recently by Gaar
et al. [25].

In a successive landmark paper Lovász and Schrijver [43] introduced the N+(·) lift-and-project
operator, which can be applied to the LP relaxation of any 0-1 LP and returns a stronger SDP
relaxation. Its application to FRAC(G) has also been intensely investigated and has resulted tighter
than the Lovász theta relaxation. From a theoretical perspective, its strength has been documented
by showing implications of (additional) facet defining inequalities of the stable set polytope [43, 27].
Moreover, as noted in [7, 8], it provides an effective tool to identify other classes of graphs for which
the SSP can be solved in polynomial time. Recently, graph classes yielding stable set polytopes
with high rank with respect to N+(·) have been studied in [1].

2

From the computational point of view, things are somewhat more involved. Experiments con-
ducted with N+(FRAC(G)) [21, 12] and related variants [23, 34] show that these relaxations may
yield stronger upper bounds than θ(G) but at the price of considerably increasing the computational
effort. In fact, solving these large-scale SDPs requires specialized methods and large instances can
hardly be managed. Other methods, based on strengthening SDP relaxations by linear inequalities
not related to the N+(·) operator, have also been presented by Gaar and Rendl [24] and Locatelli
[41]. These achieve strong bounds but still require a significant computational effort.

Overall, we currently face a dichotomic picture, where even minimal progress from the Lovász
θ bound may be paid with a very high computational burden. This paper aims to present new
SDP relaxations that can bridge such a gap. These are derived by applying the N+(·) operator
to alternative LP relaxations. The first relaxation is obtained by replacing edge inequalities with
(clearly stronger) clique inequalities. This is unconventional since the linear description may have
exponentially many inequalities, making the approach somehow unattractive from theoretical and
practical perspectives. However, we show that a natural selection of clique inequalities allows
for more compact, tractable, yet stronger, relaxations. An opposite rationale derives the other
SDP relaxations: accepting to start from more compact but weaker LP relaxations and relying on
the ability of the N+(·) operator to recover their potential weakness. Based on this rationale, we
investigate a hierarchy of SDP relaxations where the primary level consists of applying the operator
to a surrogate relaxation of FRAC(G), introduced in Della Croce and Tadei [22], with O(|V |)
(so-called nodal) inequalities. Coefficient strengthening procedures then derive two progressively
stronger relaxations, the first of which takes polynomial time while the second requires the solution
of NP-hard (sub-)problems to be built.

In this work, we first prove that all the proposed SDP relaxations are at least as strong as the
Lovász theta relaxation and draw a complete theoretical picture by comparing them to each other
and to N+(FRAC(G)). Then, we discuss implementation issues in handling them and illustrate
extensive experiments where the practical strength of relaxations is evaluated and contrasted to
the theoretical expectation. We show that significant progress with respect to θ(G) is achieved in
several cases. Relaxations obtained from clique inequalities are more effective for sparse graphs,
while those from nodal inequalities are the best as graph density grows. Furthermore, the increase
of computational workload required to improve the θ bound is significantly smoother than that
of previous approaches. Indeed, this increased efficiency allowed us experimentation based on
significantly larger graphs than previously documented. This experience also sheds new light on
the practical potential of the N+(·) operator, which emerges more clearly than in the studies
documented so far. All the material and code presented is available at https://github.com/
febattista/SDP_lift_and_project and organized to facilitate the reproduction of relaxations
and experiments.

2 Preliminaries

This paper will adopt the following standard notation. The set of integers {1, ..., k} is denoted by
[k]. The complement of a graph G = (V, E) is the graph Ḡ =

(
V, Ē

)
, where Ē =

{
{i, j} ⊂ V :

{i, j} ∈ (V ×V)\E
}
. Given a vertex i ∈ V , we let ΓG(i) denote the set of neighbours of i in G, i.e.,

ΓG(i) =
{
j ∈ V \ {i} : {i, j} ∈ E

}
. When no confusion arises, we let ΓG(i) = Γ(i). Finally, given

a vertex S ⊆ V , we let G[S] =
(
S, E(S)

)
denote the subgraph of G induced by S, and r(S) denote

its stability number α
(
G[S]

)
(the so-called rank of S). We also let Sn be the set of real symmetric

3

https://github.com/febattista/SDP_lift_and_project
https://github.com/febattista/SDP_lift_and_project

square matrices of order n and S+
n ⊂ Sn denotes the cone of those which are positive semidefinite

(PSD). PSDness of a matrix Y ∈ S+
n is also denoted by Y ⪰ 0. Given any square matrix X ∈ Rn×n

we denote by (X)ij the element at the i-th row and the j-th column, by diag(X) ∈ Rn its main
diagonal and by rank(X) its rank. We denote by ⟨X, Y ⟩ = tr(XY) the standard inner product
in Sn, where tr(A) is the trace of the square matrix A. At last, we denote with J the all-ones
square matrix and e the all-ones vector; the dimensions should be clear from the context where not
explicit.

2.1 The lift-and-project operator of Lovász and Schrijver

We now review the general statement of the N+(·) operator to make the presentation self-consistent,
referring the reader to [18, 21, 32, 43] for an exhaustive treatment.

Let us consider a 0-1 linear program of the form

max
{

c⊤x | Ax ≤ b, xi ∈ {0, 1} for i ∈ I = {1, . . . , n}
}

, (IP)

where c ∈ Rn, the inequality system Ax ≤ b has A ∈ Rm×n, b ∈ Rm and contains the inequalities
0 ≤ xi ≤ 1, for i ∈ [n]. Each linear inequality of the system Ax ≤ b is denoted by (ak)⊤x ≤ bk, for
k ∈ [m]. The polytope P = {x ∈ Rn | Ax ≤ b} is the linear relaxation of (IP) and PI = conv{x ∈
{0, 1}n | Ax ≤ b} denotes the convex hull of the feasible solutions to (IP).
The application of the lift-and-project operator to P involves the three following steps:

Step 1 (Lifting)

Generate the quadratic inequalities

xi((ak)⊤x− bk) ≤ 0 i ∈ [n], k ∈ [m], (2)
(1− xi)((ak)⊤x− bk) ≤ 0 i ∈ [n], k ∈ [m]. (3)

which are valid for P as xi ≥ 0 and 1 − xi ≥ 0 for all x ∈ P . These inequalities can be linearized
through the introduction of the matrix variable X = xx⊤ and rewriting (2) and (3) as:

∑
j∈I

ak
j Xij − bkxi ≤ 0 i ∈ [n], k ∈ [m], (4)

∑
j∈I

ak
j xj − bk −

∑
j∈I

ak
j Xij + bkxi ≤ 0 i ∈ [n], k ∈ [m], (5)

X = xx⊤.

Then, the quadratic constraint X = xx⊤ is relaxed with X − xx⊤ ⪰ 0. By applying the Schur’s
complement definition X − xx⊤ ⪰ 0 is equivalent to(

1 x⊤

x X

)
⪰ 0. (6)

4

Step 2 (Strengthening)

Add to constraints (4)–(6)

Xii = xi i ∈ [n], (7)

as any binary vector x ∈ PI satisfies xi = x2
i , whereas such equality is not guaranteed for points in

P . This yields to the definition of the convex set

M+(P) =
{(

1 x⊤

x X

)
⪰ 0

∣∣∣ (4), (5), (7) hold
}

,

where M+(·) is referred here as lift operator.

Step 3 (Projection)

The projection of M+(P) onto the original x-space is

N+(P) =
{

x ∈ Rn
∣∣∣ ∃ Y ∈M+(P) with

(
1
x

)
= diag(Y)

}
.

Lovász and Schrijver [43] showed that N+(P) is contained in P and is a valid relaxation for PI ,
i.e. PI ⊆ N+(P) ⊆ P holds. For the ease of presentation, in the reminder of this paper we will refer
to both M+(P) and N+(P) as a relaxation of PI , despite the former “lives” in the lifted variables
space. Furthermore, note that all the linear inequalities Ax ≤ b are trivially satisfied by M+(P).

Remark 1. Let (ak)⊤x ≤ bk, for k ∈ [m], be an inequality in the linear system defining P , then
from the linear inequalities defining M+(P) one can sum (4) and (5), for any i ∈ [n], to recover
the original constraint.

Moreover, Bodur et al. [9] noted that the definition of M+(P) and N+(P) does not depend on the
representation of P but only on the set of points in P . Hence, the following property holds:

Property 1. Given two polytopes P, P ′ with P ′ ⊆ P then M+(P ′) ⊆M+(P) .

Additionally, given any polytope P containing STAB(G), Lovász and Schrijver [43] provided nec-
essary conditions for an inequality a⊤x ≤ b to be valid for N+(P).

Lemma 1. Let a⊤x ≤ b be a valid inequality for STAB(G). W.l.o.g. assume a ∈ Rn
+ and b ∈ R+.

If a⊤x ≤ b is valid for P ∩ {x : xi = 1} for all i ∈ V , then a⊤x ≤ b is valid for N+(P).

3 Continuous relaxations of the SSP

In this section we recall known results about linear and semidefinite relaxation of the SSP. These
are widely researched and we will only concentrate on elements relevant to our study.

5

3.1 Linear relaxations of the SSP

Several classes of valid inequalities for STAB(G) have been identified since early seventies [33, 11].
Among them, clique inequalities ∑i∈C xi ≤ 1, where C ⊆ V is a maximal clique (set of pairwise
adjacent vertices), induce facets of STAB(G) [53]. As customary in the literature, we define the
polytope

QSTAB(G) = {x ∈ [0, 1]|V | :
∑
i∈C

xi ≤ 1, C ∈ K}

where K denotes the collection of all maximal cliques of G. As clique inequalities clearly imply
edge inequalities, STAB(G) ⊆ QSTAB(G) ⊆ FRAC(G) and inclusion is generally strict [33]. Clique
inequalities in G can be exponential in number, and the associated separation problem is NP-
hard in the strong sense. However, effective separation heuristics make this class of inequalities
computationally easy to handle, as shown in [45].

The 0-1 linear program

max
∑
i∈V

wixi

s.t.
∑
i∈C

xi ≤ 1 (C ∈ C) (8)

xi ∈ {0, 1} (i ∈ V).

is a valid formulation for the SSP if C ⊆ K is any collection of maximal cliques covering all the edges
of G (i.e., both the endpoints of every edge are contained in at least one clique of C). Extending
the standard notation, we denote by QSTAB(G, C) the polytope associated with its continuous
relaxation. It’s not hard to see that QSTAB(G) ⊆ QSTAB(G, C) ⊆ FRAC(G). QSTAB(G, C)
has a number of clique inequalities bounded by |E| and it typically contains considerably fewer
inequalities than FRAC(G). In fact, formulations based on a greedily computed minimum size
collection C are competitive in practice, as shown in several studies (see, e.g., Letchford et al. [40]
and references therein).

Other rank inequalities of the form ∑
i∈S xi ≤ α(G[S]) have been studied for vertex subsets

S ⊆ V inducing special graphs (see e.g., Borndörfer [11] and Giandomenico et al. [28] for a survey).
A well-known example arises when S = H, |H| ≥ 5, induces a chordless cycle of odd cardinality,
yielding the odd-hole inequality ∑

i∈H xi ≤ ⌊ |H|
2 ⌋. Among other subgraphs, we recall webs and

antiwebs introduced in [63]. Let p and q be integers satisfying p > 2q + 1 and q > 1, and use
arithmetic modulo p. A (p, q)−web is a graph with vertex set {1, ..., p} and with edges from i
to {i + q, . . . , i − q}, for every 1 ≤ i ≤ p. A (p, q)−antiweb is the complement of a (p, q)−web.
The web inequalities take the form ∑

i∈W xi ≤ q for every vertex set W inducing a (p, q)-web,
and the antiweb inequalities take the form ∑

i∈AW xi⌊p/q⌋ for every vertex set AW inducing a
(p, q)-antiweb.

