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Abstract

We consider minimizing finite-sum and expectation objective functions via Hessian-averaging
based subsampled Newton methods. These methods allow for gradient inexactness and have fixed
per-iteration Hessian approximation costs. The recent work (Na et al. 2023) demonstrated that Hes-

sian averaging can be utilized to achieve fast O
ˆ

b

log k
k

˙

local superlinear convergence for strongly

convex functions in high probability, while maintaining fixed per-iteration Hessian costs. These
methods, however, require gradient exactness and strong convexity, which poses challenges for their
practical implementation. To address this concern we consider Hessian-averaged methods that al-
low gradient inexactness via norm condition based adaptive-sampling strategies. For the finite-sum
problem we utilize deterministic sampling techniques which lead to global linear and sublinear con-
vergence rates for strongly convex and nonconvex functions respectively. In this setting we are able
to derive an improved deterministic local superlinear convergence rate of O

`

1
k

˘

. For the expectation
problem we utilize stochastic sampling techniques, and derive global linear and sublinear rates for

strongly convex and nonconvex functions, as well as a O
´

1?
k

¯

local superlinear convergence rate,

all in expectation. We present novel analysis techniques that differ from the previous probabilis-
tic results. Additionally, we propose scalable and efficient variations of these methods via diagonal
approximations and derive the novel diagonally-averaged Newton (Dan) method for large-scale prob-
lems. Our numerical results demonstrate that the Hessian averaging not only helps with convergence,
but can lead to state-of-the-art performance on difficult problems such as CIFAR100 classification
with ResNets.

1 Introduction

We consider finite-sum optimization problems of the form

min
wPRd

fpwq :“
1

N

N
ÿ

i“1

Fipwq, (1.1)

where the objective function f : Rd Ñ R and the component functions Fi : Rd Ñ R (for i P t1, 2, . . . , Nu)
are twice continuously differentiable functions. Problems of this form are ubiquitous in modern com-
puting applications including machine learning [19, 37] and scientific computing [48, 58]. In addition,
finite-sum problems commonly arise in stochastic optimization settings when sample average approxi-
mations (SAA) of the optimization problems of the form

min
wPRd

fpwq :“ EζrF pw, ζqs, (1.2)
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are considered. Here ζ is a random variable with associated probability space pΩ,F , P q, where Ω is a
sample space, F is an event space, and P is a probability distribution. The function F : Rd ˆ Ω Ñ R
is a twice continuously differentiable function, and Eζr¨s is the expectation taken with respect to the
distribution of ζ. For any given set of random realizations tζ1, ζ2, ¨ ¨ ¨ , ζNu generated from the distribution
P , an SAA problem of the form (1.1) is constructed by defining Fip¨q :“ F p¨, ζiq. In supervised machine
learning, the random variable ζ :“ px, yq represents input-output data pairs and the function f is a
composition of a prediction function and a smooth loss function [19, 37]. The resulting finite-sum
problem is referred to as empirical risk and the expectation problem is referred to as the expected risk
minimization problem [82]. In this paper, we consider algorithms for solving problem (1.1) and also
suitably adapt them to problem (1.2).

Several classes of methods have been proposed to solve (1.1) and (1.2) (c.f. [19, 65]). In this paper, we
focus on subsampled Newton methods that employ gradient and Hessian approximations of the objective
function in standard Newton-type methods. In these methods, at any given iteration k P N, the search
direction pk is computed as the solution of the linear system of equations

∇2FSk
pwkqpk “ ´∇FXk

pwkq,

where

∇FXk
pwkq “

1

|Xk|

ÿ

iPXk

∇Fipwkq, ∇2FSk
pwkq “

1

|Sk|

ÿ

iPSk

∇2Fipwkq. (1.3)

Here the sets Xk, Sk are subsets of the index set t1, 2, ¨ ¨ ¨ u and ζi’s are drawn independently from
each other at random from the distribution P . In the case of the finite-sum problem (1.1), the sets
Xk, Sk are subsets of the index set t1, 2, ¨ ¨ ¨ , Nu. The choice of the subsets Xk, Sk, referred to as
sample sets, result in different algorithms. Several recent works have analyzed the theoretical and
empirical properties for different choices of sampling sets Xk and Sk [1, 13, 21, 22, 25, 34, 35, 73, 75].
Although the computationally efficient choice is to choose Hessian sample sizes (|Sk|) to be a fixed
small constant, the Hessian approximations in these works require large |Sk| to achieve fast local linear
convergence, and increasingly large |Sk| to achieve local superlinear convergence [13, 75]. However, such
large Hessian sample sizes lead to high per-iteration computational cost making them unsuitable for
large-scale optimization settings.

Recently, Na et. al. [64], have proposed and analyzed stochastic Hessian-averaged Newton methods
that overcome the high per-iteration Hessian sampling costs of previous methods by instead employing
a weighted average of the subsampled Hessians computed at past iterations. This approach increases
the accuracy of the Hessian approximations by reducing its variance, albeit at the cost of introducing
bias due to utilization of past iterates. Na et. al. established fast superlinear convergence results
in high probability with exact gradients and fixed small Hessian sample sizes (|Sk| “ |S0| for all k).
However, the requirements therein of exact gradient computation at each iteration is not practical in
large-scale optimization problems. In this work, we consider the gradients to be inexact and also propose
deterministic Hessian-averaging methods where the Hessian samples (with fixed sample size) are chosen
in a cyclic order without replacement that lead to faster deterministic superlinear rate of convergence
for the finite-sum problem (1.1).

While inexact gradients can be utilized in Newton-type methods, such methods lead to slower rate of
convergence which result in a significant increase in the overall number of linear system solves in these
methods. Adaptive gradient sampling methods overcome this limitation where the sample sizes employed
in the gradient estimation are gradually increased to increase the accuracy in gradient estimation and
retain the fast convergence properties of their deterministic counterparts [8, 12, 16, 22, 26, 70, 71].
Although these methods employ increasingly accurate gradient approximations as the iterations increase
(|Xk| increases), they achieve similar overall gradient computational complexity as in the stochastic
gradient methods (see [22, Table 4.1], Table 2). These methods typically employ tests to control sample
sizes that automatically adapt to problem settings [12, 16, 22, 25]. In this work, we extend adaptive
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gradient sampling tests to the Hessian-averaging setting, where the gradient sample sizes are chosen either
deterministically or randomly at each iteration. Our goal is a framework for fully inexact (stochastic)
Hessian-averaged subsampled Newton methods that limit per-iteration Hessian computational costs,
maintain rigorous convergence theory (i.e., global convergence with fast (superlinear) local convergence),
and at the same time lead to practical algorithms.

While Hessian-based methods have sound theoretical properties, they may not be viable for mod-
ern large-scale optimization problems such as those arising in machine learning due to the storage
cost of Opd2q and ostensible matrix inversion cost of Opd3q associated with Hessian matrix. To over-
come this limitation, we propose practical diagonally approximated Newton (Dan) algorithms based
on the Hessian-averaged Newton methods, similar to the one employed in Adahessian [90], requiring
only Op1q per-iteration Hessian-vector products and Opdq storage, making it appropriate for modern
memory-constrained settings. We consider variations of this algorithm based on different weightings,
and sampling schemes. Additionally, we illustrate the performance benefits of these methods on numer-
ical examples ranging from stochastic quadratic minimization to large-scale deep learning classification,
such as CIFAR100 with ResNets.

1.1 Related Work

We provide a concise summary of second-order methods that employ Hessian approximations in Newton-
type methods and adaptive gradient sampling methods for solving (1.1) and (1.2). We note that this is
not an extensive review of methods but rather closely related works to the methods considered in this
work.

Second-order methods. Several second-order methods that employ Hessian approximations have
been developed in the literature. Subsampled Newton methods are one of the main class in these meth-
ods [1, 13, 21, 22, 23, 29, 33, 34, 52, 60, 73, 83, 88, 89]. Roosta et al. have analyzed the theoretical
properties of these methods and provided convergence results in probability for the finite-sum problems
[75]. Bollapragada et al. have established convergence results in expectation for both finite-sum and ex-
pectation problems and employed conjugate gradient method for solving the Newton system of equations
inexactly [13]. They assumed that the individual component functions to be strongly convex to establish
the results in expectation. Both these works have established that Hessian samples have to be increased
to achieve superlinear rate of convergence. The empirical performance of subsampled Newton methods
has been established on different problems [6, 28, 84, 88]. Erdogdu and Montanari et al. have developed
and analyzed subsampled Newton methods with truncated eigenvalue decomposition [34]. Agarwal et
al. have analyzed Newton methods where the Newton system of equations are solved inexactly using a
stochastic gradient method at each iteration[1]. Subsampled Newton methods have also been adapted
to nonconvex settings using trust region and cubic regularization methods [86, 87].

Newton-sketch methods are alternate methods for subsampled Newton methods applied to finite-sum
problems [6, 38, 39, 51, 73]. These methods require access to the square root of the Hessian, which is
possible when generalized linear models are considered in machine learning. Typically, sketching strate-
gies such as randomized Hadamard transformations provide better Hessian approximations compared
to subsampling strategies; however they are typically more computationally expensive due to the high
per-iteration cost associated with constructing the linear system of equations [6]. Dereziński et al. pro-
posed the Newton-Less method that employs sparse sketch matrices to reduce the computational cost of
forming the approximate Hessians [30]. Sketching techniques have also been adapted to the distributed
optimization settings [3].

Subsampled Newton and Newton sketch methods require increasingly accurate Hessian approxima-
tions to achieve superlinear rate of convergence. Na et al. have proposed Hessian-averaging methods
that overcome this limitation [64]. Jiang et al. have improved the global rate of convergence of [64]
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while maintaining similar superlinear rate of convergence [46]. In these works, true gradients are em-
ployed in the step computations, thus limiting their deployment in practice. In this work, we consider
inexact gradients and also consider deterministic Hessian-averaging methods in addition to stochastic
Hessian-averaging methods that could further improve the superlinear rate of convergence.

Adaptive gradient sampling methods. Stochastic gradient methods are well-known and widely
used method in machine learning. This method however suffers from slow sublinear convergence for
strongly convex function due to variance in the stochastic gradient estimation. Adaptive gradient sam-
pling methods overcome this limitation by gradually increasing the accuracy in the gradient estimation
by controlling the gradient samples |Xk| to ensure similar convergence guarantees as their determin-
istic counterparts [14, 22, 25, 26, 35, 70, 71]. Several adaptive rules have been developed to choose
the gradient accuracy at each iteration within the algorithm and “norm test” is a popular condition
proposed for the unconstrained settings [12, 22, 25, 26]. These adaptive methods achieve both optimal
theoretical convergence results and first-order complexity results to achieve an ϵ-accurate solution for
the expectation problem. These methods have also been adapted to other problem settings, including
derivative-free optimization [14, 15, 17, 79] and stochastic constrained optimization [5, 8, 14, 85]. In this
work, we will adapt these methods to the Hessian-averaging based subsampled Newton methods.

Other related methods. There are several other classes of methods for solving (1.1) and (1.2). Vari-
ants of first-order methods including diagonal scaling and momentum attain good empirical performance
on challenging machine learning tasks [32, 44, 47, 56]. Stochastic quasi-Newton methods that construct
quadratic models of the objective function using only stochastic gradient information are a popular class
of methods [9, 10, 16, 63, 78, 92]. The limited memory variants of these methods are competitive to
first-order methods on several machine learning classification problems [16]. Additionally, Kronecker-
factored approximate curvature (KFAC) methods have been demonstrated as powerful algorithms in
stochastic optimization [2, 61].

1.2 Contributions

The main contributions of our work are as follows.

1. We develop an adaptive Hessian-averaging algorithmic framework where we incorporate deter-
ministic and stochastic adaptive generalizations of the “norm condition” to choose the gradient
accuracy at each iteration for solving (1.1) and (1.2) respectively. We choose Hessian samples
either in a deterministic cyclic fashion without replacement for the finite-sum problem (1.1) or
randomly from the distribution P for the expectation problem (1.2). Furthermore, we modify the
Hessian-averaging scheme whenever it is not a positive-definite matrix to ensure that the Newton
steps are employed at each iteration instead of skipping them (see [64, Algorithm 1]) which en-
sures a convergence rate for every iteration from the start of the iteration as opposed to having
a warm-up phase [46]. Furthermore, such modifications automatically become inactive after the
iterates enter locally strongly convex regime (see Lemma 3.7).

2. For the finite-sum problem (1.1), we establish deterministic global linear (Theorem 3.2) and sub-
linear (Theorem 3.3) convergence results by employing appropriately chosen gradient accuracy
conditions for strongly convex and nonconvex functions respectively. When the iterates enter a
locally strongly convex regime, we further establish deterministic local superlinear convergence for
the case where the Hessian samples are chosen in a cyclic manner without replacement as opposed
to randomly choosing samples at each iteration (Theorem 3.10). This choice of Hessian samples
leads to an improved superlinear rate of O

`

1
k

˘

as opposed to existing results in the literature
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(see Table 1). Moreover this choice produces stronger deterministic results compared to results in
probability or expectation.

3. We establish theoretical convergence results for the stochastic settings (1.2) where the inaccurate
gradient approximations are chosen such that the stochastic gradient accuracy conditions are sat-
isfied and the Hessian samples are chosen randomly from the distribution P at each iteration. We
established similar global linear (Theorem 4.2) and sublinear (Theorem 4.3) convergence results
for strongly convex and nonconvex functions, respectively, as in the case of finite-sum problem.
Furthermore, using an additional assumption related to the boundedness of the moment of iter-
ates and local strong convexity of subsampled Hessians, we establish local superlinear convergence

where the rate is O
´

1?
k

¯

that matches existing results in [46, 64], albeit in expectation as opposed

to in probability (see Table 1). We note that in order to prove the O
´

1?
k

¯

expectation result

and the O
`

1
k

˘

deterministic result, we utilize different proof techniques than those employed in
[46, 64]. While the probabilistic results therein rely on Freedman’s inequality for matrix martin-
gales [81], our approach decomposes the Hessian error and places the statistical sampling error at
the optimum, allowing us to concentrate the sampling error via direct analysis. We overview the
contributions of our convergence results relative to existing methods in Table 1.

4. We establish total computational complexity for Hessian (Corollary 4.9) and gradient (Corollary
4.10) computations necessary to achieve an ϵ-accurate solution. To allow for appropriate compar-
isons with existing results in the literature, we only considered globally strongly convex functions.
Although, the gradient samples are increasing at each iteration, the overall complexity in terms of
total gradient samples match with the well-known stochastic gradient method for the expectation
problem in terms of the dependence on ϵ. Furthermore, the dependence on the condition number
of the problem is improved due to the Hessian-averaging techniques.These results are summarized
in Table 2.

5. To tackle large-scale problems, we motivate the use of Hessian-matrix products, which can be ef-
ficiently implemented via vectorization on GPUs, leading to algorithms with Op1q Hessian-vector
products per iteration and Opdq memory requirements. In particular we utilize a diagonal approxi-
mation, which can be efficiently computed via randomized estimation [31, 62], leading to the novel
diagonally-averaged Newton (Dan) method and its variants.

6. We demonstrate the numerical benefits of Hessian averaging on a range of numerical experiments
ranging from stochastic quadratics, logistic regression, image classification (CIFAR10 and CI-
FAR100) as well as neural operator training. We demonstrate that Hessian averaging overcomes
the inherent instability of fully-subsampled Newton methods. In order to target large-scale op-
timization problems, we propose efficient implementation of Dan using randomized Hutchinson
diagonal estimation. In our experiments, we demonstrate that Dan was competitive with Adam
and Adahessian (often achieving superior performance); notably Dan does not employ gradient
momentum.
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result objective gradient Hessian global
local

(superlinear)

result

type

[75]
strong convex

finite-sum
subsampled subsampled linear asymptotic P

[13]
strong convex

expectation
subsampled subsampled linear asymptotic E

[46, 64]
strong convex

finite-sum
exact path-averaged linear O

ˆ

b

log k
k

˙

P

Theorem 3.10

nonconvex

adaptive path-averaged

sublinear

O
`

1
k

˘

deterministicstrong convex

finite-sum
linear

Theorem 4.8

nonconvex

adaptive path-averaged

sublinear

O
´

1?
k

¯

Estrong convex

expectation
linear

Table 1: Comparison of convergence results. Here P denotes that the result is probabilistic, while E
denotes that the result is proven in expectation.

1.3 Organization

The paper is organized into six sections. In the remainder of this section, we define notation that is
employed throughout the paper. In Section 2, we first describe the Hessian averaging methods and
then discuss adaptive gradient-accuracy conditions and the corresponding sample size requirements to
satisfy these conditions. In Section 3, we establish theoretical results for the finite-sum minimization
problem (1.1). We establish global convergence, superlinear local convergence, followed by global to
local transition iteration complexity results. In Section 4, we repeat this analysis for the expectation
based sampling methods whose target is the expectation minimization problem (1.2). We also provide
iteration and gradient evaluation complexity results. In Section 5, we discuss practical algorithms that
are designed to handle large-scale problems. In Section 6, we illustrate the performance of the proposed
algorithms on various problems. Finally, concluding remarks are presented in Section 7.

1.4 Notation

We use the following notation throughout the paper. We work with the natural numbers N “ t1, 2, ¨ ¨ ¨ u,
positive integers Z` “ N Y t0u, and the reals R “ p´8,`8q. We consider real-valued (R) spaces
Rd,Rdˆr for vectors and matrices, respectively, for dimensions d, r P N. We use the Euclidean ℓ2 norm,
} ¨ } “ } ¨ }2 for both vectors and matrices, unless otherwise specified. Assuming A P Rdˆd is symmetric

positive definite, the A weighted norm is defined as }w}A “
?
wTAw. Given a symmetric but potentially

indefinite matrix A, we denote by λminpAq, λmaxpAq the smallest and largest eigenvalues of A, respectively
and |A| denotes the matrix obtained by replacing the negative eigenvalues with their magnitudes. We
denote by Ekr¨s the conditional expectation conditioned on the fact that the algorithm reach iterate wk.
When using more specific conditional expectations, definitions will be specified in the text. Given a
sequence tek P Ru8

k“1 with a limit e˚, we characterize its rate of convergence as follows. We say that ek
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has Q-convergence with order q to e˚ P R if there exists a constant C such that

lim
kÑ8

ek`1

eqk
“ C.

For all cases with q ą 1, and the case that q “ 1 and C “ 0, we say that ek convergences Q-superlinearly
to e˚. We say that ek has R-convergence with order q to e˚ if there exists a sequence rk, such that
|ek ´ e˚| ă rk for all k and rk has Q-convergence with order q to 0. R-superlinear convergence is
attained when rk has Q-superlinear convergence to 0. We note by Õp¨q the limiting behavior of a
function, disregarding logarithmic factors.

2 Hessian Averaging with Adaptive Gradient Sampling

The generic iterate update form of Hessian-averaged Newton method for solving problems of the form
(1.1) or (1.2) is given as,

wk`1 “ wk ´ αkpk, pk “ rH´1
k gk, (2.1)

where αk ą 0 is the step size parameter, and gk P Rd, rHk P Rdˆd, are the gradient and Hessian
approximations of ∇fpwkq and ∇2fpwkq respectively. We now discuss the algorithmic components of

Hessian averaging to compute rHk and adaptive gradient sampling to compute gk for each wk, with
k P Z`.

Hessian Averaging. In typical subsampled Newton methods, Hessians are approximated via subsam-
pling where the sample sets are chosen either in a deterministic cyclic fashion or randomly drawn from
P as given in (1.3). Though these estimates are unbiased, they typically have large variance and require
either large or increasing sample sizes |Sk| to achieve fast local linear or superlinear rates of convergence
respectively [13, 75]. Additionally, subsampled Newton iterates that are based on aggressively subsam-
pled Hessian approximations may become unstable, due to the injection of statistical sampling errors in
the iterate update. Sample size selection procedures that overcome these issues are not computationally
viable in large-scale settings. Hessian-averaging approaches overcome this computational hurdle and
reduce the variance in the estimation by employing a path-averaged Hessian with coefficients γi P r0, 1s,
řk

i“0 γi “ 1, defined as follows:

Path-averaged Hessian: pHk “

k
ÿ

i“0

γi∇2FSi
pwiq. (2.2)

Here Si are the independent sample sets drawn either deterministically without replacement in a cyclic
fashion or at random at each iteration i. The Hessian approximation error corresponding to this path-
averaged estimate can be decomposed into two terms as follows:

pHk ´ ∇2fpwkq “

k
ÿ

i“0

γi
`

∇2FSi
pwiq ´ ∇2FSi

pwkq
˘

loooooooooooooooooooomoooooooooooooooooooon

Hessian memory error

`

k
ÿ

i“0

γi∇2FSi
pwkq ´ ∇2fpwkq

looooooooooooooooomooooooooooooooooon

sampling error

. (2.3)

Choosing γi “ 0 for all i “ 0, ¨ ¨ ¨ , k ´ 1 and γk “ 1 correspond to the well-known subsampled Newton
methods [13, 75] and results only in the sampling error which could be significantly large when sample
size |Sk| is small. On the other hand, choosing γi “ 1

k`1 for all i “ 0, ¨ ¨ ¨ , k, reduces the sampling
error but introduces Hessian memory error due to utilization of past information. However, as the
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iterates converge, both these errors decrease leading to accurate Hessian approximations which is the
main motivation for this approach.

