
Consensus ADMM Under Uncertainty

Aymeric Legros - École Polytechnique, IP Paris

David L. Woodruff - UC Davis

August 8, 2024

Abstract

Decomposition using consensus ADMM can be used to allow paral-

lelization efficiencies or for reasons related to information security. In

either case, the input data may be uncertain and we give a decomposi-

tion algorithm.

1 Introduction

This work focuses on a scenario decomposition algorithms for optimization un-

der uncertainty called Progressive Hedging (PH) as proposed by Rockafellar

and Wets [6]. As noted in [3], the PH algorithm is related to other decom-

position algorithms such as Alternating Direction Methods of Multipliers [2]

(ADMM) and we exploit that relationship to create an algorithm for ADMM

decomposition with uncertain data.

1.1 Notation

1.1.1 Stochastic Program

We begin with notation for a stochastic program without considering consensus

ADMM decomposition. Our notation is similar to [4]. We denote by T the

number of decision stages and we use t ∈ {1, . . . , T} to index stages; however,

we observe that these stages do not always correspond to time periods. Let

ξt be a random variable, which may be vector valued, associated with each

decision stage t. This random variable represents the stochastic aspect of the

problem. In the case of time periods, we consider that the decisions for stage t

are made once the values of the random variables for stages up to and including

t are known. Hence we will mostly refer to the value ξt only for stage 2, . . . , T .

We denote by
→
ξ

t
the realized values of all ξt up to and including stage t.

In particular,
→
ξ

T
= (ξt, t = 2, . . . , T)

refers to a full scenario. We will simply use the notation ξ.

We denote by Ξ the full set of scenarios, where each scenario ξ has prob-

ability Prξ. We define a tree corresponding to the set of realizations ξ such

that different scenarios with the same realization up to stage t share a node

1

corresponding to that stage t. Hence,
→
ξ

t
refers also to a node in the scenario

tree.

We denote by Gt the set of all nodes for stage t and by Gt(ξ) the node

corresponding to scenario ξ. If D is a given node, we denote by D−1 the set

of scenarios that define the node.

We denote by xt the decision variable at stage t ∈ {1, . . . , T}, and →
x t

the decisions for all stages up to and including t ∈ {1, . . . , T}. Let f be the

cost function. More specifically, f1(x
1) corresponds to the first stage cost and

ft(x
t;

→
x t−1,

→
ξ

t
) each subsequent stage. Let us note that xt is the argument of

ft while
→
x t−1,

→
ξ

t
are parameters giving the solutions and realizations up to

stage t.

Thus, we can express the multistage stochastic program as follows:

Z∗ = min
x,x̂

∑
ξ∈Ξ

Prξ

[
f1(x

1(ξ)) +
T∑
t=2

ft

(
xt(ξ);

→
x t−1,

→
ξ

t
)]

(1a)

xt(ξ)− x̂t(D) = 0, t = 1, . . . , T − 1, D ∈ Gt, ξ ∈ D−1 (1b)

x(ξ) ∈ Xξ, ξ ∈ Ξ (1c)

withXξ a set of constraint for each scenario ξ ∈ Ξ. The condition (1b) enforces

the decision variables non-anticipativity. Indeed, it forces xt to only consider

the information available before stage t (i.e. the scenarios that define the

nodes D ∈ Gt). The condition (1c) summarizes all other constraints. Note

that in this abstract formulation, minimization of variables not subject to

non-anticipativity are subsumed by the f functions, typically fT .

1.1.2 Consensus ADMM

Regardless of whether the input data are uncertain, one may find it useful to

use consensus ADMM to decompose a problem into subproblems (f (a)(·)) , a ∈ A
so that

f(·) =
∑
a∈A

f (a)(·) (2)

while retaining a requirement that specified variables take the same value in

specified subproblems. For each subproblem, there is a list of variables that

must be constrained to have value equal to the same variable in any other

subproblem(s) in which it occurs, Ca, a ∈ A.
A difference between standard formulations in stochastic programming and

consensus ADMM is that in the latter the function f (a) can sometimes include a

different set of variable for each subproblem. For a variable, v, (i.e., an element

of the vector x) let δav be 1 if v ∈ Ca and 0 otherwise. Let Kv =
∑

a∈A δav be

the number of subproblems in which v appears (so if Kv > 0, that means v is

a consensus ADMM variable).