A different modeling rationale has been pursued by Della Croce and Tadei [22] who considered
the surrogate relaxation of formulation (1) obtained by summing up, for every i ∈ V , the edge
inequalities over all j ∈ Γ(i). This yields the so called nodal inequality

∑
j∈Γ(i) xj +|Γ(i)|xi ≤ |Γ(i)|.

Murray and Church [48] observed that this relaxation can be strengthened by replacing |Γ(i)| with
any value ri ≥ α(G[Γ(i)]), which returns a class of 0-1 linear programs of the form

6

max
∑
i∈V

wixi

s.t.
∑

j∈Γ(i)
xj + ri xi ≤ ri (i ∈ V) (9)

xi ∈ {0, 1} (i ∈ V).

The strongest formulation, corresponding to ri = α(G[Γ(i)]), has been extensively investigated
in [40]. Of course, computing coefficients ri = α(G[Γ(i)]) is NP-hard, as it amounts to solve the
SSP on the subgraphs G[Γ(i)]. Nevertheless, Letchford et al. [40] showed that these formulations
can be handled efficiently for many graphs of interest. Here, we are interested in a further choice
of coefficients ri, namely, ri = θ(G[Γ(i)]) where θ(G[Γ(i)]) is the Lovász [42] θ number of the graph
G[Γ(i)]. This represents an upper bound to α(G[Γ(i)]) which can be computed in polynomial time
up to an arbitrary precision, as reviewed in Section 3.2.1. Then, we introduce the following notation

NOD(G, r) =

x ∈ [0, 1]|V | :
∑

j∈Γ(i)
xj + ri xi ≤ ri, i ∈ V

to denote the polytope defined from (9) (and non-negativity), where r ∈ {Γ, θ, α} specifies the
coefficient used. Clearly, we have NOD(G, α) ⊆ NOD(G, θ) ⊆ NOD(G, Γ). It is worth noting that
nodal inequalities in general do not imply edge inequalities, even in the case r = α. On the other
hand, if r = α, they imply the wheel inequalities (see Borndörfer [11] for their definition) which are
not implied by clique inequalities.

3.2 SDP relaxations of the SSP

Three well-known SDP relaxations are related to our study.

3.2.1 The Lovász theta relaxation

The Lovász theta relaxation has been introduced in 1979, yet we refer to the presentation of [43].
Introduce the quadratic variable xij , representing the product xixj for all {i, j} ∈ V × V and let
X = xx⊤ be the associated symmetric matrix of order n = |V |. An upper bound to α(G) is given
by

θ(G, w) = max
∑
i∈V

wixi (SDP-θ)

s.t. Xii = xi, i ∈ V,

Xij = 0, {i, j} ∈ E,(
1 x⊤

x X

)
⪰ 0. (10)

We simply denote it by θ(G) in the unweighted case. The projection TH(G) of the feasible region
of (SDP-θ) onto the subspace of the xi variables is known as the theta body, a convex but not
polyhedral set in general. Remarkably, Grötschel et al. [33] proved that STAB(G) ⊆ TH(G) ⊆

7

QSTAB(G), where equality holds if and only if G is perfect. This implies that there exists a
polynomial-time separation algorithm for a class of inequalities which includes all clique inequalities.
A thorough comparison between the original formulation in [42] and (SDP-θ) is illustrated in [26].
θ(G) can be computed in polynomial time up to an arbitrary precision and often provides a strong
bound to the stability number α(G), typically better than those obtained from linear relaxations
see, e.g., [38, 69, 28, 30]. Another interesting feature of (SDP-θ) concerns with its computational
behavior. In fact, (SDP-θ) is handled better than similarly sized unstructured SDPs by general
SDP solvers. Moreover, several algorithms have been designed to solve it efficiently as in, e.g., [54,
44, 29]. Therefore, θ(G) achieves a good compromise between strength of the upper bound and
computational burden. From a theoretical viewpoint, Busygin and Pasechnik [13] showed that,
unless P=NP, no polynomially computable upper bound to α(G) which is provably smaller than
θ(G) can be found. In this context, several stronger relaxations have been obtained by adding
linear inequalities to (SDP-θ), as reviewed in the following subsections.

3.2.2 The Schrijver relaxation

Schrijver [59] observed that the PSD condition (10) does not imply the non-negativity on X. Hence,
by adding the inequalities

Xij ≥ 0, ∀{i, j} ∈ Ē, (SDP-θ+)

to (SDP-θ), one yields a model that we denote as (SDP-θ+) and the corresponding upper bound as
θ+(G). Accordingly, TH+(G) denotes the convex set obtained by its projection onto the subspace
of xi variables.

3.2.3 The Lovász-Schrijver relaxation

The Lovász-Schrijver relaxation for the SSP is obtained by applying the operator N+(·) to FRAC(G).
N+(FRAC(G)) corresponds to (SDP-θ+) plus the following linear inequalities:

Xij ≥ 0, {i, j} ∈ Ē, (11)
Xik + Xjk ≤ xk, {i, j} ∈ E, k ̸= i, j, (12)

xi + xj + xk ≤ 1 + Xik + Xjk, {i, j} ∈ E, k ̸= i, j. (13)

Lovász and Schrijver [43] assessed the theoretical strength of N+(FRAC(G)) by showing that
it satisfies several well-known classes of valid inequalities for STAB(G). Namely, they proved
that N+(FRAC(G)) satisfies all clique, odd cycle, odd antihole and odd wheel inequalities. Gian-
domenico and Letchford [27] showed that, in addition, it satisfies all web inequalities. Optimizing∑

i∈V xi over N+(FRAC(G)) returns an upper bound to α(G) that we denote as λ(G). From a
more general perspective, it is interesting to observe the key role of the positive semidefiniteness
constraint. In fact, Burer and Vandenbussche [12] compared λ(G) with the optimal value of the
corresponding LP relaxation obtained by the Sherali-Adams procedure, observing a substantial
improvement due to it.

Handling such a strong relaxation in practice is not straightforward. The first related com-
putational results, obtained by a lift-and-project cutting plane method, appear in [3]. Results on
optimising directly over M+(FRAC(G)) are illustrated in [21] and, more recently, in [12] using a

8

specialised augmented Lagrangian method. The resulting upper bounds to α(G) may be consider-
ably better than θ+(G) but at the expense of a large increase in running times. In practice, this
relaxation turns out to be hardly tractable for graphs of medium/large size.

3.2.4 Further SDP relaxations

Variants of the previous relaxations are presented in [34, 23]. In the former, extra triangle inequal-
ities are added to N+(FRAC(G)) to obtain a very strong relaxation. In the latter, relaxations are
specialised with respect to graph density to improve efficiency. We refer to [26] for an exhaustive re-
view of these methods. Two SDP-related methodologies are also presented in the literature. In [24]
strong SDP relaxations of several combinatorial optimization problems are investigated by exploit-
ing the exact subgraph inequalities. Despite the power of this technique, the experience reveals
that strengthening the natural SDP relaxation of the SSP is typically harder than other problems,
e.g., max-cut, and confirms that improving the θ bound towards α(G), even by a small amount,
is actually challenging. Another effective method (presented in the context of the clique number)
based on adding non-valid inequalities has been developed in [41]. This turns out to achieve quite
strong bounds for both structured and random graphs with up to 150 vertices.

Summarizing, the evidence from state-of-the-art methodologies is that achieving even a small
improvement of θ(G) requires a considerable additional computational cost. Namely, adding ex-
tra linear inequalities in the SDP models yields much harder SDPs and does require specialized
methods. In the next section we introduce new relaxations with the goal of bridging such a gap.

4 New SDP relaxations

We now apply the lift operator M+(·) to QSTAB(G, C) and NOD(G, r) and compare the resulting
SDP relaxations. Let us first observe that all of them contain variable bound constraints, the lifting
step of which consists in multiplying 0 ≤ xi ≤ 1 by xj and (1− xj), for i, j ∈ V, i < j:

xixj → Xij ≥ 0, (14)
xi(1− xj)→ xi ≥ Xij , (15)
(1− xi)xj → xj ≥ Xij , (16)

(1− xi)(1− xj)→ xi + xj −Xij ≤ 1. (17)

The linear inequalities (14)–(17) are known as McCormick [46] inequalities and describe the convex
hull of the set {(xi, xj , yij) ∈ {0, 1}3 : yij = xixj}. It is easy to see that they are not implied by
the PSD condition (6) and should be explicitly added to the relaxations illustrated below unless
implied by other constraints.

4.1 Relaxation M+(QSTAB(G, C))
In order to investigate M+(QSTAB(G, C)) we first describe the application of the operator M+(·)
to QSTAB(G). The lifting step consists in multiplying each clique inequality ∑i∈C xi ≤ 1, C ∈ K,
by xj and (1− xj), for all j ∈ V . Then, adding the condition Xii = xi, one obtains:

9

xj ·
(∑

i∈C

xi ≤ 1
)
→

∑

i∈C\{j}
Xij ≤ 0, if j ∈ C, (18)

∑
i∈C

Xij − xj ≤ 0, if j ̸∈ C, (19)

(1− xj) ·
(∑

i∈C

xi ≤ 1
)
→

∑
i∈C

xi −
∑

i∈C\{j}
Xij ≤ 1, if j ∈ C, (20)

∑
i∈C

(xi −Xij) + xj ≤ 1, if j ̸∈ C. (21)

Inequalities (19), called clique-variable inequalities, have been introduced in [28]. One can observe
that

1. Constraints (18) imply Xij = 0 for all {i, j} ∈ E and constraints (20) reduce to the corre-
sponding clique inequality ∑i∈C xi ≤ 1, C ∈ K, which is already implied from (19) and (21)
by Remark 1;

2. Xij = 0 for all {i, j} ∈ E, Xij ≥ 0 for all {i, j} ∈ Ē and constraints (19) imply inequalities
(15) and (16);

3. Constraints (18), (19) and (21) imply (17).

Then, the description of M+(QSTAB(G)) reduces to

M+(QSTAB(G)) =
{(

1 x⊤

x X

)
⪰ 0 :∑

i∈C

Xij − xj ≤ 0, C ∈ K, j ∈ V \ C,

∑
i∈C

(xi −Xij) + xj ≤ 1, C ∈ K, j ∈ V \ C,

xi = Xii, i ∈ V,

Xij = 0, {i, j} ∈ E,

Xij ≥ 0, {i, j} ∈ Ē

xi ≥ 0, i ∈ V

}
.

(22)

Moreover, one has:

Theorem 1. M+(QSTAB(G)) ⊆M+(FRAC(G)).

Proof Since QSTAB(G) ⊆ FRAC(G), the statement follows from Property 1.

We denote by µ(G) = max
{∑

i∈V xi :
(

1 x⊤

x X

)
∈M+(QSTAB(G))

}
the resulting upper bound

to α(G). The following example shows that the containment M+(QSTAB(G)) ⊆ M+(FRAC(G))
can be strict.

10

Example 1. Let G be the (10, 3)-antiweb graph of Figure 2a. We have µ(G) = 3. Differently,
optimizing the cardinality objective function

∑
i∈V xi over N+(FRAC(G)) one obtains the optimal

solution xF = (0.3106, . . . , 0.3106) with value z∗
F = 3.106. Therefore, xF ∈ N+(FRAC(G)) lies

outside N+(QSTAB(G)).

The example indeed suggests a general result. In fact, we can show that, unlike N+(FRAC(G)),
relaxation N+(QSTAB(G)) implies the class of antiweb inequalities.