In nonconvex settings, the path-averaged subsampled Hessians pHk (2.2) may not be positive-definite

and so the computation of search direction pH´1
k gk may not be well-defined. To overcome this limitation,

we modify the path-averaged subsampled Hessians to ensure it is spectrally lower bounded below. That
is, for any given µ̃ ą 0, we define the Hessian approximation as

rHk “

#

| pHk| if λminp| pHk|q ě µ̃

| pHk| `

´

µ̃´ λminp| pHk|q

¯

I otherwise,
(2.4)

where λminpAq is the smallest eigenvalue of symmetric matrix A P Rdˆd, and |A| denotes the matrix
obtained by replacing the negative eigenvalues with their magnitudes. That is, for any symmetric matrix
A “ UΛUT , U P Rdˆd is the orthogonal matrix, and Λ P Rdˆd is the diagonal matrix with eigenvalues,
|A| “ U |Λ|UT . This modification ensures that

rHk ľ µ̃I. (2.5)

and in the case where pHk ľ µ̃I, there is no modification to the path-averaged Hessian ( rHk “ pHk).

Adaptive Gradient Sampling. The performance of the algorithms based on the iterate update form
given in (2.1) also depends on the accuracy of the gradient approximations. In [64], the authors consider
exact gradients, which is not practical in large-scale finite-sum problems (1.1) or expectation problems
(1.2). Subsampled gradients overcome this limitation, however the sampling errors that they introduce
lead to slow convergence. Furthermore, due to the additional costs due to the Hessian evaluations, it
is imperative to reduce the number of overall iterations to achieve computational efficiency. Adaptive
sampling approaches gradually increase the accuracy in the gradient estimation via increasing sample
sizes used in the gradient approximation to achieve fast convergence. These methods ensure that the
error in the gradient approximation at each iteration is relatively small compared to the gradient itself.
In this work, we combine these approaches with Hessian averaging approaches leading to generalized
versions of the norm condition [12, 22, 25] adapted to Newton-type methods. Specifically, we consider
the following deterministic and stochastic conditions on the accuracy of the gradient approximations for
the finite-sum (1.1) and expectation (1.2) problems.

Condition 2.1. (Gradient sampling conditions). At each iteration k P Z` and a given symmetric
positive-definite matrix Ak P Rdˆd, we utilize the following conditions.

1. Deterministic norm condition: For any given θk P r0, 1s and ιk ą 0, the error in the gradient
approximation satisfies the following deterministic norm condition.

}gk ´ ∇fpwkq}2Ak
ď θ2k}∇fpwkq}2Ak

` ιk. (2.6a)

2. Stochastic norm condition: For any given θk ą 0 and ιk ą 0, the expected error in the gradient
approximation satisfies the following generalized norm condition.

Er}gk ´ ∇fpwkq}2Ak
|wk, Aks ď θ2k}∇fpwkq}2Ak

` ιk, (2.6b)

where Er¨|wk, Aks denote the conditional expectation conditioned on Ak and that the algorithm
reach iterate wk.

Remark 2.1. We note that these gradient sampling conditions reduce to the well-known “norm condition”
for the choice of Ak “ I and ιk “ 0. In this paper, we consider this choice along with Ak “ rH´1

k that
leads to better theoretical convergence results (see Theorems 3.2 and 4.3). In addition, the sequence
ιk further relaxes the norm condition and by suitably driving this sequence to zero, we establish the
convergence and rate of convergence results.
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These gradient sampling conditions are satisfied by choosing the gradient sample sizes |Xk| appro-
priately. Specifically, under the following assumption, we can establish bounds on |Xk| that satisfy these
conditions.

Assumption 2.1. (Gradient approximations). For all w P Rd, the individual component gradients are
bounded relative to the gradient of the objective function fpwq. That is,

1. For the finite-sum problem: There exists constants β1,g, β2,g ě 0 such that

}∇Fipwq}2 ď β1,g}∇fpwq}2 ` β2,g @i P t1, 2, ¨ ¨ ¨ , Nu. (2.7a)

2. For the expectation problem: There exists constants σ1,g, σ2,g ě 0 such that

Eζr}∇F pw, ζq ´ ∇fpwq}2|ws ď σ2
1,g}∇fpwq}2 ` σ2

2,g. (2.7b)

Remark 2.2. We note that (2.7a) is a weaker assumption compared to the assumption where the indi-
vidual gradient components are absolutely bounded and (2.7b) is a standard assumption in stochastic
optimization literature [19].

The following lemma establishes the bounds on gradient sample sizes |Xk| at each iteration k.

Lemma 2.1. Suppose Assumption 2.1 holds. For any k P Z` and λminpAkq, λmaxpAkq P p0,8q denote
the smallest and largest eigenvalues of Ak respectively, we have that

1. If (2.7a) holds and

|Xk| ě N

¨

˝1 ´

d

θ2k}∇fpwkq}2Ak
` ιk

4λmaxpAkqpβ1,g}∇fpwkq}2 ` β2,gq

˛

‚, (2.8a)

then deterministic norm condition (2.6a) is satisfied.

2. If (2.7b) holds, Ergk|wks “ ∇fpwkq, and

|Xk| ě
λmaxpAkqpσ2

1,g}∇fpwkq}2 ` σ2
2,gq

θ2k}∇fpwkq}2Ak
` ιk

, (2.8b)

then stochastic norm condition (2.6b) is satisfied.

Proof. Deterministic norm condition. Consider

}gk ´ ∇fpwkq}2Ak
ď λmaxpAkq}gk ´ ∇fpwkq}2

ď 4λmaxpAkq

ˆ

N ´ |Xk|

N

˙2
`

β1,g}∇fpwkq}2 ` β2,g
˘

ď θ2k}∇fpwkq}2Ak
` ιk.

where the first inequality is due to wTAw ď λmaxpAkq}w}2, the second inequality is due to (2.7a) and
the analysis provided in [35, Section 3.1], and the third inequality is due to the bound on |Xk| given in
(2.8a). We provide the derivation of the second inequality in Appendix 9.1 for completeness.
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Stochastic norm condition. Following a similar approach as in the deterministic norm condition, and
using Ergk|wks “ ∇fpwkq, we have

Er}gk ´ ∇fpwkq}2Ak
|wk, Aks ď λmaxpAkqEr}gk ´ ∇fpwkq}2|wks

“ λmaxpAkq
Eζr}∇F pwk, ζq ´ ∇fpwkq}2|wks

|Xk|

ď λmaxpAkq
σ2
1,g}∇fpwkq}2 ` σ2

2,g

|Xk|

ď θ2k}∇fpwkq}2Ak
` ιk.

In Section 5.4.3, we provide practical strategies for choosing the gradient sample sizes |Xk| at each
iterate wk, k P Z` instead of employing these pessimistic theoretical bounds that require accessing
unknown problem specific constants such as σ1,g and σ2,g.

In what follows, we split our convergence theory into two parts: first the deterministic sampling
convergence theory where we prove a novel O

`

1
k

˘

superlinear local convergence rate, followed by a section
where we extend this analysis to the stochastic setting, deriving bounds in expectation, where our results

match the probabilistic Õ
´

1?
k

¯

superlinear local convergence rate. In both cases we simultaneously

assume gradient and Hessian inexactness, and maintain a fixed per-iteration Hessian computational
cost.

10



3 Deterministic Sampling Analysis

Nonconvex functions

Rate: O
`

1
k

˘

αk “ O
`

1
κ

˘

θk “ θ̃g P r0, 1q
ř

ιk ă 8

Global sublinear

Strongly convex functions

Rate constant:

max

"ˆ

1 ´
p1´θ̃2

gq
2κ2

˙

, ag

*

αk “ O
`

1
κ

˘

θk “ θ̃g P r0, 1q

ιk “ ι0a
k
g , ag P r0, 1q

Global linear

Rate constant:
?
al P r0, 1q

αk “ 1
θk “ O

`a

al

κ3

˘

ιk “ ι0a
k
l

Local linear

Asymptotic rate constant: O
`

1
k

˘

αk “ 1
θk “ O

`a

al

k2κ3

˘

, al P r0, 1q

ιk “
ι0a

k
l

k4

Local superlinear

Objective Function

minw fpwq “ 1
N

řN
i“1 Fipwq

Global-local
transition complexity

Õ
´

max
!

N
|S0|

, κ2p1 ` M
µ3{2 q

)¯

Constants: N , κ, µ, M Hyperparameters: αk, θk, ιk, |S0|

Figure 1: Overview of the results presented in this section. We characterize the main results for global
and local convergence results, and their relationship to the problem constants and algorithmic hyper-
parameters. Here, N denotes the number of data, µ is the Hessian spectral lower bound, κ “ L

µ is a
condition-number like constant, and M is the Hessian Lipschitz constant.

We begin our analysis by focusing on the deterministic sampling-based algorithms for the solution of the
finite-sum minimization problem (1.1), where the subsampled gradients satisfy the deterministic norm
condition (2.6a), and the subsampled Hessians are deterministically sampled without replacement in a
cyclic fashion. We establish theoretical global linear and sublinear convergence results for strongly convex
and nonconvex functions respectively, and local superlinear convergence results when the iterates enter
a strongly convex neighborhood of the optimal solution. A schematic of this analysis summarizing the
convergence results is given in Figure 1. We begin with an assumption about the subsampled functions.

Assumption 3.1. (Spectral upper bounds of subsampled Hessians). The subsampled functions are twice
continuously differentiable with the eigenvalues of the subsampled Hessians bounded above where the
bound depend on the sample size |S|. That is, for all |S| P N, there exists constants 0 ă L|S| ă 8 such
that

∇2FSpwq ĺ L|S|I, @w P Rd. (3.1)

Furthermore there exists constant L such that L|S| ď L ă 8 for all |S| P N. As a consequence, we have

that ∇2fpwq ĺ LI for all w P Rd.

Before establishing theoretical convergence results, we state key inequalities due to the Assump-
tion 3.1 that are used throughout the analysis. From Assumption 3.1 and Taylor’s theorem [65, 80], it
follows that

fpwq ď fpvq ` ∇fpvqT pw ´ vq `
L

2
}w ´ v}2, @w, v P Rd. (3.2)

11



Furthermore, we also have that the path-averaged Hessians have upper bounded eigenvalues. That is,
due to (2.4) and Assumption 3.1, we have

pHk ĺ pLkI, pLk ď

k
ÿ

i“0

γiL|Si| ď L, (3.3)

rHk ĺ L̃I, L̃ ď

k
ÿ

i“0

γiL|Si| ` µ̃´ λminp| pHk|q ď L` µ̃. (3.4)

We begin our analysis by providing a technical lemma that establishes an upper bound on the
difference between the objective function values at successive iterations.

Lemma 3.1. Suppose Assumption 3.1 holds. For any w0, let twk : k P Nu be iterates generated by (2.1)
with the Hessian approximation given in (2.4). If the step size αk at each iteration k is chosen such that
αk ď

µ̃
L . Then, for all k P Z`, it follows that,

fpwk`1q ď fpwkq ´
αk

2
∇fpwkqT rH´1

k ∇fpwkq `
αk

2
δTk

rH´1
k δk, (3.5)

where δk “ gk ´ ∇fpwkq.

Proof. Using (3.2) and the definition of δk, we have

fpwk`1q ď fpwkq ´ αk∇fpwkqT rH´1
k gk `

Lα2
k

2
} rH´1

k gk}2

“ fpwkq ´ αk∇fpwkqT rH´1
k p∇fpwkq ` δkq `

Lα2
k

2
} rH´1

k p∇fpwkq ` δkq}2 (3.6)

“ fpwkq ´ αk∇fpwkqT rH´1
k ∇fpwkq ´ αk∇fpwkqT rH´1

k δk

`
Lα2

k

2

”

} rH´1
k ∇fpwkq}2 ` } rH´1

k δk}2 ` 2∇fpwkqT rH´2
k δk

ı

“ fpwkq ´ αk∇fpwkqT rH´1
k ∇fpwkq `

Lα2
k

2

”

} rH´1
k ∇fpwkq}2 ` } rH´1

k δk}2
ı

´ αkp rH
´1{2
k ∇fpwkqqT

”

I ´ Lαk
rH´1
k

ı

p rH
´1{2
k δkq. (3.7)

Substituting I ´ Lαk
rH´1
k ľ 0 due to αk ď

µ̃
L and using the fact that ´wTAv ď 1

2w
TAw ` 1

2v
TAv for

any w, v P Rd and 0 ĺ A P Rdˆd in (3.7) yields

fpwk`1q ď fpwkq ´ αk∇fpwkqT rH´1
k ∇fpwkq `

Lα2
k

2

”

} rH´1
k ∇fpwkq}2 ` } rH´1

k δk}2
ı

`
αk

2
p rH

´1{2
k ∇fpwkqqT rI ´ Lαk

rH´1
k sp rH

´1{2
k ∇fpwkqq

`
αk

2
p rH

´1{2
k δkqqT rI ´ Lαk

rH´1
k sp rH

´1{2
k δkq

“ fpwkq ´
αk

2
∇fpwkqT rH´1

k ∇fpwkq `
αk

2
δTk

rH´1
k δk.

3.1 Global Convergence

In this section we derive global convergence rates. We first start with strongly convex functions, where
we make the following assumption about the objective function.
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Assumption 3.2. (Global strong convexity). The eigenvalues of the Hessians are all positive and are
bounded away from zero. That is, there exists constant µ ą 0 such that

∇2fpwq ľ µI. (3.8)

From Assumption 3.2, we have

}∇fpwq}2 ě 2µpfpwq ´ fpw˚qq, @w P Rd, (3.9)

where w˚ is the unique optimal solution of (1.1) or (1.2) (see [19] for the proof). We are now ready to
provide the global linear convergence result for strongly convex functions.

Theorem 3.2. (Global linear convergence, deterministic sampling). Suppose Assumptions 3.1 and 3.2
hold. For any w0 P Rd, let twk : k P Nu be iterates generated by (2.1) where the Hessian approximation
is given in (2.4) and the gradient approximations gk satisfies the Condition 2.1 with ιk`1 “ ιkag for

some ι0 ą 0 and ag P r0, 1q. Then, if gk satisfies deterministic norm condition (2.6a) with Ak “ rH´1
k

and θk “ θ̃g P r0, 1q, and the step size is chosen such that αk “ α ď
µ̃
L ,

fpwkq ´ fpw˚q ď C̃1ρ̃
k
1 , (3.10)

C̃1 :“ max

$

&

%

fpw0q ´ fpw˚q,
L̃ι0

µ
´

1 ´ θ̃2g

¯

,

.

-

, and ρ̃1 :“ max

$

&

%

1 ´

αµ
´

1 ´ θ̃2g

¯

2L̃
, ag

,

.

-

.

Proof. From (2.6a) and (3.5), we have

fpwk`1q ď fpwkq ´
αk

2
∇fpwkqT rH´1

k ∇fpwkq `
αk

2
δTk

rH´1
k δk

ď fpwkq ´
αk

2
∇fpwkqT rH´1

k ∇fpwkq `
αkθ

2
k

2
∇fpwkqT rH´1

k ∇fpwkq `
αkιk
2

ď fpwkq ´
αkp1 ´ θ2kq

2L̃
}∇fpwkq}2 `

αkιk
2

, (3.11)

where the last inequality is due to (3.4). Subtracting fpw˚q from both sides of (3.11) and using (3.9), it
follows that

fpwk`1q ´ fpw˚q ď

ˆ

1 ´ αk
µp1 ´ θ2kq

L̃

˙

pfpwkq ´ fpw˚qq `
αkιk
2

. (3.12)

We will use induction to show the rest of the proof. Substitute αk “ α and θk “ θ̃g in (3.12). We note
that (3.10) trivially holds for k “ 0. Now, suppose that (3.10) holds for some k. Considering (3.12), we
get,

fpwk`1q ´ fpw˚q ď

˜

1 ´ α
µp1 ´ θ̃2gq

L̃

¸

C̃1ρ̃
k
1 `

αι0a
k
g

2

“ C̃1ρ̃
k
1

˜

1 ´ α
µp1 ´ θ̃2gq

L̃
`
αι0

2C̃1

ˆ

ag
ρ̃1

˙k
¸

ď C̃1ρ̃
k
1

˜

1 ´ α
µp1 ´ θ̃2gq

L̃
`
αι0

2C̃1

¸

ď C̃1ρ̃
k
1

˜

1 ´ α
µp1 ´ θ̃2gq

2L̃

¸

“ C̃1ρ̃
k`1
1 ,

where the inequalities are due to the definitions of C̃1 and ρ̃1.
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Remark 3.1. We make the following remarks about the Theorem 3.2

• For θ̃g “ 0 and ag “ 0 (ιk “ 0), Theorem 3.2 recovers the classical global linear convergence result

for Newton’s method. We note that the rate constant
´

1 ´
αµ

2L̃

¯

is worse than that of steepest

descent method, which is an artifact of global convergence analysis of Newton’s method. As is
typical with Newton methods, the global convergence bounds are more pessimistic than similar
bounds for first-order methods due to taking into account worst-case spectral bounds of the Hessian.
We note that in practice we do not expect significantly worse convergence rates for second-order
methods, indeed our numerical results demonstrate that Hessian-averaged Newton methods are
able to take larger steps than first-order methods.

• We do not consider other cases of deterministic norm condition in this setting of Ak “ I as it
enforces stringent restrictions on the choice of θ̃g.

Next we consider general nonconvex functions where we provide the following sublinear convergence
results.

Theorem 3.3. (Global sublinear convergence, deterministic sampling). Suppose Assumption 3.1 holds
and the objective function f is bounded below by fmin. For any w0, let twk : k P Nu be iterates generated
by (2.1) where the gradient approximations gk satisfy the Condition 2.1with

ř8

i“0 ιk “ ι̃ ă 8. Then, if

gk satisfies deterministic norm condition (2.6a) with Ak “ rH´1
k and θk “ θ̃g P r0, 1q, and the step size

is chosen such that αk “ α ď
µ̃
L , then limkÑ8 }∇fpwkq}2 “ 0 and for any positive integer T ,

min
0ďkďT´1

}∇fpwkq}2 ď
L̃

p1 ´ θ̃2gqT

ˆ

2pfpw0q ´ fminq

α
` ι̃

˙

. (3.13)

Proof. Substituting αk “ α and θk “ θg in (3.11), rearranging the terms, and summing up the inequal-
ities from k “ 0 to T ´ 1 yields

T´1
ÿ

k“0

}∇fpwkq}2 ď
L̃

p1 ´ θ̃2gq

˜

2pfpw0q ´ fpwT qq

α
`

T´1
ÿ

k“0

ιk

¸

ď
L̃

p1 ´ θ̃2gq

ˆ

2pfpw0q ´ fminq

α
` ι̃

˙

,

where the last inequality is due to fpwT q ě fmin and
ř8

k“0 ιk “ ι̃. Taking the limits on T yields
limkÑ8 }∇fpwkq}2 “ 0. In addition, we have

min
0ďkďT´1

}∇fpwkq}2 ď
1

T

T´1
ÿ

k“0

}∇fpwkq}2 ď
L̃

p1 ´ θ̃2gqT

ˆ

2pfpw0q ´ fminq

α
` ι̃

˙

.

3.2 Local Convergence

We now provide local superlinear rates of convergence results for the iterates generated by (2.1) when
unit step size is eventually employed. We make the following standard assumption in local analysis of
Newton-type methods that the Hessians are Lipschitz continuous. That is,

Assumption 3.3. (Lipschitz continuous Hessians). For any |S| P N, there exists a constant 0 ă M|S| ă

8 such that
}∇2FSpwq ´ ∇2FSpvq} ď M|S|}w ´ v} @w, v P Rd. (3.14)

Furthermore, there exists constant M such that M|S| ă M ă 8 for all |S| P N. As a consequence, we

have that }∇2fpwq ´ ∇2fpvq} ď M}w ´ v} for all w, v P Rd.
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We start by presenting a fundamental lemma that establishes a generalized linear-quadratic bound
on the iterate distance to optimality when unit step size is employed at that iteration (αk “ 1).

Lemma 3.4. Suppose Assumptions 3.1 and 3.3 hold. For any w0 P Rd, let twk : k P Nu be iterates
generated by (2.1) where the Hessian approximation is given in (2.4) and the gradient approximations

gk satisfies the Condition 2.1 with λminpAkq ě λA and λmaxpAkq

λminpAkq
ď κA for some positive constants

λA, κA ă 8. If at any iteration k P N, unit step size is chosen (αk “ 1). Then, if gk satisfies
deterministic norm condition (2.6a)

}wk`1 ´ w˚} ď
M

2µ̃
}wk ´ w˚}2 `

1

µ̃
}p rHk ´ ∇2fpwkqqpwk ´ w˚q}

`
L

?
κA
µ̃

θk}wk ´ w˚} `

?
ιk

µ̃
?
λA

, (3.15)

where w˚ is an optimal solution.