2

2 Progressive Hedging

2.1 The Basic Progressive Hedging Algorithm

The Progressive Hedging (PH) algorithm was proposed by Rockafellar and

Wets [6] and has been described in many places such as [7]. It decomposes

stochastic programs along scenarios in several sub-problems in order to solve

them. We begin with a standard version for multistage stochastic programs

(such as (1)) as described in Algorithm 1, which is the same as in [4]. For this

version of the algorithm there are no consensus ADMM subproblems.

We use the notation developed so far to write the conditional probability

of scenario ξ at node D as

CpD(ξ) =
Prξ∑

υ∈D−1 Prυ

Algorithm 1 Progressive Hedging

1: Initialization: Let ν ← 0 and w(t,ν)(ξ) ← 0, ∀ξ ∈ Ξ, t = 1, . . . , T . Compute
for each ξ ∈ Ξ:

x(ν+1)(ξ) ∈ argminx f1(x
1) +

T∑
t=2

ft

(
xt;

→
x t−1(ξ),

→
ξ

t
)

2: Iteration Update: ν ← ν + 1
3: Aggregation: Compute for each t = 1, . . . , T − 1 and for each D ∈ Gt:

x̄(t,ν)(D)←
∑

ξ∈D−1

CpD(ξ)x
(t,ν)(ξ)

4: Price Update: Compute for each t = 1, . . . , T − 1 and for each ξ ∈ Ξ

w(t,ν)(ξ)← w(t,ν−1)(ξ) + ρ
[
x(t,ν)(ξ)− x̄ν(Gt(ξ))

]
5: Decomposition: Compute for each ξ ∈ Ξ

x(ν+1)(ξ) ∈ argminx f1(x
1) +

∑T
t=2 ft

(
xt;

→
x t−1(ξ),

→
ξ

t
)

+
∑T−1

t=1

[
w(t,ν)(ξ)⊤xt + ρ

2∥x
t − x̄(ν)(Gt(ξ))∥2

]
6: Termination: If a criterion is met, Stop. Otherwise go to step 2.

2.2 Progressive Hedging Algorithm to Accommodate

Consensus ADMM

The intuition is as follows: from an algorithmic perspective we treat the

consensus variables in the algorithm as if they were a special sort of non-

anticipative variable and treat the admm subproblems as if they are special

scenarios. We need to deal with the fact that not all consensus variables are

in all subproblems and we need to combine the two sources of scenarios.

The collection of ADMM subproblems are considered to emanate from a

scenario tree node that is replicated for addition to the original scenario tree

3

at every original leaf node. This results in a total of |Ξ||A| extended scenarios.

We denote the elements of the extended tree with a tilde. Note that for every

ξ̃ there is a corresponding ξ that was extended to create it, denoted as ξ̃ 7→ ξ.

ξ̃ contains the information of ξ local to its region. These scenarios have a stage

T + 1 with, of course, no additional stochastic data. They do have variables

subject to non-anticipativity constrains that we now associate with stage T ,

which are the ADMM consensus variables. These variables may originally

appear in only some subproblems (they might not appear in the argument to

function f (a) for all subproblems a), so in order to have various expressions

make sense, we add such variables to (f (a)) for a in which they do not appear

and fix their values to something arbitrary (e.g., zero) and the result is that the

vector of variables subject to non-anticipativity is the same for all extended

scenarios so we refer to it simply as x in the sequel.

We replace the real-valued scenario probabilities with a vector of probabil-

ities corresponding to variables subject to nonanticipativity, πt
ξ̃
, ξ̃ ∈ Ξ̃, t =

1, . . . , T . To establish values for the elements of this vector, we use the sce-

nario ξ for which ξ̃ 7→ ξ For variables that do not appear in
⋃

a∈A Ca the value

is simply the original probability of the scenario in which they occur scaled by

the number of ADMM subproblems:

Prξ
|A|

.

For variables, v, subject to ADMM consensus constraints (i.e., Kv > 0), the

value is
Prξ
Kv

and the value is zero for this variable in extended scenarios for subproblems

where the variable does not originally appear.

