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Abstract. We develop a Sequential Quadratic Optimization (SQP) algorithm for minimizing a
stochastic objective function subject to deterministic equality constraints. The method utilizes two
different stepsizes, one which exclusively scales the component of the step corrupted by the variance of
the stochastic gradient estimates and a second which scales the entire step. We prove that this stepsize
splitting scheme has a worst-case complexity result which improves over the best known result for
this class of problems. In terms of approximately satisfying the constraint violation, this complexity
result matches that of deterministic SQP methods, up to constant factors, while matching the known
optimal rate for stochastic SQP methods to approximately minimize the norm of the gradient of the
Lagrangian. We also propose and analyze multiple variants of our algorithm. One of these variants
is based upon popular adaptive gradient methods for unconstrained stochastic optimization while
another incorporates a safeguarded line search along the constraint violation. Preliminary numerical
experiments show competitive performance against a state of the art stochastic SQP method. In
addition, in these experiments, we observe an improved rate of convergence in terms of the constraint
violation, as predicted by the theoretical results.

1. Introduction. We propose a new algorithm for solving equality constrained
optimization problems in which the objective function is the expectation of a stochas-
tic funciton. Formally, we consider the optimization problem

(1.1) min
x∈Rn

f(x) s.t. c(x) = 0 with f(x) = E[F (x, ω)],

where f : Rn → R, c : Rn → Rm, ω is a random variable with associated probability
space (Ω,F , P ), F : Rn × Ω → R, and E[·] denotes the expectation taken with
respect to P . Problems of this form arise in numerous applications, including optimal
control [7], PDE-constrained optimization [16, 22], and resource allocation [6] as well
as modern machine learning applications, such as physics informed neural networks
[11, 21], constraining the output labels of deep neural networks [20] and neural network
compression via constraints [10].

The method we design is based on Sequential Quadratic Optimization (SQP)
methods, a popular class of algorithms that has seen significant interest in recent years
for solving stochastic equality constrained optimization problems, beginning with the
influential work of [4]. Numerous extensions of this work have been proposed, such
as stochastic SQP methods for problems with rank-deficient Jacobians [3], algorithms
for problems with nonlinear inequality constraints [13], worst-case complexity analysis
for stochastic SQP methods [12], algorithms which incorporate variance reduction
[5] or adaptive sampling [2], as well as stochastic SQP methods which utilize an
exact augmented Lagrangian as a merit function [18, 19]. At each iteration, these
algorithms generate a search direction by solving a quadratic optimization problem
defined in terms of a stochastic gradient estimate subject to a linearization of the
constraints and then produce a new iterate by moving along this search direction.
For stochastic SQP methods, the chosen step length is generally scaled in such a
way as to control the variance of the stochastic gradient estimates, in a manner
similar to stepsizes for stochastic gradient methods in unconstrained optimization.
Our algorithm takes a different approach and directly utilizes the orthogonal step
decomposition of SQP methods1. It is well known in the stochastic SQP literature

1Computation of the orthogonal decomposition may be unnecessary in certain cases, see Remark
1 for details.
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that the normal component of the step decomposition is independent of the current
stochastic gradient estimate. Therefore, it is unnecessary to rescale this component
by the stepsize which controls the variance in the stochastic gradient estimates in
order to ensure convergence. Using this observation, we propose a method which
employs two different stepsizes: one which controls the variance of the stochastic
gradient estimates and scales only the tangential component and a second stepsize
which scales the entire search direction.

We demonstrate the effectiveness of this stepsize splitting approach by developing
a worst-case complexity result for our proposed algorithm. We consider the worst-case
complexity in terms of finding a point x which satisfies,

(1.2) E[∥∇f(x) +∇c(x)y∥] ≤ ϵℓ, E[∥c(x)∥1] ≤ ϵc,

where y ∈ Rm is some Lagrange multiplier and ϵℓ and ϵc are some small tolerances.
Few complexity results exist for SQP methods in the literature. The only complexity
result for a deterministic SQP method is given in [12], which proved a worst-case
complexity result of O(ϵ−2

ℓ ) and O(ϵ−1
c ) (this result holds deterministically, not just

in expectation). This work also proved a result for the stochastic SQP method of
[4], which was shown to have a worst-case complexity of O(ϵ−4

ℓ ) and O(ϵ−2
c ) in an

idealized setting and Õ(ϵ−4
ℓ ) and Õ(ϵ−2

c ) otherwise, where Õ ignores logarthmic fac-
tors. In terms of ϵℓ, this result is optimal, due to information theoretic lower bounds
for stochastic gradient methods [1]. However, with respect to the constraint viola-
tion, it turns out that this result can be improved. We show that the worst-case
complexity of the two stepsize stochastic SQP method proposed in this work has a
worst-case complexity of O(ϵ−4

ℓ ) and O(ϵ−1
c ). That is, in terms of convergence in

the constraint violation, this result matches that of a deterministic SQP method,
modulo the expectation and constant factors. Furthermore, we avoid unnecessary
assumptions which were required to derive a complexity result in [12] by not estimat-
ing a merit parameter during the course of the algorithm. Previously this parameter
was estimated using stochastic gradient information, which may be highly inaccurate
on any given iteration and thus required additional assumptions in order to ensure
convergence. In addition to these results, a number of other works have also proposed
methods with known worst-case complexity results for solving (1.1), including aug-
mented Lagrangian [15, 23] and stochastic SQP methods [18]. A summary of these
worst-case complexity results is given in Table 1.1.

Unfortunately, the complexity result we prove for our initial algorithm requires
certain choices of the stepsizes based on potentially difficult to estimate parameters
of the problem (such as Lipschitz constants and a reasonable setting of the merit
parameter). To remedy this, we propose a variant of our method which incorporates
stepsizes inspired by adaptive gradient methods for unconstrained stochastic opti-
mization [14, 17, 25]. Specifically, we build upon the methodolgy commonly known
as Adagrad-Norm, which estimates a stepsize using the prior stochastic gradient es-
timates. We show that we can generate both of the stepsizes used by our algorithm
under this framework and derive a worst-case complexity result for this variant of our
method of the order Õ(ϵ−4

ℓ ) and Õ(ϵ−1
c ), without requiring any knowledge of problem

specific constants. In addition, both versions of our algorithm guarantee convergence
when the stepsizes to be relaxed to lie in a certain set, from which the actual step-
size can be chosen, as was originally proposed in [4]. In order to choose a stepsize
from this set, we propose a safeguarded linesearch in terms of the constraint violation
and show how this can be implemented when the safeguarding is done in terms of
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Algorithm Conditions Stationarity Feasibility

SPD [15] N/A O
(
ϵ−6
ℓ

)
O
(
ϵ−6
c

)
SPD [15] x0 feasible O

(
ϵ−5
ℓ

)
O
(
ϵ−5
c

)
MLALM [23] N/A O

(
ϵ−5
ℓ

)
O
(
ϵ−5
c

)
MLALM [23] x0 near feasible O

(
ϵ−4
ℓ

)
O
(
ϵ−4
c

)
SSQP-AL [18] N/A O

(
ϵ−4
ℓ

)
O
(
ϵ−4
c

)
SSQP [3] τmin known O

(
ϵ−4
ℓ

)
O
(
ϵ−2
c

)
SSQP [3] τmin unknown Õ

(
ϵ−4
ℓ

)
Õ
(
ϵ−2
c

)
SSQP-AS [2] N/A O

(
ϵ−4
ℓ

)
O
(
ϵ−2
c

)
Algorithm 2.1 non-adaptive O

(
ϵ−4
ℓ

)
O
(
ϵ−1
c

)
Algorithm 2.1 adaptive Õ

(
ϵ−4
ℓ

)
Õ
(
ϵ−1
c

)
Table 1.1: Sample complexity of algorithms for solving (1.1). Convergence of each
algorithm is proven underneath slightly different conditions. All methods except
MLALM assume that the Jacobian has full rank at each iteration, while MLALM
assumes a certain constraint qualification as well as mean-squared smoothness of the
stochastic gradients. SSQP and SSQP-AS also make additional assumptions on the
behavior of the merit parameter.

the adaptive stepsize rule based on Adagrad-Norm. Finally, we provide preliminary
numerical experiments for our algorithm and show that it compares favorably with a
state of the art stochstic SQP method. These numerical experiments also demonstrate
faster convergence in constraint violation when compared with previously proposed
stochastic SQP methods, providing confirmation of our theoretical results.

The rest of this work is organized as follows. In Section 2, we formally define
and discuss our proposed algorithm and prove some basic properties. We provide
a worst-case complexity analysis in Section 3 for two variants of our algorithm. A
safeguarded linesearch procedure is developed in Section 4 and numerical experiments
are presented in Section 5. We provide concluding remarks in Section 6.

1.1. Notation. We adopt the notation that ∥ · ∥ denotes the ℓ2-norm for vec-
tors and the vector-induced ℓ2-norm for matrices. The set of nonnegative integers is
denoted as N := {0, 1, 2, . . . , } and we denote the positive real numbers by R>0.

Given ϕ : R → R and φ : R → [0,∞), we write ϕ(·) = O(φ(·)) to indicate that
|ϕ(·)| ≤ cφ(·) for some c ∈ (0,∞). Similarly, we write ϕ(·) = Õ(φ(·)) to indicate that
|ϕ(·)| ≤ cφ(·)| logc̄(·)| for some c ∈ (0,∞) and c̄ ∈ (0,∞). In this manner, one finds
that O(φ(·)| logc̄(·)|) ≡ Õ(φ(·)) for any c̄ ∈ (0,∞).

The algorithm that we analyze is iterative, generating in each realization a se-
quence {xk}. We also append the iteration number to other quantities corresponding
an iteration, e.g., fk := f(xk) for all k ∈ N.