Proof. We proceed by decomposing the iterate update (2.1) into three terms: Newton update term,
Hessian error term, and gradient error term as follows.

}wk`1 ´ w˚}

ď } rH´1
k }} rHkpwk ´ w˚q ´ gk}

ď
1

µ̃

¨

˚

˝

}∇2fpwkqpwk ´ w˚q ´ ∇fpwkq}
loooooooooooooooooooomoooooooooooooooooooon

Newton update

` }p rHk ´ ∇2fpwkqqpwk ´ w˚q}
loooooooooooooooooomoooooooooooooooooon

Hessian error

` }gk ´ ∇fpwkq}
loooooooomoooooooon

gradient error

˛

‹

‚

. (3.16)

The Newton update term is standard in Newton-type methods and has been analyzed in many prior
works and we provide it here for the sake of completeness. Using Assumption 3.3, it follows that

}∇2fpwkqpwk ´ w˚q ´ ∇fpwkq} “

›

›

›

›

∇2fpwkqpwk ´ w˚q ´

ż 1

t“0

∇2fpwk ` tpw˚ ´ wkqqpwk ´ w˚qdt

›

›

›

›

ď }wk ´ w˚}

ż 1

t“0

}∇2fpwkq ´ ∇2fpwk ` tpw˚ ´ wkqq}dt

ď M}wk ´ w˚}2
ż 1

t“0

tdt “
M

2
}wk ´ w˚}2. (3.17)

Next, we analyze the gradient error term. If gk satisfies deterministic norm condition (2.6a), then we
have that

a

λminpAkq}gk ´ ∇fpwkq} ď }gk ´ ∇fpwkq}Ak

ď

b

θ2k}∇fpwkq}2Ak
` ιk

ď
a

λmaxpAkqθk}∇fpwkq} `
?
ιk. (3.18)

Rearranging the terms in the above inequality and using Assumption 3.1, we get

}gk ´ ∇fpwkq} ď L

d

λmaxpAkq

λminpAkq
θk}wk ´ w˚} `

c

ιk
λminpAkq

. (3.19)

Combining (3.16), (3.17), and (3.19) yields (3.15).
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Lemma 3.4 establishes the dependence of the iterate distance to optimality on the Hessian approxima-
tion error. In the following lemmas, we derive bounds for individual terms, in the service of establishing
the local rate of convergence. We first decompose the error into different error terms as stated in the
following lemma.

Lemma 3.5. Suppose Assumption 3.3 holds. For any iteration k P Z`, the error in the Hessian
approximation is upper bounded as

}p rHk ´ ∇2fpwkqqpwk ´ w˚q}

ď }p rHk ´ pHkqpwk ´ w˚q} ` 3M}wk ´ w˚}2 `

k
ÿ

i“0

γi}p∇2FSipwiq ´ ∇2FSipw
˚qqpwk ´ w˚q}

`

›

›

›

›

›

˜

k
ÿ

i“0

γi∇2FSipw
˚q ´ ∇2fpw˚q

¸

pwk ´ w˚q

›

›

›

›

›

. (3.20)

Proof. Let ek “ wk ´ w˚. The Hessian approximation error can be decomposed into two terms.

p rHk ´ ∇2fpwkqqek “ p rHk ´ pHkqek
loooooomoooooon

nonconvex error

`p pHk ´ ∇2fpwkqqek, (3.21)

where the first term is arising due to the nonconvexity. Now, using the decomposition of the second
term given in (2.3), we get

}p pHk ´ ∇2fpwkqqek}

ď

›

›

›

›

›

˜

k
ÿ

i“0

γi
`

∇2FSipwiq ´ ∇2FSipwkq
˘

ek

¸
›

›

›

›

›

`

›

›

›

›

›

˜

k
ÿ

i“0

γi∇2FSipwkq ´ ∇2fpwkq

¸

ek

›

›

›

›

›

. (3.22)

Considering the first term in (3.22), using
řk

i“0 γi “ 1 and Assumption 3.3, we get
›

›

›

›

›

˜

k
ÿ

i“0

γi
`

∇2FSipwiq ´ ∇2FSipwkq
˘

¸

ek

›

›

›

›

›

ď

k
ÿ

i“0

γi}p∇2FSi
pwiq ´ ∇2FSi

pw˚qqek} ` }p∇2FSi
pw˚q ´ ∇2FSi

pwkqqek}

ď

k
ÿ

i“0

γi}p∇2FSipwiq ´ ∇2FSipw
˚qqek} `M}wk ´ w˚}2. (3.23)

Considering the second term in (3.22), we get
›

›

›

›

›

˜

k
ÿ

i“0

γi∇2FSi
pwkq ´ ∇2fpwkq

¸

ek

›

›

›

›

›

ď

›

›

›

›

›

k
ÿ

i“0

γip∇2FSi
pwkq ´ ∇2FSi

pw˚qqek

›

›

›

›

›

`

›

›

›

›

›

˜

k
ÿ

i“1

γi∇2FSi
pw˚q ´ ∇2fpw˚q

¸

ek

›

›

›

›

›

` }p∇2fpwkq ´ ∇2fpw˚qqek}

ď 2M}wk ´ w˚}2 `

›

›

›

›

›

˜

k
ÿ

i“0

γi∇2FSi
pw˚q ´ ∇2fpw˚q

¸

ek

›

›

›

›

›

. (3.24)

Combining (3.21), (3.22), (3.23), and (3.24) yields (3.20).
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We will analyze each term in the upper bound on the Hessian approximation error established in
Lemma 3.5. We achieve this by utilizing a key assumption in the local analysis of Newton methods
where we assume that the iterates generated by (2.1) eventually enter a locally strongly convex regime.
That is, we make the following assumption about the iterates generated by (2.1) with αk specified in
Section 3.1 and gk satisfying deterministic norm condition (2.6a).

Assumption 3.4. (Local strong convexity). For any w0, there exists ν ą 0 such that for all k P tj P

N | }∇fpwkq} ď νu, we have that ∇2fpwkq ľ µI, where {wk : k P N} are iterates generated by (2.1).
Moreover, we also assume that the following well-known inequalities associated with strong convexity also
hold with respect to a local solution w˚ (}∇fpw˚q} “ 0).

}∇fpwkq}2 ě 2µpfpwkq ´ fpw˚qq ě µ2}wk ´ w˚}2. (3.25)

Remark 3.2. We note that similar assumptions have been made in the constrained setting [7, Assumption
5.1]. This assumption is required not for all iterates, but only for those obtained after running the
algorithm for a sufficiently large number of iterations, such that the iterates enter a locally strongly
convex regime. This assumption is trivially satisfied when the functions are globally strongly convex
(see Assumption 3.2). Due to the global convergence results established in Section 3.1, this assumption
also implies that the iterates are indeed converging to a second-order stationary point (∇fpw˚q “ 0 and
∇2fpw˚q ą 0). Such assumptions are commonly employed in local analysis of Newton-type methods,
albeit in the form of proximity to a second-order stationary point w˚. That is, }wk ´ w˚} ď ν.

In the next lemma, we establish upper bounds for the terms in Lemma 3.5. The main approach
in the proof of this lemma is that using global convergence results, the iterates will enter the locally
strongly convex regime after the global sublinear phase established in Theorem 3.3. Furthermore, once
the iterates enters this phase, they will remain in this regime thereby achieving the linear convergence
as established in Theorem 3.2.

Lemma 3.6. Suppose Assumptions 3.1, 3.3 and 3.4 hold. For any w0 P Rd, let twk : k P Nu be iterates
generated by (2.1) where the Hessian approximation is given in (2.4) with γi “ 1

k`1 for all i “ 0, ¨ ¨ ¨ , k,

and the gradient approximations gk satisfies the Condition 2.1 with
ř8

i“0 ιk “ ι̃ ă 8. If Ak and the
corresponding step size αk are chosen according to Theorem 3.3. Then there exists klin ě 0 such that for
any k ě klin if ιk`1 “ ιkag for some ιklin

ě 0 and ag P r0, 1q, we have that if gk satisfies deterministic
norm condition (2.6a), then there exists a constant Cp,d such that

k
ÿ

i“0

γi}p∇2FSi
pwiq ´ ∇2FSi

pw˚qqpwk ´ w˚q} ď
Cp,d

k ` 1
}wk ´ w˚}. (3.26)

Proof. Since the conditions of Theorem 3.3 are satisfied, from (3.13) we have that, for any positive
integer T with αk “ α “

µ̃
L ,

min
0ďkďT´1

}∇fpwkq}2 ď
L̃

´

1 ´ θ̃2g

¯

T

ˆ

2pfpw0q ´ fminq

α
` ι̃

˙

.

Choosing

T ě k̃lin :“
L̃L

´

1 ´ θ̃2g

¯

µν2

ˆ

2pfpw0q ´ fminq

α
` ι̃

˙

, (3.27)

we get

min
0ďkďT´1

}∇fpwkq}2 ď
ν2µ

L
ď ν2.
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Let klin ď k̃lin be the first iterate at which }∇fpwklin
q}2 ď ν2. Due to Assumption 3.4, it follows that

∇2fpwklin
q ľ µI. We will now show that starting with this iterate wklin

, all the following iterates will
remain in this locally strongly convex phase. That is, we will show that }∇fpwkq} ď ν for all k ě klin.
We use induction to prove this statement. Note that for the base case of k “ klin, it is trivially satisfied.
Let us assume that the statement is true till some iteration k ´ 1 ą klin. Using the strongly convex
results established in Theorem 3.2 with αk “ α “

µ̃
L , starting with iterate wklin

, from (3.10), we get,

}∇fpwkq}2 ď 2Lpfpwkq ´ fpw˚qq ď 2LC̃1ρ̃
k´klin
1 ď 2LC̃1,

where the first inequality is a well-known result for functions with Lipschitz continuous gradients [12,

Eq (3.16)]. Moreover, choosing ιklin
ď

µp1´θ̃2
gqν2

2LL̃
, we have,

}∇fpwkq}2 ď 2LC̃1 “ 2Lmax

#

fpwklin
q ´ fpw˚q,

L̃ιklin

µp1 ´ θ̃2gq

+

ď 2Lmax

"

fpwklin
q ´ fpw˚q,

ν2

2L

*

ď 2Lmax

"

}∇fpwklin
q}2

2µ
,
ν2

2L

*

ď ν2, (3.28)

where the third inequality is due to (3.25) and the last inequality is due to }∇fpwklin
q}2 ď

ν2µ
L .

Therefore, for all k ě klin, we conclude that }∇fpwkq} ď ν and consequently from Assumption 3.4,
we have that ∇2fpwkq ľ µI. Let ek “ wk ´ w˚, and consider

k
ÿ

i“0

γi}p∇2FSi
pwiq ´ ∇2FSi

pw˚qqek}

“
1

k ` 1

˜

klin´1
ÿ

i“0

}p∇2FSipwiq ´ ∇2FSipw
˚qqek} `

k
ÿ

i“klin

}p∇2FSipwiq ´ ∇2FSipw
˚qqek}

¸

ď
2Lklin
k ` 1

}wk ´ w˚} `
M

k ` 1

k
ÿ

i“klin

}wi ´ w˚}}wk ´ w˚}, (3.29)

where the first term in the inequality is due to }∇2FSi
p¨q} ď L and the second term is due to Assump-

tion 3.3. Now, starting with k “ klin, the iterates are in locally strongly convex regime. Therefore, from
(3.10), (3.25), and (3.28), we have for any k ě klin,

}wk ´ w˚}2 ď
2

µ
pfpwkq ´ fpw˚qq ď

2C̃1ρ̃
k´klin
1

µ
ď
ν2ρ̃k´klin

1

µ2
. (3.30)

Summing this inequality from klin to k yields,

k
ÿ

i“klin

}wi ´ w˚} ď

k
ÿ

i“klin

νp
?
ρ̃1qi´klin

µ
ď
ν

µ

k´klin
ÿ

i“0

p
a

ρ̃1qi ă
ν

µ
`

1 ´
?
ρ̃1
˘ . (3.31)

Substituting (3.31) in (3.29) and choosing

Cp,d :“ 2Lklin `
νM

µp1 ´
?
ρ̃1q

, (3.32)

yields
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k
ÿ

i“0

γi}p∇2FSi
pwiq ´ ∇2FSi

pw˚qqek} ď
}ek}

k ` 1

˜

2Lklin `
νM

µ
`

1 ´
?
ρ̃1
˘

¸

“
Cp,d

k ` 1
}wk ´ w˚}. (3.33)

Remark 3.3. If the functions are globally strongly convex (Assumption 3.2 holds) then there is no
sublinear convergent phase in the algorithm. That is, klin “ 0 in this setting.

We will now establish that the nonconvex error term in Lemma 3.5 vanishes for sufficiently large
number of iterations.

Lemma 3.7. Suppose conditions of Lemma 3.6 hold. Let µ̃ ď
µ
2 , and gk satisfies deterministic norm

condition (2.6a) and the sample sets Sk are chosen deterministically without replacement in a cyclic

fashion such that n|Sk| “ N for some n P N with n ě 1. Let λminp∇2FSi
pwiqq ě ´λ̂ for some λ̂ P r0,8q.

Then there exists knon ě klin such that for all k ě knon, rHk “ pHk.

Proof. Any iteration k ě klin can be written as k “ klin ` nm ´ 1 ` krem where m P Z`, krem P N and
1 ď krem ď n´ 1. Let v P Rn be any vector and consider

vT pHkv “
1

k ` 1

k
ÿ

i“0

vT∇2FSipwiqv

“
1

k ` 1

klin´1
ÿ

i“0

vT∇2FSi
pwiqv `

1

k ` 1

k
ÿ

i“klin

vT∇2FSi
pwiqv

ě
´λ̂klin
k ` 1

}v}2 `
1

k ` 1

k
ÿ

i“klin

vT∇2FSi
pwiqv (3.34)

“
´λ̂klin
k ` 1

}v}2 `
1

k ` 1

k
ÿ

i“klin

vT p∇2FSipwiq ´ ∇2FSipw
˚qqv `

1

k ` 1

k
ÿ

i“klin

vT∇2FSipw
˚qv. (3.35)

Using (3.31), we get

1

k ` 1

k
ÿ

i“klin

vT p∇2FSipwiq ´ ∇2FSipw
˚qqv ě ´

1

k ` 1

k
ÿ

i“klin

}∇2FSipwiq ´ ∇2FSipw
˚q}}v}2

ě
´M}v}2

k ` 1

k
ÿ

i“klin

}wi ´ w˚}

ě
´Mν

pk ` 1qµp1 ´
?
ρ̃1q

}v}2. (3.36)
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Now consider

1

k ` 1

k
ÿ

i“klin

vT∇2FSi
pw˚qv

“
1

k ` 1

klin`nm´1
ÿ

i“klin

vT∇2FSi
pw˚qv `

1

k ` 1

klin`nm´1`krem
ÿ

i“klin`nm

vT∇2FSi
pw˚qv

“
nm

k ` 1
vT∇2fpw˚qv `

1

k ` 1

klin`nm´1`krem
ÿ

i“klin`nm

vT∇2FSi
pw˚qv

ě
nmµ

k ` 1
}v}2 ´

λ̂krem
k ` 1

}v}2, (3.37)

where the second equality is due to the fact that sample sets Sk are chosen deterministically without
replacement in a cyclic fashion which implies that 1

n

řj`n´1
i“j ∇2FSi

pw˚q “ ∇2fpw˚q for any j P N. Let

knon :“ max
!

4p1 ` λ̂
µ qpklin ` n´ 1q, 4Mν

µ2p1´
?
ρ̃1q

)

´ 1. (3.38)

Combining (3.35), (3.36), (3.37), and using (3.38), we get

vT pHkv

}v}2
ě
nmµ

k ` 1
´
λ̂pklin ` kremq

k ` 1
´

Mν

pk ` 1qµp1 ´
?
ρ̃1q

“ µ

˜

k ` 1 ´ pklin ` kremq

k ` 1
´
λ̂pklin ` kremq

µpk ` 1q
´

Mν

pk ` 1qµ2p1 ´
?
ρ̃1q

¸

ě µp1 ´ 1
4 ´ 1

4 q “
µ

2
ě µ̃. (3.39)

Therefore, λminp pHkq ě µ̃ and rHk “ pHk for all k ě knon.

To analyze the last term in Lemma 3.5, we make the following standard assumption about individual
Hessian components.

Assumption 3.5. (Hessian approximations, deterministic case). The individual component Hessians
are bounded relative to the Hessian of the objective function f at the optimal solution w˚. That is, for
the finite-sum problem, there exist constants β1,H , β2,H ě 0 such that

}∇2Fipw
˚q}2 ď β1,H}∇2fpw˚q}2 ` β2,H . (3.40)

Remark 3.4. We note that Assumption 3.5 is relatively weak compared to similar assumptions made in
the literature [13], as it requires the Hessian components (or its variance) to be bounded only at the
optimal solution instead at all iterates w P Rd.

Lemma 3.8. Suppose Assumptions 3.3 and 3.5 hold. If γi “ 1
k`1 for all i “ 0, ¨ ¨ ¨ , k, and the sample

sets Sk are chosen deterministically without replacement in a cyclic fashion such that n|Sk| “ N for
some n P N.

›

›

›

›

›

˜

k
ÿ

i“0

γi∇2FSipw
˚q ´ ∇2fpw˚q

¸

pwk ´ w˚q

›

›

›

›

›

ď
Cs,d

k ` 1

pn´ 1q2

n
}wk ´ w˚}. (3.41)
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Proof. Any iteration can be written as k “ nm´1`krem where m P Z`, krem P N and 1 ď krem ď n´1.
Consider,

k
ÿ

i“0

γi∇2FSipw
˚q ´ ∇2fpw˚q

“
1

k ` 1

nm´1
ÿ

i“0

∇2FSipw
˚q ´

nm

k ` 1
∇2fpw˚q `

1

k ` 1

k
ÿ

i“nm

∇2FSipw
˚q ´

krem
k ` 1

∇2fpw˚q

“
nm

k ` 1

˜

1

nm

nm´1
ÿ

i“0

∇2FSi
pw˚q ´ ∇2fpw˚q

¸

`
krem
k ` 1

˜

1

krem

k
ÿ

i“nm

∇2FSi
pw˚q ´ ∇2fpw˚q

¸

“
krem
k ` 1

`

∇2FS: pw˚q ´ ∇2fpw˚q
˘

ď
n´ 1

k ` 1

`

∇2FS: pw˚q ´ ∇2fpw˚q
˘

, (3.42)

where the third equality is due to the fact that 1
n

řn´1
i“0 ∇2FSi

pw˚q “ ∇2fpw˚q and S: “ Yk
i“pn´1qm`1Si.

Following a similar approach in establishing the deterministic bounds on gradient approximation error
given in [35, Section 3.1] (which we restate in Appendix 9.1 for completeness) and using |S:| ě |Sk|, we
get

}∇2FS: pw˚q ´ ∇2fpw˚q}2 ď 4

ˆ

N ´ |S:|

N

˙2
`

β1,H}∇2fpw˚q}2 ` β2,H
˘

ď 4

ˆ

1 ´
1

n

˙2
`

β1,HL
2 ` β2,H

˘

. (3.43)

Substituting (3.43) in (3.42) and choosing

Cs,d :“ 2
b

β1,HL2 ` β2,H , (3.44)

yields

›

›

›

›

›

˜

k
ÿ

i“0

γi∇2FSi
pw˚q ´ ∇2fpw˚q

¸

pwk ´ w˚q

›

›

›

›

›

ď
2
a

β1,HL2 ` β2,Hpn´ 1q2

pk ` 1qn
}wk ´ w˚}

“
Cs,d

k ` 1

pn´ 1q2

n
}wk ´ w˚}.

Remark 3.5. Lemma 3.8 establishes the bound on the sampling error in terms of the sample size |S0| and
the iteration number k. Deterministic sampling without replacement (cyclic manner) has rate O

`

1
k

˘

,

instead of the O
´

1?
k

¯

rate for stochastic Hessians; this result is proven probabilistically in [46, 64], and

in expectation in the next section. Moreover, the sampling error becomes zero after finishing every cycle
in the deterministic sampling case.

Before proceeding to the main result, we provide the following technical lemma that establishes
the linear and superlinear convergence of generic sequences where each term is bounded above by the
previous term in a relaxed linear-quadratic manner.

Lemma 3.9. Suppose tzk : k P Z`u is a non-negative sequence that satisfies

zk`1 ď qz2k ` τkzk ` ok (3.45)
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for any given non-negative constant q, non-negative sequence tτk : k P Z`u with τk`1 ď τk for all k P N,
and non-negative sequence tok : k P Z`u. If z0 ď υ

3q , τ0 ď υ
3 and o0 ď υ2

9q and ok`1 “ okυt
2
k`1 where

υ P r0, 1q is any given constant and tk is a non-negative sequence with t1 ď 1 and tk`1 ď tk for all k P N.
Then, for all k P N,

zk ď rk, rk`1 “ max

#

rkρk, r0υ
k`1

k
ź

i“0

ti`1

+

, r0 “ maxtz0,
3o0
υ u, ρk “ qrk ` τk ` o0

r0

k´1
ź

i“0

ti`1 P r0, υs.

