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Abstract Derivative-based iterative methods for nonlinearly constrained non-
convex optimization usually share common algorithmic components, such as
strategies for computing a descent direction and mechanisms that promote
global convergence. Based on this observation, we introduce an abstract frame-
work based on four common ingredients that describes most derivative-based
iterative methods and unifies their workflows. We then present Uno, a mod-
ular C++ solver that implements our abstract framework and allows the au-
tomatic generation of various strategy combinations with no programming
effort from the user. Uno is meant to (1) organize mathematical optimiza-
tion strategies into a coherent hierarchy; (2) offer a wide range of efficient
and robust methods that can be compared for a given instance; (3) enable re-
searchers to experiment with novel optimization strategies; and (4) reduce the
cost of development and maintenance of multiple optimization solvers. Uno’s
software design allows user to compose new customized solvers for emerging
optimization areas such as robust optimization or optimization problems with
complementarity constraints, while building on reliable nonlinear optimiza-
tion techniques. We demonstrate that Uno is highly competitive against state-
of-the-art solvers filterSQP, IPOPT, SNOPT, MINOS, LANCELOT, LOQO,
and CONOPT on a subset of 429 small problems from the CUTEst col-
lection. Uno is available as open-source software under the MIT license at
https://github.com/cvanaret/Uno .

C. Vanaret
Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL
60439, USA
Department of Mathematical Optimization, Zuse-Institut Berlin, 14195 Berlin, Germany
E-mail: vanaret@zib.de

S. Leyffer
Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL
60439, USA
E-mail: leyffer@anl.gov

https://github.com/cvanaret/Uno
https://orcid.org/0000-0002-1131-7631
https://orcid.org/0000-0001-8839-5876


2 Charlie Vanaret, Sven Leyffer

Keywords Nonconvex optimization · interior-point methods · sequential
quadratic programming methods · globalization techniques

Mathematics Subject Classification (2010) 49M15 · 65K05 · 90C30 ·
90C51 · 90C55

Acknowledgments

This work was supported by the Applied Mathematics activity within U.S.
Department of Energy, Office of Science, Advanced Scientific Computing Re-
search, under Contract DE-AC02-06CH11357.

We would like to thank David Kiessling (KU Leuven) for fruitful discussions
about nonconvex optimization and his extensive testing of Uno, Nils-Christian
Kempke (Cardinal Operations) for his valuable help with technical questions
in C++, and Gail Pieper (Argonne National Laboratory) for proofreading our
manuscript.

1 Motivation and contributions

We consider nonlinearly constrained optimization problems of the form

min
x

f(x)

s.t. l ≤

c(x)Ax
x

 ≤ u,
(1)

where x ∈ IRn, f : IRn → IR is the objective function, c : IRn → IRmc

are constraint functions, A ∈ IRmA×n is a constraint matrix, and l ∈ (IR ∪
{−∞})mc+mA+n and u ∈ (IR ∪ {∞})mc+mA+n are lower and upper bounds,
respectively. f and cmay be nonconvex, which results in a nonconvex optimiza-
tion problem. This formulation allows for unbounded variables and equality
constraints and explicitly separates general nonlinear, linear, and bound con-
straints, enabling solvers to readily exploit this structure. However, for the sake
of simplicity of this presentation and without loss of generality, we consider
the problem in the following form:

min
x

f(x)

s.t. c(x) = 0
x ≥ 0,

(NLP)

where x ∈ IRn, f : IRn → IR, and c : IRn → IRm.
Most derivative-based iterative methods for nonlinearly constrained non-

convex optimization (e.g., [15, 25, 30, 35] share common algorithmic compo-
nents. Based on this observation, we introduce an abstract framework struc-
tured around four generic ingredients that describes these methods in a unified
fashion. We then present Uno (Unifying Nonconvex Optimization), a modular
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open-source solver for nonlinearly constrained nonconvex optimization that (1)
unifies most existing state-of-the-art methods and organizes existing strategies
into a coherent hierarchy; (2) provides efficient and robust implementations
of existing strategies as independent building blocks that can be combined at
will and compared on a given instance; (3) promotes extensive code reusabil-
ity; and (4) allows users to experiment with new algorithmic ideas by building
upon Uno’s abstractions and interfaces to modeling languages and subproblem
solvers. Uno was first introduced at the ISMP 2018 conference under the name
Argonot [41].