To represent the vector of unconditional probabilities for variables subject

to non-anticipativity at a node in the extended scenario tree, we use:

τD̃(ξ̃) =
πξ̃∑

υ̃∈D̃−1 πυ̃

,

where the calculation is done element-wise.

Algorithm 2 displays the algorithm. Bear in mind that the extended tree

has T +1 stages. To do the price update, we are going to need to mask out the

variables added to subproblems for scenarios where they did not originally ap-

pear. For that purpose, we create a vector mt(ξ̃) with elements corresponding

to the variables at each stage t. It will have a zero for variables that did not

originally appear in ξ̃ and a one for all other variables (i.e. most variables).

4

Algorithm 2 Progressive Hedging To Support Consensus ADMM

1: Initialization: Let ν ← 0 and w(t,ν)(ξ̃) ← 0, ∀ξ̃ ∈ Ξ, t = 1, . . . , T . Compute

for each ξ̃ ∈ Ξ:

x(ν+1)(ξ̃) ∈ argminx f1(x
1) +

T∑
t=2

ft

(
xt;

→
x t−1(ξ̃),

→
ξ

t
)

2: Iteration Update: ν ← ν + 1
3: Aggregation: Compute the average vector for each t = 1, . . . , T and for each

D̃ ∈ G̃t:
x̄(t,ν)(D̃)←

∑
ξ∈D−1

τD̃(ξ̃) ◦ x
(t,ν)(ξ̃)

4: Price Update: Compute for each t = 1, . . . , T and for each ξ̃ ∈ Ξ

w(t,ν)(ξ̃)← w(t,ν−1)(ξ̃) + ρmt(ξ̃) ◦
([

x(t,ν)(ξ̃)− x̄ν(G̃t(ξ̃))
])

5: Decomposition: Compute for each ξ̃ ∈ Ξ

x(ν+1)(ξ̃) ∈ argminx f1(x
1) +

∑T+1
t=2 ft

(
xt;

→
x t−1(ξ̃),

→
ξ

t
)

+
∑T

t=1

[
w(t,ν)(ξ̃)⊤xt + ρ

2∥x
t − x̄(ν)(G̃t(ξ̃))∥2

]
6: Termination: If a criterion is met, Stop. Otherwise go to step 2.

We intend for the sum in Step 3 to be element-wise as well as the product

(i.e., we are computing the average for each vector element). In Step 4 the

vector mt ”masks out” zero-probability variables.

Renormalizing the objective function

In order to report objective function values, they need to be renormalized be-

cause we used faux probabilities to treat the ADMM decomposition in an algo-

rithm designed for stochastic programs. For ADMM, the objective function for

a scenario is decomposed as a sum of objective functions in the sub-problems.

More precisely, let us note f the overall objective function decomposed in

(f (a))a∈A. Every stochastic scenario ξ ∈ Ξ can be decomposed as (ξ(a))a∈A
such that for all x we re-state Equation (2):

∑
a∈A

f (a)(x, ξ(a)) = f(x, ξ) := f1(x
1(ξ)) +

T∑
t=2

ft

(
xt(ξ);

→
x t−1,

→
ξ

t
)

Therefore, knowing that the probability of an ADMM scenario ξ̃ is divided

by |A| compared to the probability of the stochastic scenario ξ it originates

from, we have:

5

Z(x) =
∑
ξ∈Ξ

Prξ f(x, ξ)

=
∑
ξ∈Ξ

∑
a∈A

Prξ f
(a)(x, ξ(a))

= |A|
∑
ξ∈Ξ

∑
a∈A

Prξ(a) f
(a)(x, ξ(a))

= |A|
∑
ξ̃∈Ξ̃

Prξ̃ f̃(x, ξ̃)

Cost Coefficients

Note that to make Equation (2) hold, modelers may need to consider objective

function coefficients. For example, if the objective function is linear and a

consensus variable v appears in the objective function, the cost coefficients

must sum across the subproblems in which it appears to the original coefficient.

3 Example of maximum profit distribution prob-

lem

To illustrate possible applications of the algorithm, we present here an example

for a maximum profit distribution problem.

3.1 The non-decomposed problem

The deterministic problem

First, we introduce the notations for the non-decomposed, non-stochastic max-

imum profit distribution problem.

Index sets

The sets of Nodes N is decomposed into Factory Nodes F ⊂ N , Buyer

Nodes B ⊂ N and Distribution Center Nodes DC ⊂ N .