(3.46)

Therefore, zk Ñ 0 at an R-linear rate. Furthermore, if lim
kÑ8

tk “ 0 then zk Ñ 0 at an R-superlinear rate.

Proof. Let bk`1 “ bktk`1 for all k P N with b0 “ o0
r0

ď υ
3 . We have that bk ď b0 ď υ

3 and
ok`1

bk`1
“

ok
bk
υtk`1 ď

ok
bk

for all k P N. We will use induction to prove that

zk ď rk, rk`1 “ max
!

rkρk,
ok`1

bk`1

)

, r0 “ maxtz0,
3o0
υ u, ρk “ qrk ` τk ` bk P r0, υs. (3.47)

Note that the base case of k “ 0 is trivially satisfied since z0 ď r0. Suppose that this result is true for
some k. From (3.45), we get

zk`1 ď qz2k ` τkzk ` ok ď rk

ˆ

qrk ` τk `
ok
rk

˙

ď rkpqrk ` τk ` bkq “ rkρk ď rk`1.

Next, we will use induction to show that rk ď υ
3q and ρk ď υ for all k P N. Note the base case of k “ 0

is satisfied since r0 ď υ
3q and ρ0 “ qr0 ` τ0 ` b0 ď υ. Let us assume that this result is true for some k.

Consider,

rk`1 “ maxtrkρk,
ok
bk

u ď maxtrk,
o0
b0

u ď υ
3q

ρk`1 “ qrk`1 ` τk`1 ` bk ď υ
3 ` τ0 ` υ

3 ď υ.

Therefore, from (3.47), we have that

rk`1

rk
“ max

"

ρk,
ok`1

bk`1rk

*

ď max

"

ρk,
ok`1bk
bk`1ok

*

“ max tρk, υtk`1u ď υ ă 1.

Hence, rk Ñ 0 at a Q-linear rate and consequently zk Ñ 0 at an R-linear rate. Furthermore, if lim
kÑ8

tk “ 0

and lim
kÑ8

τk “ 0, then

lim
kÑ8

ρk ď lim
kÑ8

qrk ` τk ` o0
r0
tk1 “ 0. (3.48)

Therefore,

lim
kÑ8

rk`1

rk
“ lim

kÑ8
max tρk, υtk`1u “ 0.

Hence, rk Ñ 0 at a Q-superlinear rate and consequently zk Ñ 0 at an R-superlinear rate.
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We are now ready to provide the main theoretical results in this section.

Theorem 3.10. (Deterministic local linear and superlinear convergence). Suppose Assumptions 3.1,
3.3, 3.4, and 3.5 hold. For any w0 P Rd, let twk : k P Nu be iterates generated by (2.1) where the
Hessian approximation is given in (2.4) with µ̃ ď

µ
2 , the sample sets Sk chosen deterministically without

replacement in a cyclic fashion such that n|Sk| “ N for some n P N with n ě 1, and γi “ 1
k`1 for

all i “ 0, ¨ ¨ ¨ , k. Furthermore, the gradient approximation gk satisfies the deterministic norm condition
(2.6a) with Ak “ rH´1

k for all k P N,
ř8

i“0 ιi “ ι̃ ă 8, and αk “ α ď
µ̃
L for all k ă ksup for some

ksup P N. Furthermore, for all klin ď k ă ksup, ιk`1 “ ιkag for some ιklin
ě 0 and ag P r0, 1q, where klin

is given in Lemma 3.6. Let θ̃l “
?
al

6

´

µ̃

L̃

¯3{2

, q “ 7M
2µ̃ , and τk :“ 1

µ̃

ˆ

nCp,d`Cs,dpn´1q
2

npk`1q
` θkL

b

L̃
µ̃

˙

for

some al P r0, 1q, and let rk be a sequence such that rksup
“ max

#

}wksup
´ w˚},

b

L̃ιksup

µ̃

+

ď
?
al

3q .

1. If αk “ 1, θk “ θ̃l, and ιk`1 “ ιkal for all k ě ksup. Then

}wk ´ w˚} ď rk, rk`1 “ max
␣

rkρk, rksupp
?
alq

k´ksup`1
(

, ρk “ qrk ` τk `

b

L̃ιksup

rksup µ̃
P r0,

?
als.

(3.49)

Therefore, }wk ´ w˚} Ñ 0 at an R-linear rate with rate constant upper bounded by
?
al P r0, 1q.

2. If αk “ 1, θk “
θ̃l

k`1 , and ιk`1 “ ιkalt
4
k`1, tk “ 1

k for all k ě ksup. Then

}wk ´ w˚} ď rk, rk`1 “ max

$

&

%

rkρk, rksupp
?
alq

k´ksup`1
k
ź

i“ksup

ti`1

,

.

-

,

ρk “ qrk ` τk `

b

L̃ιksup

rksup µ̃

k´1
ź

i“ksup

ti`1 “ O
`

1
k

˘

P r0,
?
als. (3.50)

Therefore, }wk´w˚} Ñ 0 at an R-superlinear rate with rate constant upper bounded by maxtρk,
?
altk`1u “

O
`

1
k

˘

.

Proof. Let

ksup “

R

max

"

4
´

1 ` λ̂
µ

¯

pklin ` n´ 1q, 4Mν
µ2p1´

?
ρ̃1q
,
6pnCp,d`Cs,dpn´1q

2
q

nµ̃
?
al

,

klin ` 2 log1{ρ̃1

´

3qν
µ

?
al

¯

, klin ` log1{ag

´

81L̃q2ιklin

a2
l µ̃

2

¯

*V

, (3.51)

where klin is defined in (3.27), λ̂ is defined in Lemma 3.7, Cp,d, Cs,d are given in (3.32) and (3.44)
respectively, and ρ̃1 is the linear convergence rate defined in Theorem 3.2. We note that ksup ě knon
due to the first and second terms in (3.51) where knon is defined in (3.38). Using (3.15), (3.20), (3.26),
and (3.41), we get for all k ě ksup,

}wk`1 ´ w˚} ď
7M

2µ̃
}wk ´ w˚}2 `

1

µ̃

¨

˝

nCp,d ` Cs,dpn´ 1q2

npk ` 1q
` θkL

d

L̃

µ̃

˛

‚}wk ´ w˚} `

a

L̃ιk
µ̃

“ q}wk ´ w˚}2 ` τk}wk ´ w˚} ` ok,
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where ok :“

?
L̃ιk
µ̃ . Using the third term in (3.51), L ď L̃, and θk “ θ̃l “

?
al

6

´

µ̃

L̃

¯3{2

, we get τk ď
?
al

3 for

k “ ksup. In addition, using the fourth term in (3.51) and (3.30), we get }wk ´ w˚} ď
?
al

3q for k “ ksup.

Moreover, ιksup
“ ιklin

a
ksup´klin
g ď

a2
l µ̃

2

81L̃q2
due to the fifth term in (3.51) which implies that ok ď

al

9q for

k “ ksup.
Therefore, starting with k “ ksup and using Lemma 3.9 with υ “

?
al and ιk`1 “ ιkal yields (3.49).

Moreover, from (3.48), we have that
rk`1

rk
ď

?
al ă 1.

Similarly starting with k “ ksup and using Lemma 3.9 with υ “
?
al and ιk`1 “

ιkal

pk`1q4
yields (3.50).

Moreover, from (3.48), we get

rk`1

rk
ď max tρk,

?
altk`1u ď max

$

&

%

qrk ` τk `
oksup

r0

k´1
ź

i“ksup

ti`1,
?
al

k`1

,

.

-

ă max
!

qrksupp
?
alq

k´ksup `
τksup pksup`1q

k`1 `
oksup

rksup pk`1q
,

?
al

k`1

)

“ O
`

1
k

˘

.

Remark 3.6. We make the following remarks about this result.

• Case: θk “ 0, ιk “ 0, ptk “ 0q (exact gradient). When exact gradients are employed, using
Lemma 3.9, we get deterministic Q-superlinear convergence where the rate constant is O

`

1
k

˘

. We
note that this is an improvement over the final phase superlinear convergence results established
in probability established for stochastic Hessian sampling with mean zero sub-exponential Hessian

noise where the rate constant is O
ˆ

b

log k
k

˙

[46, 64].

• Case: θk ‰ 0, ιk “ 0 (inexact adaptive gradient). When inexact gradients are employed where
the gradient accuracies are chosen solely relative to the gradient norm itself, we get Q-linear and
Q-superlinear convergence results based on the choice of the θk parameter.

• Rate constant. We note that the local linear convergence rate constant (
?
al P r0, 1q) is a

hyperparameter that doesn’t depend on the problem characteristics. Therefore, this local linear
convergence result is better than global linear convergence results that typically depend on the
condition number of the problem. This result is similar to other local linear convergence results
established in the literature [13, 75], although those results are established either in probability or
in expectation as opposed to the deterministic result presented here.

• Step size. Two different step sizes are chosen in the the global phase (αk “
µ̃
L ) and local

superlinear phase (αk “ 1). While such two phase approaches are common for Newton-type
methods [13], these results can be unified using an inexact line search approach that employs
inexact function evaluations where the unit step size is automatically selected in the second (local)
phase with an appropriately modified Armijo sufficient decrease condition [16, 70].

We will now characterize the number of iterations required to transition from one convergent phase
of the algorithm to the other. For the sake of simplicity and to make it possible to compare our results
with other existing results in the literature, we will only consider global strongly convex functions (see
Assumption 3.2). Therefore, the algorithm only encounters two phases: Global linear convergence and
local linear or superlinear convergence depending on the choice of gradient accuracies as established in
Theorem 3.10. It is possible to account for global sublinear convergence phase too by analyzing klin
given in (3.27). However, for strongly convex functions klin “ 0.
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Corollary 3.11. Suppose Assumption 3.2 and conditions of Theorem 3.10 hold where we choose ag “

1´
µµ̃

2LL̃
P r0, 1q. Then, the number of iterations required for the iterates to reach local linear or superlinear

convergence phase is given as

ksup “ Õ
´

max
!

N
|S0|

p1 ` λ̂
µ q, κ2p1 ` M

µ3{2 q

)¯

, (3.52)

where λ̂ is such that λminp∇2FSi
pwiqq ľ ´λ̂ for all i P N and κ ď L̃

µ̃ .

Proof. Since the function is strongly convex, we no longer require the iterates to enter the basin where
}∇fpwkq}2 ď ν2 for invoking local strong convex properties. Therefore, (3.31) is updated using (3.10)
as

k
ÿ

i“0

}wi ´ w˚} ď

c

2

µ

a

pfpwkq ´ fpw˚qq ď

d

2C̃1

µ

k
ÿ

i“0

p
a

ρ̃1qi ă

a

2C̃1
?
µp1 ´

?
ρ̃1q

. (3.53)

Using klin “ 0, (3.53) is updated as Cp,d :“ M
?

2C̃1
?
µp1´

?
ρ̃1q

. Using these update formulae, we get

ksup “

R

max

"

4p1 ` λ̂
µ qpn´ 1q, 4M

?
2C̃1

µ3{2p1´
?
ρ̃1q
,
6pnCp,d`Cs,dpn´1q

2
q

nµ̃
?
al

,

2 log1{ρ̃1

ˆ

3
?
2q

?
C̃1

?
µal

˙

, log1{ag

´

81L̃q2ι0
a2
l µ̃

2

¯

*V

, (3.54)

Now, consider the second term in (3.54), we note that

4M
?

2C̃1

µ3{2p1´
?
ρ̃1q

ď
8M

?
2C̃1

µ3{2p1´ρ̃1q
ď 16

?
2C̃1L

2M
µ7{2 “ Õpκ2M

µ3{2 q. (3.55)

The third term in (3.54) is given as,

6pnCp,d`Cs,dpn´1q
2

q

nµ̃
?
al

“
6M

?
2C̃1

µ3{2p1´
?
ρ̃1q

?
al

`
12

?
β1,HL2`β2,Hpn´1q

2

nµ̃
?
al

“ Õpκ2M
µ3{2 q. (3.56)

Now considering the last two terms in (3.54) and using ag “ 1´
µµ̃

2LL̃
, logp1´xq « ´x for small x P p0, 1q,

we have that

max

"

2 log1{ρ̃1

ˆ

3
?
2q

?
C̃1

?
µal

˙

, log1{ag

´

81L̃q2ι0
a2
l µ̃

2

¯

*

“ 2LL̃
µµ̃ max

"

2 log

ˆ

3
?
2q

?
C̃1

?
µal

˙

, log
´

81L̃q2ι0
a2
l µ̃

2

¯

*

“ Õpκ2q.

(3.57)

Combining (3.55), (3.56), (3.57), and using n “ N
|S0|

yields the desired result.

Remark 3.7. We note that in the case where the subsampled functions are convex, i.e. λminp∇2FSipxiqq ľ

0, we have λ̂ “ 0. Therefore,

ksup “ Õ
´

max
!

N
|S0|

, κ2p1 ` M
µ3{2 q

)¯

. (3.58)

These transition phases are better than the final transition phases established for uniform weighted
scheme when N ă κ6 and comparable to nonuniform weighted scheme when N “ Opκ2q and M

µ3{2 is

small in [64]. Furthermore, one could speed up the transition to local phase by modifying Newton’s
method using proximal extra gradient methods, at additional per-iteration costs [46].
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4 Stochastic Sampling Analysis

Nonconvex functions

Rate: O
`

1
k

˘

αk “ O
`

1
κ

˘

θk “ θ̃g P r0, 1q
ř

ιk ă 8

Global sublinear

Strongly convex functions

Rate constant:

max

"ˆ

1 ´
p1´θ̃2

gq
2κ2

˙

, ag

*

αk “ O
`

1
κ

˘

θk “ θ̃g P r0, 1q

ιk “ ι0a
k
g , ag P r0, 1q

Global linear

Rate constant:
?
al P r0, 1q

αk “ 1
θk “ O

`a

al

κ3

˘

ιk “ ι0a
k
l

Local linear

Asymptotic rate constant: O
´

1?
k

¯

αk “ 1
θk “ O

`a

al

kκ3

˘

, al P r0, 1q

ιk “
ι0a

k
l

k2

Local superlinear

Objective Function

minw fpwq “ Eζ rF pw, ζqss

Gradient complexity

O
´

κ2σ2
2,g `

κσ2
2,g

µ2ϵ

¯

Iteration complexity
Õpκ2 ` logp 1

ϵ qq

Constants: κ, µ, M Hyperparameters: αk, θk, ιk, |S0|

Figure 2: Overview of the results presented in this section. We characterize the main results for global
and local convergence results, and their relationship to the problem constants and algorithmic hyper-
parameters. Here µ is the Hessian spectral lower bound, κ “ L

µ is a condition-number like constant,
and M is the Hessian Lipschitz constant. We note that there are additional global sublinear and linear
results that allow any 0 ă θ̃g ă 8, but we do not annotate them in this figure for simplicity.

We continue our analysis by focusing on the stochastic sampling-based algorithms for the solution of
the expectation problem (1.2). Our analysis mirrors the previous section and builds off of many of its
assumption and derivations. A schematic for the analysis in this section is given in Figure 2. In addition
to building on the results of the previous section, we also provide total number of gradients evaluated
(gradient complexity) and Hessians computed to achieve an ϵ-accurate solution for the strongly convex
functions.

We begin our analysis by providing the stochastic analog of Lemma 3.1, which establishes an up-
per bound on the difference between the objective function values at successive iterations, albeit in
conditional expectation.

Lemma 4.1. Suppose Assumption 3.1 holds. For any w0, let twk : k P Z`u be iterates generated by
(2.1) with the Hessian approximation given in (2.4). If the step size αk at each iteration k is chosen
such that αk ď

µ̃
L , and if gk is an unbiased estimator of ∇fpwkq. Then, for all k P Z`, it follows that,

Ekrfpwk`1qs ď fpwkq ´ αk

ˆ

1 ´
Lαk

2µ̃

˙

∇fpwkqT rH´1
k ∇fpwkq `

Lα2
k

2µ̃
EkrδTk

rH´1
k δks. (4.1)
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Proof. Using (3.6), taking conditional expectation, and using Ekrgks “ ∇fpwkq, we get

Ekrfpwk`1qs ď fpwkq ´ αk∇fpwkqT rH´1
k ∇fpwkq `

Lα2
k

2
Ekrp rH

´1{2
k ∇fpwkqqT rH´1

k p rH
´1{2
k ∇fpwkqs

`
Lα2

k

2
Ekrp rH

´1{2
k δkqT rH´1

k p rH
´1{2
k δkqs.

Using the fact that rH´1
k ĺ 1

µ̃I in the above inequality yields (4.1).

4.1 Global convergence

We denote the expectation with respect to all the random variables as Er¨s. That is,

Erfpwkqs “ E0E1 ¨ ¨ ¨Ek´1rfpwkqs.

We proceed with the stochastic analog of Theorem 3.2 (in expectation).

Theorem 4.2. (Global linear convergence). Suppose Assumptions 3.1 and 3.2 hold. For any w0 P Rd,
let twk : k P Nu be iterates generated by (2.1) where the Hessian approximation is given in (2.4) and the
gradient approximations gk satisfies the Condition 2.1 with ιk`1 “ ιkag for some ι0 ą 0 and ag P r0, 1q.
Then, if gk satisfies stochastic norm condition (2.6b) with

1. Ak “ rH´1
k , θk “ θ̃g P r0, 1q and αk “ α ď

µ̃
L :

Erfpwkq ´ fpw˚qs ď C̃1ρ̃
k
1 , (4.2a)

C̃1 :“ max

$

&

%

fpw0q ´ fpw˚q,
L̃ι0

µ
´

1 ´ θ̃2g

¯

,

.

-

, and ρ̃1 :“ max

$

&

%

1 ´
αµ

´

1 ´ θ̃2g

¯

2L̃
, ag

,

.

-

.

2. gk being an unbiased estimator of ∇fpwkq, θk “ θ̃g ě 0, and either of the following two conditions
hold:

(a) Ak “ rH´1
k , αk “ α ď

µ̃

Lp1`θ̃2
gq
, (or)

(b) Ak “ I, αk “ α ď
µ̃

L

˜

1`
θ̃2
gL̃

µ̃

¸ ,

then,

Erfpwkq ´ fpw˚qs ď C̃2ρ̃
k
2 , (4.2b)

C̃2 :“ max

#

fpw0q ´ fpw˚q,
LL̃αι0

µµ̃mint1, µ̃u

+

, and ρ̃2 :“ max

"

1 ´
αµ

2L̃
, ag

*

.

Proof. Case (1) From (2.6b) and (3.5), we have

Ekrfpwk`1qs ď fpwkq ´
αk

2
∇fpwkqT rH´1

k ∇fpwkq `
αk

2
Ek

”

E
”

δTk
rH´1
k δk|wk, rH

´1
k

ıı

ď fpwkq ´
αk

2
∇fpwkqT rH´1

k ∇fpwkq `
αkθ

2
k

2
Ekr∇fpwkqT rH´1

k ∇fpwkqs `
αkιk
2

ď fpwkq ´
αkp1 ´ θ2kq

2L̃
}∇fpwkq}2 `

αkιk
2

. (4.3a)
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Case (2) From (2.6b) and (4.1), and using condition paq, we have

Ekrfpwk`1qs ď fpwkq ´ αk

ˆ

1 ´
Lαk

2µ̃
p1 ` θ2kq

˙

∇fpwkqT rH´1
k ∇fpwkq `

Lα2
kιk

2µ̃

ď fpwkq ´
αk

2L̃
}∇fpwkq}2 `

Lα2
kιk

2µ̃
.

Similarly, from (2.6b) and (4.1), and using condition pbq, we have

Ekrfpwk`1qs ď fpwkq ´
αk

L̃

ˆ

1 ´
Lαk

2µ̃

˙

}∇fpwkq}2 `
Lα2

k

2µ̃2
Ekr}δk}2s

ď fpwkq ´
αk

L̃

ˆ

1 ´
Lαk

2µ̃

´

1 ` θ2L̃
µ̃

¯

˙

}∇fpwkq}2 `
Lα2

kιk
2µ̃2

ď fpwkq ´
αk

2L̃
}∇fpwkq}2 `

Lα2
kιk

2µ̃2
.

Combining the above two results yield

Ekrfpwk`1qs ď fpwkq ´
αk

2L̃
}∇fpwkq}2 `

Lα2
kιk

2µ̃mint1, µ̃u
. (4.3b)

The rest of the proof to attain (4.2a) and (4.2b) follows by using similar arguments as in the deterministic
norm condition analysis give in the proof of Theorem 3.2.

As was discussed in Remark 3.1, we note that the rate constant
´

1 ´
αµ

2L̃

¯

being worse than that

of steepest descent is an artifact of the analysis and not essentially algorithmic in nature. We do not
observe deteriorated global convergence in our numerical experiments. Additionally we do not consider
the biased stochastic norm condition with Ak “ I, as it leads to restrictive choices of θ̃g.