Uno automatically generates various strategy combinations on the fly with
no programming effort from the user, even though all combinations do not
lead to convergent methods. We demonstrate that Uno is competitive against
state-of-the-art solvers on a subset of 429 CUTEst test problems [24], while
being extensible and lightweight. We believe that Uno has the potential to
serve as an experimental laboratory for practitioners and optimizers and to
accelerate research in nonconvex optimization. Our ultimate goal is to pro-
mote the extension of state-of-the-art nonlinear optimization techniques to
new classes of problems such as problems with equilibrium constraints (see,
e.g., [18, 28,29,32,36]) and nonlinear robust optimization (see, e.g., [31]).

This paper is organized as follows. In Section 2 we introduce our notation
and discuss relevant optimality conditions. In Section 3 we introduce our ab-
stract framework with four ingredients for unifying derivative-based iterative
methods. In Section 4 we briefly describe state-of-the-art optimization strate-
gies through the prism of our unifying framework. In Section 5 we present
the basic algorithmic design of Uno and show how various nonlinear optimiza-
tion methods fit within the architecture. In Section 6 we illustrate with three
concrete strategy combinations how the four ingredients interact with one an-
other. In Section 7 we provide preliminary numerical results and compare Uno
with state-of-the-art solvers.

2 Notation and stationarity conditions

In this section we define our notations and state first-order optimality condi-
tions of (NLP).

2.1 Notation

We start by defining the scaled Lagrangian or Fritz John function [4] of (NLP)
at (x, y, z, ρ):

Lρ(x, y, z)
def
= ρf(x)− yT c(x)− zTx = ρf(x)−

m∑
j=1

yjcj(x)−
n∑
i=1

zixi,

where y are the Lagrange multipliers of the general constraints c(x) = 0, z ≥ 0
are the Lagrange multipliers of the bound constraints x ≥ 0, and ρ ≥ 0 is a
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multiplier of the objective that is introduced to handle infeasibility or lack of
constraint qualification (CQ) [33] in a consistent way.

∇xLρ(x, y, z) is the gradient of the scaled Lagrangian with respect to x:

∇xLρ(x, y, z)
def
= ρ∇f(x)−

m∑
j=1

yj∇cj(x)− z.

Wρ(x, y) is the Hessian of the scaled Lagrangian with respect to x:

Wρ(x, y)
def
= ∇2

xxLρ(x, y, z) = ρ∇2f(x)−
m∑
j=1

yj∇2cj(x).

2.2 First-order stationarity conditions

We are primarily concerned with first-order stationary points. The first-order
optimality conditions (aka Fritz John conditions) of problem (NLP) at a sta-
tionary point x∗ state that there exist (ρ∗, y∗, z∗) such that

(stationarity) ∇xLρ∗(x∗, y∗, z∗) = ρ∗∇f(x∗)−
m∑
j=1

y∗j∇cj(x∗)− z∗ = 0

(2a)

(primal feasibility) c(x∗) = 0, x∗ ≥ 0 (2b)

(dual feasibility) ρ∗ ≥ 0, z∗i ≥ 0, (ρ∗, y∗, z∗) ̸= (0, 0, 0) (2c)

(complementarity) x∗i z
∗
i = 0, ∀i ∈ {1, . . . , n}. (2d)

If ρ∗ > 0, the optimality conditions are equivalent to the KKT condi-
tions, which can be recovered by scaling Equation (2a) by 1/ρ∗. If ρ∗ = 0,
they characterize Fritz John points, that is, feasible points at which constraint
qualification is violated.

3 An abstract framework for unifying nonlinear optimization

In this section we introduce a unified view for describing iterative nonlinear
optimization methods and argue that they can be assembled by combining the
following four generic ingredients:

1. a constraint relaxation strategy constructs a feasible nonlinear problem
by relaxing the general constraints;

2. a subproblem method computes a primal-dual direction by solving a local
approximation of the nonlinear problem at the current iterate;

3. a globalization strategy determines whether a trial iterate makes sufficient
progress toward a solution and accepts or rejects it; and,
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4. a globalization mechanism defines the recourse action taken when a trial
iterate is rejected.

This coloring will be used throughout to illustrate how these four ingredients
interact with one another within an optimization algorithm. The role of each
ingredient is summarized in Algorithm 1: the inner loop (repeat) generates
and solves a feasible subproblem (possibly a sequence of feasible subproblems)
until a trial iterate is accepted by the globalization strategy, and the outer
loop (while) generates a sequence of acceptable iterates until termination.

Algorithm 1: Abstract framework for iterative methods.

