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Abstract. A generalization of Ripà’s square spiral solution for the n × n × · · · × n
Points Upper Bound Problem. Additionally, we provide a non-trivial lower bound
for the k-dimensional n1 ×n2 × · · · ×nk Points Problem. In this way, we can build a
range in which, with certainty, all the best possible solutions to the problem we are
considering will fall. Finally, we give a few characteristic numerical examples in
order to appreciate the fineness of the result arising from the particular approach
we have chosen.

1. Introduction

Nearly a century ago, the classic Nine Dots Problem appeared in Sam Loyd’s
Cyclopedia of 5000 Puzzles, Tricks and Conundrums with Answers [1, 4]. The
challenge was as follows: “. . . draw a continuous line through the center of all
the eggs so as to mark them off in the fewest number of strokes” [3, 5].

Figure 1. The original problem published in Sam Loyd’s
Cyclopedia of 5000 puzzles, New York, 1914, p. 301.
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That puzzle can naturally be extended to an arbitrarily large number of distinct
(zero-dimensional) points for each row/column [9]. This new problem asks to
connect n×n points, arranged in a grid formed by n rows and n columns, using the
fewest straight lines connected at their endpoints. Ripà and Remirez [9] showed
that it is possible to do this for every n ∈N − {0,1,2}, using only 2 · n − 2 straight
lines. For each n ≥ 5, we can combine a given 8-line solution for the 5×5 problem
and the square spiral frame [12]. In the same paper, they extended the n×n result
to a three-dimensional space [10] and finally to a generic k-dimensional space (for
k > 3).

Starting from that outcome, we consider the same problem and rules as
Reference [9]. We can apply the “pure” spiral method to a n1×n2 rectangular grid
(where n1 ≤ n2). In this way, it is simple to discover that the minimum number of
line segments connected at their endpoints required to join every point (solving
the problem inside the box, connecting dots without crossing a line, and visiting
each point just once) cannot exceed hu , the (planar) square spiral upper bound
given by (1) [11],

(1) hu = 2 ·n− 1,∀n ∈N− {0,1}.

2. The n1 ×n2 × · · · ×nk Problem upper bound

If we try to extend the result in (1) to a three-dimensional space, where
n1 ≤ n2 ≤ n3, we need to modify somewhat the standard strategy described in
Reference [9] in order to choose a good “plane-by-plane” approach that we can
implement. So, we need to identify the correct starting plane to lay the first
straight line. Using basic mathematics, it is quite easy to prove that, in general,
the best option is to start from the [n2;n3] plane.

Hence, under the additional constraints that we must solve the problem inside
the box only, connecting points without crossing a line, and visiting each dot just
once, our strategy is as follows:

• Step 1) Take one of the external planes identified by [n2;n3], and here is the
plane to lay our first line segment;

• Step 2) Starting from one corner of this planar grid, draw the first straight
line to connect n3 points until we reach the last point in that row;

• Step 3) The second line segment is on the same plane. It lays on [n2;n3], it
is orthogonal to the previous one, and it links n2 − 1 points;

• Step 4) Repeat the square (rectangular) spiral pattern until we connect all
the n2 · n3 points of the mentioned planar grid to the others on the same
surface;

• Step 5) Draw the (n2 − 1)-th line, which is orthogonal to the [n2;n3] plane
we have considered before, visiting n1 − 1 new points by crossing all the
remaining planar grids, and then double the same scheme (in reverse)
on the opposite face of this parallelogram (inside the three-dimensional
axis-aligned bounding box [n1×n2×n3]). Repeat this pattern for each n2×n3
grid, n1 − 2 more times.

The rectangular spiral solution also gives us the shortest path that visits every
point of any given n1 × n2 × n3 grid since the total Euclidean length of the line
segments used to fit all the points is minimal.
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Nota Bene. Just a couple of trivial considerations. Referring to the rectangular
spiral pattern applied to a k-dimensional space (k ≥ 2), we can return to the
starting point using exactly one additional line (it works for any number of
dimensions). For any odd value of n1, we can visit a maximum of

⌈
nk−1

2

⌉
− 1 points

twice, simply extending the line end (if we do not, we will not visit any dot more
than once, otherwise we can visit

⌈
nk−1

2

⌉
−1 points, at most). Moreover, it is possible

to visit up to nk−1 − 2 points twice if we move the second to last line too (crossing
some more lines as well). Finally, assuming k ≥ 2, if we are free to extend the
ending line until we are close to the next (already visited) point (i.e., let ε be the
distance between the last line and the nearest point and let the distance between
two adjacent points be unitary, we have that 0 < ε < 1), it is possible to return to
the starting point without visiting any point more than once.