Theorem 2. N+(QSTAB(G)) implies antiweb inequalities

Proof Let G be the (p, q)-antiweb graph with V = {1, . . . , p}. In what follows, we use arithmetic
modulo p. Note that, by definition, any consecutive q nodes in G form a clique. By denoting
α =

⌊
p
q

⌋
, the (p, q)-antiweb inequality is ∑

i∈V

xi ≤ α.

Given any i ∈ V , we denote with G \ i the subgraph induced by the vertex set

V (G \ i) = V \ ({i} ∪ Γ(i)) = {i + q, i + q + 1, . . . , i− q − 1, i− q} .

The goal is to prove that inequality ∑
j∈V (G\i)

xj ≤ α− 1, (23)

is valid for QSTAB(G \ i), for all i ∈ V , then the theorem’s statement will follow from Lemma 1.
Let i be any node in V and consider the following α− 1 cliques in G \ i:

C1 = {i + q, i + q + 1, . . . , i + 2q − 1} ,

C2 = {i + 2q, i + 2q + 1, . . . , i + 3q − 1} ,

...
Ck = {i + kq, i + kq + 1, . . . , i + (k + 1)q − 1} ,

...
Cα−1 = {i + (α− 1)q, i + (α− 1)q + 1, . . . , i− q} .

Note that the set
{
C1, . . . , Cα−1} forms a partition of V (G \ i), i.e., ⋃k=1,...,α−1 Ck = V (G \ i)

and Cℓ ∩ Ck = ∅, for all ℓ, k = 1, . . . , α − 1, with ℓ ̸= k. Hence, the sum of clique inequalities∑
j∈Ck xj ≤ 1, for k = 1, . . . , α− 1 yield the inequality∑

i+q≤j≤i−q

xj =
∑

j∈V (G\i)
xj ≤ α− 1,

which is valid for QSTAB(G\ i). By symmetry, this argument is independent of the choice of i.

Theorem 1 completes the theoretical picture for N+(QSTAB(G)) along the line drawn in [43].
In fact, all of the traditional combinatorial inequalities, namely, clique, odd cycle, odd antihole, odd

11

wheel, web and antiweb inequalities turn out to be satisfied by N+(QSTAB(G)). It is interesting to
mention that Giandomenico et al. [28] proved the same result for a non-compact linear relaxation
obtained by the application of the N(K, K) lifting operator by Lovász and Schrijver to QSTAB(G).
The comparison between N(K, K) and N+(·) was indeed suggested by Lovász and Schrijver [43]
as an interesting open issue.

Another insight of the progress of N+(QSTAB(G)) towards N+(FRAC(G)) stems from the
analysis of graph Ĝ of Figure 1 which has been shown in [6] that N+(FRAC(Ĝ)) gives rise to a
non-polyhedral relaxation. Here we have λ(Ĝ) = 2.146. Now, optimizing over N+(QSTAB(Ĝ)) one
gets µ(Ĝ) = 2. This implies that N+(QSTAB(Ĝ)) is actually polyhedral.

1

5 6

8 7

3

4 2

Figure 1: The Ĝ graph.

From a computational perspective, a major issue of N+(QSTAB(G)) is the linear description of
QSTAB(G) that, in general, contains exponentially many inequalities. However, as QSTAB(G, C) ⊆
FRAC(G), we still have M+(QSTAB(G, C)) ⊆ M+(FRAC(G)) and one can consider the convex
set:

M+(QSTAB(G, C)) =
{(

1 x⊤

x X

)
⪰ 0 : xi = Xii, i ∈ V and (18)− (21) hold

}
.

Note that M+(QSTAB(G, C)) still implies McCormick inequalities (14)–(17). Remarkably, it can
be built in polynomial time as a suitable set C can be determined by a greedy algorithm (e.g., the
one proposed in Letchford et al. [40]), and the number of inequalities describing QSTAB(G, C) is
bounded by |E| (for increasing graph density, it is also considerably smaller than |E|). Optimizing∑

i∈V xi over M+(QSTAB(G, C)) returns an upper bound that we denote as µ(G, C). We will
experiment with such a relaxation in Section 6.

4.2 Relaxation N+(NOD(G, r))
Let us now consider a generic nodal inequality, with ri ≥ α(G[Γ(i)]), for all i ∈ V . The lifting step
along with xi = Xii returns:

12

xj ·

 ∑
h∈Γ(i)

xh + rixi ≤ ri

→

∑
h∈Γ(i)

Xih ≤ 0, if j = i (24)

(1− ri)xj +
∑

h∈Γ(i)\j

Xjh + riXij ≤ 0, if j ∈ Γ(i) (25)

∑
h∈Γ(i)

Xjh + riXij − rixj ≤ 0, if j ̸∈ Γ(i) (26)

(1− xj) ·

 ∑
h∈Γ(i)

xh + rixi ≤ ri

→

∑
h∈Γ(i)

(xh −Xih) + rixi ≤ ri, if j = i (27)

∑
h∈Γ(i)\j

(xh −Xjh) + rixi + rixj − riXij ≤ ri, if j ∈ Γ(i) (28)

∑
h∈Γ(i)

(xh −Xjh) + rixi + rixj − riXij ≤ ri, if j ̸∈ Γ(i) (29)

One can observe that:

1. Constraints (24) imply Xij = 0 for all {i, j} ∈ E; this is a relevant fact if one recalls that
edge inequalities are not implied by nodal inequalities (9);

2. Xij = 0, for all {i, j} ∈ E, Xij ≥ 0 for all {i, j} ∈ Ē and constraints (26) imply inequalities
(15) and (16);

3. Xij = 0, for all {i, j} ∈ E, inequalities (15) and (16) and constraints (28) imply edge inequal-
ities (and (17) for {i, j} ∈ E);

4. By Xij = 0, for all {i, j} ∈ E, (27) boils down to the original nodal inequality (9) and can be
dropped, since Remark 1 can be applied to both pairs (25), (28) and/or (26), (29);

5. Xij ≥ 0, for all {i, j} ∈ Ē, inequalities (15) and (16) and constraints (29) imply (17) for
{i, j} ∈ Ē.

Thanks to these properties M+(NOD(G, r)) boils down to

13

M+(NOD(G, r)) =
{(

1 x⊤

x X

)
⪰ 0 :

(1− ri)xj +
∑

h∈Γ(i)\j

Xjh ≤ 0, i ∈ V, j ∈ Γ(i),

∑
h∈Γ(i)

Xjh + riXij − rixj ≤ 0, i ∈ V, j ̸∈ Γ(i),

∑
h∈Γ(i)\j

(xh −Xhj) + rixi + rixj ≤ ri, i ∈ V, j ∈ Γ(i),

∑
h∈Γ(i)

(xh −Xhj) + rixi + rixj − riXij ≤ ri, i ∈ V, j ̸∈ Γ(i),

xi = Xii, i ∈ V,

Xij = 0, {i, j} ∈ E,

Xij ≥ 0, {i, j} ∈ Ē,

xi ≥ 0, i ∈ V

}
.

(30)

Then, M+(NOD(G, r)) can be obtained by adding linear inequalities (25), (26), (28), (29) and
Xij ≥ 0, for {i, j} ∈ Ē, to (SDP-θ) (it is straightforward to observe that inequalities (25) are
implied by Mc-Cormick inequalities for ri = Γ). Therefore, its projection N+(NOD(G, r)) onto the
x-space is at least as strong as the Schrijver relaxation:

Theorem 3. N+(NOD(G, r)) ⊆ TH+(G).

Which also implies:

Corollary 1. N+(NOD(G, r)) implies all clique inequalities.

Corollary 2. ν(G, r) = max
{∑

i∈V xi :
(

1 x⊤

x X

)
∈M+(NOD(G, r))

}
≤ θ+(G).

Theorem 3 holds in particular for ri = |Γ(i)| corresponding to the case where the initial formulation
is the surrogate relaxation of FRAC(G). Even in this case, applying the N+(·) operator can recover
the initial formulation’s weakness and yield an upper bound that is at least as good as Schrijver’s
bound. Furthermore, a hierarchy of relaxations derives from strengthening the lifting coefficient ri,
that is, looking at ri = θ(G[Γ(i)]) and ri = α(G[Γ(i)]). Thanks to Property 1 we have

Theorem 4. M+(NOD(G, α)) ⊆M+(NOD(G, θ)) ⊆M+(NOD(G, Γ)).

This hierarchy poses a complexity issue. The strongest relaxation comes from applying the operator
to an LP relaxation, the construction of which, in general, cannot be carried out in polynomial
time. An interesting polynomial special case arises when the subgraphs induced by neighbor sets
are perfect and, according to the result in [33], in this case, we have θ(G[Γ(i)]) = α(G[Γ(i)]), for
all i ∈ V . Differently, M+(NOD(G, θ)) can always be constructed (and solved) in polynomial time.
Section 6 documents the practical trade-off between strength and computational tractability for all
relaxations in this hierarchy.

14

4.3 Comparison among relaxations

A natural question concerns with relationships between N+(FRAC(G)), N+(QSTAB(G)) and
N+(NOD(G, r)). The following example shows that neither N+(NOD(G, r)) contains N+(FRAC(G))
nor the reverse.

Example 2. Consider the odd-hole with seven vertices of Figure (2b). According to [43], N+(FRAC(G))
satisfies the facet-defining inequality

∑8
i=1 xi ≤ 3 which implies λ(G) = 3. Differently, the optimal

value from N+(NOD(G, r)) is ν(G, θ) = ν(G, α) = 3.317 corresponding to solution (0.47395, . . . , 0.47395),
which therefore falls outside N+(FRAC(G)). However, one can find a feasible solution to N+(FRAC(G))
which is outside N+(NOD(G, r)) as well. Consider the (10, 3)-antiweb graph G of Figure (2a).
Here, ν(G, θ) = ν(G, α) = α(G) = 3. On the contrary, optimizing over N+(FRAC(G)) we obtain
solution

xF = (0.31055, . . . , 0, 31055)
with value 3.105 which is then outside N+(NOD(G, r)), for r ∈ {θ, α}.

1

23

4

5

6

7 8

9

10

(a) (10, 3)–antiweb

1
2

3

4

5
6

7

(b) 7-hole

Figure 2: Two example graphs.

This example also shows that the odd-hole inequalities are not implied by N+(NOD(G, r)) even with
r = α. This appears as a weakness indicator of N+(NOD(G, r)) if one recalls that odd-hole inequal-
ities are contained in the first Chvàtal closure of the edge formulation 1 [53]. The overall theoretical
picture is summarized in Figure 3, and the above results seem to suggest that N+(QSTAB(G)) (as
well as N+(FRAC(G))) should be stronger than N+(NOD(G, r)). Interestingly, the computational
analysis will reveal significant supremacy of the latter as graphs get dense, for r ∈ {θ, α}.

5 Implementation

The software implemented for this work, along with the datasets used in the experiments (see Sec-
tion 6), is available at https://github.com/febattista/SDP_lift_and_project. The repository
comprises the following Python (.py) and MATLAB (.m) files:

• LinearFormulations.py: this module creates all linear formulations presented in Section 3.1
and exports them in standard .lp format. It relies on the max-clique solver cliquer [52] and
ADMMsolver.py (see below) to compute coefficients for nodal inequalities (9).

15

https://github.com/febattista/SDP_lift_and_project

Symbol Relaxation
λ(G) N+(FRAC(G))
µ(G) N+(QSTAB(G))
µ(G, C) N+(QSTAB(G, C))
ν(G, r) N+(NOD(G, r)), for r ∈ {Γ, θ, α}

Table 1: Notation for SDPs optimal values.

N+(FRAC(G))

N+(NOD(G,α))

TH+(G)

N+(QSTAB(G))

N+(NOD(G, θ))

Figure 3: Containment relationships among relaxations.