1.2. Assumptions and Background. Throughout, we require the following
assumptions on f and c:

Assumption 1. The objective function f : Rn → R is continuously differentiable
and bounded below by flow ∈ R and the corresponding gradient function ∇f : Rn →
Rn is bounded and Lipschitz continuous with constant L ∈ (0,∞). The constraint
function c : Rn → Rm (where m ≤ n) and the corresponding Jacobian function
J := ∇c⊤ : Rn → Rm×n are bounded, each gradient function ∇ci : Rn → Rn is
Lipschitz continuous with constant γi for all i ∈ {1, . . . ,m}, and the singular values
of J ≡ ∇c⊤ are bounded below and away from zero.
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Under this assumption both the gradient of f and the constraint violation are
bounded in norm by constants. We denote these constants as ∥∇f(x)∥ ≤ κg and
∥ck∥1 ≤ κc.

Defining the Lagrangian ℓ : Rn × Rm → R corresponding to (1.1) by ℓ(x, y) :=
f(x) + c(x)⊤y, first-order primal-dual stationarity conditions for (1.1), which are
necessary for optimality under Assumption 1, are given by

(1.3) 0 =

[
∇xℓ(x, y)
∇yℓ(x, y)

]
=

[
∇f(x) +∇c(x)y

c(x)

]
.

We note that the complexity measure (1.2) is simply an approximate version of these
optimality conditions.

As stated above, our algorithm generates a search direction at iteration k by
solving the following quadratic optimization problem:

(1.4) min
p∈Rn

fk + gTk p+
1

2
pTHkp subject to ck + Jkp = 0,

where gk is the current stochastic gradient estimate. It is well known that this is
equivalent to solving the “Newton SQP system”:

(1.5)

[
Hk JT

k

Jk 0

] [
pk
yk

]
= −

[
gk
ck

]
.

In order to ensure the solution of this sub-problem is unique, we require the following
assumption on Hk.

Assumption 2. The sequence {Hk} is bounded norm by κH ∈ R>0. In addition,
there exists a constant ζ ∈ R>0 such that, for all k ∈ N, the matrix Hk has the
property that uTHku ≥ ζ∥u∥2 for all u ∈ Rn such that Jku = 0.

In order to analyze our algorithm, we utilize the ℓ-1 merit function ϕ : Rn×R>0 →
R:

(1.6) ϕ(x, τ) = τf(x) + ∥c(x)∥1.

In the above equation, τ is the merit parameter which balances between the
function value and constraint violation. For the analysis, we also use the following
local model of the merit function l : Rn × R>0 × Rn → R defined as

(1.7) l(x, τ, d) = τ(f(x) +∇f(x)T d) + ∥c(x) +∇c(x)T d∥1.

In addition, we consider the reduction in the model for a direction d ∈ Rn with
c(x) +∇c(x)T d = 0 which is ∆l : Rn × R>0 × Rn → R defined as

∆l(x, τ, d) := l(x, τ, 0)− l(x, τ, d)

= −τ∇f(x)T d+ ∥c(x)∥1.
(1.8)

We wish to stress here that unlike previous work, we do not attempt to estimate
a good value of τ . We choose to avoid this as previous work relied upon strong
assumptions (such as uniformly bounded stochastic gradients [4] or sub-Gaussian
stochastic gradients [12]) in order to prove their results. By choosing to relegate
the merit function and parameter exclusively to the analysis, we are able to avoid
overcomplicating the analysis and adding unnecessary assumptions.
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2. Algorithm and Basic Properties. Recall that at each iteration, a search
direction pk is computed as the solution of (1.5). We assume that this step computa-
tion is performed in such a way that the orthogonal decomposition

(2.1) pk = uk + vk where uk ∈ Null(Jk) and vk ∈ Range(JT
k ),

is known2. One important consequence of this decomposition is that the normal
component, vk, does not depend on the current stochastic gradient estimate gk. Unlike
prior work, we do not directly use pk as our search direction. Instead, we rescale the
tangential component, uk, in order to generate our search direction dk as follows,

(2.2) dk = βkuk + vk,

where βk ∈ R>0. Then, we find the next iterate xk+1 by setting xk+1 = xk + αkdk
for some αk ∈ R>0. This procedure is formalized in Algorithm 2.1.

Algorithm 2.1 Generic Two Stepsize Stochastic SQP Algorithm

Require: x0 ∈ Rn;
1: for k = 0, 1, . . . do
2: Compute stochastic gradient gk.
3: Compute (pk, yk) as the solution of (1.5).
4: Choose βk ∈ R>0.
5: Set dk ← vk + βkuk, where vk ∈ Range(JT

k ) and uk ∈ Null(Jk) are the
orthogonal decomposition of pk.

6: Choose αk ∈ R>0.
7: Set xk+1 ← xk + αkdk.
8: end for

The choice of βk is crucial to ensure convergence of our algorithm, as it controls
the variance of the stochastic gradient estimates and plays a similar role as the stepsize
in stochastic gradient methods. As such, it is natural to consider βk to be quite small.
Indeed, to ensure our convergence result, we set βk = O(1/

√
K), where K is the total

number of iterations we intend to perform. On the other hand, αk does not need to
control the error in the stochastic gradients and thus may be set independent of K.
Thus, vk, which is the component of dk that drives the algorithm towards constraint
satisfaction, is only scaled by a stepsize which is independent of K. This is the key
insight that leads to our improved complexity.

Algorithm 2.1 is written generically, without specifying how to choose the stepsizes
αk and βk. We consider two variants for choosing these stepsizes in Section 3 and
analyze their behavior. First, in Section 3.1, we consider the case where βk is defined
by a pre-specified sequence and

(2.3) αk ∈ [ν, ν + θβk],

where ν ∈ R>0 and θ ∈ R>0. This case is essentially equivalent to the standard
stochastic gradient regime with a pre-specified stepsize sequence (modulo the relaxtion
of αk into a range, which was originally suggested for stochastic SQP methods in [4]).
For this method, we prove the complexity result foreshadowed in Section 1. However,
this result only holds under certain conditions on ν which depend on the Lipschitz

2This is not necessary in certain circumstances, see Remark 1 for details.
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constants of the gradient of f and Jacobian of c as well as a good estimate of the merit
parameter τ . Unfortunately, it may not be reasonable to estimate these parameters
a-priori.

To remedy this, in Section 3.2 we analyze a version of Algorithm 2.1 which utilizes
adaptive stepsizes based on Adagrad-Norm, which is a popular approach for choosing
stepsizes in the stochastic gradient literature [14, 17, 25]. In this case, some additional
logarithmic factors appear in the final complexity result, but this approach does not
require any knowledge of the Lipschitz constants or the merit parameter.

In addition, in both of the cases we analyze in Section 3, αk may be chosen from a
specific range. In Section 4, we describe a safeguarded line search procedure which can
be used to determine αk. We take adavantage of the assumption that the constraints
are deterministic and design a line search which only relies on the constraint viola-
tion and does not include stochastic gradient information when computing an αk.
In addition, we provide a fully specified algorithm in Algorithm 4.1 that combines
this linesearch procedure with an adaptive lower bound based on the Adagrad-Norm
stepsizes developed in Section 3.2.

2.1. Properties of Algorithm 2.1. First, we restate a basic result from [4].

Lemma 2.1. ([4, Lemma 2.9]) There exists κv ∈ R>0 such that, for all k ∈ N,
the normal component vk satisfies max{∥vk∥, ∥vk∥2} ≤ κv∥ck∥.

During the analysis of our algorithm, it is often useful to consider the “true”
step computation that would occur if the step was computed using the true gradient,
∇f(xk), in place of the stochastic gradient estimate, gk. Specifically, let (p

true
k , ytruek )

be the solution of the linear system:

(2.4)

[
Hk JT

k

Jk 0

] [
ptruek

ytruek

]
= −

[
∇f(xk)

ck

]
.

In addition, we define

(2.5) dtruek = βku
true
k + vk,

where ptruek = utrue
k + vk with utrue

k ∈ Null(Jk) (we recall here that vk is independent
of gk and ∇f(xk) and thus is the same vk as in (2.1)).

Lemma 2.2. Let Assumptions 1 and 2 hold. Then,

∥utrue
k ∥ ≤ ζ−1∥∇f(xk)∥+ ζ−1κHκv∥ck∥ ≤ ζ−1κg + ζ−1κHκvκc =: κu.

Proof. By the first equation of (2.4) and the definition of utrue
k , we have

(utrue
k )THk(u

true
k + vk) = −∇f(xk)

Tutrue
k . Then, by Assumption 2 and Lemma 2.1,

ζ∥utrue
k ∥2 ≤ (utrue

k )THku
true
k

= −∇f(xk)
Tutrue

k − vTk Hku
true
k

≤ ∥∇f(xk)∥∥utrue
k ∥+ κHκv∥ck∥∥utrue

k ∥.

Dividing this inequality through by ∥utrue
k ∥ proves the first result. The final result

follows by Assumption 1 and Lemma 2.1.

Now we state an important property about the merit parameter τ .
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Lemma 2.3. Let Assumptions 1 and 2 hold and let σ ∈ (0, 1). Let βk ≤ κβ hold
for all k and define

(2.6) τmin :=
1− σ

κv(κβκHκu + κg)
.

Then,

(2.7) τmin

(
∇f(xk)

T dtruek + βk(u
true
k )THku

true
k

)
≤ (1− σ)∥ck∥1.

Proof. By (2.4) and the definition of utrue
k ,

∇f(xk)
T dtruek = ∇f(xk)

T (βku
true
k + vk)

= −βk(u
true
k )THku

true
k − βkv

T
k Hku

true
k +∇f(xk)

T vk.