Theorem 4.3. (Global sublinear convergence, stochastic case). Suppose Assumption 3.1 holds and the
objective function f is bounded below by fmin. For any w0, let twk : k P Nu be iterates generated by
(2.1) where the gradient approximations gk satisfy the Condition 2.1with

ř8

i“0 ιk “ ι̃ ă 8. Then, for
any positive integer T , if gk satisfies stochastic norm condition (2.6b) with

1. Ak “ rH´1
k , θk “ θ̃g P r0, 1q and αk “ α ď

µ̃
L :

min
0ďkďT´1

Er}∇fpwkq}2s ď
L̃

p1 ´ θ̃2gqT

ˆ

2pfpw0q ´ fminq

α
` ι̃

˙

. (4.4a)

2. gk being an unbiased estimator of ∇fpwkq, θk “ θ̃g ě 0, and either of the following two conditions
hold:

(a) Ak “ rH´1
k , αk “ α ď

µ̃

Lp1`θ̃2
gq
, (or)

(b) Ak “ I, αk “ α ď
µ̃

L

˜

1`
θ̃2
gL̃

µ̃

¸ ,

then,

min
0ďkďT´1

Er}∇fpwkq}2s ď
L̃

T

ˆ

2pfpw0q ´ fminq

α
`

Lαι̃

µ̃mint1, µ̃u

˙

. (4.4b)
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Moreover,
ř8

k“0 }∇fpwkq}2 ă 8 almost surely and consequently }∇fpwkq}2 Ñ 0 as k Ñ 8 almost
surely.

Proof. Starting with inequalities (4.3a) and (4.3b) and following the same procedure as in the determin-
istic case, albeit in expectation, yields (4.4a) and (4.4b) respectively. Furthermore, applying Robbins-
Siegmund Theorem [74] to (4.3a) or (4.3b) yields

ř8

k“0 }∇fpwkq}2 ă 8 almost surely. Using this
inequality, it is not difficult to show that }∇fpwkq}2 Ñ 0 as k Ñ 8 almost surely.

4.2 Local convergence

We now provide local superlinear rates of convergence results for the iterates generated by (2.1) when
unit step size is eventually employed. We begin by extending Lemma 3.4 to the stochastic setting.

Lemma 4.4. Suppose Assumptions 3.1 and 3.3 hold. For any w0 P Rd, let twk : k P Nu be iterates
generated by (2.1) where the Hessian approximation is given in (2.4) and the gradient approximations

gk satisfies the Condition 2.1 with λminpAkq ě λA and λmaxpAkq

λminpAkq
ď κA for some positive constants

λA, κA ă 8. If at any iteration k P N, unit step size is chosen (αk “ 1), then, if gk satisfies stochastic
norm condition (2.6b)

E r}wk`1 ´ w˚}s ď
M

2µ̃
E
“

}wk ´ w˚}2
‰

`
1

µ̃
E
”

}p rHk ´ ∇2fpwkqqpwk ´ w˚q}

ı

`
L

?
κA
µ̃

θkE r}wk ´ w˚}s `

?
ιk

µ̃
?
λA

, (4.5)

where w˚ is an optimal solution.

Proof. We use a similar approach to the proof of Lemma 3.4, see the proof there for the decompo-
sition of errors. When gk satisfies stochastic norm condition (2.6b), taking conditional expectations
of the gradient term in (3.16) and using Jensen’s inequality Er}gk ´ ∇fpwkq}Ak

|wk, Aks ď pEr}gk ´

∇fpwkq}2Ak
|wk, Aksq1{2 followed by full expectation yields (4.5).

Lemma 4.4 establishes the dependence of the iterate distance to optimality on the Hessian approxi-
mation error. Recall that Lemma 3.5 decomposes the error into several terms, one of which includes the
sum of errors in the difference between subsampled Hessian at each iterate, and the subsampled Hessian
at the optimum, ∇2FSi

pwiq ´ ∇2FSi
pw˚q. In the next lemma, we establish upper bounds for the terms

in Lemma 3.5, similar to the bounds derived in the deterministic sampling case as was done in Lemma
3.6.

Lemma 4.5. Suppose Assumptions 3.1, 3.3 and 3.4 hold. For any w0 P Rd, let twk : k P Nu be iterates
generated by (2.1) where the Hessian approximation is given in (2.4) with γi “ 1

k`1 for all i “ 0, ¨ ¨ ¨ , k,

and the gradient approximations gk satisfies the Condition 2.1 with
ř8

i“0 ιk “ ι̃ ă 8. If Ak and the
corresponding step size αk are chosen according to Theorem 4.3. Then there exists klin ě 0 such that for
any k ě klin if ιk`1 “ ιkag for some ιklin

ě 0 and ag P r0, 1q, we have that if gk satisfies stochastic norm
condition (2.6b) with any of the choices for pAk, θk, αkq provided in Theorem 4.3. In addition, suppose
either

ř8

i“0 }∇fpwiq}2 ă 8 or Assumption 3.2 holds, then there exists a constant Cp,s such that

k
ÿ

i“0

γiE
“
›

›

`

∇2FSipwiq ´ ∇2FSipw
˚q
˘

pwk ´ w˚q
›

›

‰

ď
Cp,s

k ` 1

´

E
”

}wk ´ w˚}
2
ı¯1{2

. (4.6)

Proof. In the stochastic setting, we assume that
ř8

i“0 }∇fpwiq}2 ă 8 or Assumption 3.2 holds. If
ř8

i“0 }∇fpwiq}2 ă 8 then there exists a klin P N such that for all k ě klin, }∇fpwkq} ď ν. Therefore,
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for all k ě klin the iterates are all in locally strongly convex regime. Taking expectations in (3.29) we
get,

k
ÿ

i“0

γiE
“
›

›

`

∇2FSi
pwiq ´ ∇2FSi

pw˚q
˘

ek
›

›

‰

ď
2Lklin
k ` 1

E r}wk ´ w˚}s `
M

k ` 1

k
ÿ

i“klin

E r}wi ´ w˚}}wk ´ w˚}s

ď
2Lklin
k ` 1

`

E
“

}wk ´ w˚}2
‰˘1{2

`
M

k ` 1

k
ÿ

i“klin

`

E
“

}wi ´ w˚}2
‰˘1{2 `E

“

}wk ´ w˚}2
‰˘1{2

, (4.7)

where the last inequality is due to the fact that pErasq2 ď Era2s and pErabsq2 ď Era2sErb2s for any
a, b ą 0. Now using the global convergence results given in Theorem 4.3 and following the similar
approach as in the deterministic norm condition analysis, albeit in expectation, we get, for an appropriate
choice of ιklin

that }∇fpwkq}2 ď ν2 for k ě klin. Furthermore, from Jensen’s inequality, we also have

pE r}wk ´ w˚}sq
2

ď E
“

}wk ´ w˚}2
‰

ď
ν2ρ̃k´klin

µ2 , (4.8)

and

k
ÿ

i“klin

`

E
“

}wi ´ w˚}2
‰˘1{2

ă
ν

µp1 ´
?
ρ̃q
, (4.9)

where ρ̃ is the rate constant that depends on the choice of pAk, θk, αkq given in Theorem 4.2. Substituting
(4.9) in (4.7) yields

k
ÿ

i“0

γiE
“
›

›

`

∇2FSi
pwiq ´ ∇2FSi

pw˚q
˘

ek
›

›

‰

ď
1

k ` 1

ˆ

2Lklin `
νM

µp1 ´
?
ρ̃q

˙

`

E
“

}wk ´ w˚}2
‰˘1{2

“
Cp,s

k ` 1

`

E
“

}wk ´ w˚}2
‰˘1{2

,

where

Cp,s :“ 2Lklin `
νM

µp1 ´
?
ρ̃q
. (4.10)

Remark 4.1. If the functions are globally strongly convex (Assumption 3.2 holds) then there is no
sublinear convergent phase in the algorithm. That is, klin “ 0 in this setting. Furthermore, we made
the assumption that

ř8

i“0 }∇2fpwiq}2 ă 8. This assumption, although made on the iterates which are
stochastic, is necessary to ensure that the iterates eventually lie within a locally strongly convex regime.
Moreover, from Theorem 4.3, we have that

ř8

i“0 }∇2fpwiq}2 ă 8 almost surely, making this assumption
relatively weak in this setting.

We will now establish that the nonconvex error term in Lemma 3.5 vanishes for sufficiently large
number of iterations. To achieve this, for the expectation problem, we need an additional assumption
about the subsampled functions when the iterates enter the strongly convex regime.

Assumption 4.1. In the expectation problem (1.2), for all k ě klin, where klin is defined in Lemma 4.5,
∇2FSk

pwkq ľ µI.
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Remark 4.2. Assumption 4.1 implies that when the iterates enter the locally strongly convex regime, the
subsampled functions are also strongly convex. In the case when the objective function is strongly convex,
this assumption is typically satisfied due to regularziation in machine learning problems. Moreover, such
assumptions have been previously made in [6, 13] and are required to establish strong convergence results
in expectation.

Lemma 4.6. Suppose conditions of Lemma 4.5 hold. Let µ̃ ď
µ
2 , and gk satisfies stochastic norm

condition (2.6b) and suppose that Assumption 4.1 holds. Then, there exists knon ě klin such that for all

k ě knon, rHk “ pHk.

Proof. Let

knon “ 2klin

´

1 ` λ̂
µ

¯

. (4.11)

Then, from (3.34), for all k ě knon, we have

vT pHkv ě
´λ̂klin
k ` 1

}v}2 `
µpk ` 1 ´ klinq

k ` 1
}v}2 ě

µ

2
}v}2 ě µ̃}v}2,

where we used µ̃ ď
µ
2 . Therefore, λminp pHkq ě µ̃ and rHk “ pHk for all k ě knon.

To analyze the last term in Lemma 3.5, we make the following standard assumption about individual
(stochastic) Hessian components.

Assumption 4.2. (Hessian approximations, stochastic case). The individual component Hessians are
bounded relative to the Hessian of the objective function f at the optimal solution w˚. That is, for the
expectation problem, there exists constant σ2

H ě 0 such that

Eζ

”

›

›∇2F pw˚, ζq ´ ∇2fpw˚q
›

›

2
ı

ď σ2
H . (4.12a)

Remark 4.3. As with Assumption 3.5, we note that Assumption 4.2 is relatively weak compared to similar
assumptions made in the literature [13], as it only requires bounded variance at the optimum, instead
at all possible iterates w P Rd. In addition, we also note that this assumption is trivially satisfied with
the bound σH “ 2L when the functions are double differentiable with Lipschitz continuous gradients.

Lemma 4.7. Suppose Assumptions 3.3 and 4.2 hold. If γi “ 1
k`1 for all i “ 0, ¨ ¨ ¨ , k, and the sample

sets Sk are randomly chosen such that |Sk| “ |S0| P N. Then

E

«
›

›

›

›

›

˜

k
ÿ

i“0

γi∇2FSipw
˚q ´ ∇2fpw˚q

¸

pwk ´ w˚q

›

›

›

›

›

ff

ď
σH

a

pk ` 1q|S0|
pEr}wk ´ w˚}2sq1{2. (4.13)

Proof. Consider,

E

«
›

›

›

›

›

k
ÿ

i“0

γi∇2FSipw
˚q ´ ∇2fpw˚qpwk ´ w˚q

›

›

›

›

›

ff

ď

¨

˝E

»

–

›

›

›

›

›

k
ÿ

i“0

γi∇2FSi
pw˚q ´ ∇2fpw˚q

›

›

›

›

›

2
fi

fl

˛

‚

1{2

`

E
“

}wk ´ w˚}2
‰˘1{2

. (4.14)
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where the inequality is due to pErabsq2 ď Era2sErb2s for any a, b ą 0. Let S: “ Yk
i“0Si with |S:| “

pk ` 1q|S0|. Using ∇2FS: pw˚q “ 1
pk`1q|S0|

ř

iPS: ∇2Fipw
˚q, we get

E
”

›

›∇2FS: pw˚q ´ ∇2fpw˚q
›

›

2
ı

“
1

pk ` 1q2|S0|2
E

»

–

›

›

›

›

›

ÿ

iPS:

p∇2Fipw
˚q ´ ∇2fpw˚qq

›

›

›

›

›

2
fi

fl

“
1

pk ` 1q2|S0|2

ÿ

iPS:

E
”

›

›∇2Fipw
˚q ´ ∇2fpw˚q

›

›

2
ı

“
1

pk ` 1q|S0|
Eζ

”

›

›∇2F pw˚, ζq ´ ∇2fpw˚q
›

›

2
ı

ď
σ2
H

pk ` 1q|S0|
, (4.15)

where the second and third equalities are due to the fact that the sample sets Sk’s consists of i.i.d
samples of ζ, and the inequality is due to Assumption 3.5. Substituting (4.15) in (4.14) yields the
desired result.

Remark 4.4. Lemma 4.7 establishes the bound on the sampling error in terms of the sample size |S0| and
the iteration number k. We note that deterministic sampling without replacement in a cyclic manner
has a better dependence on k as compared to the stochastic subsampled Hessian (see Lemma 3.8).

To prove similar results for the expectation problem, we need an additional assumption on the second
moments of the iterates as employed in stochastic second-order methods [7, 13].

Assumption 4.3. There exists a non-negative constant η such that for all k P Z`,

E
“

}wk ´ w˚}2
‰

ď η pEr}wk ´ w˚}sq
2
.

Remark 4.5. Although this assumption seems to be restrictive, it is imposed on non-negative numbers
and is less restrictive than assuming that the iterates are bounded. It might be stronger than the sub-
exponential assumption on the stochastic Hessian [46, 64], it is however required to establish results in
expectation instead of results in probability. This assumption has been employed in other works to the
same effect [7, 13].

Finally we provide linear and superlinear local convergence rates for the expectation problem. This
theorem is the stochastic analog of Theorem 3.10, and the proof is similar. We provide the entire proof
for completeness.

Theorem 4.8. (Expectation local linear and superlinear convergence). Suppose Assumptions 3.1, 3.3, 3.4, 4.1,
4.2, and 4.3 hold. For any w0 P Rd, let twk : k P Nu be iterates generated by (2.1) where the Hessian
approximation is given in (2.4) with µ̃ ď

µ
2 , the sample sets Sk are randomly chosen such that |Sk| “ |S0|

for all k P N, and γi “ 1
k`1 for all i “ 0, ¨ ¨ ¨ , k. Furthermore, the gradient approximations gk satisfies

stochastic norm condition (2.6b) with
ř8

i“0 ιi “ ι̃ ă 8 and any of the choices for pAk, θk, αkq with
λmaxpAkq

λminpAkq
ď κA ą 0 provided in Theorem 4.3 for all k ă ksup for some ksup P N. In addition, suppose

either
ř8

i“0 }∇fpwiq}2 ă 8 or Assumption 3.2 holds. Furthermore, for all klin ď k ă ksup, ιk`1 “ ιkag

for some ιklin
ě 0 and ag P r0, 1q, where klin is given in Lemma 4.5. Let θ̃l “

?
alµ̃

9
?
κAL , q “

7Mη
2µ̃ ,

and τk :“ 1
µ̃

ˆ

Cp,s
?
η

k`1 `
σH

?
η?

pk`1q|S0|
` θkL

?
κA

˙

for some al P r0, 1q, and let rk be a sequence with and

rksup
“ max

!

Er}wksup
´ w˚}s,

3
?
ιksup

µ̃
?
λAal

)

ď
?
al

3q .
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1. If αk “ 1, θk “ θ̃l, and ιk`1 “ ιkal for all k ě ksup. Then

Er}wk ´ w˚}s ď rk, rk`1 “ max
␣

rkρk, rksup
p
?
alq

k´ksup`1
(

, ρk “ qrk ` τk `
?
ιksup

µ̃
?
λArksup

P r0,
?
als.

(4.16)

Therefore, Er}wk ´w˚}s Ñ 0 at an R-linear rate with rate constant upper bounded by
?
al P r0, 1q.

2. If αk “ 1, θk “
θ̃l?
k`1

, and ιk`1 “ ιkalt
4
k`1, tk “ 1?

k
for all k ě ksup. Then

Er}wk ´ w˚}s ď rk, rk`1 “ max

$

&

%

rkρk, rksupp
?
alq

k´ksup`1
k
ź

i“ksup

ti`1

,

.

-

,

ρk “ qrk ` τk `
?
ιksup

µ̃
?
λArksup

k´1
ź

i“ksup

ti`1 “ Op 1?
k

q P r0,
?
als. (4.17)

Therefore, Er}wk ´ w˚}s Ñ 0 at an R-superlinear rate with rate constant upper bounded by

maxtρk,
?
altk`1u “ O

´

1?
k

¯

.

Proof. Let

ksup “

R

max

"

2klin

´

1 ` λ̂
µ

¯

,
9Cp,s

?
η

µ̃
?
al

,
81σ2

Hη
µ̃2|S0|al

,

klin ` 2 log1{ρ̃

´

3qν
µ

?
al

¯

, klin ` log1{ag

´

81q2ιklin

a2
l µ̃

2λA

¯

*V

, (4.18)

where klin is defined in Lemma 4.5, λ̂ is defined in Lemma 3.7, Cp,s is defined in (4.10), and ρ̃ is the
linear convergence rate defined in Theorem 4.2. We note that ksup ě knon due to the first term in (4.18)
where knon is defined in (4.11). Using (4.5), (3.20), (4.6), and (4.13), and Assumption 4.3 we get for all
k ě ksup,

Er}wk`1 ´ w˚}s ď
7Mη
2µ̃ pEr}wk ´ w˚}sq2 ` 1

µ̃

ˆ

Cp,s
?
η

k`1 `
σH

?
η?

pk`1q|S0|
` θkL

?
κA

˙

Er}wk ´ w˚}s

`
?
ιk

µ̃
?
λA

(4.19)

“ q}wk ´ w˚}2 ` τk}wk ´ w˚} ` ok,

where ok :“
?
ιk

µ̃
?
λA

. Using the second and third terms in (4.18) and θk “ θ̃l “
?
alµ̃

9
?
κAL , we get τk ď

?
al

3

for k “ ksup. In addition, using the fourth term in (4.18) and (4.8), we get Er}wk ´ w˚}s ď
?
al

3q for

k “ ksup. Moreover, ιksup “ ιklin
a
ksup´klin
g ď

a2
l µ̃

2λA

81q2 due to the fifth term in (3.51) which implies that
ok ď

al

9q for k “ ksup.

Therefore, starting with k “ ksup and using Lemma 3.9 with υ “
?
al and ιk`1 “ ιkal yields (4.16).

Moreover, from (3.48), we have that
rk`1

rk
ď

?
al ă 1.

Similarly starting with k “ ksup and using Lemma 3.9 with υ “
?
al and ιk`1 “

ιkal

pk`1q2
yields (4.17).

Moreover, from (3.48), we get

rk`1

rk
ď max tρk,

?
altk`1u ď max

$

&

%

qrk ` τk `
oksup

r0

k´1
ź

i“ksup

ti`1,
b

al

k`1

,

.

-

ă max
!

qrksupp
?
alq

k´ksup ` τk `
oksup

rksup

?
k`1

,
b

al

k`1

)

“ Op 1?
k

q.
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Remark 4.6. We note that unlike the deterministic Hessian sampling, stochastic sampling leads to a

slower rate of superlinear convergence O
´

1?
k

¯

similar to the final phase results established in [46, 64].

Moreover, for the exact gradient settings, although we only presented the final superlinear convergence
results, from (4.19), it can be seen that there are two phases in the superlinearly convergent regime,

where initially rate is O
`

1
k

˘

and the later (final) phase is O
´

1?
k

¯

, similar to results in [46, 64], albeit in

expectation instead of high probability. We also note that the proof techniques employed in analyzing
the Hessian approximations in this analysis are different from those established in [46, 64] where we
analyze the variance in the Hessian sampling error at the optimal solution.

4.3 Complexity Analysis

In this section, we establish the iteration, gradient, and Hessian computational complexity bounds, i.e.,
the total number of iterations, individual gradient evaluations and Hessian evaluations required to get
an ϵ-accurate solution, characterized as any iterate wk satisfying

´

Er}wk ´ w˚}s

¯2

ď ϵ, (4.20)

where w˚ is an optimal solution. For the sake of simplicity, we will only consider global strongly convex
functions (see Assumption 3.2). The global sublinear convergence results for general nonconvex functions
established in Theorem 4.3 are required only to establish that the iterates will eventually enter a basin
with }∇fpwkq}2 ď ν2 and therefore, a complete complexity analysis can be performed by including the
analysis for this sublinear phase too. Furthermore, to make our analysis simple and make it possible to
compare our results with other methods in the literature, we limit our analysis to specific settings where
we choose θk “ 0 and ιk “ ι0a

k
g for all k ă ksup and ιk “ ι0a

k
l for all k ě ksup which leads to fast local

linear convergence (see Theorem 4.8).