The number of line segments we spend to connect every point is always lower
than or equal to

(2) hu ≤ 2 ·n1 ·n2 − 1.

In fact, hu ≤ (2 ·n2 − 1) ·n1 +n1 − 1.
Nevertheless, (2 · n2 − 1) · n1 + n1 − 1 = 2 · n1 · n2 − n1 + n1 − 1 = 2 · n1 · n2 − 1 =

2 ·n1 ·n2 −n2 +n2 − 1 = (2 ·n1 − 1) ·n2 +n2 − 1. (Q.E.D.)
The “savings”, in terms of unused segments, are zero if (and only if)

(3) n1 < 2 · (n3 −n2) + 3.

In general, (also if n1 ≥ 2 · (n3 −n2) + 3), (2) can be improved as

(4) hu = 2 ·n1 ·n2 − c,
where c = 1 if the savings are zero, while c ≥ 2 if not.

As an example, let us consider the following cases:
a) n1 = 5, n2 = 6, n3 = 9;
b) n1 = 11, n2 = 12, n3 = 13.

While in the first instance c = 1 (since 5 < 2 · (9− 3) + 3) so that h = 2 · 5 · 6− 1 = 59,
in case b) we have c = 13, and thus h = 2 · 11 · 12 − 13 = 251. This is by virtue of
the fact that the fifth and the sixth connecting lines allow us to “save” one line for
every subsequent plane, whereas each plane “met” after the sixth can be solved
using two fewer lines (if compared with the first four we have considered).

Figure 2. The rectangular spiral for the case of the example b):
n1 = 11, n2 = 12, n3 = 13.
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If n1 ≥ 2 ·(n3−n2)+4, the (pure) rectangular spiral method, with specific regard
to the three-dimensional problem, can be summarized as

hu = n1 − 1 + [2 · (n3 −n2) + 2] · (2 ·n2 − 1) + 2 · (2 ·n2 − 2) + [2 · (n3 −n2) + 4]·
(2 ·n2 − 3) + 4 · (2 ·n2 − 4) + [2 · (n3 −n2) + 6] · (2 ·n2 − 5) + 6 · (2 ·n2 − 6) + · · ·+ d,

where d represents the product of the number of line segments used to solve the
plane which contains the fewest lines (the last planar grid we have considered,
laying on the plane which cuts roughly halfway through our imaginary box) and
the residual n1 − {[2 · (n3 −n2) + 2] + 2 + [2 · (n3 −n2) + 4] + 4 + · · · }.

Then, let b and jmax be non-negative integers to synthesize the formula above
as

hu = n1−1+
jmax∑
j=0

[(2 ·n2−2 ·j−1) ·(2 ·(n3−n2)+2 ·(j+1))+2 ·(j+1) ·(2 ·n2−2 ·(j+1))]+b.

Hence,

hu = −
8·jmax

3

3
+ 6·jmax

2 ·n2 − 2·jmax
2 ·n3 − 11·jmax

2 − 4·jmax ·n2
2 + 4·jmax ·n2 ·n3+

16·jmax ·n2 − 4· jmax ·n3 −
43·jmax

3
− 4·n2

2 + 4·n2 ·n3 + 10·n2 − 2·n3 − 7 +n1 + b,

where jmax represents the maximum value of the upper bound of the summation,
let us say j̃, such that

n1 ≥
j̃∑

j=0

[2 · (n3 −n2) + 2 · (j + 1) + 2 · (j + 1)]⇒ n1 ≥ 2 · (j̃ + 1) · (n3 −n2 + j̃ + 2),

while

bB



[n1 − 2 · (jmax + 1) · (n3 −n2 + jmax + 2)] · (2 ·n2 − 2 · jmax − 3)
if n1 − 2 · (jmax + 1) · (n3 −n2 + jmax + 2) ≤ 2 · (n3 −n2) + 2 · (jmax + 2)

[2 · (n3 −n2) + 2 · (jmax + 2)] · (2 ·n2 − 2 · jmax − 3) + {n1 − 2 · (jmax + 1)·
(n3 −n2 + jmax + 2)− [2 · (n3 −n2) + 2 · (jmax + 2)]} · (2 ·n2 − 2 · jmax − 4)
if n1 − 2 · (jmax + 1) · (n3 −n2 + jmax + 2) > 2 · (n3 −n2) + 2 · (jmax + 2)

.