Thus, by Assumptions 1 and 2, Lemma 2.1 and Lemma 2.2,

∇f(xk)
T dtruek + βk(u

true
k )THku

true
k = −βkv

T
k Hku

true
k +∇f(xk)

T vk

≤ (βkκH∥utrue
k ∥+ ∥∇f(xk)∥)∥vk∥

≤ κv(κβκHκu + κg)∥ck∥1.

Combining this with (2.6), proves (2.7).

Remark 1. Under the condition that Hk preserves the null space of Jk (i.e. for
any u ∈ Null(Jk), Hku ∈ Null(Jk)), we can sidestep the requirement to compute the
orthogonal decomposition of pk by simply rescaling the matrix Hk by β−1

k and directly
use the computed direction as dk. This additional requirement is necessary when using
rescaling in order to prove a result similar to Lemma 2.3, as otherwise the crossing
term vTk Hku

true
k picks up a factor of β−1

k . This, in turn, means that it is not possible
to provide a bound on τmin that is independent of a lower bound on βk, thus causing
serious issues in the final complexity result. For the sake of generality, we don’t
consider this rescaling approach, though when Hk preserves the nullspace of Jk our
results still hold, albeit with potentially different constant factors.

A direct consequence of the previous lemma is

(2.8) ∆l(xk, τmin, d
true
k ) ≥ τminβk(u

true
k )THku

true
k + σ∥ck∥1,

which will be used to prove the final convergence result. Given this inequality, it
should be clear that with an upper bound on ∆l, we would expect convergence in
the constraint violation. To see the connection between the quantities in (2.8) and
first order stationarity, we prove the following lemma, which shows that the quadratic
term can be lower bounded in terms of the gradient of the Lagrangian at xk for a
specific Lagrange multipler.

Lemma 2.4. Let Assumptions 1 and 2 hold. Then,

(utrue
k )THku

true
k ≥ ζκ−2

H ∥∇f(xk) + JT
k ytruek ∥2 − (1 + 2κu)ζκv∥ck∥1.

Proof. By Assumption 2,

(utrue
k )THku

true
k ≥ ζ∥utrue

k ∥2 ≥ ζκ−2
H ∥Hku

true
k ∥2.
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Then, by (2.4) and Lemmas 2.1 and 2.2,

∥Hku
true
k +Hkvk −Hkvk∥2

= ∥Hku
true
k +Hkvk∥2 − 2vTk HkHk(u

true
k + vk) + ∥Hkvk∥2

≥ ∥∇f(xk) + JT
k ytruek ∥2 − 2vTk HkHku

true
k − ∥Hkvk∥2

≥ ∥∇f(xk) + JT
k ytruek ∥2 − (1 + 2κu)κ

2
Hκv∥ck∥1,

which proves the result.

Thus, given these results, we can see that the convergence rate in terms of the
gradient of the Lagrangian should be directly related to the choice of βk while conver-
gence in the constraint violation will be largely independent of this stepsize (provided
it is chosen to sufficiently control the noise in gk). This is in contrast to the results
in [12], where the norm of the constraint violation is multiplied by βk and is the root
cause of the improvement in the complexity result for the constraint violation that
we prove in the sequel.

We finish this subsection with the following generic descent lemma.

Lemma 2.5. Let Assumptions 1 and 2 hold. Then, with τmin defined as in (2.6),

ϕ(xk + αkdk, τmin)− ϕ(xk, τmin)

≤ −αk∆l(xk, τmin, d
true
k ) +

α2
kβ

2
k

2
(τminL+ Γ)∥uk∥2(2.9)

+
α2
k

2
(κv(τminL+ Γ) + 4)∥ck∥1 + αkτmin∇f(xk)

T (dk − dtruek ).

Proof. By L-Lipschitz continuity of ∇f(x) and Γ-Lipschitz continuity of Jk, we
have

ϕ(xk + αkdk, τmin)− ϕ(xk, τmin)

≤ αkτmin∇f(xk)
T dk + ∥ck + αkJkdk∥1 − ∥ck∥1 +

α2
k

2
(τminL+ Γ)∥dk∥2

= αkτmin∇f(xk)
T dtruek + |1− αk|∥ck∥1 − ∥ck∥1 +

α2
k

2
(τminL+ Γ)∥dk∥2

+ αkτmin∇f(xk)
T (dk − dtruek ),

where the equality follows from Jkdk = −ck.
Then, when αk ≤ 1,

ϕ(xk + αkdk, τmin)− ϕ(xk, τmin)

≤ αkτmin∇f(xk)
T dtruek + (1− αk)∥ck∥1 − ∥ck∥1 +

α2
k

2
(τminL+ Γ)∥dk∥2

+ αkτmin∇f(xk)
T (dk − dtruek )

= αkτmin∇f(xk)
T dtruek − αk∥ck∥1 +

α2
k

2
(τminL+ Γ)∥dk∥2

+ αkτmin∇f(xk)
T (dk − dtruek )

On the other hand, when αk > 1,

ϕ(xk + αkdk, τmin)− ϕ(xk, τmin)
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≤ αkτmin∇f(xk)
T dtruek + (αk − 1)∥ck∥1 − ∥ck∥1 +

α2
k

2
(τminL+ Γ)∥dk∥2

+ αkτmin∇f(xk)
T (dk − dtruek )

= αkτmin∇f(xk)
T dtruek − αk∥ck∥1 + 2(αk − 1)∥ck∥1 +

α2
k

2
(τminL+ Γ)∥dk∥2

+ αkτmin∇f(xk)
T (dk − dtruek )

≤ αkτmin∇f(xk)
T dtruek − αk∥ck∥1 + 2α2

k∥ck∥1 +
α2
k

2
(τminL+ Γ)∥dk∥2

+ αkτmin∇f(xk)
T (dk − dtruek )

where the second inequality follows by αk > 1.
Therefore, in either case, we have

ϕ(xk + αkdk, τmin)− ϕ(xk, τmin)

≤ αkτmin∇f(xk)
T dtruek − αk∥ck∥1 + 2α2

k∥ck∥1 +
α2
k

2
(τminL+ Γ)∥dk∥2

+ αkτmin∇f(xk)
T (dk − dtruek ).

Then, using the orthogonal decomposition dk = βkuk + vk, Lemma 2.1, and (1.8), we
have

ϕ(xk + αkdk, τmin)− ϕ(xk, τmin)

≤ αkτmin∇f(xk)
T dtruek − αk∥ck∥1 + 2α2

k∥ck∥1

+
α2
k

2
(τminL+ Γ)(β2

k∥uk∥2 + ∥vk∥2) + αkτmin∇f(xk)
T (dk − dtruek )

≤ −αk∆l(xk, τmin, d
true
k ) +

α2
kβ

2
k

2
(τminL+ Γ)∥uk∥2

+
α2
k

2
(κv(τminL+ Γ) + 4)∥ck∥1 + αkτmin∇f(xk)

T (dk − dtruek ),

proving the result.

2.2. Stochastic Assumptions and Properties. In order to analyze the con-
vergence of our algorithm, let Fk denote the natural filtration adapted to Algorithm
2.1 and let Ek[·] = E[·|Fk]. Under these definitions, we have the following assumption
on our stochastic gradient estimates, gk.

Assumption 3. There exists M ∈ R>0 such that, for all k, one finds

(2.10) Ek[gk] = ∇f(xk) and Ek[∥gk −∇f(xk)∥22] ≤M.

This assumption is largely standard in the stochastic gradient literature. We note
that relaxing the uniformly bounded variance assumption to an assumption which
allows the variance to grow with the norm of the gradient of f (such as in [9]) is no
more general under Assumption 1 since ∥∇f(x)∥ ≤ κg.

Under Assumption 3, we have the following properties.

Lemma 2.6. Let Assumptions 1, 2, and 3 hold. Then, Ek[uk] = utrue
k , Ek[yk] =

ytruek ,

Ek[∥uk∥2] ≤ ζ−1(utrue
k )THku

true
k + ζ−2M and Ek[∥uk − utrue

k ∥2] ≤ ζ−2M.

9



In addition, when βk is measurable to Fk, Ek[dk] = dtruek , and

Ek[∥dk − dtruek ∥] ≤ βkζ
−1
√
M.

Proof. The first two claims follow directly by the statement of [4, Lemma 3.8] and
the third follows directly by the proof of [4, Lemma 3.9] combined with Assumption 2.
To prove the fourth result, let Zk be an orthogonal basis for the null space of Jk (which,
by Assumption 1 is a matrix in Rn×(n−m)) and let uk = Zkwk and utrue

k = Zkw
true
k .

Then, by (1.5), it follows that

Zkwk = −Zk(Z
T
k HkZk)

−1ZT
k (gk +Hkvk).

Similarly,

Zkw
true
k = −Zk(Z

T
k HkZk)

−1ZT
k (∇f(xk) +Hkvk),

so that

uk − utrue
k = Zk(Z

T
k HkZk)

−1ZT
k (∇f(xk)− gk)

and thus, by Assumptions 2 and 3,

Ek[∥uk − utrue
k ∥2] ≤ Ek[∥Zk(Z

T
k HkZk)

−1ZT
k ∥2∥∇f(xk)− gk∥2] ≤ ζ−2M.

When βk is measurable to Fk, it follows that

Ek[dk] = βkEk[uk] + vk = βku
true
k + vk = dtruek .

For the final result, we have that

dk − dtruek = βk(uk − utrue
k ) = βkZk(Z

T
k HkZk)

−1ZT
k (∇f(xk)− gk).

Thus, by Assumptions 2 and 3, as well as Jensen’s inequality,

Ek[∥dk − dtruek ∥] ≤ βkEk[∥Zk(Z
T
k HkZk)

−1ZT
k ∥∥∇f(xk)− gk∥] ≤ βkζ

−1
√
M.