Corollary 4.9. Suppose Assumption 3.2 and conditions of Theorem 4.8 hold with θk “ 0, ιk “ ι0a
k
g for

all k ă ksup where ag “ 1 ´
µµ̃

2LL̃
, and ιk “ ι0a

k
l for all k ě ksup with al P r0, 1q, and Ak “ I. Then, for

any given (sufficiently small) ϵ ą 0, we get an ϵ-accurate solution after performing Kϵ iterations where

Kϵ “ ksup `

Q

log1{
?
al

´

rksup?
ϵ

¯U

“ Õ
´

κ2
´

1 ` M
µ3{2

¯

` log
´

1?
ϵ

¯¯

, (4.21)

where rksup
is defined as in Theorem 4.8.

Proof. From (4.16), we have that for all k ě ksup,

Er}wk ´ w˚}s ď rksupp
?
alq

k´ksup . (4.22)

We use induction to prove this statement. It is trivially satisfied for k “ ksup. Suppose this statement
is true for some k ě ksup. Then, we have

Er}wk`1 ´ w˚}s ď max
␣

rkρk, rksup
p
?
alq

k´ksup`1
(

ď max
␣

rksup
p
?
alq

k´ksupρk, rksup
p
?
alq

k´ksup`1
(

“ rksup
p
?
alq

k´ksup`1,

where ρk is defined as in Theorem 4.8. Substituting Kϵ in (4.22), we get

Er}wk ´ w˚}s ď rksupp
?
alq

R

log1{
?

al

ˆ

rksup?
ϵ

˙V

ď
?
ϵ.
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We will now analyze ksup. Following similar steps in the proof of Corollary 3.11, we have that klin “ 0
and also utilizing

k
ÿ

i“k0

pEr}wi ´ w˚}2sq1{2 ă

a

2C̃2
?
µp1 ´

?
ρ̃2q

, (4.23)

we get Cp,s :“
M

?
2C̃2

?
µp1´

?
ρ̃2q

. Therefore ksup in (4.18), is updated as,

ksup “

R

max

"

9Cp,s
?
η

µ̃
?
al

,
81σ2

Hη
µ̃2|S0|al

, 2 log1{ρ̃2

ˆ

3q
?

2C̃2
?
µ

?
al

˙

, log1{ag

´

81q2ι0
a2
l µ̃

2

¯

*V

(4.24)

“ Õ
ˆ

max

"

κ2M
µ3{2 ,

σ2
H

µ̃2|S0|
, κ2, κ2

*˙

“ Õ
´

κ2
´

1 ` M
µ3{2

¯¯

,

where we employed logp1 ´ xq « ´x for sufficiently small x and σ2
H ď L2.

Remark 4.7. We make the following remarks about this result.

• The number of iterations required to transition from global linear phase to fast local linear or
superlinear phase ksup is similar to that of the deterministic sampling results established in Corol-
lary 3.11 (excluding the dependence on N). Furthermore, ksup is better (smaller) than the results
established for uniform weighting scheme and comparable to nonuniform weighting scheme when
M
µ3{2 is sufficiently small. However, we note that the analysis is in expectation and requires ad-

ditional assumptions related to bounded moments and strong convexity of subsampled functions,
which are not required in the deterministic sampling settings (see Section 3).

• While Corollary 4.9 requires ϵ to be sufficiently small, we can establish iteration complexity results
for the global phase when ϵ is large. In this the iteration complexity result is given as Kϵ “

Õ
´

κ2 log
´

1
µ

?
ϵ

¯¯

.

• This iteration complexity compared to a stochastic gradient method or an adaptive sampling
gradient method has better dependence on ϵ as seen in Table 2.

We will now establish the total gradient evaluations required to achieve an ϵ-accurate solution when
the starting iterate is close enough to the optimum, w˚. We will only consider simpler settings common
in stochastic gradient analysis where σ1,g “ 0 in Assumption 2.7b.

Corollary 4.10. Suppose conditions of Corollary 4.9 are satisfied and σ1,g “ 0 in Assumption 2.7b. In

addition, if w0 is sufficiently close to w˚ such that fpw0q ´ fpw˚q ď Lι0
µ2 and ι0 ď

µ5

324η2LM2 . Let al “ 1
2 ,

and |S0| “ r
81η
2 s. Then, after computing

Wg “ O
´

κ2σ2
2,g `

κσ2
2,g

µ2ϵ

¯

(4.25)

stochastic gradients, we achieve an ϵ-accurate solution.

Proof. From (2.8a), choosing minimum number of samples |Xk| at each iteration to satisfy the stochastic
norm condition [22], we get

|Xk| “

Q

σ2
2,g

ιk

U

ď
σ2
2,g

ιk
` 1.
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The total number of gradient evaluations required to achieve an ϵ-accurate solution is then given as,

Wg “

Ksup´1
ÿ

i“0

|Xk| `

Kϵ
ÿ

i“ksup

|Xk|

“
σ2
2,g

ι0

Ksup´1
ÿ

i“0

1
ai
g

`
σ2
2,g

ιksup

Kϵ
ÿ

i“ksup

1

a
i´ksup
l

` ksup ` 1

ď
σ2
2,g

1
ag

´1
p 1
ag

qksup `
σ2
2,gal

ιksup p1´alq
p 1
al

qKϵ´ksup ` ksup ` 1

ď 2κ2σ2
2,gp1 ´ 1

2κ2 q´ksup

looooooooooooomooooooooooooon

1

`
σ2
2,gal

ιksup p1´alq
p 1
al

qKϵ´ksup

looooooooooooomooooooooooooon

2

` ksup ` 1
looomooon

3

(4.26)

where we used ag “ 1´
µµ̃

2LL̃
“ 1´ 1

2κ2 . We will now analyze the terms on the right hand side of (4.26).

Each term requires the analysis of ksup, so we proceed by analyzing that term. Using fpw0q´fpw˚q ď Lι0
µ2

and ι0 ď
µ5

324Lη2M2 , we get,

C̃2 “ max
!

fpw0q ´ fpw˚q, L̃ι0
µµ̃

)

“ Lι0
µ2 ď

µ3

324η2M2 . (4.27)

From (4.24), we have that

ksup “

R

max

"

9Cp,s
?
η

µ̃
?
al

,
81σ2

Hη
µ̃2|S0|al

, 2 log1{ρ̃2

ˆ

3q
?

2C̃2
?
µ

?
al

˙

, log1{ag

´

81q2ι0
a2
l µ̃

2

¯

*V

ď max

"

9Cp,s
?
η

µ̃
?
al

,
81σ2

Hη
µ̃2|S0|al

, 2 log1{ρ̃2

ˆ

3q
?

2C̃2
?
µ

?
al

˙

, log1{ag

´

81q2ι0
a2
l µ̃

2

¯

*

` 1

We will now analyze each term in the above bound. Consider,

9Cp,s
?
η

µ̃
?
al

ď
9M

?
2C̃2

?
η

?
µµ̃

?
alp1´

?
ρ̃2q

ď 1
?
ηp1´

?
ρ̃2q

ď 2
1´ρ̃2

“ 4κ2, (4.28)

where the first inequality is due to Cp,s :“
M

?
2C̃2

?
µp1´

?
ρ̃2q

for strongly convex functions, the second inequality

is due to (4.27) and η ě 1, the last inequality is due to the fact that 1´
?
x ě 1´x

2 for any x P r0, 1s and

η ě 1, and the equality is due to ρ̃2 “ 1 ´
µµ̃

2LL̃
“ 1 ´ 1

2κ2 .

Considering the second term and using |S0| “ r
81η
2 s and σ2

H ď L2, we get,

81σ2
Hη

µ̃2|S0|al
ď

4σ2
H

µ̃2 ď 4κ2. (4.29)

Using (4.27), logp1 ´ 1
2κ2 q « ´ 1

2κ2 , and substituting q “
7Mη
2µ̃ in the third term, we get,

2 log1{ρ̃2

ˆ

3q
?

2C̃2
?
µ

?
al

˙

ď ´2 logp7{6q

logpρ̃2q
« 4κ2. (4.30)

Similarly, using logp1 ´ 1
2κ2 q « ´ 1

2κ2 , ι0 ď
µ5

324Lη2M2 , and substituting q “
7Mη
2µ̃ in the fourth term, we

get,

log1{ag

´

81q2ι0
a2
l µ̃

2

¯

“ ´
log

ˆ

3969M2η2ι0
µ4

˙

log

ˆ

1´
µµ̃

2LL̃

˙ ď ´
logp

49
4κ q

logp1´
µµ̃

2LL̃
q

« 5κ2. (4.31)
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Therefore, combining all the above bounds, we get, ksup « 5κ2 ` 1.
We are ready to analyze the terms in (4.26). For the first term, we have that

2κ2σ2
2,g

`

1 ´ 1
2κ2

˘´ksup
“ O

`

κ2σ2
2,g

˘

, (4.32)

where we used p1 ´ 1{xq´x « exp, for any x ą 0 that is sufficiently large. Consider,

r2ksup

ιksup
ď max

"

pEr}wksup´w˚
}sq

2

ι0a
ksup
g

, 18
µ̃2

*

ď max

"

2C̃2ρ
ksup
2

µι0a
ksup
g

, 18
µ̃2

*

ď max
!

2C̃2

µι0
, 18
µ̃2

)

ď max
!

2κ
µ2 ,

18
µ̃2

)

(4.33)

where the last inequality is due to (4.27). Now, consider the second term in (4.26), we get

σ2
2,gal

ιksup p1´alq

´

1
al

¯Kϵ´ksup

“
σ2
2,gal

ιksup p1´alq

´

1
al

¯

R

log1{
?

al

ˆ

rksup?
ϵ

˙V

ď
σ2
2,gr

2
ksup

ϵιksup
`

2σ2
2,g

ιksup
“ O

´

κσ2
2,g

µ2ϵ

¯

(4.34)

where the first equality is due to (4.21) and the last equality is due to (4.33). Combining (4.32) and
(4.34) completes the proof.

Remark 4.8. We make the following remarks about this result and make a comparison with existing
results in Table 2.

• We employ fixed number of stochastic Hessian samples at each iteration. Therefore, the Hessian
complexity, i.e. number of Hessian computations required to get an ϵ-accurate solution is same as

the total number of iterations
´

Õ
`

κ2 ` log
`

1
ϵ

˘˘

¯

.

• The total number of stochastic gradients required improves upon stochastic gradient method in
terms of the dependence on condition number (κ) even though the number of gradients evaluated
per-iteration are increasing at each iteration. Furthermore, we should note that our local results
match with that of first-order adaptive gradient sampling methods even after employing inferior
global convergence results associated with Newton’s method compared to a gradient method.

• Although we only presented the gradient iteration complexity results here for the phase where
the the starting iterate is sufficiently close to the optimal solution and ϵ is sufficiently small (see
Corollaries 4.9 and 4.10), we can also establish the results for the global phase where ι0 is chosen
independent of the problem characteristics and Kϵ “ Õ

`

κ2 log
`

1
ϵ

˘˘

. However such results are
inferior to those of first-order adaptive gradient methods due to the artifact of global convergence
analysis of Newton’s method.

Method Iteration Gradient

Stochastic Gradient [18] O
´

κ2σ2
2,g

µ2ϵ

¯

Op
κ2σ2

2,g

µ2ϵ q

Adaptive Gradient Sampling [22, 35] Opκ log
`

1
ϵ

˘

q O
´

κσ2
2,g

µ2ϵ

¯

This Paper (Corollary 4.9 & 4.10) Õ
`

κ2 ` log
`

1
ϵ

˘˘

O
´

κ2σ2
2,g `

κσ2
2,g

µ2ϵ

¯

Table 2: Comparison of (local) iteration and gradient complexity results for strongly convex functions.
Note: The complexity results in terms of expected function values (Erfpwkq ´fpw˚qs ď ϵ) for stochastic
gradient and adaptive gradient sampling summarized in [22, Table 4.1] have been converted to get the
results in terms of pEr}wk ´ w˚}sq2 ď ϵ.
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5 Practical Algorithms

In the previous sections we developed a convergence and complexity theory that establish the conver-
gence benefits of Hessian-averaged Newton methods for the finite-sum and expectation problem settings.
However, hurdles remain to their deployment in very high-dimensional settings due to the costs of invert-
ing Hessian matrices. In this section we discuss considerations relating to deploying Hessian-averaged
Newton methods in practice. We begin by investigating a generic averaged Newton methods, which
we refer to as fully-averaged Newton (FAN) for the purposes of our exposition. Due to the substantial
costs of Hessian inversion this method is infeasible for even moderate problems. We propose a simple,
diagonally averaged Newton method (Dan) for high-dimensional optimization problems such as those
arising in machine learning (ML) settings. We investigate additional practical heuristics such as differ-
ent weightings and norms that are used in the Hessian averaging, as well as practical gradient sampling
strategies, which in turn lead to their own variant algorithms.

5.1 Fully-Averaged Newton

When the dimension of the optimization variable, d is not too large, one may opt to construct a Newton-
like algorithm using a weighted average of the full Hessian, which requires d2 storage:

Fully-Averaged Newton (FAN): pk “ H̃´1
k gk. (5.1)

Here H̃k is defined as in (2.4), or alternatively using the following formula:

H̃k “

k
ÿ

i“0

γi|∇2FSi
pwiq| ` µI, (5.2)

where µI can help improve the conditioning of the problem. This requires however costly eigenvalue
or Cholesky decomposition at each iteration, thus incurring Opd3q computation. Alternative methods
to approximate inversion of the full Hessian include Krylov methods [65, Chapter 5], however these
methods do not simply extend to the averaging setting, since in this case one requires storage of the
Hessian matrix in a given format, but not as a matrix-vector product callable as is necessary for Krylov
methods.

5.2 Overcoming high-dimensionality with Hessian-subspace products

When the dimension d is large, approximations of the Hessian that can be formed for less than Opd2q

operations and inverted for less than Opd3q operations are necessary. Randomized sketching is an easily
extensible tool to construct efficient representations of matrices [62]. In this process one can construct a
compressed representation of a matrix via its action on a matrix Vr P Rdˆr, where r is a small number,
that is often independent of d. In addition to diagonal approximations, other factorizations such as low
rank [40] and hierarchical [53, 91] approximations can be computed from the action of a given matrix
on the r-dimensional subspace Vr.

This subspace action is easy to implement in modern ML workflows as it can be constructed from
simple automatic differentiation tools around embarrassingly parallelizable linear algebra. For example,
the Hessian subspace product can be computed with the same tools utilized to form the gradient; first by
forming the gradient, then forming its transpose action on Vr, followed by taking the gradient (Jacobian)
of this combined term:

Hessian subspace products: ∇2FSk
pwkqVr “ ∇

`

∇FSk
pwkqTVr

˘

. (5.3)
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E.g., forward-over reverse automatic differentiation [4] with vectorized GPU computing makes these
Hessian approximations very computationally efficient. In our numerical tests, Hessian subspace products
had approximately constant compute time until running out of GPU memory, see Figure 3.
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Figure 3: Efficiently implemented (vectorized) Hessian subspace products for varying ranks and sample
sizes have approximately constant compute time until running out of GPU memory. These experiments
are for a ResNet used in CIFAR100 classification, as shown in Section 6.4. The dimension of the neural
network weights w was d “ 11, 247, 052. This set of experiments was run on an NVIDIA L40S GPU
which has 48GB of GPU RAM.

5.3 Diagonally-Averaged Newton

In practical settings for stochastic optimization, such as deep learning, d can be very large, and any algo-
rithm requiring more than Op1q Hessian-vector products, and Opdq memory footprint at each iteration
will be infeasible in modern compute settings, since they are typically memory bound [36].

These constraints are achievable utilizing both diagonal or low rank Hessian approximations. As
diagonal preconditioning of gradients (with and without momentum) dominates modern ML optimization
methods, it is sensible to utilize diagonal Hessian approximations in Newton-like stochastic gradient
updates that are targeted to these problems. The use of diagonal Hessian preconditioners was first
introduced, to the best of our knowledge, by [90], and was later used in [55].

The Hessian diagonal can be computed matrix-free via randomized Hutchinson diagonal estimation

Dk “ diag
`

∇2FSk
pwkq

˘

“ Ez„πz

„

diag

ˆ

zp∇2FSk
pwkqzqT

zT z

˙ȷ

, (5.4)

for a suitable choice of distribution πz [31]. The diagonal matrix is trivially invertible in d operations,
overcoming the major computational hurdle for Newton-like methods. This approximation, and other
matrix representations that are easily inverted and have Opdq memory footprint can be constructed via
the use of randomized sketching.

This naturally leads to the diagonally-averaged Newton method

Diagonally-Averaged Newton (Dan): pk “
“

D̃k

‰´1
gk, (5.5)

where in our implementation D̃k “
řk

i“1 γi|Dk|, that is we approximate the diagonal of (5.2) instead of
(2.4). Diagonal approximations are useful for diagonally dominant Hessians, however these approxima-
tions may not be suitable for optimization problems with large off-diagonal components. We empirically
observe that Dan and Adahessian perform well on difficult ML optimization problems.
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5.3.1 Differences with Adahessian

Dan is similar to Adahessian [90] but differs in two key ways:

1. Dan does not have any momentum in the gradient, so the relative performance of Dan to Adahessian
helps isolate the effects of utilizing the averaged Hessian approximation in isolation from the effects
of gradient momentum.

2. Dan utilizes a ℓ1 averaged approximation of the Hessian diagonal; this choice is motivated by our
analysis which averages the Hessian and not its square. Adahessian and Sophia [55] utilize an ℓ2

norm averaging, similar to what is used in Adam [47]. We denote by ℓpγ the averaging protocol:

ℓpγ averaging: p

g

f

f

e

k
ÿ

i“1

γiD
p
i . (5.6)

Since Adahessian and Dan utilize different averagings, we thus propose an ℓ2γ modification of Dan,
which we name Dan2:

pDan2q : pk “

»

–

˜

ÿ

iďk

γiD
2
i

¸
1
2

fi

fl

´1

gk. (5.7)

5.4 Additional algorithmic considerations

In this section we consider additional adaptations of Dan and Dan2 that are common to other practical
ML optimization methods.

5.4.1 Infrequent Hessian computations

The per-iteration costs of the Hessian approximations can add significant additional costs relative to
first-order methods. In traditional stochastic Newton methods, this burden can be lessened by (i)
lower dimensional Hessian approximations (e.g., few samples for Hutchinson diagonal estimation), (ii)
smaller Hessian sample size (i.e., |Sk| ă |Xk|). In the context of Hessian averaging we can additionally
lessen the burden by updating the Hessian approximation less frequently than the gradient, as is done in
Adahessian. We utilize this in numerical experiments in Section 6.4.2 where we maintain a fair cost-basis
comparison between the first and second-order methods.

5.4.2 Non-uniform weightings

Adam, Adahessian and other popular ML optimizers utilize exponentially decaying sum averaging for
their weightings, which is defined by the recurrence relationship

Decaying Weights: pDk`1 “
β2

1 ´ βk
2

pDk `
p1 ´ β2q

1 ´ βk
2

Dk, (5.8)

where β2 P p0, 1q is a hyperparameter that controls the rate of decay in the averaging of past iterates,
pDk is the diagonal preconditioner being updated, and Dk is the estimator of the diagonal at wk. The
benefits of this approach are that the effects of past iterates are de-emphasized, which is useful when the
landscape is highly nonlinear, and the diagonal preconditioner’s local information is changing rapidly.
This weighting is widely used due to its ease of implementation and effectiveness.

Our local convergence analyses in Section 3 and 4 utilize uniform averaging to concentrate the Hessian
statistical sampling errors. In order to prove superlinear convergence for this weighting deterministically,
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or in expectation, while still maintaining a fixed per-iteration Hessian sample size, other assumptions
may be required. In [64] when the Hessian errors are assumed to be sub-Gaussian, superlinear local
convergence rates are proven in probability for more general weightings such as (5.8). In numerical
experiments we demonstrate the performance of this weighting and the uniform weighting.

5.4.3 Gradient sample size selection

While our algorithmic framework allows for fixed per-iteration computational costs associated with the
Hessian approximation, in order to achieve fast convergence one has to control the gradient statistical
sampling error in relation to the true gradient norm. This can be achieved either by geometrically
increasing sample sizes (with sequence ιk), or the norm test (with sequence θk), or a combination of
both. The former (i.e., θk “ 0) is simple to implement in practice while the latter requires additional
approximations as numerically verifying the bound Ek

“

}∇FXk
pwkq ´ ∇fpwkq}2

‰

ď θ2k}∇fpwkq}2 may
be prohibitive due to its sampling costs. To address this challenge, one can employ an approximate norm
test in practice, as was done in previous works [12, 16, 22]:

Approximate norm test:
1

|Sk|

ÿ

iPSk

}∇Fipwkq ´ ∇FSk
pwkq}

2
ď θ2k }∇FSk

pwkq}
2

` ιk. (5.9)

This test approximates the expectations via Monte Carlo, and will give a rough indicator of the conver-
gence of sample gradient to the true gradient.

In large scale subsampled optimization problems (e.g., deep learning), methods with fixed gradient
sample sizes show empirically good performance. Therefore, in numerical experiments we also consider
variants of our algorithms that do not increase the gradient sample sizes, but instead use step size
schedulers. This allows for direct comparison with state-of-the-art ML optimization routines. In partic-
ular Dan and Dan2 perform comparably to and often better than state-of-the-art methods in the ML
optimization problems that we investigate.