16

• SDPLifting.py: starting from a linear formulation in standard .lp format, this module
implements the M+(·) operator described in Section 2.1, exporting the resulting SDP in the
.mat MATLAB format.

• ADMMsolver.py: this module implements the SDP solver proposed in [4, 5] and is exclusively
employed as a subroutine during the LP formulation.

• kelley cutting plane.m: this module implements the cutting plane method described in
Algorithm 1.

The following Python scripts are provided to simplify the use of the software:
• install.py downloads and builds all required dependencies (i.e. SDPNAL+ [61] and cliquer [52]).

• parameters.py sets up the computational experiments, allowing for (i) selection of the
datasets to be used and (ii) tuning of all the parameters of Algorithm 1 and the SDP solvers
involved.

• analyze results.py collects the data from the experiments and replicates all the tables
presented in this work.

Selection of the SDP solver

Under mild assumptions, semidefinite programs can be solved in polynomial time up to any arbi-
trary fixed precision [51]. Intuitively, the computational burden mainly depends on the order n
of the matrix variable and the number m of linear constraints. However, the density of the latter
should also be taken into account as most SDP solvers rely on sparse matrices implementations.
Interior-point methods (IPMs) [47, 60, 64] provide a good-precision solution in reasonable time for
“small” and “medium” SDPs (both in term of n and/or m). However, they require to store and
factorize large Hessian matrices at each iteration, which may become prohibitive for large SDPs.
In fact, we preliminarily tested the IPM implemented in the commercial state-of-the-art solver
MOSEK [47] and observed that problems with m ≈ 105 and n ≈ 200 are intractable. Although this
experiment already provided interesting insights on the strength of the relaxations, testing larger
graphs is crucial for a reliable experimental picture. Therefore, we resorted to Alternating Direc-
tion Methods of Multipliers (ADMMs), which, as a variant of Augmented Lagrangian methods, is a
popular first-order alternative to IPMs and can scale on much larger SDPs at the price of possibly
slowing down the convergence to high-precision solutions. For a detailed overview, we refer the
reader to [54, 65, 61, 5, 4, 66, 17]. Furthermore, ADMMs allow the efficient handling of bound
constraints (e.g., nonnegativity) on the matrix variable via iterative projections on the cone of pos-
itive semidefinite matrices. In our case, it enables the computation of θ+(G) with no substantial
additional effort with respect to θ(G). We selected SDPNAL+ proposed in [61], which represents
a state-of-the-art ADMM general-purpose SDP solver implemented in MATLAB equipped with
efficient subroutines in C included via .mex files, and has proven to be numerically stable in our
experiments.

Model building

The M+(·) operator has been applied to four different compact LP relaxations of the SSP: QSTAB(G, C)
and NOD(G, r) for r ∈ {Γ, θ, α}. The construction of these LP models entails different complex-
ity levels. QSTAB(G, C) requires a collection of cliques covering all the edges of G. This can be

17

determined by a greedy heuristic, as described in [40]. Building NOD(G, Γ) is straightforward, as
ri = |Γ(i)|. On the contrary, NOD(G, θ) requires the evaluation of ri = θ(G[Γ(i)]), for all i ∈ V .
This corresponds to solve |V | SDPs, namely, those corresponding to (SDP-θ) on the subgraph in-
duced by Γ(i). In practice, the SDPs are completely decomposed and can be solved in parallel.
Moreover, ri can be tightened to ⌊θ(G[Γ(i)])⌋ and one can stop the computation as long as the
SDP solver returns a valid upper (dual) bound on θ(G[Γ(i)]). Several approaches to compute a
valid dual bound throughout solver’s iterations and/or a posteriori have been proposed for ADMM
algorithms (see, e.g., [36, 17, 66]). Their specific application in SDP relaxations of the SSP have
been implemented in [4, 5]. Then, for each iteration of the ADMM implemented in ADMMsolver.py,
a valid dual bound is computed and this, in turn, allows stopping the computation of θ as soon
as a “moderate” precision is achieved. In Table 2 we report the average/max/min CPU times to
calculate coefficients θ(G[Γ(i)]) on a subset of the instances used in our computational experiments.
Finally, building NOD(G, α) is the most challenging case as it requires calculating α(G[Γ(i)]), for all
I ∈ V . Despite the theoretical hardness of determining α(G[Γ(i)]), Letchford et al. [40] showed that
in practice, the computational burden to build NOD(G, α) is, in fact, accessible for large classes
of graphs. We refer the interested reader to their discussion; here we mention that even in this
case the evaluation of coefficients ri = α(G[Γ(i)]) can be parallelized and, as in the previous case,
we report in Table 2 the average/max/min CPU times to evaluate α(G[Γ(i)]) via the max-clique
solver cliquer [52].

Lifting operation

The function m plus lifting() in SDPLifting.py carries out Steps 1 and 2 of the procedure
outlined in Section 2.1. Initially, it parses the polytope P , provided as input through a standard
.lp format text file. Then, it construct the symmetric matrices corresponding to constraints (4),
(5) and (7). Finally, the model is exported in .mat file format, ready to be loaded into MATLAB
and solved using SDPNAL+.

SDP optimization

In general, we provide as input to SDPNAL+ SDPs of the form

opt(R) = max
Y ∈R
⟨C, Y ⟩,

where
R =

{
Y ∈ S+

n+1 : Y ≥ 0, ⟨Ai, Y ⟩ ≤ bi, i ∈ [m]
}

,

and m ∈ N, C, A1, . . . , Am ∈ Sn+1, b ∈ Rm. In a preliminary experiment we observed that
SDPNAL+ converges quickly on (SDP-θ+) while it requires very large (and practically unacceptable)
convergence times on M+(QSTAB(G, C)) and M+(NOD(G, r)) relaxations. This is due to the
number of linear constraints in the former, and their density in the latter. However, we proved
that M+(QSTAB(G, C)) and M+(NOD(G, r)) are contained in (SDP-θ+), thus one can resort to a
classical cutting plane method to optimize over them. The cutting plane algorithm starts optimizing
over (SDP-θ+). At the k-th iteration, given the optimal solution Y k ∈ S+

n+1, one can compute

Vi(Y k) = ⟨Ai, Y k⟩ − bi, i ∈ [m].

18

G
ra

ph

brock8001

brock8002

brock8003

brock8004

C500-9

phat300-1

phat300-2

phat300-3

phat500-1

phat500-2

phat500-3

phat700-1

phat700-2

phat700-3

sanr4000.5

sanr4000.7

θ i

M
in

2.
94

2.
83

3.
07

2.
81

0.
76

1.
96

1.
39

0.
44

4.
63

2.
61

0.
58

8.
89

5.
30

0.
77

1.
27

0.
69

M
ax

4.
98

4.
97

4.
94

4.
91

10
.9

2
7.

43
20

.3
5

9.
33

10
.7

3
78

.2
2

13
.2

8
25

.8
1

12
3.

65
24

.5
8

2.
64

2.
04

Av
er

ag
e

3.
93

3.
90

3.
93

3.
93

2.
40

3.
53

6.
14

1.
86

7.
66

15
.9

5
3.

84
15

.0
6

31
.2

5
6.

98
1.

78
1.

09

α
i

M
in

0.
89

1.
08

0.
68

0.
63

<
0.

01
<

0.
01

<
0.

01
<

0.
01

<
0.

01
<

0.
01

<
0.

01
<

0.
01

<
0.

01
<

0.
01

0.
01

<
0.

01
M

ax
28

.8
7

34
.4

1
26

.1
7

25
.9

1
<

0.
01

<
0.

01
0.

02
0.

02
0.

02
1.

83
2.

74
0.

07
62

.4
1

10
8.

48
0.

04
0.

13
Av

er
ag

e
6.

00
6.

17
5.

93
6.

04
<

0.
01

<
0.

01
<

0.
01

<
0.

01
<

0.
01

0.
10

0.
10

0.
02

1.
64

2.
78

0.
02

0.
03

Ta
bl

e
2:

C
PU

tim
e

st
at

ist
ic

s
fo

r
co

m
pu

tin
g

co
effi

ci
en

ts
θ

an
d

α
fo

r
(9

)
on

D
IM

A
C

S
gr

ap
hs

.

19

If Vi(Y k) > ε, for a “small” ε > 0, then the i-th constraint is violated by the current solution. Let
c ≤ m be a positive integer parameter, and let Ic(Y k) = {i1, i2, . . . , ic} denote the set of indexes cor-
responding to the c most violated constraints. Then, the constraints

{
Y ∈ Sn+1 : ⟨Ai, Y ⟩ ≤ bi, i ∈ Ic(Y k)

}
are added to the current SDP relaxation and a new optimal solution Y k+1 is computed. The algo-
rithm terminates either when no violated constraints are found or when a tailing off condition is
met. The detailed algorithm is reported in Algorithm 1.

Algorithm 1 Cutting-plane scheme
1: Input: Any SDP R ⊆ (SDP-θ+), c ∈ N, ε > 0, δ ∈ R+
2: Initialize Π0 ← Sn+1, ∆0 = +∞, k = 0
3: Compute p0 = opt(SDP-θ+) and let Y 0 be its optimal solution
4: while Y k violates constraints in R or ∆k > δ do
5: Compute the vector V (Y k) of violations and Ic(Y k)
6: Πk+1 ← Πk ∩

{
Y ∈ Sn+1 : ⟨Ai, Y ⟩ ≤ bi, i ∈ Ic(Y k)

}
7: Compute pk+1 = opt(SDP-θ+ ∩ Πk+1) and let Y k+1 be its optimal solution
8: ∆k+1 ← |pk+1 − pk|
9: k ← k + 1

10: end while

6 Computational Experiments

We now illustrate the results obtained by solving relaxations M+(QSTAB(G, C)) and M+(NOD(G, r))
for r ∈ {Γ, θ, α} with Algorithm 1. Experiments are designed to address three main questions:

(i) Can relaxations based on operator M+(·) provide upper bounds for α(G) that are significantly
stronger than θ(G)?

(ii) What is the additional computational cost for achieving such an improvement?

(iii) How much does the choice of r affect the quality of the bound from M+(NOD(G, r))?

As a byproduct, we document the quality of the bound provided by M+(NOD(G, θ)), that is, the
strongest bound which can be computed in polynomial time in our hierarchy.

Experiments are run on a computer with Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz, 256GB
RAM, under OS Ubuntu 16.04.7 LTS (GNU/Linux 4.15.0-128-generic x86 64). After preliminary
tuning experiments, the parameters of Algorithm 1 have been set to ϵ = 10−3, δ = 10−1 and
c = 1000 with 7200 seconds time limit (excluding formulation building time). The precision of the
SDP solver SDPNAL+ is set to 10−6. The precision of ADMMsolver.py for evaluating coefficients θi

is set to 10−4. Denoting by opt(R) the optimal (with the given precision) value of relaxation R
computed by Algorithm 1 at termination, tables below report, for each relaxation, four statistics:
the percentage gap to α(G), that is, opt(R)−α(G)

α(G) %; the number of cutting plane iterations and
the corresponding CPU time; the number of added cuts. The latter is detailed for each class of
inequalities and a class is not reported if none of its members has ever been detected as violated.

20

6.1 Instances

The numerical experiments are based on the following two collections of graphs, available at https:
//github.com/febattista/SDP_lift_and_project in the standard edge-list format.

Random graphs

A Erdös–Rényi graph G(n, p) has n vertices and each edge appears with probability p ∈ [0, 1]. We
have considered the collection of graphs from [40], generated by

n ∈ {200, 250, 300}, p ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

where, for each combination of n and p, five instances with different random seeds have been created
for a total of 135 graphs.