Data: initial point (x(0), y(0), z(0))
Set k ← 0

while termination criteria at (x(k), y(k), z(k)) not met do

globalization mechanismrepeat

Solve a (sequence of) feasible subproblem (s) that approximate(s) NLP

at (x(k), y(k), z(k))

Assemble trial iterate (x̂(k+1), ŷ(k+1), ẑ(k+1))

until (x̂(k+1), ŷ(k+1), ẑ(k+1)) is acceptable

Update (x(k+1), y(k+1), z(k+1))← (x̂(k), ŷ(k), ẑ(k))
k ← k + 1

Result: (x(k), y(k), z(k))

Table 1 presents a unified view of state-of-the-art solvers ALGLIBMinNLC [3],
CONOPT [12], FICO XSLP [2], filterSQP [17], IPOPT [45], KNITRO [6],
LANCELOT [10], LOQO [42], MINOS [34], NAG e04uc/e04wdc [1], NLPQL [40],
SLSQP [27], SNOPT [23], SQuID [4], and WORHP [5]. Each solver is char-
acterized in terms of the four ingredients within the proposed abstract frame-
work. AL is short for augmented Lagrangian, QP for quadratic problem, LP
for linear problem, and EQP for equality-constrained quadratic problem. Note
that FICO XSLP is the only solver that does not implement a proper global-
ization strategy.

Figure 1, albeit not comprehensive, shows how most existing methods fit
within the abstract framework. Various strategies are listed under each in-
gredient (e.g., a line-search method is a globalization mechanism) since they
share a common role within an optimization method. Grey edges connect in-
gredients that interact with each other. A more fine-grained representation of
the dependencies between ingredients is given later on in Figure 4.

4 Unified view of state-of-the-art techniques

In this section we describe a set of strategies that fall into each of the four
ingredients of our abstract framework. Our goal is to illustrate the wide variety
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Table 1: Description of state-of-the-art solvers within the proposed abstract framework.

Solver Constraint relaxation strategy Globalization strategy Globalization mechanism Subproblem

ALGLIB MinNLC ℓ1 relaxation ℓ1 merit trust region strictly convex QP

CONOPT feasible step method objective merit line search generalized reduced-gradient
method

FICO XSLP ℓ1 relaxation none ℓ∞ trust region LP

filterSQP feasibility restoration filter method ℓ∞ trust region nonconvex QP

IPOPT feasibility restoration filter method line search primal-dual interior-point

KNITRO-ASM ℓ1 relaxation ℓ1 merit trust region LP-EQP

KNITRO-IPM feasible mode ℓ2 merit trust region / line search primal-dual interior-point (full-
or reduced-space methods)

LANCELOT bound-constrained AL AL merit ℓ2 / ℓ∞ trust region projected gradient and EQP ≃
LP-EQP

LOQO ℓ22 relaxation ℓ22 merit line search primal-dual interior-point

MINOS linearly constrained AL + ℓ1
relaxation

forcing sequences line search reduced-gradient method

NAG e04uc/e04wdc ℓ1 relaxation AL merit line search strictly convex QP

NLPQL right-hand-side relaxation AL merit line search strictly convex QP

SLSQP right-hand-side relaxation ℓ1 merit line search strictly convex QP

SNOPT ℓ1 relaxation AL merit line search strictly convex QP

SQuID ℓ1 relaxation ℓ1 merit line search strictly convex QP

WORHP right-hand-side relaxation ℓ1 merit / filter method line search strictly convex QP
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constraint relaxation strategy subproblem

Hessian model

QP solvers

LP solvers

direct

iterative

globalization strategy

globalization mechanism

reformulation layer

globalization layer

linear solvers

subproblem solvers

feasibility restoration

relaxation (ℓ1, ℓ∞)

composite step

right-hand-side relaxation

QP

LP

primal-dual interior-point

LP-EQP

exact

regularized

quasi Newton ((L-)BFGS)

BQPD

HiGHS

BQPD

HiGHS

MA27

MA57

MUMPS

CG

MINRES

(nonmonotone) filter methods

merit functions (ℓ1, ℓ∞, AL)

tolerance-tube methods

funnel methods

line-search methods (Armijo, Wolfe)

trust-region methods (ℓ∞, ℓ2)

proximal methods

Fig. 1: Full abstract framework.
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of methods within a common notation to motivate the design of our modular
solver.