6 Numerical Experiments

In this section, we experiment with Hessian-averaged subsampled Newton methods on a variety of
problems, separated into two classes with different metrics: (1) subsampled convex problems where we
look at fpwq ´ fpw˚q, and (2) subsampled nonconvex (deep learning) problems where we are interested
in the performance of the trained models on unseen data. First we investigate algorithmic trade-offs
for stochastic quadratic minimization and logistic regression problems where computational costs allow
us to consider full Hessian inversions (FAN). We then consider large-scale neural network problems:
CIFAR[10,100] classification with ResNets and neural operator training, where the weight dimensions
dW make full Hessian inversion prohibitive. In the large-scale context we investigate the performance of
the Dan relative to Adam, Adahessian and SGD.

Overall, the Hessian-averaged Newton methods were run in regimes (e.g., choice sample sizes and
step sizes) that led to immediate instabilities for subsampled Newton methods not utilizing Hessian
averaging. This point demonstrates the key algorithmic motivation for this type of method: to alleviate
the instabilities of subsampled Newton methods at manageable costs. Additionally in the large-scale
machine learning (ML) problems, Dan and Dan2 performed comparably to and often better than Adam
[47], overall better than Adahessian [90], and substantially better than SGD. This result suggests that the
effects of Hessian averaging may be more beneficial than gradient momentum in some relevant practical
settings.
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6.1 Problem setups

We give a high level overview of the experiments below. The approximate solution for a given method
is given by w:, which we do not denote w˚ since it is not necessarily the true minimizer.

6.1.1 Subsampled quadratic

First we investigate a stochastic quadratic minimization problem:

(Subsampled quadratic): fpwq “ EPA,Pb

“

}PAAw ´ Pbb}
2
‰

, (6.1a)

Evaluation criteria: fpw:q (6.1b)

where PA, and Pb are linear operators that randomly zero out entries in A and b respectively. That is at
each iteration we randomly sample index sets for entries in A and b that are set to zero. This problem
is a simple analogue to empirical risk minimization over a dataset.

6.1.2 Logistic regression

Second we consider two logistic regression for binary classification with ℓ2 regularization. Let xi be an
input vector and yi P t´1, 1u be the corresponding output label

(Logistic Regression): fpwq “
1

n

n
ÿ

i“1

logp1 ` expp´yipw
Txiqq `

1

2n
}w}2, (6.2a)

Evaluation criteria: fpw:q (6.2b)

We note that this objective function is strongly convex [6]. We compare the performance of various
methods on both the ijcnn1 and mushroom datasets [27].

6.1.3 CIFAR[10,100] Classification

Third, we consider the CIFAR10 and CIFAR 100 [50] classification using ResNet architectures [41], and a
softmax cross-entropy loss function. Let xi be an input image, and yi be the corresponding vector label.
Let ϕpxi, wq be the ResNet prediction in the pre-image of the softmax, then the problem is formulated
as

(Softmax cross entropy): fpwq “ ´
1

n

n
ÿ

i“1

yTi log pppxi, wqq where pjpxi, wq “
eϕjpxi,wq

ř

iPClasses

eϕjpxi,wq

(6.3a)

Evaluation criteria: Correct classification percentage on unseen data. (6.3b)

6.1.4 Parametric PDE Regression

Finally, we consider regression problems for the approximation of parametric PDE input-output maps
via neural networks (e.g., neural operators). We consider a coefficient-to-observable nonlinear reaction
diffusion problem in a physical domain Ω Ă R2. Here the input parameter x P X “ L2pΩq is a
heterogeneous spatially varying random field, with measure π. The PDE state u P U “ u0 `H1

0 pΩq, an
affine space account for boundary conditions u0. The outputs y P RdY represent finite observations of u
on a line in the domain.
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PDE: ´ ∇ ¨ pex∇uq ` cu3 “ f in Ω “ p0, 1q2 (6.4a)

Boundary conditions: u “ 1 on Γtop, u “ 0 on Γbottom, ∇u ¨ n “ 0 on Γsides (6.4b)

Parametric map: x ÞÑ ypxq “ Bupxq, (6.4c)

where n is the unit normal to the domain Ω, and B : U Ñ RdY is a linear restriction operator to
points on line in the domain. The infinite-dimensional input functions are encoded to a finite input basis
tψi P X uri“1 that is chosen to correspond to directions of the input space that the map is most sensitive
to as in [68, 69]. The corresponding coefficients xr P Rr are pxrqj “ px, ψjqX , where p¨, ¨qX is the inner
product for X . This choice of encoding makes the regression task naturally finite-dimensional, while still
maintaining discretization invariance via the use of the infinite-dimensionally consistent basis vectors ψi.

The regression task is thus to learn an approximation of the map xr ÞÑ y by a neural network
ϕw. We consider two formulations, first a parametric least squares formulation for learning the reduced
coefficient map, which we refer to as the L2

π formulation. Second we consider a least squares formulation
for learning the reduced coefficient map and its first Fréchet derivatives (e.g., derivative-informed neural
operator (DINO) [67]), which we refer to as the H1

π formulation.

pL2
π training): min

w
fpwq “

1

n

n
ÿ

i“1

}ypxrq ´ ϕwpxrq}22 (6.5a)

Evaluation criteria:
}ypxrq ´ ϕwpxrq}2

}ypxrq}2
on unseen data (6.5b)

pH1
π training): min

w
fpwq “

1

n

n
ÿ

i“1

`

}ypxrq ´ ϕwpxrq}22 ` }∇xrypxrq ´ ∇xrϕwpxrq}2F

˘

(6.5c)

Evaluation criteria:
}ypxrq ´ ϕwpxrq}2

}ypxrq}2
,

}∇xrypxrq ´ ∇xrϕwpxrq}F

}∇xr
ypxrq}F

on unseen data . (6.5d)

The H1
π formulation is particularly relevant when the surrogate is to be deployed in a setting where

accurate derivatives are required, such as for the solution of optimization problems [59], or efficient
Bayesian inference in function spaces [24]. The H1

π training problem can thus be considered optimiz-
ing to optimize. We note the recent work [94] has also investigated the performance of second-order
optimization methods for training parametric PDE surrogates.

6.1.5 Additional details

In order to have a one-to-one comparison of methods, our implementation of Adahessian differs slightly
from the method proposed in [90]. First we consider versions of Adahessian that update the Hessian
approximation both at each iteration, and also infrequently (the latter is proposed in [90]). Additionally
we do not use averaging of convolution layers in the diagonal approximation, as we propose generic
Hessian-vector products for Dan and Dan2 that are agnostic to the structure of what is being differ-
entiated. Further details on the implementation details are given in Appendix 9.2, accompanied by an
extended discussion of the parametric PDE problem in Appendix 9.3.

6.2 Subsampled Quadratic Minimization

For this problem we compare FAN, Dan, Newton, and SGD all with and without adaptive gradient
sampling (denoted “a.g.”), which is implemented via the norm test. We do a sweep over fixed step
sizes α P r1.0, 10´1, 10´2, 10´3, 10´4, 10´5s. For the averaged methods we consider both uniform and

43



0 200 400 600 800 1000

Iterations

102

103

104

105

106

f(
w

)

Objective Value vs. Iterations

Dan exp α =1.0

Newton α =0.01

SGD w/ a.g. α =1e-05

Dan exp w/ a.g. α =1.0

Figure 4: The performance of the best 4 methods for the stochastic quadratic minimization problem.
Dan with adaptive gradient sampling performed the best, both in terms of fast convergence and fpw:q.
SGD with adaptive gradient sampling also performed well, but required significant limitations on the
step size. The methods without adaptive gradient sampling plateaued with larger fpw:q. The averaging
of the Hessian can eventually overcome stability issues after enough iterations progress to reduce the
Hessian variance as seen by Dan exp α “ 1.0. When not using Hessian averaging, Newton methods
required smaller steps to maintain stability.

exponentially decaying weightings. Initially PA, Pb are both taken to randomly zero out 50% of the
entries in A, b respectively. All optimizers start from the same initial guess w0 „ N p0, IdW q, where the
stochastic gradient is approximately 13, 500% noisier than the true gradient. Each optimizer runs for
1, 000 iterations. We note that this does not constitute a fair comparison in terms of computational work,
since we compare iterations. However, the methods that did not utilize adaptive gradient sampling were
not making progress after 1, 000 iterations, so the gap in the objective function is indicative of superior
performance for the adaptively sampled methods, and the trend would continue if run longer. We
report general trends over the 72 different numerical runs. First all of the SGD runs without adaptive
gradient sampling diverged except for α “ 10´5; with adaptive gradient sampling all diverged except
α P t10´4, 10´5u.

The performance of the ten best methods is reported below in Table 3, and the (rolling average) of
the stochastic function costs are shown in Figure 4. The general trend for this problem is that the Dan
methods outperformed all of the other Newton methods consistently. SGD required very small step sizes
for stability, but performed well when taking many very small step sizes. The best performing methods
utilized adaptive gradient sampling. Methods that did not utilize adaptive gradient sampling were able
to reduce the objective function rapidly, but got stuck in neighborhoods where the objective function
was not able to be reduced beyond the level of the noise. Perhaps surprising is the superior empirical
performance of Dan to all other Newton methods. Dan is an economical Hessian approximation, where
one might expect the omitted off-diagonal information would lead to deteriorated performance. For this
problem, however, this is not the case. This bolsters the argument for this numerical approximation in
high-dimensional settings where true Hessian inverse approximation is infeasible.
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Method α fpw:q Œ Method α fpw:q Œ

1 Dan exp. w/ a.g. 1.0 38.67 6 Newton 10´3 76.35
2 SGD w/ a.g. 10´5 45.69 7 FAN exp 10´1 76.98
3 Dan exp 10´1 73.77 8 Dan exp 10´1 77.01
4 Newton 10´2 74.69 9 Dan exp 10´2 77.11
5 SGD 10´5 75.11 10 Dan uni 1.0 77.12

Table 3: The ten best performing methods for the subsampled quadratic minimization, and the objective
function value at their approximated optimum w:. The two best performing methods utilized adaptive
gradient sampling, but interestingly the adaptive gradient sampling didn’t lead to optimal results outside
of these methods. In general Dan outperforms all of the other second-order methods, in particular the
exponentially decaying weights generally outperformed the uniform averaging.

For the remainder of the numerical results, we compare methods either for a fixed number of epochs
or for fixed computational costs. In the case of a fixed total number of epochs, the adaptive sampling
methods require fewer total computations than the same method without adaptive sampling, as these
methods require fewer iterations and therefore fewer Hessian computations compared to the same method
without adaptive sampling.

6.3 Logistic Regression

For a second numerical result we compare Dan, FAN, Newton, and SGD on two logistic regression prob-
lems. The ijcnn1 dataset has 22 input features and 35, 000 training samples. The mushroom dataset
has 112 features and 5, 500 training data. We compare fully subsampled methods (gradient and Hessian
sample sizes fixed at 32), with adaptive gradient sampling methods. We run a total of 100 epochs for each
method. For adaptive gradient sampling, we implement geometric growth in sample size instead of the
norm test: we run 20 epochs with gradient sample sizes |Xk| “ t32, 128, 512, 2048, 5500u, t32, 128, 512, 2048, 8192u

for ijcnn1 and mushroom respectively. We note that in this case, since we consider epochs and not itera-
tions, the adaptively sampled methods will require a lower total amount of computational work than the
methods that do not utilize adaptive gradient sampling. For the ijcnn1 results the algorithms performed
roughly the same, we show results for the step size of α “ 0.1, which are representative of other step
sizes. For the mushroom dataset we show the performance of all methods as a function of the step size.
The results are show below in Table 4.
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ijcnn1 fpw:q Œ mushroom fpw:q Œ

a.g. α a.g.

Dan
0.1 p✗, 0.123q p✗, 0.072q

0.398 0.349 0.01 p✗, 0.123q p✗, 0.078q

0.001 p0.136, 0.137q p0.105, 0.102q

FAN
0.1 0.121 0.071

0.401 0.349 0.01 0.123 0.079
0.001 0.142 0.111

Newton
0.1 0.132 0.072

0.405 0.349 0.01 0.132 0.072
0.001 0.150 0.103

SGD
0.1 0.123 0.092

0.389 0.349 0.01 0.145 0.125
0.001 0.198 0.201

Table 4: Results for the two logistic regression problems are reported as averages over five different
initial guesses. The methods performance improved uniformly with adaptive gradient sampling. For
the ijcnn1 dataset the four methods performed comparably. The symbol ✗ denotes that these runs
diverged. For the mushroom problem, Dan is reported for two different choices of the diagonal estimator
rank, r P t1, 40u; for larger step sizes Dan diverged with r “ 1, but otherwise performed comparably
to FAN; this demonstrates that using more Hessian-vector products in the diagonal estimation can
lead to better performance. FAN performed better than subsampled Newton without adaptive gradient
sampling, and worse with it. Both Dan and FAN uniformly outperformed SGD.

6.4 CIFAR[10,100] classification with ResNets

Next we demonstrate the performance of Dan in deep learning classication problems. We use the
CIFAR10 and CIFAR 100 [50] classification using ResNet architectures [41], and a softmax cross-entropy
loss function. For both problems, we use the standard 50,000 training data, and report generalization
accuracy over the remaining test data. For all results we utilize a single learning rate scheduler that
quarters the learning rate every 25% of total epochs. For both problems we investigate the performance
of the methods in two regimes:

1. Comparison over 100 epochs. An extensive fixed data-access comparison of all methods with
varying algorithmic hyperparameters. We note that this is not strictly a fair comparison, but it
allows us to gain insight into the general performance of the different methods before running
costlier, long trainings.

2. Comparison of longer runs, on a fixed computational cost basis. We do a limited number of much
longer training runs to compare how Dan, Dan2 and Adahessian compare to Adam.

We note that other adaptive optimizers (e.g., RMSProp [44] and Adagrad [32]) performed substan-
tially worse than Adam, so we omitted them. As these numerical results are very expensive to run, we
rerun over two seeds and report the average results. The problems are quite computationally expensive
and were run on NVIDIA A100 / L40S GPUs.

6.4.1 Comparison of methods over 100 epochs

We begin with our comparison of methods over 100 epochs. For this set of results we investigate how
the performance of the three Hessian-averaging based methods (Adahessian, Dan and Dan2) is effected
by the number of Hessian vector products used in the Hutchinson diagonal estimation (5.4). For a
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fair baseline of comparison, we additionally implement a version of Adahessian where a new Hessian
approximation is computed at every iteration, as was discussed in Section 5.4.1. We explore the effects
of limiting the frequency of Hessian computations in the next set of numerical results. We investigate
the performance of Dan, Dan2 and SGD with and without adaptive gradient sampling. As with the last
example, we implement a geometric increase of the gradient sample sizes. We first run 75 epochs with
|Xk| “ 32, followed by five epochs each with the following sequence Xk P t64, 128, 256, 512, 1024u. As a
consequence the Dan w/ a.g. is notably substantially less expensive than regular Dan due to the lower
iteration complexity in the final 25 epochs. Our results are shown below in Table 5.

Method α0 Hessian rank CIFAR10 Accuracy Õ CIFAR100 Accuracy Õ

Adahessian
0.05 p1, 5, 10q p92.85, 92.70, 92.55q p71.97, 71.67, 72.15q

0.01 p1, 5, 10q p92.47, 93.20, 93.21q p70.65, 71.93, 72.11q

0.001 p1, 5, 10q p83.35, 86.19, 87.52q p57.49, 60.10, 62.82q

Adam
0.05 - ✗ ✗
0.01 - 91.69 65.02
0.001 - 93.08 72.10

Dan
0.05 p1, 5, 10q p91.80, 92.31, 90.74q p70.62, 71.00, 71.01q

0.01 p1, 5, 10q p92.29, 93.30, 93.32q p71.18, 72.10, 71.57q:

0.001 p1, 5, 10q p85.44, 86.87, 89.04q p60.33, 61.78, 64.98q

Dan w/ a.g.
0.05 p1, 5, 10q p92.99, 92.16, 92.56q p72.48, 70.96, 70.52q

0.01 p1, 5, 10q p92.62, 93.16, 93.36q p71.11, 72.03, 72.22q

0.001 p1, 5, 10q p82.41, 86.78, 89.13q p56.51, 62.06, 64.92q

Dan2
0.05 p1, 5, 10q p92.81, 92.80, 92.40q p71.34, 71.70, 71.53q

0.01 p1, 5, 10q p92.47,93.37, 93.14q p70.89, 72.22, 71.89q

0.001 p1, 5, 10q p80.98, 85.54, 87.78q p54.74, 60.55, 62.40q

Dan2 w/ a.g.
0.05 p1, 5, 10q p93.03, 92.66, 93.02q p72.09, 72.25, 72.33q

0.01 p1, 5, 10q p91.90, 92.99, 92.96q p70.38, 72.13, 71.98q

0.001 p1, 5, 10q p81.27, 86.02, 87.63q p54.74, 60.55, 62.40q

SGD
0.05 - ✗ ✗
0.01 - 88.09 64.84
0.001 - 81.75 54.36

SGD w/ a.g.
0.05 - ✗ ✗
0.01 - 88.58 66.63
0.001 - 82.00 53.77

Table 5: Comparison of optimization methods for CIFAR[10,100] ResNet training over 100 epochs. In
both cases a Hessian-averaging based method produced the highest average generalization accuracy. No-
table takeaways are that Dan with adaptive gradient led to the best result for the CIFAR100, showing
the promise and competitiveness of our proposed framework in complicated deep learning tasks. Ad-
ditionally, the Hessian averaging methods were able to take larger steps than the subsampled gradient
methods. Adam was reliable as is usually the case, while SGD overfit substantially and produced poor
generalization accuracys. :: See Appendix 9.2.2.

Our proposed methods Dan and Dan2 produced the best overall results in terms of generalization
accuracy. Adam and Adahessian were both competitive, while SGD was not competitive. The adaptive
gradient sampling was able to improve the performance, for example Dan w/ a.g. for CIFAR100 notably
produced significantly better results than the other methods. This demonstrates not only is Hessian
averaging without momentum a good algorithmic building block, but additionally can lead to better
results at lower costs, due to the geometric reduction in Hessian computational costs in the later epochs.
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Of note for other algorithmic considerations: in general the additional Hessian vector products in the
diagonal estimations didn’t clearly benefit performance, other than when taking small step sizes, in
this case there is a clear trend that increasing the rank of the diagonal approximation led to better
performance, however these methods performed substantially worth overall to the larger step sizes.

6.4.2 Comparison of methods with respect to computational cost

In this section we investigate the performance of Adahessian, Dan and Dan2 in relation to Adam in terms
of a computational cost, taking the additional Hessian computations into account. For this section we
introduce a new algorithmic hyperparameter: the Hessian computation frequency, as discussed in 5.4.1.
The modifications of Adahessian, Dan and Dan2 to compute Hessians infrequently significantly reduces
the overall cost, yielding per-iteration costs closer to Adam’s per-iteration cost. We only start utilizing
infrequent Hessian computations after the first epoch, as empirically the Hessian statistical errors didn’t
concentrate fast enough to keep the iterates from diverging; a reminder of the inherent instability of
subsampled Newton iterates in this regime. After the first epoch we only update the Hessian diagonal
approximations every 10 iterations. We investigate a study of Hessian ranks of 1 and 5 for these methods.
We introduce an epoch equivalent compute metric, as a means of putting the second-order and first-order
methods on an equivalent cost basis:

(Epoch Equivalent Compute (E.E.C.)) “

¨

˚

˚

˝

1
loomoon

gradients

`
2 ˆ rank

h.f.
loooomoooon

Hessians

˛

‹

‹

‚

ˆ epochs ` 2 ˆ rank
looomooon

first epoch Hessian

. (6.6)

We count one Hessian vector product as twice the cost of a gradient, when in reality it is empirically
cheaper when utilizing vectorization (see Figure 3), these costs comparison are therefore conservative
and make the Hessian-based methods seem more expensive than they may be given an efficient GPU
implementation. An additional means of computational economy is reducing the Hessian sample size
relative to the gradient sample size. We do not investigate this; as with the previous set of numerical
experiments we use a sample size of 32 for both the gradients and the Hessians. In these experiments we
do not investigate adaptive gradient sampling. Adam with α0 “ 10´3 is our reference method, we run
it for 500, 1000 and 2000 epochs. We investigate Adahessian, Dan and Dan2 in comparison to Adam
on a similar cost basis. These results are shown below in Table 6. The best individual runs over all
hyperparameters and seeds for Adam, Adahessian, Dan and Dan2 are shown below in Figure 5.