DIMACS graphs

Graphs from the Second DIMACS Implementation Challenge [37]. These form the standard bench-
mark for max-clique algorithms. We complemented the graphs to convert the max-clique instances
into SSP instances (DSJC* graphs are not complemented, as these belong to the “coloring” bench-
mark set). We excluded the c-fat, johnson, and san graphs because the integrality gap is com-
pletely closed by linear relaxations, so they do not provide information to our analysis. We also
dropped keller5 and the largest and p-hat instances (with 1000 and 1500 vertices) as the SDP
relaxations turned out to be too large to be handled. The final collection includes 38 graphs. Statis-
tics about the time required to compute lifting coefficients of linear formulations N+(NOD(G, θ))
and N+(NOD(G, α)) are reported in Table 2. Recall that their computation can be carried out in
parallel, so the impact on the overall time is often negligible.

6.2 Experiment 1: random graphs

Table 3 collects gap statistics for Erdös–Rényi graphs, where the first column reports the integrality
gap of the LP relaxation NOD(G, α). Tables 4 and 5 report cutting plane iterations, CPU times,
and, respectively, the number of added cuts for each class of inequalities. Let us first notice that
λ(G) ≃ θ+(G) in all cases but n = 200, p ∈ {0.1, 0.9}, evidencing a rather disappointing behavior
of M+(FRAC(G)). On the contrary, replacing edge inequalities with a compact collection of clique
inequalities in the initial formulation pays off, as µ(G, C) is always smaller than λ(G). The average
portion of additional gap closed by µ(G, C) w.r.t. λ(G) is 6.7%. This is achieved by a few cutting
plane iterations, adding about one to three thousand inequalities of class (19), resulting in an
average 80% CPU time increase. Interestingly, no inequalities in the class (21) have been detected
as violated.

This experiment clearly classifies relaxations strength as a function of edge probability p and
graph size n. When p ≤ 0.4, M+(QSTAB(G, C)) turns out to be the strongest relaxation and the
sparser the graph, the larger the gap closed by µ(G, C) w.r.t. other relaxations, while formulations
based on nodal inequalities fail to improve on θ+(G). However, the advantage of M+(QSTAB(G, C))
over other relaxations tends to thin out as n increases. The outcome is completely reversed
when p ≥ 0.5, where relaxations based on nodal inequalities are more competitive and, mainly,
M+(NOD(G, α)) is the clear winner. ν(G, α) closes 45.3% of the gap left by λ(G) and 40.0% of the
one left by µ(G, C), on average. To our knowledge, such an improvement on θ+(G) has rarely been

21

https://github.com/febattista/SDP_lift_and_project
https://github.com/febattista/SDP_lift_and_project

documented in the literature on SDP approaches, even for smaller graphs. Another nice evidence
is that this advantage of M+(NOD(G, α)) is independent of the graph size. Observe that, also in
this case, one class of inequalities is predominant, namely, (25). Notice also that some violated
inequalities in (28) and (29) have only been detected for the densest graphs p = 0.9. Very good
upper bounds are also achieved by M+(NOD(G, θ)) when p ≥ 0.7. In fact, ν(G, θ) remarkably
improves on θ+(G) and, unlike ν(G, α), can be computed in polynomial time. Also, the compu-
tational effort required to achieve strong bounds is reasonable. Differently, the weakest relaxation
M+(NOD(G, Γ)) always returns ν(G, Γ) = θ+(G), that is, never closes additional gap in our tests.
Finally, notice that for highly dense graphs, the gap of the LP relaxation NOD(G, α) may be smaller
than that of the weakest SDP relaxations. However, it is largely improved by the strongest SDP
relaxation, which confirms the operator’s power and the PSD constraint’s key role.

6.3 Experiment 2: DIMACS instances

The DIMACS test set, a standard for max-clique/stable set studies, includes, for the most part,
structured graphs from various applications. The breadth of the graph collection supports the rel-
evance of our analysis. To our knowledge, DIMACS graphs with more than 300-400 vertices have
never been documented in SDP-based studies [24, 23, 25, 41]. The graphs we have considered are
significantly larger than those in case studies applying the N+(·) operator in [21, 12]. In our experi-
ence, experimenting with larger graphs is crucial to draw reliable conclusions about the strength of
relaxations for the stable set problem, as it typically tends to degrade with graph size. Looking at
Table 6, as already noted for random graphs, λ(G) does not prove to be better than θ+(G): some
improvement is observed in two cases (DSJC125-1 and MANN a27), it is negligible in nine cases and
null in the remaining ones. Concerning the relaxations we have proposed, M+(NOD(G, α)) shows
the most promising results. ν(G, α) is the best bound in 11 cases while µ(G, C) is the winner in as
many as 23 cases. Nevertheless, ν(G, α) achieves the smallest gap on average, thanks to its remark-
able strength on selected instances. According to the evidence gathered from Erdös–Rényi graphs,
M+(QSTAB(G, C)) is more suited for sparse instances, and M+(NOD(G, α)) turns out to be par-
ticularly tight as the density increases. µ(G, C) is the best bound for the C and MANN collections
and the sparsest among p hat graphs. On the other hand, ν(G, α) is very strong for DSJC500-5,
p hat300-1, p hat500-1, p hat700-1, sanr400 0.5, where it closes more than 50% of the gap left
by θ+(G) and λ(G) (about 74% for p hat-1 graphs). The computational price for this is reported
in Table 7: computing µ(G, α) is about 27 times slower than computing θ+(G) except p hat700-1
where it is 185 times slower. But this experiment also shows that the tightness of M+(NOD(G, α))
is less sensitive to the graph size with respect to the other relaxations. This results in an interesting
outcome for the hard brock800 collection that, with a density of 35%, one expects to be favorable
to M+(FRAC(G)) and M+(QSTAB(G, C)). ν(G, α) is the only bound stronger than θ+(G) on these
graphs, and the improvement is significant. Table 7 shows that computing ν(G, α) is about four
times slower than computing θ+(G) (including the time to build the LP relaxation), an acceptable
price for such a valuable result. Table 8 also reveals the key contribution to closing the gap given
by inequalities (25).
Also in this experiment, the polynomial bound ν(G, θ) improves on θ+(G) in six cases by a mean-
ingful amount (namely, DSJC125-5, MANN a27, p hat300-1, p hat500-1, p hat700-1). The com-
parison between ν(G, θ) and ν(G, α) reveals that strengthening the lifting coefficient pays off, as
in eleven cases, ν(G, α) is significantly smaller than ν(G, θ), in other eight cases the improvement
is negligible while no improvement is observed in the remaining sixteen cases. On the other hand,

22

Graph % gap
n p NOD(G, α) θ+(G) λ(G) µ(G, C) ν(G, Γ) ν(G, θ) ν(G, α)

200

0.1 46.957 19.330 18.723 16.033 19.330 19.330 19.330
0.2 102.539 27.924 27.912 26.060 27.924 27.924 27.924
0.3 93.334 30.774 30.773 29.393 30.774 30.774 30.774
0.4 73.543 30.550 30.550 29.322 30.550 30.550 30.537
0.5 56.527 30.597 30.597 29.355 30.597 30.593 29.540
0.6 39.889 25.708 25.708 24.318 25.708 25.143 20.138
0.7 30.543 25.579 25.579 23.679 25.579 19.897 12.494
0.8 9.720 13.474 13.474 10.819 13.474 2.871 1.836
0.9 9.600 10.123 10.120 5.346 10.123 5.057 5.057

250

0.1 64.521 27.371 27.112 24.908 27.371 27.371 27.371
0.2 118.348 35.462 35.459 34.284 35.462 35.462 35.462
0.3 103.026 39.136 39.136 38.370 39.136 39.136 39.136
0.4 78.520 38.335 38.335 37.737 38.335 38.335 38.312
0.5 54.333 33.563 33.563 32.943 33.563 33.563 31.421
0.6 46.178 39.416 39.416 38.669 39.416 39.163 28.532
0.7 39.114 38.531 38.531 37.459 38.531 36.305 23.679
0.8 19.867 20.012 20.012 18.473 20.012 9.419 4.433
0.9 5.950 11.717 11.716 9.524 11.717 3.219 3.219

300

0.1 75.661 31.124 31.047 29.389 31.124 31.124 31.124
0.2 137.919 46.238 46.237 45.551 46.238 46.238 46.238
0.3 113.088 48.426 48.426 48.033 48.426 48.426 48.426
0.4 89.040 50.228 50.228 49.918 50.228 50.228 50.166
0.5 62.433 46.061 46.061 45.791 46.061 46.061 41.439
0.6 42.224 39.956 39.956 39.595 39.956 39.848 26.444
0.7 23.650 31.619 31.619 31.059 31.619 28.272 11.347
0.8 23.333 29.809 29.809 28.718 29.809 19.807 11.667
0.9 7.090 23.160 23.160 20.318 23.160 5.512 5.486

Table 3: N+(·) bounds on random instances. The % gap of the LP relaxation NOD(G, α) is reported
as a reference. The best gaps are shown in boldface.

23

Graph θ+(G) λ(G) µ(G, C) ν(G, Γ) ν(G, θ) ν(G, α)
n p Time # iter Time # iter Time # iter Time # iter Time # iter Time

200

0.1 7.24 1.6 26.64 3.2 48.24 0.2 8.74 0.2 8.64 0.2 8.76
0.2 4.29 1.0 9.10 2.0 13.96 0.0 4.34 0.0 4.34 0.0 4.34
0.3 2.64 0.8 4.43 2.0 8.53 0.0 2.71 0.0 2.71 0.0 2.71
0.4 1.74 0.2 2.65 2.0 6.51 0.0 1.82 0.2 2.13 1.0 3.77
0.5 1.64 0.0 2.46 2.0 6.37 0.0 1.74 1.0 3.60 1.0 12.12
0.6 1.82 0.0 2.85 2.0 7.00 0.0 1.93 1.0 6.56 2.0 22.02
0.7 2.18 0.0 3.26 2.0 10.90 0.0 2.30 2.0 29.37 2.4 58.03
0.8 3.05 0.0 4.42 2.0 14.14 0.0 3.18 1.4 49.62 1.4 40.79
0.9 5.43 0.6 10.33 2.0 37.73 0.0 5.57 2.6 236.08 2.6 236.57

250

0.1 9.62 1.0 28.92 3.0 56.76 0.0 9.68 0.0 9.68 0.0 9.68
0.2 5.15 1.0 11.53 2.0 18.05 0.0 5.25 0.0 5.25 0.0 5.25
0.3 4.05 0.4 5.82 2.0 11.34 0.0 4.19 0.0 4.18 0.0 4.18
0.4 2.40 0.2 4.17 1.0 5.12 0.0 2.57 0.0 2.57 1.0 4.95
0.5 2.10 0.0 4.08 1.0 4.78 0.0 2.30 0.6 3.51 2.0 23.23
0.6 2.05 0.0 4.21 1.0 4.79 0.0 2.26 1.0 6.46 3.0 53.63
0.7 2.07 0.0 4.66 1.0 5.87 0.0 2.30 2.0 29.51 3.0 65.98
0.8 2.52 0.0 5.04 1.0 8.39 0.0 2.80 2.8 112.29 2.6 162.95
0.9 5.77 0.2 9.94 1.2 20.54 0.0 6.05 3.0 430.18 3.0 429.29

300

0.1 10.92 1.0 25.16 3.0 68.62 0.0 11.04 0.0 11.03 0.0 11.03
0.2 8.02 0.6 13.87 2.0 25.53 0.0 8.18 0.0 8.19 0.0 8.18
0.3 5.26 0.0 6.88 1.0 9.61 0.0 5.47 0.0 5.47 0.0 5.48
0.4 3.31 0.0 5.72 1.0 6.59 0.0 3.60 0.0 3.58 1.0 7.26
0.5 2.67 0.0 5.62 1.0 5.64 0.0 3.01 0.0 3.00 2.0 31.62
0.6 2.54 0.0 6.24 1.0 5.89 0.0 2.90 1.0 7.51 3.0 66.31
0.7 2.37 0.0 6.86 1.0 5.80 0.0 2.84 2.0 40.36 4.0 135.51
0.8 3.78 0.0 7.42 1.0 10.76 0.0 4.31 2.2 97.62 3.6 197.18
0.9 6.61 0.0 11.98 1.8 30.75 0.0 7.11 4.8 1250.18 5.0 1566.21

Table 4: CPU time and cutting plane’s iterations on random graphs.