By making some calculations, we have that

bB



4 · jmax
3 − 8 · jmax

2 ·n2 + 4 · jmax
2 ·n3 + 18 · jmax

2 − 2 · jmax ·n1 + 4 · jmax ·n2
2−

4 · jmax ·n2 ·n3 − 22 · jmax ·n2 + 10 · jmax ·n3 + 26 · jmax + 2 ·n1 ·n2 − 3 ·n1+
4 ·n2

2 − 4 ·n2 ·n3 − 14 ·n2 + 6 ·n3 + 12
if n1 ≤ 2 · (jmax + 2) · (jmax −n2 +n3 + 2)

4 · jmax
3 − 8 · jmax

2 ·n2 + 4 · jmax
2 ·n3 + 20 · jmax

2 − 2 · jmax ·n1 + 4 · jmax ·n2
2−

4 · jmax ·n2 ·n3 − 24 · jmax ·n2 + 12 · jmax ·n3 + 34 · jmax + 2 ·n1 ·n2 − 4 ·n1+
4 ·n2

2 − 4 ·n2 ·n3 − 18 ·n2 + 10 ·n3 + 20
if n1 > 2 · (jmax + 2) · (jmax −n2 +n3 + 2)

.
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Thus, the general solution is given by:
(5)

hu =



4·jmax
3

3 − 2 · jmax
2 ·n2 + 2 · jmax

2 ·n3 + 7 · jmax
2 − 2 · jmax ·n1 − 6 · jmax ·n2+

6 · jmax ·n3 + 35·jmax
3 + 2 ·n1 ·n2 − 2 ·n1 − 4 ·n2 + 4 ·n3 + 5

if n1 ≤ 2 · (jmax
2 − jmax ·n2 + jmax ·n3 + 4 · jmax − 2 ·n2 + 2 ·n3 + 4)

4·jmax
3

3 − 2 · jmax
2 ·n2 + 2 · jmax

2 ·n3 + 9 · jmax
2 − 2 · jmax ·n1 − 8 · jmax ·n2+

8 · jmax ·n3 + 59·jmax
3 + 2 ·n1 ·n2 − 3 ·n1 − 8 ·n2 + 8 ·n3 + 13

if n1 > 2 · (jmax
2 − jmax ·n2 + jmax ·n3 + 4 · jmax − 2 ·n2 + 2 ·n3 + 4)

,

where jmax is the maximum non-negative integer j such that

n1 ≥ 2 · [j2 + (n3 −n2 + 3) · j +n3 −n2 + 2],

so jmax =
⌊

1
2 ·

(√
n3

2 +n2
2 − 2 ·n2 ·n3 + 2 ·n3 − 2 ·n2 + 2 ·n1 + 1 +n2 −n3 − 3

)⌋
.

Then, (5) can be more elegantly written as

(6) hu =



4
3 · jmax

3 + [2 · (n3 −n2) + 7] · jmax
2 +

[
6 · (n3 −n2)− 2 ·n1 + 35

3

]
· jmax+

4 · (n3 −n2) + 2 ·n1 · (n2 − 1) + 5
if n1 ≤ 2 · [jmax

2 + (n3 −n2 + 4) · jmax + 2 · (n3 −n2) + 4]

4
3 · jmax

3 + [2 · (n3 −n2) + 9] · jmax
2 +

[
8 · (n3 −n2)− 2 ·n1 + 59

3

]
· jmax+

8 · (n3 −n2) +n1 · (2 ·n2 − 3) + 13
if n1 > 2 · [jmax

2 + (n3 −n2 + 4) · jmax + 2 · (n3 −n2) + 4]

,

where jmax =
⌊

1
2 ·

(√
n3

2 +n2
2 − 2 ·n2 ·n3 + 2 · (n3 −n2 +n1) + 1 +n2 −n3 − 3

)⌋
.

Nota Bene. For obvious reasons, (6) is always applicable, on condition that
n1 ≥ 2·(n3−n2)+4. Otherwise, the solution follows immediately from (4) since c can
assume only two distinct values: 1 or 2 (c = 1 if (3) is verified, whereas c = 2 if (3) is
not satisfied and (6) cannot be used – therefore, this is the case n1 = 2 ·(n3−n2)+3).

Figure 3. The rectangular spiral and its development [2] for the
cases of (from left to right) n3−n2 = 0, n3−n2 = 1, and n3−n2 = 2.

It is possible to extend the aforementioned result we have previously shown to
the general, k-dimensional, case n1 × n2 × · · · × nk . The method to determine an
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acceptable upper limit for the optimal solution remains the same as in the case
n1 = n2 = · · · = nk so that

(7) hu = (t + 1) ·
k−3∏
j=1

nj − 1,

where t, the best upper bound available for the nk−2 × nk−1 × nk problem, is given
by (4) (except for the very particular cases we introduced at the beginning of
Reference [9]) and it is made explicit by (2, 6).