The set of Oriented Edges E ⊂ N 2 represents the directed arcs.

Parameters

� Net supply (Sn) positive at factory nodes, negative at buyer nodes,

null otherwise

� Production Costs (Pf) and scrap loss Lf at each factory node. The

scrap loss is the proportion of loss during the production.

� Revenues (Rb) at each buyer node

� Capacities (Ke) at each arc

� Shipping Costs (Ce) at each arc

6

Variables

� Flows 0 ≤ xe ≤ Ke at each arc

� Slack variables (yn). If n ∈ F , 0 ≤ yn ≤ Sn (unused capacity), if n ∈
B, Sn ≤ yn ≤ 0 (opposite of unmet demand) otherwise (for a distribution

center) yn = 0.

� Inventory 0 ≤ if ≤ yf for f ∈ F .
Although the model is a one-period model, we allow an inventory

which is valued at a low price: the half of the production cost. In the

deterministic version of the model, this will always be zero, but will be

non-zero for some scenarios with uncertain data.

Constraints

The slack allows the Flow Balance constraint:

∀n ∈ N\F ,
∑
o∈On

xo −
∑
j∈In

xj = Sn − yn

∀n ∈ F ,
∑
o∈Of

xo −
∑
j∈If

xj + in = (Sf − yf)Lf

In which On (resp. In) is the set of arcs leaving (resp. entering) n.

Objective function

To maximize the profit, we will minimize the cost, given by:

Z(x, y) =
∑
e∈E

Ce xe +
∑
n∈F

(Pn (Sn − yn)−
Pn

2
in) +

∑
n∈B

Rn (Sn − yn)

We seek

argmin
x,y

Z(x, y)

The stochastic version

We now consider the stochastic version of this problem. We treat the scrap

loss as uncertain. Therefore the amount of production needs to be decided first

(with yf for f ∈ F), then the amount of production Lξ
f is known (depending

on the scenario ξ) and finally the shipping quantities are decided. This is

a two-stage problem, where the non-anticipative variable is (yf)f∈F , for each

scenario ξ the model is as given above in the non stochastic-version with the

loss Lf = Lξ
f .

3.2 The ADMM decomposition

We now assume each model of our stochastic problem is an inter-regions max-

imum profit distribution problem which can be decomposed in sub-problems,

in the sense that there exists regions such that the flow is restricted inside the

regions, except for inter-region arcs between distribution centers in different

7

regions.

In a stochastic problem, the regions could be solved independently if the flow

between regions were imposed. That is why PH is used with the flow among

regions as consensus variables.

A representation is given in Figure 1. Only the flows, costs and capacities of

inter-regional arcs are represented.

Region 1

F1

F2

DC1

W1

W2

Region 2

DC2

B1

B2

B3

cost c, capacity k

flow x(DC1, DC2)

Figure 1: Representation of a stochastic scenario without ADMM decompo-
sition

We have seen that to do an ADMM decomposition into stochastic ADMM

sub-problems, we need to make sure that the overall objective function can be

split into sub-problems.

Z(x, y) =
∑
e∈E

Ce xe+
∑
n∈F

Pn (Sn−yn)+
∑
n∈B

Rn (Sn−yn−
in
2
) =

∑
a∈A

f (a)(x, y, ξ(a))

Therefore, we chose the objective function for an ADMM sub-problem

a ∈ A (a region) to be:

f (a)(x, y, ξ(a)) =
∑

e=(n1,n2)∈E
n1,n2∈a

Ce xe +
∑

e=(n1,n2)∈E
n1∈a,n2 /∈a

λeCe xe +
∑

e=(n1,n2)∈E
n1 /∈a,n2∈a

(1− λe)Ce xe

+
∑

n∈F∩a

Pn (Sn − yn −
in
2
) +

∑
n∈B∩a

Rn (Sn − yn)

=
∑

e=(n1,n2)∈E∩a

Ce xe +
∑

n∈F∩a

Pn (Sn − yn −
in
2
) +

∑
n∈B∩a

Rn (Sn − yn)

∑
e=(n1,n2)∈E
n1∈a,n2 /∈a

λeCe xe +
∑

e=(n1,n2)∈E
n1 /∈a,n2∈a

(1− λe)Ce xe

It is therefore possible to split the stochastic scenario in extended scenario

for each region.