48



Method epochs Hessian rank E.E.C. α0 CIFAR10 CIFAR100

Adam
2000 - 2000 0.001 94.00 73.06
1000 - 1000 0.001 93.78 72.39
500 - 500 0.001 93.58 72.39

Adahessian
1000

p1, 5q p1202, 2010q 0.05 (✗,93.44q p72.96, 73.03q

p1, 5q p1202, 2010q 0.01 p93.16, 93.97q p69.57, 72.50q

500
p1, 5q p602, 1010q 0.05 p93.65, 93.32q p72.30, 69.42q

p1, 5q p602, 1010q 0.01 p93.07, 93.60q p70.72, 71.36q

Dan
1000

p1, 5q p1202, 2010q 0.05 p91.98.90.83q p73.74, 73.01q

p1, 5q p1202, 2010q 0.01 p93.56,94.10q p71.62, 72.73q

500
p1, 5q p602, 1010q 0.05 p92.31, 91.32q p73.30, 73.05q

p1, 5q p602, 1010q 0.01 p93.03, 93.70q p71.30, 72.30q

Dan2
1000

p1, 5q p1202, 2010q 0.05 p93.72, 93.71q p73.30, 72.99q

p1, 5q p1202, 2010q 0.01 p93.07, 93.85q p71.82, 72.91q

500
p1, 5q p602, 1010q 0.05 p93.80, 93.08q p72.61, 73.05q

p1, 5q p602, 1010q 0.01 p92.80, 93.43q p70.94, 72.29q

Table 6: Comparison of Adam, Adahessian, Dan and Dan2 for equivalent computational cost bases. For
the CIFAR10 dataset the performance of Adam was comparable to the best performing second-order
methods, with Dan performing the best, but with some variance in performance. For CIFAR100 the
performance of the second-order methods was drastically better than Adam. This is consistent with the
results in the preceding section.
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Figure 5: Comparison of the best runs for Adahessian, Adam, Dan and Dan2 in regards to epoch
equivalent work. The best Adahessian happened to have lower Hessian ranks in the approximation than
the best Dan and Dan2 for the CIFAR10, while for CIFAR100 the rank 1 methods shown all performed
the best of individual runs. The CIFAR10 performance is quite similar for all four methods, while for
CIFAR100 the Hessian-averaged methods substantially out-performed Adam; particularly Dan gave the
best generalization accuracy (73.82% for the run shown).

These results overall show the power of Hessian-averaged methods for difficult deep learning problems.
While it was previously known that Adahessian performs well for these problems, these results show that
the momentum in the gradient utilized by Adahessian may not be necessary to achieve good performance.
Our algorithms (Dan, Dan2) do not use gradient momentum, and are competitive in challenging deep
learning classification problems.
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6.5 Parametric PDE Regression

For a last numerical result we investigate the performance of Hessian averaged methods on some para-
metric PDE regression training problems; first where we learn a parametric map from input-output
function data, and second where we include parametric (Fréchet) derivatives as additional training data.
These problems differ from the previous deep learning examples because (1) they are regression tasks,
(2) the neural network representation is more compact, (3) there are substantially fewer sample data
and (4) the derivative-learning task includes very rich information per sample. For additional details on
neural operators see Appendix 9.3

We train with each method for 200 epochs on 4500 samples of the PDE map (and its derivatives in
the H1

π case), and use 500 samples to compute generalization (relative) errors. We employ a one-step
learning rate scheduler that reduces the step length by 10ˆ at the 150th epoch. We use a five layer
feedforward network with gelu activation [42]; the corresponding weight dimension is dW “ 742, 050.
Since the weights are lower dimensional, we numerically experiment with using larger rank Hessian
approximations k “ p1, 20, 40q, and demarcate the corresponding errors for these methods in tuples as
such. The results are shown below in Table 7. In general for these problems, Adam performed reliably
well in both the L2

π and H1
π training problems. The Hessian averaged methods performed worse than

Adam on the L2
π problem. For the H1

π problem Dan and Dan2 performed about the same as Adam, with
Adahessian performing slightly worse. SGD performed substantially worse than all other methods on
this problem. We believe the superior performance of the Hessian averaged methods on the H1

π problem
can be explain by the richer training data (e.g., the derivative training data) supplied for this problem;
indeed the divergence experienced by Dan and Dan2 in the L2

π training is mitigated in the H1
π problem.

Perhaps the additional data per iteration reduced statistical sampling errors that may have caused early
iteration divergence for Dan and Dan2 in the L2

π training problem.

6.6 Summary of findings

We summarize our findings as follows

• Hessian averaging can overcome the instabilities of subsampled Newton methods and still produce
good Hessian-like operators for generating optimization iterates.

• Dan and Dan2 (as with Adahessian) are competitive with Adam in per-iteration computational
work, particularly when reducing the frequency of Hessian computations. All three were empriri-
cally superior to SGD in the experiments that we conducted. Additionally, efficiently implemented
Hessian approximations using GPU vectorized computations leads runtime performance that is
independent of the subspace rank r before GPU memory is exhausted.

• Dan and Dan2 had competitive and often better performance than state-of-the-art methods Adam
and Adahessian in our experiments. Using adaptive gradient sampling can simultaneously improve
performance (e.g., generalization accuracy) while also reducing total computation as the Hessian
computations per-epoch are reduced as the gradient sample size is increased.

7 Conclusions

In this work we have advanced Hessian-averaged Newton methods with adaptive gradient sampling as
a compelling class of fully-inexact methods with significant advantages both theoretically and practi-
cally. Our global and local convergence theory demonstrates that these methods are capable of fast
local convergence for fixed per-iteration Hessian computations, when utilizing generalized norm test to
determine gradient sample sizes. When utilizing deterministic sampling strategies without replacement,
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Method α0
L2
π training H1

π training
(yr rel error Œ ) (yr rel error Œ) (∇xr

yr rel error Œ)

Adahessian
0.01 p0.366, 0.366, 0.362q p0.012, 0.010,✗q p0.260, 0.258,✗q

0.005 p0.102, 0.097, 0.102q p0.010, 0.010, 0.011q p0.258, 0.258, 0.259q

0.001 p0.121, 0.12, 0.122q p0.015, 0.013, 0.012q p0.264, 0.262, 0.260q

Adam
0.01 0.361 0.028 0.274
0.005 0.078 0.023 0.264
0.001 0.054 0.008 0.255

Dan
0.01 p✗,✗,✗q p0.01, 0.008,✗q p0.257, 0.256,✗q

0.005 p0.09, 0.084,✗q p0.009, 0.009,0.007q p0.257, 0.256, 0.256q

0.001 p0.12, 0.118, 0.114q p0.014, 0.013, 0.012q p0.263, 0.261, 0.260q

Dan w/ a.g.
0.01 p✗,✗,✗q p0.011, 0.009, ;q p0.258, 0.257, ;q

0.005 p0.108, 0.088, 0.078q p0.013, 0.009, ;q p0.261, 0.256, ;q

0.001 p0.145, 0.134, 0.126q p0.025, 0.014, ;q p0.273, 0.263, ;q

Dan2
0.01 p✗,✗,✗,q p0.009, 0.009, 0.009q p0.257, 0.256, 0.256q

0.005 p0.092, 0.088, 0.084q p0.01, 0.009, 0.008q p0.257, 0.257, 0.256q

0.001 p0.12, 0.119, 0.118q p0.015, 0.014, 0.012q p0.264, 0.262, 0.260q

Dan2 w/ a.g.
0.01 p✗,✗,✗q p0.01, 0.009, ;q p0.259, 0.256, ;q

0.005 p0.134, 0.088, 0.082q p0.014, 0.009, ;q p0.262, 0.257, ;q

0.001 p0.144, 0.137, 0.131q p0.027, 0.013, ;q p0.284, 0.263, ;q

SGD
0.01 0.283 0.046 0.313
0.005 0.154 0.042 0.310
0.001 0.204 0.056 0.355

SGD w/ a.g.
0.01 0.157 0.057 0.057
0.005 0.206 0.073 0.403
0.001 0.297 0.118 0.534

Table 7: Results of neural operator training for the reaction diffusion PDE problem. Hessian averaged
methods use p1, 20, 40q vectors for diagonal estimation. For the L2

π training problem, Adam reliably
performed the best; while Dan, Dan2 ran into some stability issues for α0 “ 0.01. When Dan and Dan2
did not diverge they performed better than Adahessian which performed better than SGD. For the H1

π

training problem, the Hessian-averaged Newton methods performed much better; for these problems,
Dan, Dan2 and Adam all performed somewhat comparably, with Adahessian performing slightly worse
and SGD performing substantially worse. The H1

π training problem has much richer information per
datum, perhaps leading to more well-informed subsampled Hessian approximations, leading to better
performance. ;: these runs failed to complete in the final iterations due to out of memory error, this
could be overcome with a more efficient implementation, such an implementation is however outside of
the scope of this work.
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we developed a local superlinear convergence rate, that improved the best existing rate from O
´

1?
k

¯

to

O
`

1
k

˘

, while simultaneously relaxing assumptions of gradient exactness and maintaining similar global
to local transition phase iteration complexity. We additionally extended our analysis to the stochastic
gradient sampling setting, establishing a full convergence theory in expectation, matching the O

`

1
k

˘

rate
of [46, 64], albeit using additional assumptions. Furthermore, we establish local gradient complexity re-
sults matching those of adaptive first-order gradient methods and improving upon stochastic gradient
methods.

From a practical standpoint, we advanced Hessian-averaging as a variance reduction strategy that
reduced stochasticity-driven instabilities of second-order methods. From a computational cost perspec-
tive, we emphasized how matrix-free Hessian approximations can be efficiently computed in modern
computing frameworks for Op1q per-iteration Hessian-vector products and computational time, only re-
quiring Opdq memory. We introduce the efficient diagonally-averaged Newton methods (Dan and Dan2)
as practical extensions of the algorithmic framework that we investigate in this work. In numerical exper-
iments, we demonstrated that these methods are not only computationally competitive with first-order
methods, but consistently produce competitive and often superior generalization accuracies in complex
deep learning tasks.
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9 Appendices

9.1 Deterministic Sampling Bounds

Given Assumption 2.1, we have the following bound used in Lemma 2.1,

}gk ´ ∇fpwkq}2 ď 4

ˆ

N ´ |Xk|

N

˙

pβ1,g}∇fpwkq}2 ` β2,gq. (9.1)

The bound is stated in the beginning of Section 3.1 in [35], we restate it here for completeness of our
presentation:
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ˆ

N ´ |Xk|

N

˙

pβ1,g}∇fpwkq}2 ` β2,gq, (9.2)

where rN s :“ t1, 2, ¨ ¨ ¨ , Nu.
Similarly, given Assumption 3.5, we have the following bound used in Lemma 3.8,

}Hk ´ ∇2fpwkq}2 ď 4

ˆ

N ´ |Sk|

N

˙

pβ1,H}∇fpwkq}2 ` β2,Hq. (9.3)

The bound is stated in the beginning of Section 3.1 in [35], we restate it here for completeness of our
presentation:
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pβ1,H}∇2fpwkq}2 ` β2,Hq. (9.4)

9.2 Numerical Results

In this appendix we overview additional details of the numerical results. Most implementation de-
tail questions can be answered by reviewing the code in the accompanying repository github.com/
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tomoleary/hessianaveraging [66]. The code was implemented in jax [20], and the numerical results
were run on servers with NVIDIA A100 and L40S GPU. Access to large memory GPU may be required
to run some of the results in the manuscript.

9.2.1 Stochastic Quadratic Minimization

In section 6.2 we consider a subsampled quadratic minimization problem:

Subsampled quadratic: min
w
fpwq “ EPA,Pb

“

}PAAw ´ Pbb}
2
‰

, (9.5)

where PA, and Pb randomly zero out a certain number of entries in A and b respectively; this problem
is a simple analogue to empirical risk minimization over a dataset.

In order to investigate adaptive gradient sampling, we use different PA, Pb for the Hessian and gradient
calculations, and in order to satisfy the norm test we reduce the number of zero entries in PA, Pb in
order to satisfy the norm test. The true A matrix is taken to be a positive definite matrix with spectrum
λi “ 10´4`p0.1iq

3
2 , with d “ 100. In this case the Hessian condition number κpATAq « 106, which gives

a restrictive Lipschitz condition for gradient descent. When employing the norm test, we take θk “ 0.5
to be constant, so we are limited to the (fast) linear local convergence regime of our theory.

9.2.2 CIFAR[10,100] classification with ResNets

In section 6.4 we investigate image classification with CIFAR[10,100] datasets. We utilize a ResNet
architecture based on [76], similar but not identical to those utilized in [41]. Our results are able to
achieve similar accuracies to typical ResNet architectures, but do not reference established benchmarks.
All training runs for a given seed are run from the same initial guess. We use learning rate schedulers
that reduce the learning rate by a factor of four every 25% of epochs in order to obtain more practical
performance. The architectures used for CIFAR10 and CIFAR100 are nearly identical, and only differ
in the final layers, which map to R10,R100, respectively. The weight dimensions are correspondingly
d “ 11, 200, 882 and d “ 11, 247, 052. The details of the network architecture are much easier to
define in code, and are taken from [76], so we refer the interested reader to the repository [66] for the
implementation, and encourage them to run the code. Access to GPUs with large RAM will be necessary,
all results we used were run on NVIDIA A100 (40 and 80 GB) and L40S (48 GB). For all cases except
one we report averages over jax seeds 0 and 1.

(:): Note from Table 5: in the case of the CIFAR100 Dan with α “ 0.01 all methods suffered from
early iteration divergence using seed 0. Averaged over seeds 0 and 1 the corresponding accuracies of
this method goes from the reported p71.18, 72.10, 71.57q down to p48.68, 62.52, 64.03q. This result is an
anomaly due to unlucky initial guess and/or sampling order, which was resolved by running a different
seed, however we document this issue for full transparency and reproducibility.

9.2.3 Parametric PDE Learning Numerical Details

Note that the loss function in (6.5c) requires one derivative of the neural network, and the Hessian-
vector products used in all optimization problem require two more. For this reason with consider C3

continuous activation functions, and thus uze the Gaussian error linear unit, gelu activation function.
The networks are generic feedforward multi-layer perceptrons that have inputs of 200, followed by five
laters with dimension 400, which then gets reduced to the output, which has dimension 50.

9.3 A Note on (Derivative-Informed) Parametric PDE Learning

We give a brief synopsis of parametric PDE learning, which is of great interest to the authors, in
order to give additional context to the numerical results in section 6.5. Learning parametric PDE
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maps via neural network representations has become a research topic of great interest in recent years.
In the typical setup there is a parameter function x P X , which is mapped out to an output y P Y
implicitly, through the solution of an expensive-to-evaluate PDE model; this map is then x ÞÑ ypxq.
The parametric PDE learning problem is typically motivated through computationally expensive tasks
such as Bayesian inverse problems, optimization problems under uncertainty, optimal design, optimal
experimental design, rare event estimation, all of which have very large computational costs through
iteration and sampling complexities. The goal of the parametric PDE learning problem is to construct a
surrogate for the parametric PDE maps showing up in the aforementioned tasks that can be substituted
for direct forward simulation within these algorithms, and specifically to do so at a lower end-to-end
cost, including accounting for the costs of sampling the PDE map to obtain training data.

The spaces X ,Y are generally separable Banach spaces, but for the remainder of this presentation
we will assume them to be separable Hilbert spaces. The inputs x P X are equipped with an input
distribution π. We seek to construct and train a neural network approximation ywpxq « ypxq. In this
setting we consider X to represent an infinite-dimensional space, while Y is either an infinite-dimensional
space (e.g., to represent the PDE state) or a finite-dimensional vector-valued function on the state (as
was the case in the numerical results in section 6.5). The so-called neural operator formulation is to
formulate both the approximation and the training problem in a function space setting (following the
so-called “optimize-then-discretize” approach) [49]1. A typical formulation is in the parametric Bochner
space L2

π “ L2pX , π;Yq, i.e., to formulate the following optimization problem

min
w

´

}y ´ yw}2L2
π

“ Eπ

“

}y ´ yw}2Y
‰

¯

. (9.6)

By first formulating the neural network training problem in the function space setting one can derive
neural network architectures that respect the continuum limit of the PDE map, and lead to efficient
statistical learning formulations. Popular examples of this general approach include PCANet, Fourier
Neural Operator (FNO) and DeepONet [43, 49, 54, 57]. These architectural representations utilize
appropriate basis representations (e.g., proper orthogonal decomposition (POD), Fourier basis etc.) that
allow for efficient finite dimensional approximations that have approximation properties independent
of the discretization dimension of the problem. In the numerical results we considered we utilize an
architecture that restricts the input function x to the dominant eigenfunctions of the expected sensitivity
operator. For example when the inputs are distributed with Gaussian measure, x P N px, Cxq, we compute
the dominant eigenfunctions ψi of the following generalized eigenvalue problem for the eigenpairs λi, ψi

with λi ě λj for i ă j:

EπrDxy
˚Dxysψi “ λiC´1

x ψi, (9.7)

where ¨˚ denotes the adjoint of Dxy. The architectures are referred to as derivative-informed projected
neural networks DIPNets [68, 69], and are motivated by the existence of input-reduced approximations
yr of the map with bounds satisfying

}y ´ yr ˝ ΨrΨ
˚
r }2L2

π
ď

ÿ

iěr

λi. (9.8)

The form of yr is a conditional expectation ridge function that marginalizes out the orthogonal
complement to the subspace spanned matrix of eigenfunctions Ψr “ rψ1, . . . , ψrs, with r P N. The
bound is derived using the Poincaré inequality (in this case for Gaussian measures) [11, 93]. In our
numerical results the output dimension was reduced via pointwise evaluation of the PDE state at finite
points in the domain (as is relevant to inverse problems), however other dimension strategies such as POD

1We note that the term neural operator is typically reserved for circumstances that both x and y represent infinite-
dimensional functions, however the general framework is useful in cases where one or both are functions, as it may lead to
discretization-dimension independent representations [45].
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could have also been employed to similar effect. The empirical risk minimization problem associated
with (9.6) in this specific architecture leads to the efficient finite-dimensional reduced basis coefficient
learning problem in (6.5a).

Accurately trained neural operators have been deployed to solve complex inference and uncertainty
propagation tasks that would have been out of reach when using a traditional forward simulation [72].
However when they are deployed in the context of an optimization problem, the L2

π formulation is
insufficient. Suppose we have an optimization problem of the form:

min
x
fpypxq, xq, (9.9)

which is solved via gradient-based methods. Problems of the form (9.9) include traditional PDE-
constrained optimization problems (additionally including uncertainty when f is a risk measure over
additional parameters in the PDE system), but also captures other tasks such as variational inference,
e.g., evidence-based lower bound optimization (ELBO) [77]. We will show in the following proposition
that training only on the function values and not also the derivative (e.g., the Lp

π parametric Bochner
space formulations) may be insufficient to ensure accurate gradients when substituting yw for y. In the
following we use Dx to denote the (total) Fréchet derivative of the objective function f with respect to
the input function x, while we denote partial derivatives by Bx.

Proposition 9.1. Error bound for parametric PDE gradients (similar to Proposition 3.1 in [59]).
Supposed the function f has a Lipschitz partial (Fréchet) derivatives w.r.t both x and y with constant

Lf , then we have the following bound:

}Dxfpypxq, xq ´Dxfpywpxq, xq} ď

Lf p1 ` }Dxypxq}q }ypxq ´ ywpxq}
loooooooomoooooooon

function error

`}Byfpywpxq, xq} }Dxypxq ´Dxywpxq}
loooooooooooomoooooooooooon

derivative error

. (9.10)

Proof. We have the following bounds

}Dxfpypxq, xq ´Dxfpywpxq, xq} ď }Bxfpypxq, xq ´ Bxfpywpxq, xq} `

}Byfpypxq, xq ´ Byfpywpxq, xq}}Dxypxq} ` }Byfpypxq, xq}}Dxypxq ´Dxywpxq}

“ Lf p1 ` }Dxypxq}q}ypxq ´ ywpxq} ` }Byfpywpxq, xq}}Dxypxq ´Dxywpxq}. (9.11)

This bound shows that the derivative of the PDE map also needs to be controlled in addition to
the function error, in order to obtain accurate gradients, which are required for the solution of opti-
mization problems of the form (9.9). For this reason the derivative-informed operator learning formu-
lation was introduced in [67], which proposes the operator learning in the parametric Sobolev space
H1

π “ H1pX , π;Yq, i.e. to solve the following optimization problem to train the surrogate:

min
w

´

}y ´ yw}2H1
π

“ Eπ

”

}y ´ yw}2Y ` }Dxy ´Dxyw}2HSpX ,Y

ı¯

, (9.12)

where } ¨ }HSpX ,Yq denotes the Hilbert Schmidt norm for linear operators A : X Ñ Y. Utilizing the linear
reduced basis architecture discussed above the empirical risk minimization analogue of (9.12) takes the
form of the efficient reduced basis coefficient derivative learning problem in (6.5c).

Neural operators trained in this formulation are referred to as derivative-informed neural operators
(DINOs). They have favorable cost accuracy tradeoff over traditional formulations for learning the func-
tion in L2

π; this includes the sampling costs for all PDE solves including the derivative computations
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using adjoints and directional sensitivities. This phenomenon is apparent in the numerical results shown
in Section 6.5. Additionally, they produce better gradients leading to better PDE-constrained optimiza-
tion [59], and better (Gauss–Newton) Hessians used in the efficient solution of Bayesian inverse problems
[24].
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