Specifically, we will start considering an external grid defined by [nk−1;nk],
and we will connect the corresponding nk · nk−1 points spending 2 · nk−1 − 1 lines
(following the rectangular spiral pattern); then, from the ending point of that
external grid, we will draw the line segment which is orthogonal to any [nk−1;nk]
plane (along the nk−2 points direction), and so forth.

The resulting rectangular spiral is a rectilinear spanning path that visits all the
n1 · n2 · · ·nk points of the grid G(n1,n2, . . . ,nk)B {{0,1, . . . ,n1 − 1} × {0,1, . . . ,n2 − 1} ×
· · · × {0,1, . . . ,nk − 1}} ⊂ R

k only once and whose total Euclidean length is minimal
among all the possible covering paths/trails of G(n1,n2, . . . ,nk) since it is given by∏k

i=1ni − 1.
Consequently, we finally get a minimum length uncrossing covering path

consisting of (2 ·n1 ·n2−c) ·
∏k−3

j=1 nj −1 axis-parallel line-segments (see (4)), entirely

contained in the axis-aligned bounding box [0,1]k , which provides a non-trivial
upper bound for the general, unconstrained, n1 ×n2 × · · · ×nk Points Problem.

3. The n1 ×n2 × · · · ×nk Problem bounded from below

In this section, we provide a lower bound for the (k-dimensional) n1×n2×· · ·×nk
Points Problem. In this way, we can build a range in which all the best possible
solutions to the problem we are considering (for any given k-tuple of positive
integers) will certainly fall. In conclusion, we provide a few characteristic
numerical examples in order to appreciate the quality of the result arising from
the particular approach we have chosen.

For k = 3 (and n1 ≤ n2 ≤ n3, as usual), let us first examine the structure of the
grid: it is not possible to intersect more than (n3 − 1) + (n2 − 1) = n3 +n2 − 2 points
using two consecutive lines; however, there is one exception (which, for the sake
of simplicity, we may assume as in the case of the first two lines drawn). In this
circumstance, it is possible to fit n3 points with the first line and n2−1 points using
the second one, just as in the case of the pure rectangular spiral solution that we
have already considered.

Now, let us observe that, lying (by definition) each segment on a unique plan,
it will be necessary to provide n1 − 1 lines to connect the various plans that are
addressed in succession (of any type): there is no way to avoid using fewer than
n1 − 1 lines to connect (at most) n1 − 1 points at a time (under the constraint
previously explained above to connect n3 + n2 − 1 points with the first two line
segments). Each of these lines could be interposed between as many rectilinear
line segments capable of connecting nk − 1 points at any one time.

Following the same pattern, we notice that the mentioned outcome does not
substantially change in 4, 5, 6, and more dimensions.
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Let hl denote the number of line segments of our lower bound so that, for any
k ≥ 3, we have
(8)
k∏

i=1

ni B nk+
k−2∑
j=1

(nj−1)2+(nk−1)·
k−2∑
j=1

(nj−1)+

hl − 2 ·
k−2∑
j=1

(nj − 1)− 1

·
⌊
nk +nk−1

2
−1

⌋
.

Taking into account the fact that
⌊
nk+nk−1

2 −1
⌋
≤
⌊
nk+nk−1−1

2

⌋
, by doing some basic

calculations, we get

hl =



2·
[∏k

i=1 ni−
∑k−2

j=1 nj
2+(3−nk )·

∑k−2
j=1 nj+nk ·(k−3)−2·k+4+(nk+nk−1−2)·

∑k−2
j=1 (nj−1)

]
nk+nk−1−2

+ 1

if nk+nk−1
2 ∈N− {0,1}

2·
[∏k

i=1 ni−
∑k−2

j=1 nj
2+(3−nk )·

∑k−2
j=1 nj+nk ·(k−3)−2·k+4+(nk+nk−1−1)·

∑k−2
j=1 (nj−1)

]
nk+nk−1−1

+ 1

if nk+nk−1+1
2 ∈N− {0,1}

.

Hence,

(9) hl =



2·
[∏k

i=1 ni−
∑k−2

j=1 nj
2+

∑k−2
j=1 nj−nk+nk−1·

(∑k−2
j=1 nj−k+2

)]
nk+nk−1−2

+ 1

if nk+nk−1
2 ∈N− {0,1}

2·
[∏k

i=1 ni−
∑k−2

j=1 nj
2+2·

∑k−2
j=1 nj−nk+nk−1·

(∑k−2
j=1 nj−k+2

)
−k+2

]
nk+nk−1−1

+ 1

if nk+nk−1+1
2 ∈N− {0,1}

.