This objective function for an extended scenario is similar to the one for a

scenario but presents the extra term associated with arcs among different

regions: ∑
e=(n1,n2)∈E
n1∈a,n2 /∈a

λeCe xe +
∑

e=(n1,n2)∈E
n1 /∈a,n2∈a

(1− λe)Ce xe

For each region the set of nodes in the extended scenario is the subset of the

8

original node set containing the nodes present in the region. The revenues,

production cost and scrap loss percentage are unchanged.

The oriented edges, can be distinguished in two categories, the intra-arcs and

the inter-arcs. The intra-arcs are among two nodes in the same region, their

capacity and cost remain unchanged. The inter-arcs are our consensus vari-

ables, and the cost needs to be chosen so that the sum in the two regions in

which it appears is the cost of the original arc, as shown above. The capacity

needs to remain the same.

For every stochastic scenario ξ and for every ADMM sub-problem (region)

s, the extended scenario ξ̃ = ξ(s) contains the same data as a usual stochastic

scenario, although some arcs may be linked to a node outside the model, which

will not be represented.

Figure 2 provides a representation of the two extended scenarios of the

previously presented stochastic scenario, in which λ = 1/2.

Region 1

F1

F2

DC1

W1

W2

Region 2

DC2

B1

B2

B3

=

c/2, kc/2, k

x(DC1, DC2)x(DC1, DC2)

Figure 2: Representation of a stochastic scenario decomposed into extended
scenarios

Note about probabilities for variables subject to non anticipitativity

In the distribution example, the consensus variables are inter-region arcs and

appear in exactly two regions, i.e. Kv = 2. Therefore, if a consensus variable

appears in a sub-problem a, i.e. if the inter-region arc has its source or target in

the region, the probability of the variable in the extended scenario is
Prξ
Kv

=
Prξ
2

for every scenario ξ, otherwise its probability is 0.

In the example above with two regions, the inter-region arc is in both region

consequently its value is
Prξ
2

for every scenario ξ.

3.3 Computational experiments

Importance of introducing slack variable for computation

Certain methods to obtain non-anticipative solutions for the stochastic prob-

lem decomposed with ADMM may not work efficiently with the model as

presented above.

For instance, a method consists in finding the best solution x such that

xt = x̄(ν)(G̃t(ξ̃)) at every-stage t for every scenario ξ. If there exists such

x, then the method provides a non-anticipative solution at every iteration.

The solution given by this method converges to the best non-anticipative so-

lution, because PH converges.

9

However, with our model there might not be any solution x such that

xt = x̄(ν)(G̃t(ξ̃)) at every stage and scenario. In practice, we have seen that such

a method may not find any incumbent in the first iterations. The reason is that,

when taking separately the extended scenarios, the inter-arcs entering a region

tend to reach the capacity upper bound k. Therefore, in the first iterations

the flow on inter-region arcs, which is the average of the flow incoming and

leaving will be high: x̄ ≥ k/2. However, it may not be feasible for the inter-arc

leaving the region to provide a flow greater than k/2.

To solve this issue, we added dummy slacks entering the distribution centers

with extremely high costs. Thanks to this flow the solution x̄ is always feasible,

and the dummy slacks quickly converge to 0.

For the same reason, having an inventory allows to always have feasible

incumbents, although here after convergence the inventory is always zero. In-

deed, it brings a slack variable to the model where the non-anticipative vari-

ables for the stochastic scenarios (here the slack at the factory nodes yf) are

defined, which allows a ȳ solution to be feasible.

Computational results

Scalable random instances of distribution models were generated to provide a

benchmark for varying sizes of each region, numbers of stochastic scenarios,

and the number of processors.