3. Convergence Analysis. In this section, we derive our main convergence
results for two variants of Algorithm 2.1, which differ on how αk and βk are chosen
at each iteration.

3.1. Covergence with Pre-specified Stepsize Sequences. Throughout this
subsection, we analyze Algorithm 2.1 when {βk} is a pre-specified sequence and αk

lies a pre-specified range, i.e.,

(3.1) {βk} ⊂ R>0, αk ∈ [ν, ν + θβk], ∀k,

for some ν ∈ R>0 and θ ∈ R>0.
Under this stepsize scheme, we prove a preliminary result about the final term

that appears in Lemma 2.5.

Lemma 3.1. Let Assumptions 1, 2, and 3 hold. Then,

Ek[αkτmin∇f(xk)
T (dk − dtruek )] ≤ β2

kθτminκgζ
−1
√
M.

10



Proof. Let ξk ∈ [0, 1] be the random variable such that αk = ν + ξkθβk. Then,
by Lemma 2.6 and the fact that ν and βk are measurable to Fk,

Ek[αkτmin∇f(xk)
T (dk − dtruek )] = Ek[(ν + ξkθβk)τmin∇f(xk)

T (dk − dtruek )]

= Ek[ξkθβkτmin∇f(xk)
T (dk − dtruek )]

≤ Ek[θβkτmin∥∇f(xk)∥∥dk − dtruek ∥]

≤ β2
kθτminκgζ

−1
√
M.

Now, we are ready to derive our first main result.

Theorem 3.2. Let Assumptions 1, 2, and 3 hold. Let σ ∈ (0, 1), let {βk} ⊂ R>0

be a pre-specified sequence such that βk ≤ κβ holds for all k, let αk ∈ [ν, ν + θβk], for
some θ ∈ R>0, ν ∈ (0, σ/(2κv(τminL+ Γ) + 4)], and let τmin be defined as in Lemma
2.3. Let

κ1 :=
(ν + θκβ)

2(τminL+ Γ)(ζ−1κHκ2
u + ζ−2M)

2
(3.2)

+ θ(θκc(κv(τminL+ Γ) + 4) + τminκgζ
−1
√
M).

Then, for any K ∈ N,

K−1∑
k=0

E[αkβkτmin(u
true
k )THku

true
k +

αkσ

2
∥ck∥1]

≤ τmin(f(x0)− flow) + ∥c0∥1 + κ1

K−1∑
k=0

β2
k.

(3.3)

Proof. Taking the conditional expectation on both sides of (2.9) and applying the
results of Lemma 2.2, Lemma 2.6, and Lemma 3.1 (noting that βk is measurable to
Fk),

Ek[ϕ(xk + αkdk, τmin)]− ϕ(xk, τmin)

≤ −Ek[αk∆l(xk, τmin,∇f(xk), d
true
k )] + Ek

[
α2
kβ

2
k

2
(τminL+ Γ)∥uk∥2

]
+ Ek

[
α2
k

2
(κv(τminL+ Γ) + 4)∥ck∥1

]
+ Ek[αkτmin∇f(xk)

T (dk − dtruek )]

≤ −αk∆l(xk, τmin,∇f(xk), d
true
k ) + (ν2 + θ2β2

k)(κv(τminL+ Γ) + 4)∥ck∥1

+
α2
kβ

2
k

2
(τminL+ Γ)(ζ−1(utrue

k )THku
true
k + ζ−2M) + θβ2

kτminκgζ
−1
√
M

≤ −αk∆l(xk, τmin,∇f(xk), d
true
k ) +

α2
kβ

2
k

2
(τminL+ Γ)(ζ−1κHκ2

u + ζ−2M)

+
αkσ

2
∥ck∥1 + β2

kθ(θκc(κv(τminL+ Γ) + 4) + τminκgζ
−1
√
M)

= −αk∆l(xk, τmin,∇f(xk), d
true
k ) +

αkσ

2
∥ck∥1 + β2

kκ1,

where the final inequality follows by ν ≤ αk.
Now, by (2.8),

Ek[ϕ(xk + αkdk, τmin)]− ϕ(xk, τmin)
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≤ −αk∆l(xk, τmin,∇f(xk), d
true
k ) +

αkσ

2
∥ck∥1 + β2

kκ1

≤ −αk(βkτmin(u
true
k )THku

true
k + σ∥ck∥1) +

αkσ

2
∥ck∥1 + β2

kκ1

= −αkβkτmin(u
true
k )THku

true
k − αkσ

2
∥ck∥1 + β2

kκ1.

Taking the total expectation of this inequality, rearranging and summing from k =
0, . . . ,K − 1,

K−1∑
k=0

E[αkβkτmin(u
true
k )THku

true
k +

αkσ

2
∥ck∥1]

≤ ϕ(x0, τmin)− E[ϕ(xK , τmin)] + κ1

K−1∑
k=0

β2
k.

Due to Assumption 1, we have,

−E[ϕ(xK , τmin)] = −E[τminf(xK) + ∥cK∥1] ≤ −τminflow,

so that

K−1∑
k=0

E[αkβkτmin(u
true
k )THku

true
k +

αkσ

2
∥ck∥1] ≤ ϕ(x0, τmin)− τminflow + κ1

K−1∑
k=0

β2
k,

which proves the result.

Corollary 3.3. For any K ∈ N>0, let βk := β = η/
√
K for all k ∈ [0,K − 1]

where η ∈ R>0, let κ1 be defined in (3.2) and let

(3.4) κ2 := τmin(f(x0)− flow) + ∥c0∥1 + η2κ1.

Then, under the conditions of Theorem 3.2, we have

(3.5)
1

K

K−1∑
k=0

E[∥ck∥1] ≤
2κ2

νσK
,

and

(3.6)
1

K

K−1∑
k=0

E[∥∇f(xk) + JT
k ytruek ∥2] ≤ κ2

Hκ2

τminζνη
√
K

+
2ζ(1 + 2κu)κvκ

2
Hκ2

νσK
.

Finally, with probability at least 1− δ,

min
k∈[0,K−1]

τminζκ
−2
H ∥∇f(xk) + JT

k ytruek ∥2 + σ
√
K

2η
∥ck∥1

≤ κ2

νηδ
√
K

+
2(1 + 2κu)ζτminκvκ2

σδK
.

(3.7)

Proof. By Theorem 3.2, the definition of βk, and ν ≤ αk, it follows that

(3.8)

K−1∑
k=0

E[∥ck∥1] ≤
2(τmin(f(x0)− flow) + ∥c0∥1 + κ1

∑K−1
k=0 β2

k)

νσ
≤ 2κ2

νσ
.
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Dividing both sides of this inequality by K yields the first result.
Now, by Theorem 3.2 and Lemma 2.4 as well as αk ≤ ν, we have

K−1∑
k=0

E[νβkτminζκ
−2
H ∥∇f(xk) + JT

k ytruek ∥2 + νσ

2
∥ck∥1 − ντminβk(1 + 2κu)ζκv∥ck∥1]

≤
K−1∑
k=0

E[αkβk(u
true
k )THk(u

true
k ) +

αkσ

2
∥ck∥1]

≤ τmin(f(x0)− flow) + ∥c0∥1 + κ1

K−1∑
k=0

β2
k.

(3.9)

Rearranging this inequality and using βk = η/
√
K,

K−1∑
k=0

E[∥∇f(xk) + JT
k ytruek ∥2] ≤ κ2

Hκ2

√
K

νητminζ
+ (1 + 2κu)κvκ

2
H

K−1∑
k=0

E[∥ck∥1].

Dividing through by K and applying (3.5), it follows that

1

K

K−1∑
k=0

E[∥∇f(xk) + JT
k ytruek ∥2] ≤ κ2

Hκ2

νητminζ
√
K

+
2(1 + 2κu)τminκvκ

2
Hκ2

νστminK
,

which proves the second result.
To prove the final result, by (3.9),

K−1∑
k=0

E[νβkτminζκ
−2
H ∥∇f(xk) + JT

k ytruek ∥2 + νσ

2
∥ck∥1]

≤ τmin(f(x0)− flow) + ∥c0∥1 + κ1

K−1∑
k=0

β2
k

+

K−1∑
k=0

E[νβkτmin(1 + 2κu)ζκv∥ck∥1].

Applying the definition of β, multiplying through by 1
νβK , and using (3.5),

1

K
E[τminζκ

−2
H ∥∇f(xk) + JT

k ytruek ∥2 + σ
√
K

2η
∥ck∥1]

≤ κ2

νη
√
K

+
2(1 + 2κu)ζτminκvκ2

σK

and thus

min
k∈[0,K−1]

E[τminζκ
−2
H ∥∇f(xk) + JT

k ytruek ∥2 + σ

2β
∥ck∥1]

≤ κ2

ν
√
K

+
2(1 + 2κu)ζτminκvκ2

νσK
.
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Applying Markov’s inequality, it follows that with probability at least 1− δ that

min
k∈[0,K−1]

τminζκ
−2
H ∥∇f(xk) + JT

k ytruek ∥2 + σ
√
K

2η
∥ck∥1

≤ κ2

νδ
√
K

+
2(1 + 2κu)ζτminκvκ2

σδK
,

which proves the final result.

From the result of Corollary 3.3, we can easily derive our worst-case complexity
results, as promised in Section 1. It should be clear that in terms of the constraint
violation, by (3.5), the maximum number of iterations until E[∥ck∥1] falls below ϵc is
at most O(ϵ−1

c ). Similarly, by Jensen’s inequality and (3.6), the maximum number of
iterations until E[∥∇f(xk) + JT

k ytruek ∥] ≤ ϵℓ is O(ϵ−4
ℓ ). Finally, if one is interested in

a combined result, we obtain the same O(K−1/2) convergence rate as [12], however,
our convergence is in terms of a much stronger measure with respect to the constraint
violation ∥ck∥1, which is scaled by an additional factor of

√
K. Thus, we expect much

faster convergence with respect to the constraint violation than the algorithm in [12]
without harming the convergence rate in terms of the gradient of the Lagrangian.