In detail (looking at (9)), if k = 3 is given, it follows that

(10) hl =



2·(n1·n2·n3−n1
2+n1·n2+n1−n2−n3)

n3+n2−2

+ 1

if n3+n2
2 ∈N− {0,1}

2·(n1·n2·n3−n1
2+n1·n2+2·n1−n2−n3−1)
n3+n2−1

+ 1

if n3+n2+1
2 ∈N− {0,1}

.

On specifics, for n B n3 = n2 = n1 ≥ 2 (which implies n3+n2
2 ∈ N − {0,1} since

n3+n2
2 = n), we get the trivial bound

(11) hl = n2 +n+ 1.
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Then, as long as k > 2 and nk ≥ nk−1 ≥ · · · ≥ n2 ≥ n1 ≥ 2,

2
nk +nk−1 − 2

·

 k∏
i=1

ni −
k−2∑
j=1

nj
2 +

k−2∑
j=1

nj −nk +nk−1 ·

k−2∑
j=1

nj − k + 2


 ≥

2
nk +nk−1 − 1

·

 k∏
i=1

ni −
k−2∑
j=1

nj
2 + 2 ·

k−2∑
j=1

nj −nk +nk−1 ·

k−2∑
j=1

nj − k + 2

− k + 2

 .
Consequently, without loss of generality,

(12) hl ≥
 2
nk +nk−1 − 1

·
 k∏
i=1

ni−
k−2∑
j=1

nj
2+2·

k−2∑
j=1

nj−nk+nk−1·
k−2∑
j=1

nj−k+2

−k+2

+1

holds for each k-tuple (nk ,nk−1, . . . ,n2,n1).

4. Conclusion

Given k = 3, by combining (12) and (2, 6), we get the intervals in which the
best possible solutions to the problem will fall (and let us point out that the lower
bound from (12) can also be improved by using (9)).

The width of the resulting range (and consequently how good our outcome may
be) depends on the selected 3-tuple (n1,n2,n3). Additionally, for any given pair
(n1,n2), our stated lower bound will always match the rectangular spiral upper
bound as long as n3 B n3(n1,n2) is sufficiently large.

Example 1: n1 = 10, n2 = 13, n3 = 15. Then,

147 ≤ h ≤ 253.

Example 2: n1 = 10, n2 = 21, n3 = 174. Then,

378 ≤ h ≤ 419.

If k > 3, the interval is given by2 ·
(∏k

i=1ni −
∑k−2

j=1 nj
2 + 2 ·

∑k−2
j=1 nj −nk +nk−1 ·

(∑k−2
j=1 nj − k + 2

)
− k + 2

)
nk +nk−1 − 1

+ 1 ≤

h ≤ (t + 1) ·
k−3∏
j=1

nj − 1,

where t, the minimum upper limit for the nk−2 × nk−1 × nk Points Problem, is the
result obtained from (4, 6).

In this case, the size of the resulting interval also depends on the particular
value of k (generally speaking, the larger the k, the wider the interval).

Example 3: k = 4, n1 = 10, n2 = 16, n3 = 18, n4 = 48 (and thus t = 575). Then,

4257 ≤ h ≤ 5759.

Furthermore, for some particular k-tuples (n1,n2, . . . ,nk), the upper and the
lower bound coincide, thus allowing us to obtain a complete and definitive
resolution of the given problem.
E.g., if k = 3, n1 = n2 = 3, and n3 ≥ 27, then hl = hu = hbest = 17. Ditto if k = 3,
n1 = 3, n2 = 4, and n3 ≥ 56, as hl = hu = hbest = 23. While, if k = 4, n1 = n2 = n3 = 2,
and n4 ≥ 10, hl = hu = hbest = 15 follows.
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[We omit the last pages of the 2014 version of this paper, the appendix and the
improved bounds for special cases only since better results are now available (e.g.,
as long as k ≥ 3 and n1 = n2 = · · · = nk , Equation (6) of Reference [8] provides
the upper bound

(⌊
3
2 ·n1

2
⌋
−
⌊
n1−1

4

⌋
+
⌊
n1+1

4

⌋
−
⌊
n1+2

4

⌋
+
⌊
n1
4

⌋
+n1 − 1

)
·n1

k−3−1 while

Equations (4) and (5) state also that 3 · 2k−2 [6] and 3k−1
2 [7] are the exact solutions

for 2 = n1 = n2 = · · · = nk and 3 = n1 = n2 = · · · = nk , respectively).]
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