4.1 Constraint relaxation strategies

In general, we cannot assume that the nonlinear problem (NLP) or the sub-
problems are feasible. Hence, nonlinear optimization solvers must include pro-
visions for infeasible problems. Moreover, nonlinear solvers may converge to
points that violate standard constraint qualifications, and we must take these
situations into account when defining optimality conditions. We review two
constraint relaxation strategies: ℓ1 relaxation and feasibility restoration.

4.1.1 ℓ1 relaxation

The ℓ1 relaxation strategy replaces a constrained optimization problem with
a nonsmooth bound-constrained problem in which a penalty term is added to
the objective:

min
x

ρf(x) + ∥c(x)∥1
s.t. x ≥ 0,

(3)

where ρ ≥ 0 is an inverse penalty parameter. An appropriate value of ρ is
obtained by solving a sequence of subproblems; efficient steering rules can
be found in [4, 7, 8]. Note that the nonsmooth ℓ1 relaxed problem can be
reformulated as a smooth constrained problem with elastic variables. Other
norms can be used; however, the ℓ1 norm has emerged as the preferred option.
In particular, the ℓ1 relaxation is exact: one can show under mild conditions
that for ρ > 0 sufficiently small, a second-order sufficient point of (3) is also a
second-order sufficient point of (NLP) (see, e.g., Theorem 14.3.1 in [15]).

4.1.2 Feasibility restoration

An infeasible subproblem results from inconsistent linearized or bound con-
straints; it is an indication that (NLP) may be infeasible. In this case, the
method may revert to the feasibility restoration phase: the original objective
is temporarily discarded, and the following feasibility problem is solved in-
stead:

min
x

∥c(x)∥
s.t. x ≥ 0,

(4)

for some norm ∥·∥ in IRm. The aim of solving the feasibility problem is to com-
pute a point as close as possible to the feasible region. Feasibility restoration
improves feasibility until a minimum of the constraint violation is obtained
or the subproblem becomes feasible again, in which case solving the original
problem (the optimality phase) is resumed. Any (local) solution x∗ ≥ 0 of (4)
with ∥c(x∗)∥ > 0 is a certificate that (NLP) is (locally) infeasible.
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4.2 Subproblem strategies

Subproblem strategies construct a local approximation of the nonlinear refor-
mulated problem at the current primal-dual iterate. We briefly review three
classes of subproblem strategies: inequality-constrained methods, equality-
constrained methods, and interior-point methods. Inequality-constrained meth-
ods invoke a (usually active-set) subproblem solver that handles inequality
constraints. Equality-constrained methods compute a cheap estimate of the
active set, then solve an equality-constrained subproblem to refine the solu-
tion. In contrast, interior-point methods delay the identification of the activ-
ities until the end. Note that a classification into inequality-constrained and
equality-constrained SQP methods can be found in [35].

In the following, we abuse notation and denote the current evaluations

of the nonlinear reformulated problem by f (k)
def
= f(x(k)), c(k)

def
= c(x(k)),

∇f (k) def
= ∇f(x(k)), ∇c(k) def

= ∇c(x(k)), and W (k) def
= W (x(k), y(k)).

4.2.1 Inequality-constrained subproblem

In inequality-constrained methods, the handling of inequality constraints is de-
ferred to the subproblem solver. Traditionally, sequential quadratic program-
ming (SQP) methods [26,38,39,46] generate a sequence of quadratic problems
(QPs) that are solved by means of an active-set QP solver: it maintains an
estimate of the active set and solves a sequence of equality-constrained sub-
problems. The estimate of the active set is updated at each iteration using
dual information, until the algorithm terminates with primal-dual feasibility.
SQP methods converge quadratically under reasonable assumptions near a
local minimizer, once the active set settles down. The local quadratic approx-
imation at the current point is given by

min
dx

1
2d
T
xW

(k)dx + (∇f (k))T dx
s.t. c(k) + (∇c(k))T dx = 0

x(k) + dx ≥ 0.

For convex equality-constrained problems, an SQP iteration can be interpreted
as taking a Newton step on the first-order optimality conditions of the problem.

Sequential linear programming [9] is a particular case of SQP in which the
subproblems are linear problems (LPs); that is, no second-order information
is exploited (W (k) = 0).