3.2. Convergence with Adaptive Stepsizes. Now, we analyze the case where
βk and αk are set adaptively, in a manner inspired by Adagrad-Norm [25]. Specifically,
at each iteration k, let

(3.10) b2k = b2k−1 + ∥uk∥2, q2k = q2k−1 + ∥ck∥1,

and

(3.11) βk =
η

bk
, αk ∈

[
ν

qk
,
ν

qk
+min

{
θ

bk
,
θ

qk

}]
,

for some constants η > 0 and ν > 0. We note here that the additional term at the
upper end of the range for αk is due to our adaptive setting of βk using bk, which is
sufficient to control the stochasticity in gk, but may be insufficient to control second
order terms involving the constraint violation. We remedy this situation via the
inclusion of the θ/qk term. In addition, we remark that qk can be set in many different
ways, such as using ∥vk∥2 or ∥ck∥2 in place of ∥ck∥1. These other strategies may lead
to longer stepsizes, which could have important practical implications, however, we
choose to use ∥ck∥1 as it obtains the best constant factors in the convergence analysis
among the relevant choices.

Throughout this section, since βk is dependent on gk, we redefine dtruek as

(3.12) dtruek := vk + βk−1u
true
k ,

so that it remains measurable to Fk. We note that under this re-definition, the results
of Lemmas 2.3 and 2.5 still hold.

Our subsequent analysis relies on the following lemma, which we give without
proof as it is a well-known result in the adaptive gradient literature (see for example,
[24, Lemma 10]).

Lemma 3.4. Let {ai}∞i=0 be a series of non-negative real numbers with a0 ∈ R>0.
Then,

(3.13)

T∑
k=1

ak∑k
i=0 ai

≤ log

(
T∑

k=0

ak

)
− log(a0)
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In order to prove convergence of our algorithm, the key issue posed by the adaptive
stepsizes is the final term in (2.9), which requires a more detailed analysis than in
Lemma 3.1 as βk is no longer measurable to Fk and dtruek has been redefined in (3.12).
We give a bound on this term in the following lemma.

Lemma 3.5. Let Assumptions 1, 2, and 3 hold and let

(3.14) κ3 := ζ−1(κHκ2
u + ζ−1M)

and

(3.15) κ4 := max
{
ζ−1κ2

H , β−1(1 + 2κu)κ
2
Hκvτmin/σ

}
Then,

Ek

[
αk∇f(xk)

T (dk − dtruek )
]
≤ Ek

[
αkβk−1

2
(utrue

k )THku
true
k +

αkσ

2τmin
∥ck∥1

+

(
3η2κ3κ4(ν + θ)2

2q−1b−1
+

3κ4θ
2(η2 + β2

−1κ3)

2ην
+

3ζ−1Mκ4θ
2β−1

2q−1b2−1

)
∥u2

k∥
b2k

]
.(3.16)

Proof. By the definition of dtruek , we have

Ek

[
αk∇f(xk)

T (dk − dtruek )
]
= Ek

[
αk∇f(xk)

T (βkuk − βk−1u
true
k )

]
.

Let ξk ∈ [0, 1] be the random variable such that αk = ν
qk

+ ξk min{ θ
bk
, θ
qk
}. Then, by

Lemma 2.6 and the fact that βk−1, ν, and qk are measurable to Fk,

Ek

[
αk∇f(xk)

T (βkuk − βk−1u
true
k )

]
= Ek

[(
ν

qk
+ ξk min

{
θ

bk
,
θ

qk

})
∇f(xk)

T (βkuk − βk−1u
true
k )

]
= Ek

[ ν
qk

(βk − βk−1)∇f(xk)
Tuk

+ ξk min

{
θ

bk
,
θ

qk

}
∇f(xk)

T (βkuk − βk−1u
true
k )

]
= Ek

[ ν
qk

(βk − βk−1)(∇f(xk) + JT
k ytruek )Tuk

+ ξk min

{
θ

bk
,
θ

qk

}
(∇f(xk) + JT

k ytruek )T (βkuk − βk−1u
true
k )

]
= Ek

[ ν
qk

(βk − βk−1)(∇f(xk) + JT
k ytruek )Tuk

+ ξk min

{
θ

bk
,
θ

qk

}
βk(∇f(xk) + JT

k ytruek )T (uk − utrue
k )

+ ξk min

{
θ

bk
,
θ

qk

}
(βk − βk−1)(∇f(xk) + JT

k ytruek )Tutrue
k

]
= Ek

[( ν

qk
+ ξk min

{
θ

bk
,
θ

qk

})
(βk − βk−1)(∇f(xk) + JT

k ytruek )Tuk

+ ξk min

{
θ

bk
,
θ

qk

}
βk(∇f(xk) + JT

k ytruek )T (uk − utrue
k )
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+ ξk min

{
θ

bk
,
θ

qk

}
(βk − βk−1)(∇f(xk) + JT

k ytruek )T (utrue
k − uk)

]
≤ Ek

[ν + θ

qk
|βk − βk−1|∥∇f(xk) + JT

k ytruek ∥∥uk∥

+min

{
θ

bk
,
θ

qk

}
βk∥∇f(xk) + JT

k ytruek ∥∥uk − utrue
k ∥(3.17)

+
θ

qk
|βk − βk−1|∥∇f(xk) + JT

k ytruek ∥∥utrue
k − uk∥

]
,

where the third equality follows by uk, u
true
k ∈ Null(Jk) and the inequality by the

Cauchy-Schwarz inequality and ξk ≤ 1.
Now, we focus on the first term in (3.17),

(3.18) |βk − βk−1| =
η

bk−1
− η

bk
=

η∥uk∥2

bk−1bk(bk + bk−1)
≤ η∥uk∥

bk−1bk
,

where the inequality follows by ∥uk∥ ≤ bk. Therefore, applying Young’s inequality,
we have, for any λ1 > 0 measurable to Fk,

Ek

[
ν + θ

qk
|βk−1 − βk|∥∇f(xk) + JT

k ytruek ∥∥uk∥
]

≤ ηEk

[
(ν + θ)∥∇f(xk) + JT

k ytruek ∥∥uk∥2

qkbk−1bk

]
≤ η∥∇f(xk) + JT

k ytruek ∥2

2bk−1qkλ1
Ek[∥uk∥2] + Ek

[
η (ν + θ)

2
λ1∥uk∥2

2qkbk−1b2k

]

≤ ηκ3βk−1∥∇f(xk) + JT
k ytruek ∥2

2qkλ1
+ Ek

[
η(ν + θ)2λ1∥uk∥2

2qkbk−1b2k

]
(3.19)

where the final inequality follows by Assumption 2 as well as the results of Lemma
2.2 and Lemma 2.6.

Now, for the second term in (3.17), by Young’s inequality, for any λ2 > 0 mea-
surable to Fk,

Ek

[
βk min

{
θ

bk
,
θ

qk

}
∥∇f(xk) + JT

k ytruek ∥∥uk − utrue
k ∥

]
≤ 1

2qkbkλ2
∥∇f(xk) + JT

k ytruek ∥2 + Ek

[
λ2θ

2β2
k

2
∥uk − utrue

k ∥2
]
.(3.20)

Working with the last term in this inequality, since qk and βk−1 are measurable to
Fk, by Lemma 2.6,

Ek

[
λ2θ

2β2
k

2
∥uk − utrue

k ∥2
]

=
λ2θ

2

2
Ek

[
β2
k(∥uk∥2 + ∥utrue

k ∥2 − 2uT
k u

true
k )

]
=

λ2θ
2

2
Ek

[
β2
k(∥uk∥2 + ∥utrue

k ∥2 − 2uT
k u

true
k ) + β2

k−1(2u
T
k u

true
k − 2∥utrue

k ∥2)
]

≤ λ2θ
2

2
Ek

[
β2
k∥uk∥2 + 2|β2

k − β2
k−1|∥uk∥∥utrue

k ∥ − β2
k−1∥utrue

k ∥2
]
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=
λ2θ

2

2
Ek

[
β2
k∥uk∥2 + 2η2

∥uk∥2

b2k−1b
2
k

∥uk∥∥utrue
k ∥ − β2

k−1∥utrue
k ∥2

]
≤ λ2θ

2

2
Ek

[
β2
k∥uk∥2 + 2η2

∥uk∥2

b2k−1bk
∥utrue

k ∥ − β2
k−1∥utrue

k ∥2
]

(3.21)

where the first inequality follows by βk ≤ βk−1 and the second inequality follows by
∥uk∥ ≤ bk. Dealing with the second term in this inequality, again applying Young’s
inequality and using βk−1 = η/bk−1, by Lemmas 2.2 and 2.6 as well as Assumption 2,

λ2θ
2

2
Ek

[
2β2

k−1∥uk∥2

bk
∥utrue

k ∥
]

≤ λ2θ
2η2

2
Ek

[
β2
k−1∥uk∥2∥utrue

k ∥2

κ3
+

β2
k−1κ3∥uk∥2

b2k

]
≤ λ2θ

2

2
Ek

[
β2
k−1ζ

−1(κHκ2
u + ζ−1M)∥utrue

k ∥2

κ3
+

β2
k−1κ3∥uk∥2

b2k

]
=

λ2θ
2

2
Ek

[
β2
k−1∥utrue

k ∥2 +
β2
k−1κ3∥uk∥2

b2k

]
,

so that the first term cancels with the last in (3.21).
Now, for the final term in (3.17), by (3.18), applying Young’s inequality for some