Experiments were run on a shared computer with 64 dual-threaded Intel(R)

Xeon(R) Gold 6430 cores that run between 800 and 3400 MHz with Gubobi

solver’s persistent interface. The results are presented in Table 3.

region
size

num.
scenarios

num.
processors

wall clock
(sec.)

iterations
relative
gap (%)

8 16 3 23.09 57 0.965
8 16 12 7.42 58 0.907
8 16 36 4.18 58 0.907
8 256 3 475.54 58 0.960
8 256 12 102.56 59 0.833
8 256 36 34.98 59 0.833

128 16 3 156.98 29 0.964
128 16 12 42.96 30 0.780
128 16 36 20.25 30 0.780
128 256 3 2845.59 30 0.809
128 256 12 583.44 30 0.809
128 256 36 232.96 30 0.809

Figure 3: Computational results for the distribution example. We used
stochastic admm package in mpi-sppy [4] with the “xbar” upper bounder,
the “lagrangian” lower bounder, and termination at a gap below 1%.

Based on trace output not shown here, improvements are probably possible

using the “ph-ob” lower bounder instead of “lagrangian” and perhaps using

the gradient based rho setter.

10

4 Conclusions

Decomposition using consensus ADMM can be used to allow parallelization

efficiencies or for reasons related to information security (see, e.g., [5]). In

either case, the input data may be uncertain and we have given a decomposi-

tion algorithm based on Progressive Hedging. It would be possible to base the

algorithm on Asynchronous Projective Hedging [3] instead of PH using similar

ideas.

References

[1] D. P. Bertsekas. “Multiplier methods: A survey”. In: Automatica 12.2

(1976), pp. 133–145. issn: 0005-1098. doi: https://doi.org/10.1016/

0005- 1098(76)90077- 7. url: https://www.sciencedirect.com/

science/article/pii/0005109876900777.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. “Distributed Op-

timization and Statistical Learning via the Alternating Direction Method

of Multipliers”. In: Foundations and Trends® in Machine Learning 3.1

(2011), pp. 1–122. issn: 1935-8237. doi: 10 . 1561 / 2200000016. url:

http://dx.doi.org/10.1561/2200000016.

[3] J. Eckstein, J.-P. Watson, and D. L. Woodruff. “Projective Hedging Al-

gorithms for Multistage Stochastic Programming, Supporting Distributed

and Asynchronous Implementation”. In: Operations Research to appear

(2023). url: https://doi.org/10.1287/opre.2022.0228.

[4] B. Knueven, D. Mildebrath, C. Muir, J. D. Siirola, J.-P. Watson, and D. L.

Woodruff. “A Parallel Hub-and-Spoke System for Large-Scale Scenario-

Based Optimization Under Uncertainty”. In:Math. Prog. Comp. 15 (2023),

pp. 591–619.

[5] M. Ma, L. Fan, and Z. Miao. “Consensus ADMM and Proximal ADMM

for economic dispatch and AC OPF with SOCP relaxation”. In: 2016

North American Power Symposium (NAPS). 2016, pp. 1–6. doi: 10 .

1109/NAPS.2016.7747961.

[6] R. T. Rockafellar and R. J.-B. Wets. “Scenarios and Policy Aggregation

in Optimization Under Uncertainty”. In: 16 (1991), pp. 119–147. issn:

0364-765X. doi: 10.1287/moor.16.1.119.

[7] J. Watson and D. L. Woodruff. “Progressive hedging innovations for a

class of stochastic mixed-integer resource allocation problems”. In: Com-

put. Manag. Sci. 8.4 (2011), pp. 355–370. doi: 10.1007/s10287-010-

0125-4.

11

https://doi.org/https://doi.org/10.1016/0005-1098(76)90077-7
https://doi.org/https://doi.org/10.1016/0005-1098(76)90077-7
https://www.sciencedirect.com/science/article/pii/0005109876900777
https://www.sciencedirect.com/science/article/pii/0005109876900777
https://doi.org/10.1561/2200000016
http://dx.doi.org/10.1561/2200000016
https://doi.org/10.1287/opre.2022.0228
https://doi.org/10.1109/NAPS.2016.7747961
https://doi.org/10.1109/NAPS.2016.7747961
https://doi.org/10.1287/moor.16.1.119
https://doi.org/10.1007/s10287-010-0125-4
https://doi.org/10.1007/s10287-010-0125-4

	Introduction
	Notation
	Stochastic Program
	Consensus ADMM

	Progressive Hedging
	The Basic Progressive Hedging Algorithm
	Progressive Hedging Algorithm to Accommodate Consensus ADMM

	Example of maximum profit distribution problem
	The non-decomposed problem
	The ADMM decomposition
	Computational experiments

	Conclusions