24

Graph Number of violated inequalities added in Algorithm 1
λ(G) µ(G, C) ν(G, θ) ν(G, α)

n p (12) (19) (25) (26) (28) (29) (25) (26) (28) (29)

200

0.1 1018 3126 0 0 0 0 0 0 0 0
0.2 30 2000 0 0 0 0 0 0 0 0
0.3 2 1517 0 0 0 0 0 0 0 0
0.4 0 1326 0 1 0 0 8 2 0 0
0.5 0 1232 7 1 0 0 569 65 0 0
0.6 0 1213 322 28 0 0 1459 128 0 0
0.7 0 1247 1508 52 0 0 2137 157 0 0
0.8 0 1273 1332 27 0 0 1395 5 0 0
0.9 1 1280 1800 0 567 60 1800 0 567 60

250

0.1 615 3000 0 0 0 0 0 0 0 0
0.2 7 1821 0 0 0 0 0 0 0 0
0.3 0 1281 0 0 0 0 0 0 0 0
0.4 0 972 0 0 0 0 21 3 0 0
0.5 0 907 1 1 0 0 1095 145 0 0
0.6 0 862 201 11 0 0 2799 201 0 0
0.7 0 908 1122 32 0 0 2924 76 0 0
0.8 0 994 2759 41 0 0 2378 122 0 0
0.9 0 755 2400 0 232 24 2400 0 232 24

300

0.1 256 3000 0 0 0 0 0 0 0 0
0.2 1 1462 0 0 0 0 0 0 0 0
0.3 0 946 0 0 0 0 0 0 0 0
0.4 0 657 0 0 0 0 69 8 0 0
0.5 0 534 0 0 0 0 1822 178 0 0
0.6 0 547 128 4 0 0 2828 172 0 0
0.7 0 662 1772 60 0 0 3939 61 0 0
0.8 0 848 2138 62 0 0 3574 26 0 0
0.9 0 1179 4000 0 460 63 4200 0 568 73

Table 5: Number of added cutting planes on random instances.

25

ν(G, Γ) has never enhanced θ+(G) even if a few violated cuts have occasionally been detected.
Looking at Tables 7 and 8, one can observe that relevant improvements on θ+(G) are achieved by
adding several inequalities in a few iterations of the cutting plane algorithm. Similarly to what
is observed for random graphs, inequalities (21) are only added in a few special graphs, namely
the extremely sparse MANN graphs. Differently, classes of inequalities (25) and (26) are relevant to
describe M+(NOD(G, θ)), M+(NOD(G, α)), while no violated members of classes (28) and (29)
have ever been found.
Algorithm 1 has shown a nice numerical behavior even for the largest graphs in the DIMACS col-
lection, and re-optimization is cost-effective (Table 7): its extra time is only paid when the cuts
yield a significant improvement of the upper bound. In contrast, in the other cases, CPU times do
not deviate significantly from those of θ+(G).
Overall, the computational analysis shows that the new SDP relaxations M+(QSTAB(G, C)) and,
mainly, M+(NOD(G, α)), may be a viable option to compute upper bounds to α(G) which are re-
markably stronger than θ(G) at a reasonable computational price. Interestingly, some experimental
evidence complements the theoretical insights illustrated in Section 4.3, where M+(QSTAB(G, C))
looks to be likely to achieve the tightest bounds than M+(NOD(G, α)).

7 Conclusions

We have presented a way to improve the classical Lovász θ bound for the stability number of a
graph by applying the Lovász-Schrijver N+(·) lift-and-project operator to tailored LP relaxations.
Unlike previous approaches, some of the latter may not be constructed in polynomial time. In
the case of clique inequalities, we have to handle exponentially many inequalities (with an asso-
ciated NP-hard separation problem), while building strong nodal inequalities requires solving the
SSP on specific subgraphs. We show that these expedients, if properly handled, are indeed help-
ful in letting the resulting SDP relaxations improve the θ bound without excessive extra effort.
This study reveals that the Lovász and Schrijver operators can be of practical interest besides be-
ing a powerful theoretical tool. Finally, an interesting research direction consists of finding classes
of graphs where N+(NOD(G, θ)) = STAB(G), as for them the SSP would be polynomially solvable.

Acknowledgements We wish to thank Adam Letchford and Stefano Gualandi for helpful dis-
cussions about the preliminary results of this study.

Conflict of interest

The authors declare that they have no conflict of interest.

26

G
ra

ph
θ+

(G
)

λ
(G

)
µ

(G
,C

)
ν
(G

,Γ
)

ν
(G

,θ
)

ν
(G

,α
)

N
am

e
d
(%

)
U

B
%

ga
p

U
B

%
ga

p
U

B
%

ga
p

U
B

%
ga

p
U

B
%

ga
p

U
B

%
ga

p
br

oc
k2

00
1

25
27

.2
0

29
.5

08
27

.2
0

29
.5

05
27

.1
2

29
.1

19
27

.2
0

29
.5

08
27

.2
0

29
.5

08
27

.2
0

29
.5

08
br

oc
k2

00
2

50
14

.1
3

17
.7

58
14

.1
3

17
.7

58
14

.1
2

17
.6

74
14

.1
3

17
.7

58
14

.1
3

17
.7

57
14

.0
2

16
.7

95
br

oc
k2

00
3

39
18

.6
7

24
.4

79
18

.6
7

24
.4

79
18

.6
5

24
.3

56
18

.6
7

24
.4

79
18

.6
7

24
.4

78
18

.6
7

24
.4

67
br

oc
k2

00
4

34
21

.1
2

24
.2

42
21

.1
2

24
.2

42
21

.1
0

24
.1

01
21

.1
2

24
.2

42
21

.1
2

24
.2

42
21

.1
2

24
.2

42
br

oc
k4

00
1

25
39

.3
3

45
.6

70
39

.3
3

45
.6

70
39

.3
3

45
.6

62
39

.3
3

45
.6

70
39

.3
3

45
.6

70
39

.3
3

45
.6

70
br

oc
k4

00
2

25
39

.2
0

35
.1

60
39

.2
0

35
.1

60
39

.2
0

35
.1

56
39

.2
0

35
.1

60
39

.2
0

35
.1

60
39

.2
0

35
.1

60
br

oc
k4

00
3

25
39

.1
6

26
.3

24
39

.1
6

26
.3

24
39

.1
6

26
.3

10
39

.1
6

26
.3

24
39

.1
6

26
.3

24
39

.1
6

26
.3

24
br

oc
k4

00
4

25
39

.2
3

18
.8

83
39

.2
3

18
.8

83
39

.2
3

18
.8

77
39

.2
3

18
.8

83
39

.2
3

18
.8

83
39

.2
3

18
.8

83
br

oc
k8

00
1

35
41

.8
7

82
.0

32
41

.8
7

82
.0

32
41

.8
7

82
.0

32
41

.8
7

82
.0

32
41

.8
7

82
.0

32
41

.5
5

80
.6

46
br

oc
k8

00
2

35
42

.1
0

75
.4

35
42

.1
0

75
.4

35
42

.1
0

75
.4

35
42

.1
0

75
.4

35
42

.1
0

75
.4

35
41

.7
3

73
.8

96
br

oc
k8

00
3

35
41

.8
8

67
.5

30
41

.8
8

67
.5

30
41

.8
8

67
.5

30
41

.8
8

67
.5

30
41

.8
8

67
.5

30
41

.5
1

66
.0

43
br

oc
k8

00
4

35
42

.0
0

61
.5

41
42

.0
0

61
.5

41
42

.0
0

61
.5

41
42

.0
0

61
.5

41
42

.0
0

61
.5

41
41

.6
1

60
.0

39

C
12

5-
9

10
37

.5
5

10
.4

31
36

.7
5

8.
07

4
36

.2
3

6.
56

6
37

.5
5

10
.4

31
37

.5
4

10
.4

24
37

.5
5

10
.4

29
C

25
0-

9
10

55
.8

2
26

.8
56

55
.7

1
26

.6
18

55
.2

0
25

.4
46

55
.8

2
26

.8
56

55
.8

2
26

.8
56

55
.8

2
26

.8
56

C
50

0-
9

10
83

.5
8

46
.6

30
83

.5
8

46
.6

30
83

.5
1

46
.5

15
83

.5
8

46
.6

30
83

.5
8

46
.6

30
83

.5
8

46
.6

30
D

SJ
C

12
5.

1
9

38
.0

4
11

.8
96

37
.2

8
9.

65
0

36
.7

9
8.

20
7

38
.0

4
11

.8
95

38
.0

4
11

.8
81

38
.0

4
11

.8
81

D
SJ

C
12

5.
5

50
11

.4
0

14
.0

21
11

.4
0

14
.0

17
11

.3
6

13
.5

98
11

.4
0

14
.0

21
11

.3
8

13
.8

10
11

.3
5

13
.5

31
D

SJ
C

12
5.

9
90

4.
00

0.
00

0
4.

00
0.

00
0

4.
00

0.
00

0
4.

00
0.

00
0

4.
00

0.
00

0
4.

00
0.

00
0

D
SJ

C
50

0-
5

50
22

.5
7

73
.6

21
22

.5
7

73
.6

21
22

.5
7

73
.6

21
22

.5
7

73
.6

21
22

.5
7

73
.6

21
20

.5
4

58
.0

14

M
A

N
N

a9
7

17
.4

8
9.

21
9

17
.0

9
6.

81
1

17
.0

0
6.

25
0

17
.4

8
9.

21
9

17
.4

7
9.

20
1

17
.4

7
9.

20
1

M
A

N
N

a2
7

1
13

2.
76

5.
36

7
13

1.
11

4.
05

7
13

1.
01

3.
98

0
13

2.
76

5.
36

7
13

1.
99

4.
75

1
13

1.
99

4.
75

1
jo

hn
so

n3
2-

2-
4

12
16

.0
0

0.
00

0
16

.0
0

0.
00

0
16

.0
0

0.
00

0
16

.0
0

0.
00

0
16

.0
0

0.
00

0
16

.0
0

0.
00

0
ke

lle
r4

35
13

.4
7

22
.4

17
13

.4
6

22
.3

88
13

.3
9

21
.7

09
13

.4
7

22
.4

17
13

.4
5

22
.2

36
13

.4
5

22
.2

36
p

ha
t3

00
-1

76
10

.0
2

25
.2

53
10

.0
2

25
.2

53
10

.0
2

25
.1

94
10

.0
2

25
.2

53
9.