λ3 > 0 that is measurable to Fk, by Lemma 2.6,

Ek

[
θ

qk
|βk − βk−1|∥∇f(xk) + JT

k ytruek ∥∥utrue
k − uk∥

]
≤ Ek

[
θ

qk

βk−1∥uk∥
bk−1bk

∥∇f(xk) + JT
k ytruek ∥∥utrue

k − uk∥
]

≤ Ek

[
βk−1

2λ3qk
∥∇f(xk) + JT

k ytruek ∥2∥utrue
k − uk∥2 +

θ2λ3βk−1∥uk∥2

2qkb2k−1b
2
k

]
≤ Ek

[
ζ−1Mβk−1

2λ3qk
∥∇f(xk) + JT

k ytruek ∥2 + θ2λ3βk−1∥uk∥2

2qkb2k−1b
2
k

]
Therefore, combining (3.17), (3.19), (3.20), and (3.21) we have

Ek

[
αk∇f(xk)

T (βkuk − βk−1u
true
k )

]
≤ Ek

[(
ηκ3βk−1

2qkλ1
+

1

2qkbkλ2
+

ζ−1Mβk−1

2qkλ3

)
∥∇f(xk) + JT

k ytruek ∥2

+

(
λ1η(ν + θ)2

2qkbk−1
+

λ2θ
2(η2 + β2

k−1κ3)

2
+

λ3θ
2βk−1

2qkb2k−1

)
∥u2

k∥
b2k

]
Applying Lemma 2.4,

Ek

[
αk∇f(xk)

T (βkuk − βk−1u
true
k )

]
≤ Ek

[(
ηκ3βk−1

2qkλ1
+

1

2qkbkλ2
+

ζ−1Mβk−1

2qkλ3

)(
ζ−1κ2

H(utrue
k )THku

true
k

+ (1 + 2κu)κ
2
Hκv∥ck∥1

)
+

(
λ1η(ν + θ)2

2qkbk−1
+

λ2θ
2(η2 + β2

k−1κ3)

2
+

λ3θ
2βk−1

2qkb2k−1

)
∥u2

k∥
b2k

]
.
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Choosing λ1 = 3ηκ3κ4

ν , λ2 = 3κ4

νη , and λ3 = 3ζ−1Mκ4

ν and using ν/qk ≤ αk, qk ≥ q−1,
and bk−1 ≥ b−1 proves the result.

Now, we are prepared to present the first main result of this subsection.

Theorem 3.6. Let Assumptions 1, 2, and 3 hold. Let

(3.22) κ5 :=
(ν + θ)2(κv(τminL+ Γ) + 4)

2
.

κ6 :=
η2(ν + θ)2(τminL+ Γ)

2q2−1

+
3η2κ3κ4(ν + θ)2

2q−1b−1
(3.23)

+
3κ4θ

2(η2 + β2
−1κ3)

2ην
+

3ζ−1Mκ4θ
2β−1

2q−1b2−1

.

Then,

E

[
K−1∑
k=0

αkτminβk−1

2
(utrue

k )THku
true
k +

αkσ

2
∥ck∥1

]
≤ τmin(f−1 − fmin) + ∥c−1∥1 + κ5 log(1 + κcK/q2−1)(3.24)

+ κ6(1 + log(ζ−1(κHκ2
u + ζ−1M)K/b2−1)).

In addition,

E[qK−1] ≤ q−1 +
2

νσ
(τmin(f−1 − fmin) + ∥c−1∥1 + κ5 log(1 + κcK/q2−1)

+ κ6 log(1 + ζ−1(κHκ2
u + ζ−1M)K/b2−1).

Proof. By Lemma 2.5, we have

Ek[ϕ(xk + αkdk, τmin)]− ϕ(xk, τmin)

≤ −Ek[αk∆l(xk, τmin, d
true
k )] + Ek

[
α2
kβ

2
k

2
(τminL+ Γ)∥uk∥2

]
+ Ek

[
α2
k

2
(κv(τminL+ Γ) + 4)∥ck∥1

]
+ Ek[αkτmin∇f(xk)

T (dk − dtruek )].

To prove the result, we need to bound the final three terms. Starting with the
first of these, we have that

Ek

[
α2
kβ

2
k

2
(τminL+ Γ)∥uk∥2

]
≤ η2(ν + θ)2(τminL+ Γ)

2q2−1

Ek

[
∥uk∥2

b2k

]
,

where the inequality follows due to the definition of αk and qk ≥ q−1. For the next
term,

α2
k(κv(τminL+ Γ) + 4)

2
∥ck∥1 ≤

(ν + θ)2(κv(τminL+ Γ) + 4)

2q2k
∥ck∥1 =

κ5∥ck∥1
q2k

.

Now, applying the result of Lemma 3.5, we have

Ek[ϕ(xk + αkdk, τmin)]− ϕ(xk, τmin)

18



≤ −Ek[αk∆l(xk, τmin, d
true
k )] + Ek

[
αkτminβk−1

2
(utrue

k )THku
true
k

]
+ Ek

[αkσ

2
∥ck∥1

]
+

κ5∥ck∥1
q2k

+ κ6Ek

[
∥uk∥2

b2k

]
.

Then, applying (2.8) (where we note that under the re-definition of dtruek in (3.12),
βk is replaced by βk−1), it follows that

Ek[ϕ(xk + αkdk, τmin)]− ϕ(xk, τmin)

≤ −Ek

[
αkτminβk−1

2
(utrue

k )THku
true
k

]
− Ek

[αkσ

2
∥ck∥1

]
+

κ5∥ck∥1
q2k

+ κ6Ek

[
∥uk∥2

b2k

]
.

Next, taking the total expectation of this inequality and summing for all k =
0, . . . ,K − 1,

E

[
K−1∑
k=0

αkτminβk−1

2
(utrue

k )THku
true
k +

αkσ

2
∥ck∥1

]

≤ ϕ(x−1, τmin)− E[ϕ(xK , τmin)] + E

[
κ5

K−1∑
k=0

∥ck∥1
q2k

]
+ E

[
κ6

K−1∑
k=0

∥uk∥2

b2k

]
.

By the definition of ϕ and Assumption 1, it follows that

ϕ(x−1, τmin)− E[ϕ(xK , τmin)] = τminf−1 + ∥c−1∥1 − E[τminfK − ∥cK∥1]
≤ τmin(f−1 − fmin) + ∥c−1∥1.

Now, applying Lemma 3.4 twice, by Assumption 1, it follows that

E

[
K−1∑
k=0

αkτminβk−1

2
(utrue

k )THku
true
k +

αkσ

2
∥ck∥1

]
≤ τmin(f−1 − fmin) + ∥c−1∥1 + κ5 log(1 + κcK/q2−1)

+ κ6E

[
log

(
b2−1 +

∑K−1
k=0 ∥uk∥2

b2−1

)]
.

Using Jensen’s inequality, the tower rule, and the results of Lemma 2.2 and Lemma
2.6,

E

[
log

(
b2−1 +

∑K−1
k=0 ∥uk∥2

b−1

)]
≤ log

(
1 + ζ−1(κHκ2

u + ζ−1M)K/b2−1

)
and thus,

E

[
K−1∑
k=0

αkτminβk−1

2
(utrue

k )THku
true
k +

αkσ

2
∥ck∥1

]
≤ τmin(f−1 − fmin) + ∥c−1∥1 + κ5 log(1 + κcK/q2−1)
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+ κ6 log(1 + ζ−1(κHκ2
u + ζ−1M)K/b2−1),

proving the first result.
To prove the second result, note that

qK−1 =
q2−1 +

∑K−1
k=0 ∥ck∥1
qK

≤ q−1 +

K−1∑
k=0

∥ck∥1
qk

≤ q−1 +
1

ν

K−1∑
k=0

αk∥ck∥1,

and therefore, by (3.24),

E[qK−1] ≤ q−1 +
2

νσ
(τmin(f−1 − fmin) + ∥c−1∥1 + κ5 log(1 + κcK/q2−1)

+ κ6 log(1 + ζ−1(κHκ2
u + ζ−1M)K/b2−1).

Next, we derive the following corollary, from which our complexity results for this
subsection will follow directly.

Corollary 3.7. Let the assumptions of Theorem 3.6 hold. Let

κ7(K) := τmin(f−1 − fmin) + ∥c−1∥1 + κ5 log(1 + κcK/q−1)(3.25)

+ κ6 log(1 + ζ−1(κHκ2
u + ζ−1M)K/b−1)

and

(3.26) κ8(K) :=
√
b2−1 + ζ−1(κHκ2

u + ζ−1M)K.

Then, with probability at least 1− δ1,

(3.27) E

[
1

K

K−1∑
k=0

∥ck∥1

]
≤ 2(νσq−1 + 2κ7(K))κ7(K)

ν2σ2δ1K
,

with probability at least 1− δ2,

E

[
1

K

K−1∑
k=0

∥∇f(xk) + JT
k ytruek ∥2

]

≤ 8κ2
Hκ8(K)(νσq−1 + 2κ7(K))κ7(K)

τminν2ηζσδ22K
(3.28)

+
4(νσq−1 + 2κ7(K))κ2

H(1 + 2κu)κvκ7(K)

ν2σ2δ2K
,

and with probability at least 1− δ3,

min
k∈[0,K−1]

τminζκ
−2
H ∥∇f(xk) + JT

k ytruek ∥2 + σκ8(K)

η
∥ck∥1

≤ 54κ8(K)(νσq−1 + 2κ7(K))κ7(K)

ν2ησδ33K
(3.29)

+
18(νσq−1 + 2κ7(K))κ7(K)ζτmin(1 + 2κu)κv

ν2σ2δ23K
.
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Proof. By Theorem 3.6 and Markov’s inequality, it follows that with probability
at least 1− δ1,

(3.30) αK−1 ≥
ν

qK
≥ ν2σδ1

νσq−1 + 2κ7(K)
.

Therefore, by (3.24), Assumption 2, and the fact that αK is non-increasing, it follows
that with probability at least 1− δ1,

E

[
K−1∑
k=0

ν2σ2δ1
2(νσq−1 + 2κ7(K))

∥ck∥1

]
≤ E

[
K−1∑
k=0

αkσ

2
∥ck∥1

]
≤ κ7(K),

and thus

1

K
E

[
K−1∑
k=0

∥ck∥1

]
≤ 2(νσq−1 + 2κ7(K))κ7(K)

ν2σ2δ1K
,

which proves the first result.
Next, by the law of iterated expectation, Jensen’s inequality, and the results of

Lemmas 2.2 and 2.6,
(3.31)

E[bK−1] = E


√√√√b2−1 +

K−1∑
k=0

∥uk∥2

 ≤√b2−1 + ζ−1(κHκ2
u + ζ−1M)K = κ8(K).

Therefore, using (3.30) with δ1 = δ2/2 and Markov’s inequality with (3.31), with
probability at least 1− δ2, by Assumption 2, (3.24), and the union bound,

E

[
K−1∑
k=0

(utrue
k )THku

true
k

]
≤ 8κ8(K)(νσq−1 + 2κ7(K))κ7(K)

τminν2ησδ22
.

Next, applying Lemma 2.4,

E

[
K−1∑
k=0

∥∇f(xk) + JT
k ytruek ∥2

]
≤ 8κ2

Hκ8(K)(νσq−1 + 2κ7(K))κ7(K)

τminν2ηζσδ22

+ κ2
H(1 + 2κu)κvE

[
K−1∑
k=0

∥ck∥1

]
.

Noting that this result holds under the same event as in (3.27) (with δ1 = δ2/2), it
follows that with probability at least 1− δ2,

E

[
1

K

K−1∑
k=0

∥∇f(xk) + JT
k ytruek ∥2

]
≤ 8κ2

Hκ8(K)(νσq−1 + 2κ7(K))κ7(K)

τminν2ηζσδ22K

+
4(νσq−1 + 2κ7(K))κ2

H(1 + 2κu)κvκ7(K)

ν2σ2δ2K
.

Finally, using (3.24), (3.30), (3.31), Markov’s inequality and the union bound,
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with probability at least 1− 2
3δ3,

E

[
K−1∑
k=0

τmin(u
true
k )THku

true
k +

σκ8(K)

η
∥ck∥1

]

≤ 18κ8(K)(νσq−1 + 2κ7(K))κ7(K)

ν2ησδ23
.

Thus, by Lemma 2.4

E

[
1

K

K−1∑
k=0

τminζκ
−2
H ∥∇f(xk) + JT

k ytruek ∥2 + σκ8(K)

η
∥ck∥1

]

≤ 18κ8(K)(νσq−1 + 2κ7(K))κ7(K)

ν2ησδ23K
+ ζτmin(1 + 2κu)κvE

[
1

K

K−1∑
k=0

∥ck∥1

]

≤ 18κ8(K)(νσq−1 + 2κ7(K))κ7(K)

ν2ησδ23K

+
6(νσq−1 + 2κ7(K))κ7(K)ζτmin(1 + 2κu)κv

ν2σ2δ3K
.

Therefore, applying Markov’s inequality and the union bound, it follows that with
probability at least 1− δ3,

min
k∈[0,K−1]

τminζκ
−2
H ∥∇f(xk) + JT

k ytruek ∥2 + σκ8(K)

η
∥ck∥1

≤ 54κ8(K)(νσq−1 + 2κ7(K))κ7(K)

ν2ησδ33K

+
18(νσq−1 + 2κ7(K))κ7(K)ζτmin(1 + 2κu)κv

ν2σ2δ23K
.

By the definitions of κ7(K) = O(log(K)) and κ8(K) = O(
√
K), it follows that

the results of Corollary 3.7 match, up to log factors, those we derived in Section 3.1
for the pre-specified stepsize setting. Thus, in terms of the complexity measures (1.2),
this variant of Algorithm 2.1 has a worst-case complexity of Õ(ϵ−4

ℓ ) and Õ(ϵ−1
c ).

4. Safeguarded Line Search. The convergence analysis in Section 3 specifies
proper ranges for αk in Algorithm 2.1 in order to ensure convergence, but does not
provide any recommendations on how to choose αk in this range. Commonly, in
other stochastic SQP methods, the procedure used to set αk incorporates the merit
parameter τk, which is adaptively estimated at each iteration. However, the estimation
of τk may be highly inaccurate and noisy due to only having stochastic access to the
gradient of f . For this reason, we do not attempt rely on the stochastic gradient
information in order to choose αk and instead solely utilize the constraints.

Consider first the case where αk satisfies αk ∈ [ν, ν + θβk] as it does in the
analysis in Section 3.1. Then, we can find an αk in this range through a safeguarded
backtracking procedure. Starting from α̂k = ν + θβk, we backtrack until

(4.1) ∥c(xk + α̂kdk)∥1 ≤ (1− ξα̂k)∥ck∥1,

holds for some ξ ∈ (0, 1) where, when (4.1) fails to hold for α̂k, we set α̂k = ρα̂k

for some ρ ∈ (0, 1). However, as we cannot guarantee termination, we safeguard this
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linesearch by ceasing the search procedure if α̂k ever falls below ν. When (4.1) holds
for some α̂k ≥ ν, we set αk = α̂k. On the other hand, if (4.1) fails to hold prior
to α̂k < ν, we instead set αk = ν. Thus, this procedure is guaranteed to output an
αk in the specified range and therefore the convergence results of Section 3.1 hold.
In addition, on any step where (4.1) is satisfied for α̂k ≥ ν, we have confirmation
of sufficient decrease in the constraint violation. Finally, we note that the number
of backtracking steps at any iteration k is at most log(ν/(ν + θβk))/ log(ρ) due to
terminating the backtracking as soon as α̂k < ν.

Unfortunately, the convergence theory only holds for the previous procedure under
certain conditions on ν. To relax these conditions, we once again turn to the one of
the adaptive stepsize rules of Section 3.2. In particular, we consider the case where
βk is chosen as a pre-specified sequence and the lower bound for αk is chosen in a
manner similar to that of (3.11). As we use a slight modification of this stepsize, we
give the full procedure (which is the algorithm used in the computational results of
Section 5) in Algorithm 4.1.

The backtracking procedure in Algorithm 4.1 is very similar to the one described
above, with a few minor differences. In particular, we set the lower bound adaptively,
using the stepsize rule in Section 3.2. In addition, unlike in Section 3.2, we only
update the lower bound when the backtracking procedure fails to satisfy the sufficient
decrease condition prior to reducing α̂k below the lower bound. The logic for this
is simple; if the lower bound was reached, then it is probably too large and should
be reduced. On the other hand, when the sufficient decrease condition is satisfied at
iteration k, we keep the lower bound as it was at the start of this iteration, since it is
already sufficiently small to find a good steplength in terms of reducing the constraint
violation.

Algorithm 4.1 Two Stepsize Stochastic SQP with Adaptive Backtracking

Require: x0 ∈ Rn, {βk} ⊂ R>0, ν ∈ R>0, q−1 ∈ R>0, θ ∈ R>0, ξ ∈ (0, 1), ρ ∈ (0, 1);
1: for k = 0, 1, . . . do
2: Compute stochastic gradient gk.
3: Compute (pk, yk) as the solution of (1.5).
4: Set dk ← vk + βkuk, where vk ∈ Range(JT

k ) and uk ∈ Null(Jk) are the
orthogonal decomposition of pk.

5: Set q̂2k ← q2k−1 + ∥ck∥1 and α̂k ← ν
q̂k

+ θβk.

6: while ∥c(xk + α̂kdk)∥1 > (1− ξα̂k)∥ck∥1 and α̂k > ν
q̂k

do
7: Set α̂k ← ρα̂k.
8: end while
9: if α̂k ≥ ν

q̂k
then

10: Set αk ← α̂k and qk = qk−1.
11: else
12: Set αk ← ν

q̂k
and qk = q̂k.

13: end if
14: Set xk+1 ← xk + αkdk.
15: end for

While this is a relatively simple variant of Algorithm 2.1, the analysis in Section 3
does not directly translate. We provide the following lemma which provides a starting
point for the analysis that can then easily be combined with the techniques in Section
3 to obtain a worst-case complexity result.
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Lemma 4.1. Let Assumptions 1, 2, and 3 hold and let xk be generated by Algo-
rithm 4.1. Let βk = η/

√
K hold for all k. Let

(4.2) κ9 := ξ−1(∥c0∥1 − (2 + Γκv/2)ν
2 log(q2−1) + ν2η2Γζ−1(κHκ2

u + ζ−1M)/(2q2−1))

and

(4.3) κ10 := 2(q−1 + κ9/ν) + 8(4 + Γκv)ξ
−1ν log(e+ (4 + Γκv)ξ

−1ν).

Then, E[qK−1] ≤ κ10 and

(4.4)

K−1∑
k=0

E [αk∥ck∥1] ≤ κ9 + (4 + Γκv)ξ
−1ν log(κ10)

Proof. Let Kα denote the index set of iterations k such that αk = ν
q̂k
. Then, for

any k ∈ Kα, by Γ-Lipschitz continuity of the Jacobian of c,

∥c(xk + αkdk)∥1 − ∥ck∥1 ≤ ∥ck + αkJkdk∥1 − ∥ck∥1 +
α2
kΓ

2
∥dk∥2

= |1− αk|∥ck∥1 − ∥ck∥1 +
α2
kΓ

2
∥dk∥2,

where the equality follows from Jkdk = −ck. Therefore, when αk ≤ 1,

∥c(xk + αkdk)∥1 − ∥ck∥1 ≤ (1− αk)∥ck∥1 − ∥ck∥1 +
α2
kΓ

2
∥dk∥2

≤ −αk∥ck∥1 +
α2
kΓ

2
∥dk∥2.