58
19

.6
91

8.
58

7.
28

8
p

ha
t3

00
-2

51
26

.7
1

6.
85

5
26

.5
8

6.
31

7
26

.4
9

5.
95

0
26

.7
1

6.
85

5
26

.7
0

6.
81

3
26

.6
9

6.
76

8
p

ha
t3

00
-3

26
40

.7
0

13
.0

57
40

.6
2

12
.8

29
40

.4
4

12
.3

20
40

.7
0

13
.0

57
40

.7
0

13
.0

54
40

.7
0

13
.0

53
p

ha
t5

00
-1

75
13

.0
1

44
.5

33
13

.0
1

44
.5

33
13

.0
1

44
.5

26
13

.0
1

44
.5

33
12

.6
5

40
.5

83
10

.6
8

18
.7

21
p

ha
t5

00
-2

50
38

.5
6

48
.3

06
38

.4
4

47
.8

63
38

.3
8

47
.5

98
38

.5
6

48
.3

06
38

.5
6

48
.2

93
38

.5
4

48
.2

25
p

ha
t5

00
-3

25
57

.8
1

15
.6

22
57

.7
6

15
.5

24
57

.6
7

15
.3

42
57

.8
1

15
.6

22
57

.8
1

15
.6

22
57

.8
1

15
.6

21
p

ha
t7

00
-1

75
15

.0
5

36
.7

74
15

.0
5

36
.7

74
15

.0
5

36
.7

73
15

.0
5

36
.7

74
14

.8
6

35
.0

47
11

.3
0

2.
70

9
p

ha
t7

00
-2

50
48

.4
4

10
.0

91
48

.3
0

9.
77

6
48

.2
4

9.
64

6
48

.4
4

10
.0

91
48

.4
4

10
.0

87
48

.4
1

10
.0

23
p

ha
t7

00
-3

25
71

.7
6

15
.7

34
71

.7
1

15
.6

60
71

.6
4

15
.5

45
71

.7
6

15
.7

34
71

.7
5

15
.7

34
71

.7
5

15
.7

33
sa

nr
20

0
0.

7
30

23
.6

3
31

.2
96

23
.6

3
31

.2
91

23
.5

9
31

.0
48

23
.6

3
31

.2
96

23
.6

3
31

.2
96

23
.6

3
31

.2
96

sa
nr

20
0

0.
9

10
48

.9
0

16
.4

40
48

.6
3

15
.7

86
48

.0
3

14
.3

56
48

.9
0

16
.4

40
48

.9
0

16
.4

40
48

.9
0

16
.4

40
sa

nr
40

0
0.

5
50

20
.1

8
55

.2
17

20
.1

8
55

.2
17

20
.1

8
55

.2
16

20
.1

8
55

.2
17

20
.1

8
55

.2
17

19
.1

0
46

.9
51

sa
nr

40
0

0.
7

30
33

.9
7

61
.7

46
33

.9
7

61
.7

46
33

.9
7

61
.7

41
33

.9
7

61
.7

46
33

.9
7

61
.7

46
33

.9
7

61
.7

46
M

ea
ns

-
30

.8
32

-
30

.5
28

-
30

.2
48

-
30

.8
32

-
30

.4
89

-
27

.7
72

Ta
bl

e
6:

Li
ft-

an
d-

pr
oj

ec
t

bo
un

ds
on

D
IM

A
C

S
in

st
an

ce
s.

T
he

co
lu

m
n

d
(%

)
re

po
rt

th
e

de
ns

ity
of

ea
ch

gr
ap

h.

27

Graph θ+(G) λ(G) µ(G, C) ν(G, Γ) ν(G, θ) ν(G, α)
Name d(%) Time # iter Time # iter Time # iter Time # iter Time # iter Time
brock200 1 25 3.72 1 7.22 1 6.86 0 3.79 0 3.78 0 3.79
brock200 2 50 1.63 0 2.51 1 4.02 0 1.73 1 3.79 1 14.22
brock200 3 39 2.07 1 4.27 1 4.44 0 2.15 1 3.92 1 4.47
brock200 4 34 2.66 0 3.12 1 4.79 0 2.75 0 2.75 1 4.35
brock400 1 25 11.59 0 15.10 1 20.59 0 12.00 0 12.07 0 11.99
brock400 2 25 12.35 0 15.47 1 21.18 0 12.75 0 12.77 0 12.76
brock400 3 25 12.17 0 14.87 1 21.40 0 12.59 0 12.58 0 12.61
brock400 4 25 12.05 0 14.84 1 20.76 0 12.45 0 12.44 0 12.44
brock800 1 35 20.60 0 51.54 0 27.57 0 24.54 0 24.60 2 77.95
brock800 2 35 20.26 0 53.58 0 27.05 0 24.25 0 24.22 2 86.15
brock800 3 35 20.55 0 52.85 0 28.19 0 25.02 0 24.63 2 79.55
brock800 4 35 19.86 0 50.82 0 27.46 0 23.98 0 24.00 2 76.29
C125-9 10 3.46 2 15.68 3 32.44 1 7.10 1 7.44 1 7.55
C250-9 10 10.45 1 32.52 2 42.68 0 10.52 0 10.51 0 10.52
C500-9 10 25.12 1 57.41 1 53.55 0 25.52 0 25.50 0 25.50
DSJC125.1 9 4.38 2 19.28 3 34.02 1 8.38 1 10.27 1 9.02
DSJC125.5 50 1.58 1 3.17 1 3.72 0 1.61 1 4.35 1 4.64
DSJC125.9 90 1.65 0 1.98 0 1.72 0 1.70 0 1.70 0 1.70
DSJC500-5 50 6.35 0 20.49 0 8.85 0 7.71 0 7.83 4 126.12
MANN a9 7 0.79 1 2.15 1 4.38 0 0.80 1 2.20 1 1.82
MANN a27 1 9.93 1 73.41 3 1992.72 0 10.00 1 57.22 1 60.32
johnson32-2-4 12 4.16 0 6.92 0 4.28 0 4.58 0 4.58 0 4.60
keller4 35 3.97 1 7.70 1 13.20 0 4.03 1 15.51 1 15.12
p hat300-1 76 9.07 0 12.62 1 22.93 0 9.49 2 134.81 3 261.52
p hat300-2 51 80.54 1 220.85 2 221.98 0 80.85 1 300.55 1 279.48
p hat300-3 26 17.66 1 32.39 2 44.90 0 17.84 1 39.16 1 39.27
p hat500-1 75 19.08 0 40.72 1 42.03 0 21.13 2 164.90 5 858.88
p hat500-2 50 201.27 2 661.29 2 652.87 0 202.66 1 580.22 1 893.64
p hat500-3 25 35.75 1 88.95 2 116.21 0 36.50 1 79.32 1 90.28
p hat700-1 75 35.53 0 82.10 1 79.12 0 41.34 2 260.41 7 6580.82
p hat700-2 50 425.90 2 1270.35 2 1409.98 0 429.64 1 920.86 1 1251.71
p hat700-3 25 81.42 1 204.92 2 278.70 0 83.93 1 189.04 1 204.45
sanr200 0.7 30 3.05 1 5.39 1 5.54 0 3.11 0 3.11 0 3.11
sanr200 0.9 10 7.77 2 29.39 3 43.35 0 7.81 1 15.36 1 14.86
sanr400 0.5 50 4.40 0 11.74 1 8.96 0 5.09 0 5.11 3 77.60
sanr400 0.7 30 7.69 0 11.58 1 12.80 0 8.16 0 8.17 0 8.26

Table 7: CPU time and cutting plane’s iterations on DIMACS graphs.

28

Number of violated inequalities added in Algorithm 1
Graph λ(G) µ(G, C) ν(G, Γ) ν(G, θ) ν(G, α)
Name (12) (19) (21) (26) (25) (26) (25) (26)

brock200 1 10 471 0 0 0 0 0 0
brock200 2 0 81 0 0 5 4 583 76
brock200 3 1 152 0 0 1 1 2 5
brock200 4 0 139 0 0 0 0 1 0
brock400 1 0 34 0 0 0 0 0 0
brock400 2 0 38 0 0 0 0 0 0
brock400 3 0 49 0 0 0 0 0 0
brock400 4 0 33 0 0 0 0 0 0
brock800 1 0 0 0 0 0 0 1845 155
brock800 2 0 0 0 0 0 0 1780 220
brock800 3 0 0 0 0 0 0 1825 175
brock800 4 0 0 0 0 0 0 1840 160
C125-9 1413 2248 3 1 0 35 0 14
C250-9 565 1988 0 0 0 0 0 0
C500-9 1 633 0 0 0 0 0 0
DSJC125.1 1435 2249 11 8 0 36 0 36
DSJC125.5 8 210 0 0 62 17 117 24
DSJC125.9 0 0 0 0 0 0 0 0
DSJC500-5 0 0 0 0 0 0 3772 228
MANN a9 720 900 36 0 0 504 0 504
MANN a27 1000 2000 1000 0 0 1000 0 1000
johnson32-2-4 0 0 0 0 0 0 0 0
keller4 48 296 0 0 96 48 96 48
p hat300-1 0 48 0 0 1911 89 2923 77
p hat300-2 988 1379 0 0 121 346 329 398
p hat300-3 761 1878 0 0 0 60 0 75
p hat500-1 0 13 0 0 1982 18 4959 41
p hat500-2 1042 1363 0 0 30 288 576 424
p hat500-3 548 1625 0 0 0 28 0 72
p hat700-1 0 2 0 0 1960 40 6962 38
p hat700-2 1107 1549 0 0 16 286 718 282
p hat700-3 520 1414 0 0 0 47 1 187
sanr200 0.7 3 286 0 0 0 0 0 0
sanr200 0.9 1060 2216 0 0 0 1 0 1
sanr400 0.5 0 3 0 0 0 0 2806 194
sanr400 0.7 0 29 0 0 0 0 0 0

Table 8: Number of added cutting planes on DIMACS instances.

29

References

[1] Yu Hin Au and Levent Tunçel. Stable set polytopes with high lift-and-project ranks for
the Lovász–Schrijver SDP operator. Mathematical Programming ser. A, 2024. URL https:
//doi.org/10.1007/s10107-024-02093-0.

[2] Egon Balas and Manfred W Padberg. Set partitioning: A survey. SIAM review, 18(4):710–760,
1976.

[3] Egon Balas, Sebastian Ceria, Gerard Cornuejols, and Gabor Pataki. Polyhedral methods
for the maximum clique problem. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, 1994.

[4] Federico Battista. On semidefinite lift-and-project of combinatorial optimization problems.
PhD thesis, Università di Roma Sapienza, 2023.

[5] Federico Battista and Marianna De Santis. Dealing with inequality constraints in large-scale
semidefinite relaxations for graph coloring and maximum clique problems. arXiv preprint
arXiv:2106.12411, 2021. URL https://doi.org/10.48550/arXiv.2106.12411.

[6] S Bianchi, M Escalante, G Nasini, and L Tunçel. Some advances on Lovász-Schrijver semidef-
inite programming relaxations of the fractional stable set polytope. Discret. Appl. Math., 164:
460–469, 2014. doi: 10.1016/J.DAM.2013.03.028. URL https://doi.org/10.1016/j.dam.
2013.03.028.

[7] S Bianchi, M Escalante, G Nasini, and L Tunçel. Lovász–Schrijver SDP-operator, near-perfect
graphs and near-bipartite graphs. Mathematical Programming, 162:201–223, 2017.

[8] Silvia M Bianchi, Mariana S Escalante, Graciela L Nasini, and Annegret K Wagler. Lovász–
Schrijver PSD-operator and the stable set polytope of claw-free graphs. Discrete Applied
Mathematics, 332:70–86, 2023.

[9] Merve Bodur, Sanjeeb Dash, and Oktay Günlük. A new lift-and-project operator. European
Journal of Operational Research, 257(2):420–428, 2017.

[10] Immanuel M. Bomze, Marco Budinich, Panos M. Pardalos, and Marcello Pelillo. The maximum
clique problem. Handbook of Combinatorial Optimization: Supplement Volume A, pages 1–74,
1999.

[11] Ralf Borndörfer. Aspects of set packing, partitioning, and covering. PhD thesis, Technischen
Universität Berlin, 1998.

[12] Samuel Burer and Dieter Vandenbussche. Solving lift-and-project relaxations of binary integer
programs. SIAM Journal on Optimization, 16(3):726–750, 2006.