On the other hand, when αk > 1,

∥c(xk + αkdk)∥1 − ∥ck∥1 ≤ (αk − 1)∥ck∥1 − ∥ck∥1 +
α2
kΓ

2
∥dk∥2

= −αk∥ck∥1 + 2(αk − 1)∥ck∥1 +
α2
kΓ

2
∥dk∥2

≤ −αk∥ck∥1 + 2α2
k∥ck∥1 +

α2
kΓ

2
∥dk∥2,

where the final inequality follows by αk > 1.
Therefore, in either case, whenever k ∈ Kα, we have

∥c(xk + αkdk)∥1 − ∥ck∥1 ≤ −ξαk∥ck∥1 + 2α2
k∥ck∥1 +

α2
kΓ

2
∥dk∥2,

where we used ξ ∈ (0, 1).
Next, for any iteration where k ∈ Kc

α, it follows that

∥c(xk + αkdk)∥1 − ∥ck∥1 ≤ (1− ξαk)∥ck∥1 − ∥ck∥1 = −ξαk∥ck∥1.

Combining these cases and summing this inequality for k = 0, . . . ,K−1, it follows
that

∥c(xK)∥1 − ∥c0∥1 ≤ −
K−1∑
k=0

ξαk∥ck∥1 +
∑
j∈Kα

2α2
j∥cj∥1 +

α2
jΓ

2
∥dj∥2.
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Next, by the orthogonal decomposition dk = vk + βkuk and Lemma 2.1, we have

∥c(xK)∥1 − ∥c0∥1

≤ −
K−1∑
k=0

ξαk∥ck∥1 +
∑
j∈Kα

2α2
j∥cj∥1 +

α2
jΓ

2
(∥vj∥2 + β2

j ∥uj∥2)

≤ −
K−1∑
k=0

ξαk∥ck∥1 +
∑
j∈Kα

(2 + Γκv/2)α
2
j∥cj∥1 +

α2
jβ

2
jΓ

2
∥uj∥2

≤ −
K−1∑
k=0

ξαk∥ck∥1 +
∑
j∈Kα

(2 + Γκv/2)ν
2

q2−1 +
∑

ℓ∈Kα,ℓ≤j ∥cℓ∥1
∥cj∥1 +

ν2η2Γ

2Kq2−1

∥uj∥2,

where the final inequality follows by the definitions of βk and αk for any k ∈ Kα.
Next, taking the expectation of both sides of this inequality, rearranging and using
the law of iterated expectation with the result of Lemma 2.6, we have

K−1∑
k=0

E [αk∥ck∥1]

≤ ξ−1∥c0∥1 + E

∑
j∈Kα

ξ−1(2 + Γκv/2)ν
2

q2−1 +
∑

ℓ∈Kα,ℓ≤j ∥cℓ∥1
∥cj∥1

+ E
[
ν2η2Γ

2Kq2−1

∥uj∥2
]

≤ ξ−1∥c0∥1 + ξ−1(2 + Γκv/2)ν
2E

log(q2−1 +
∑
j∈Kα

∥cj∥1)− log(q2−1)


+

ν2η2ξ−1Γζ−1(κHκ2
u + ζ−1M)

2q2−1

≤ ξ−1∥c0∥1 + ξ−1(2 + Γκv/2)ν
2(2 log(E[qK−1])− log(q2−1))(4.5)

+
ν2η2ξ−1Γζ−1(κHκ2

u + ζ−1M)

2q2−1

,

where the second inequality follows by Lemma 3.4 and the final inequality follows by
Jensen’s inequality and the concavity of log(x).

Therefore, since αk ≥ ν/qK−1 for all k ≤ K − 1, it follows that

E

[ ∑
k∈Kα

∥ck∥1
qK−1

]
≤ κ9/ν + (4 + Γκv)ξ

−1ν log(E[qK−1]).

Now, by the definition of qK−1 and the fact that x ≤ a + b log(x) implies x ≤ 2a +
8b log(e+ b) for any a > 0 and b > 0 [24],

E[qK−1] = E

[
q2−1 +

∑
k∈Kα

∥ck∥1
qK−1

]
≤ q−1 + κ9/ν + (4 + Γκv)ξ

−1ν log(E[qK−1])

≤ 2(q−1 + κ9/ν) + 8(4 + Γκv)ξ
−1ν log(e+ (4 + Γκv)ξ

−1ν),
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proving the first result. Thus, by (4.5), it follows that

K−1∑
k=0

E [αk∥ck∥1] ≤ κ9 + (4 + Γκv)ξ
−1ν log(E[qK−1]) ≤ κ9 + (4 + Γκv)ξ

−1ν log(κ10).

From this proof, we can see that we still obtain a convergence rate of O(1/K) in
terms of the average constraint violation. In addition, as in Section 3.1, any second
order terms in the convergence analysis can be split into either terms involving β2

k or
α2
k∥ck∥1 terms. Since αk is bounded from above by a constant, it should be clear by

the prior lemma that the sum of the α2
k∥ck∥1 terms are bounded, in expectation, by a

constant factor. In addition, given the bound on E[qK−1], we can combine the analysis
of Sections 3.1 and 3.2 to derive a converegence result with a worst-case complexity of
O(ϵ−4

ℓ ) and O(ϵ−1
c ), matching the results of Section 3.1. We leave the full complexity

analysis as an exercise to the reader.

5. Numerical Experiments. In this section, we numerically validate the per-
formance of our proposed algorithm. We focus our attention on Algorithm 4.1, as it
is a fully specified version of the generic Algorithm 2.1. We consider the performance
of Algorithm 4.1 on a subset of the equality constrained problems from the CUTE
collection [8]. We follow the experimental setup of [4] and select equality constrained
optimization problems for which (i) f is not a constant function, (ii) n+m ≤ 1000
and (iii) the Jacobian of c was non-singular at every iteration performed in our exper-
iments. This selection resulted in a total of 60 problems, each of which has specified
initial point, which we used in our experiments. We consider these problems at three
different noise levels of ϵN ∈ {10−5, 10−3, 10−1}. At iteration k, a stochastic gradient
is generated such that gk ∼ N (∇f(xk), ϵNI). For each problem and noise level, we
ran a total of 20 instances for each algorithm. For each instance, all algorithms were
given a total budget of 1000 iterations.

We compare Algorithm 4.1 with the Github implementation of Algorithm 3 in [4]
and use the parameter settings provided in [4]3. For Algorithm 4.1, for all problems
and noise levels, we use the parameter settings βk = β = 10−1, ν = 1, q−1 = 10−9,
θ = 1, ξ = 10−3 and ρ = 1/2.

For every run performed, we computed a resulting feasibility and optimality error.
If a trial produced a sufficiently feasible iterate in the sense that ∥ck∥∞ ≤ 10−6

for some k, then, we report the feasibility error as ∥ck∥∞ and the optimality error
was reported as ∥∇f(xk) + JT

k ytruek ∥∞, where ytruek was computed as a least-squares
multiplier using the true gradient ∇f(xk) and Jk. (This ensures that the reported
optimality error is not based on a stochastic gradient and is instead an accurate
measure of optimality corresponding to the iterate xk.) On the other hand, if no
sufficiently feasible iterate was produced on a given run, then the feasibility error and
optimality error were computed using the same measures at the least infeasible iterate
computed. In addition to terminating when the maximum iteration limit is reached,
the algorithms were terminated if they ever computed a point xk which was both
sufficiently feasible and the stationarity error was smaller than 10−4. The results of
this experiment are presented in Figure 5.1. In this figure, as well as in the following
discussion, we refer to Algorithm 3 of [4] as SSQP, while Algorithm 4.1 is referred to
as TSSQP.

As we can see from this plot, the computed stationarity error are relatively similar
between these algorithms across all noise levels, with SSQP slightly outperforming

3https://github.com/frankecurtis/StochasticSQP
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Fig. 5.1: Box plots of optimality error (left) and feasibility error (right) across various
noise levels on CUTE problems. SSQP is Algorithm 3 of [4] and TSSQP is Algorithm
4.1.

TSSQP in stationarity error when the noise level is lower. This may be attributed
to SSQP using an estimate of the merit parameter τ , which is more likely to be
well-behaved in a low noise setting. However, once the noise level increases to ϵN =
10−1, the gap between these algorithms vanishes for the stationarity error. On the
other hand, when the noise level is low, these algorithms perform similarly in terms
of the infeasibility error. However, as the noise level increases, the performance of
SSQP severely degrades with respect to infeasibility, while the performance of TSSQP
is nearly unchanged. We view this as confirmation of our theoretical results as it
demonstrates the superior ability of TSSQP to converge with respect to constraint
violation while having minimal to no impact on its ability converge with respect to
the KKT error.

6. Conclusion. In this paper, we propose and analyze a new SQP method for
equality constrained optimization with a stochastic objective function. The algorithm
uses a stepsize splitting scheme in order to improve upon the worst-case complexity
of recently proposed stochastic SQP methods. We show that the proposed method
matches the rate of convergence of a determinstic SQP method in terms of constraint
violation and obtains the optimal rate for a stochastic method in terms of the gradient
of the Lagrangian.

There are number of possible directions of future research. Fundamentally, this
stepsize splitting scheme can be incorporated into any of the previously proposed
stochastic SQP methods in the literature, including those for rank deficient Jacobians,
inequality constraints, and inexact subproblem solutions. Designing new algorithms
for these cases and deriving a worst-case complexity analysis are potential direction
of future work.
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