[13] Stanislav Busygin and Dmitrii V Pasechnik. On NP-hardness of the clique partition–
independence number gap recognition and related problems. Discrete mathematics, 306(4):
460–463, 2006.

[14] Adán Cabello, Simone Severini, and Andreas Winter. Graph-theoretic approach to quantum
correlations. Physical review letters, 112(4):040401, 2014.

30

https://doi.org/10.1007/s10107-024-02093-0
https://doi.org/10.1007/s10107-024-02093-0
https://doi.org/10.48550/arXiv.2106.12411
https://doi.org/10.1016/j.dam.2013.03.028
https://doi.org/10.1016/j.dam.2013.03.028

[15] Lázaro Cánovas, Mercedes Landete, and Alfredo MarıN. New facets for the set packing poly-
tope. Operations Research Letters, 27(4):153–161, 2000.

[16] Alberto Caprara and Juan José Salazar González. Separating lifted odd-hole inequalities to
solve the index selection problem. Discrete Applied Mathematics, 92(2-3):111–134, 1999.

[17] Martina Cerulli, Marianna De Santis, Elisabeth Gaar, and Angelika Wiegele. Improving ad-
mms for solving doubly nonnegative programs through dual factorization. 4OR, 19:415–448,
2021.

[18] Michele Conforti, Gérard Cornuéjols, Giacomo Zambelli, Michele Conforti, Gérard Cornuéjols,
and Giacomo Zambelli. Integer programming models. Springer, Heidelberg, 2014.

[19] Stefano Coniglio and Stefano Gualandi. Optimizing over the closure of rank inequalities with a
small right-hand side for the maximum stable set problem via bilevel programming. INFORMS
Journal on Computing, 34(2):1006–1023, 2022.

[20] Ricardo C Corrêa, Diego Delle Donne, Ivo Koch, and Javier Marenco. General cut-generating
procedures for the stable set polytope. Discrete Applied Mathematics, 245:28–41, 2018.

[21] Sanjeeb Dash. On the matrix cuts of Lovász and Schrijver and their use in Integer Program-
ming. Rice University, Houston, TX, 2001.

[22] Federico Della Croce and Roberto Tadei. A multi-KP modeling for the maximum-clique prob-
lem. European Journal of Operational Research, 73(3):555–561, 1994.

[23] Igor Dukanovic and Franz Rendl. Semidefinite programming relaxations for graph coloring
and maximal clique problems. Mathematical Programming, 109(2-3):345–365, 2007.

[24] Elisabeth Gaar and Franz Rendl. A computational study of exact subgraph based SDP bounds
for Max-Cut, stable set and coloring. Mathematical Programming, 183(1-2):283–308, 2020.

[25] Elisabeth Gaar, Melanie Siebenhofer, and Angelika Wiegele. An SDP-based approach for
computing the stability number of a graph. Mathematical Methods of Operations Research, 95
(1):141–161, 2022.

[26] Laura Galli and Adam N Letchford. On the lovász theta function and some variants. Discrete
Optimization, 25:159–174, 2017.

[27] Monia Giandomenico and Adam N Letchford. Exploring the relationship between max-cut
and stable set relaxations. Mathematical programming, 106:159–175, 2006.

[28] Monia Giandomenico, Adam N Letchford, Fabrizio Rossi, and Stefano Smriglio. An appli-
cation of the Lovász–Schrijver M(K, K) operator to the stable set problem. Mathematical
programming, 120:381–401, 2009.

[29] Monia Giandomenico, Adam N Letchford, Fabrizio Rossi, and Stefano Smriglio. Approximating
the Lovász θ function with the subgradient method. Electronic Notes in Discrete Mathematics,
41:157–164, 2013.

31

[30] Monia Giandomenico, Fabrizio Rossi, and Stefano Smriglio. Strong lift-and-project cutting
planes for the stable set problem. Mathematical Programming, 141:165–192, 2013.

[31] Monia Giandomenico, Adam N Letchford, Fabrizio Rossi, and Stefano Smriglio. Ellipsoidal
relaxations of the stable set problem: theory and algorithms. SIAM Journal on Optimization,
25(3):1944–1963, 2015.

[32] Michel X. Goemans and Levent Tuncel. When does the positive semidefiniteness constraint
help in lifting procedures? Mathematics of Operations Research, 4(26):796–815, 2001.

[33] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and combi-
natorial optimization, volume 2. Springer Science & Business Media, Heidelberg, 2012.

[34] Gerald Gruber and Franz Rendl. Computational experience with stable set relaxations. SIAM
Journal on Optimization, 13(4):1014–1028, 2003.

[35] Johan Hastad. Clique is hard to approximate within n1−ϵ. In Proceedings of 37th Conference
on Foundations of Computer Science, pages 627–636. IEEE, 1996.

[36] Christian Jansson, Denis Chaykin, and Christian Keil. Rigorous error bounds for the optimal
value in semidefinite programming. SIAM Journal on Numerical Analysis, 46(1):180–200,
2008.

[37] David S Johnson and Michael A Trick. Cliques, coloring, and satisfiability: second DIMACS
implementation challenge, October 11-13, 1993, volume 26. American Mathematical Soc.,
Providence, RI, 1996.

[38] Ferenc Juhász. The asymptotic behaviour of Lovász’ θ function for random graphs. Combina-
torica, 2(2):153–155, 1982.

[39] Adam N Letchford, Francesca Marzi, Fabrizio Rossi, and Stefano Smriglio. Strengthening
Chvátal-Gomory cuts for the stable set problem. In International Symposium on Combinatorial
Optimization, pages 201–212. Springer, 2016.

[40] Adam N Letchford, Fabrizio Rossi, and Stefano Smriglio. The stable set problem: Clique and
nodal inequalities revisited. Computers & Operations Research, 123:105024, 2020.

[41] Marco Locatelli. Improving upper bounds for the clique number by non-valid inequalities.
Mathematical Programming, 150:511–525, 2015.

[42] László Lovász. On the Shannon capacity of a graph. IEEE Transactions on Information
theory, 25(1):1–7, 1979.

[43] László Lovász and Alexander Schrijver. Cones of matrices and set-functions and 0–1 optimiza-
tion. SIAM journal on optimization, 1(2):166–190, 1991.

[44] Jérôme Malick, Janez Povh, Franz Rendl, and Angelika Wiegele. Regularization methods for
semidefinite programming. SIAM Journal on Optimization, 20(1):336–356, 2009.

[45] Francesca Marzi, Fabrizio Rossi, and Stefano Smriglio. Computational study of separation
algorithms for clique inequalities. Soft Computing, 23(9):3013–3027, 2019.

32

[46] Garth P McCormick. Computability of global solutions to factorable nonconvex programs:
Part I—Convex underestimating problems. Mathematical programming, 10(1):147–175, 1976.

[47] MOSEK. The mosek optimization toolbox for matlab manual. version 9.0, 2019. URL http:
//docs.mosek.com/9.0/toolbox/index.html.

[48] Alan T Murray and Richard L Church. Facets for node packing. European Journal of Opera-
tional Research, 101(3):598–608, 1997.

[49] George L Nemhauser and Gabriele Sigismondi. A strong cutting plane/branch-and-bound
algorithm for node packing. Journal of the Operational Research Society, 43(5):443–457, 1992.

[50] George L Nemhauser and Laurence A Wolsey. Integer and combinatorial optimization, vol-
ume 55. John Wiley & Sons, Hoboken, NJ, 1999.

[51] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex pro-
gramming. SIAM, Philadelphia, PA, 1994.

[52] Patric RJ Österg̊ard. A fast algorithm for the maximum clique problem. Discrete Applied
Mathematics, 120(1-3):197–207, 2002.

[53] Manfred W Padberg. On the facial structure of set packing polyhedra. Mathematical program-
ming, 5(1):199–215, 1973.

[54] Janez Povh, Franz Rendl, and Angelika Wiegele. A boundary point method to solve semidef-
inite programs. Computing, 78:277–286, 2006.

[55] Steffen Rebennack, Marcus Oswald, Dirk Oliver Theis, Hanna Seitz, Gerhard Reinelt, and
Panos M Pardalos. A branch and cut solver for the maximum stable set problem. Journal of
combinatorial optimization, 21:434–457, 2011.

[56] Fabrizio Rossi and Stefano Smriglio. A branch-and-cut algorithm for the maximum cardinality
stable set problem. Operations Research Letters, 28(2):63–74, 2001.

[57] Fabrizio Rossi and Stefano Smriglio. A set packing model for the ground holding problem in
congested networks. European Journal of Operational Research, 131(2):400–416, 2001.

[58] Pablo San Segundo, Diego Rodŕıguez-Losada, and Agust́ın Jiménez. An exact bit-parallel
algorithm for the maximum clique problem. Computers & Operations Research, 38(2):571–
581, 2011.

[59] Alexander Schrijver. A comparison of the Delsarte and Lovász bounds. IEEE Transactions
on Information Theory, 25(4):425–429, 1979.

[60] Jos F. Sturm. Using SeDuMi 1.02, A MATLAB toolbox for optimization over symmetric cones.
Optimization Methods and Software, 11(1-4):625–653, 1999. doi: 10.1080/10556789908805766.
URL https://doi.org/10.1080/10556789908805766.

[61] Defeng Sun, Kim-Chuan Toh, Yancheng Yuan, and Xin-Yuan Zhao. SDPNAL+: A Matlab
software for semidefinite programming with bound constraints. Optimization Methods and
Software, 35(1):87–115, 2020.

33

http://docs.mosek.com/9.0/toolbox/index.html
http://docs.mosek.com/9.0/toolbox/index.html
https://doi.org/10.1080/10556789908805766

[62] Etsuji Tomita and Toshikatsu Kameda. An efficient branch-and-bond algorithm for finding a
maximum clique with computational experiments. Journal of Global optimization, 37:95–111,
2007.

[63] Leslie E Trotter Jr. A class of facet producing graphs for vertex packing polyhedra. Discrete
Mathematics, 12(4):373–388, 1975.

[64] Reha H Tütüncü, Kim-Chuan Toh, and Michael J Todd. Solving semidefinite-quadratic-linear
programs using sdpt3. Mathematical programming, 95:189–217, 2003.

[65] Zaiwen Wen, Donald Goldfarb, and Wotao Yin. Alternating direction augmented Lagrangian
methods for semidefinite programming. Mathematical Programming Computation, 2(3):203–
230, 2010.

[66] Angelika Wiegele and Shudian Zhao. Sdp-based bounds for graph partition via extended
admm. Computational Optimization and Applications, 82(1):251–291, 2022.

[67] Aaron T Wilson. Applying the boundary point method to an SDP relaxation of the maximum
independent set problem for a branch and bound algorithm. PhD thesis, New Mexico Institute
of Mining and Technology, 2009.

[68] Qinghua Wu and Jin-Kao Hao. A review on algorithms for maximum clique problems. European
Journal of Operational Research, 242(3):693–709, 2015.

[69] E Alper Yildirim and Xiaofei Fan-Orzechowski. On extracting maximum stable sets in perfect
graphs using Lovász’s theta function. Computational Optimization and Applications, 33(2-3):
229–247, 2006.

34

	Introduction
	Preliminaries
	The lift-and-project operator of Lovász and Schrijver

	Continuous relaxations of the SSP
	Linear relaxations of the SSP
	SDP relaxations of the SSP
	The Lovász theta relaxation
	The Schrijver relaxation
	The Lovász-Schrijver relaxation
	Further SDP relaxations

	New SDP relaxations
	Relaxation M+(QSTAB(G, C))
	Relaxation N+(NOD(G, r))
	Comparison among relaxations

	Implementation
	Computational Experiments
	Instances
	Experiment 1: random graphs
	Experiment 2: DIMACS instances

	Conclusions