4.2.2 Equality-constrained subproblem

Equality-constrained methods operate in two phases: the first phase solves a
“low-fidelity” subproblem (such as an LP or a convex QP with a quasi-Newton
Hessian), which provides an estimate of the active set A. The second phase
solves a “high-fidelity” (such as second-order) equality-constrained problem
with exact Hessian in which the inequality constraints of the active set are
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fixed to their active bounds and the inactive inequalities are dropped. This is
illustrated in the following equality-constrained problem (using the notation
of Problem 1):

min
x

f(x)

s.t.

c(x)Ax
x


A

= bA,

where each component of bA is the active (lower or upper) bound of the cor-
responding constraint. A typical example of equality-constrained methods is
SLPEQP [9] (aka SLQP): it estimates the active set by solving an LP, then
solves an equality-constrained QP (EQP).

4.2.3 Interior-point subproblem

Primal-dual interior-point methods relax the complementarity equations (2d)
by a factor µ > 0:

xizi = µ, ∀i ∈ {1, . . . , n},

which implies x > 0 and z > 0. Provided that the subproblem is convex, the
primal-dual direction is the solution of a Newton linear system, the primal-
dual system (or full-space system), in which the multipliers z are treated as
independent variables: W (k) ∇c(k) I

(∇c(k))T
Z(k) −X(k)

 dx
−dy
−dz

 = −

∇f (k) −∇c(k)y(k) − z(k)

c(k)

X(k)Z(k)e− µe

 , (5)

where X(k) = diag(x(k)), Z(k) = diag(z(k)), and e is a vector of ones of ap-
propriate size. The primal-dual system can be made symmetric by eliminating
dz from the third row block. Positivity of x and z is then enforced by the
so-called fraction-to-the-boundary rule [45]. Similarly to homotopy methods,
the parameter µ > 0 is asymptotically driven to 0 until the termination cri-
teria are met. In contrast, the primal system (or barrier system) treats z as
dependent variables.

4.3 Globalization strategies

Constrained optimization methods must achieve two competing goals: mini-
mizing the objective function and minimizing the constraint violation. Global-

ization strategies determine whether a trial iterate x̂(k+1) def
= x(k)+αd

(k)
x (given

by a fraction α ∈ (0, 1] along a direction d
(k)
x ) makes acceptable progress with

respect to these goals. We consider strategies that ensure global convergence,
that is, convergence to a local minimum, or (weaker) stationary point, from
any starting point. In addition, ideally, the minimization of the measure of
infeasibility takes precedence. However, in problems where no feasible point
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exists, a (global) minimum of the constraint violation is a certificate that the
problem is infeasible.

Three (possibly primal-dual) progress measures are monitored throughout
the optimization process:

1. an infeasibility measure η (typically ∥c(x)∥ for some norm);
2. an objective measure ωρ parameterized by the objective multiplier ρ ≥ 0

(typically ρf(x)); and
3. an auxiliary measure ξ (terms such as barrier or proximal terms).

In order to ensure convergence, these measures must be intimately linked
to the problem reformulation: η and ωρ are defined by the constraint relaxation
strategy (Table 2), while ξ is defined by the subproblem method (Table 3).

Table 2: Objective measure ωρ and infeasibility measure η.

Constraint relaxation strategy ωρ(x) η(x)

ℓ1 relaxation
ρf(x) ∥c(x)∥1

ℓ1 feasibility restoration

Table 3: Auxiliary measure ξ.

Subproblem method ξ(x)

Primal-dual interior-point subproblem −µ
n∑

i=1

log(xi)

(In)equality-constrained subproblem 0

The local models of η(x), ωρ(x), and ξ(x) at iteration k about the current

iterate are denoted by η(k)(dx), ω
(k)
ρ (dx), and ξ

(k)(dx) for a given primal direc-

tion dx. We define the respective predicted reductions ∆η(k)(dx)
def
= η(k)(0)−

η(k)(dx), ∆ω
(k)
ρ (dx)

def
= ω

(k)
ρ (0)−ω(k)

ρ (dx), and ∆ξ
(k)(dx)

def
= ξ(k)(0)−ξ(k)(dx)

in Tables 4 and 5.

Table 4: Objective reduction model ∆ω
(k)
ρ and infeasibility reduction model

∆η(k).

Constraint relaxation strategy ∆ω
(k)
ρ (dx) ∆η(k)(dx)

ℓ1 relaxation
−ρ(∇f (k))T dx − 1

2
dTxW

(k)
ρ dx ∥c(k)∥ − ∥c(k) + (∇c(k))T dx∥1

ℓ1 feasibility restoration

Note that the penalty parameter is often attached to η(x) in the literature.
We adopt the inverse notation as in [7] for several reasons: (i) it is numerically
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Table 5: Auxiliary reduction model ∆ξ(k).

Subproblem method ∆ξ(k)(dx)

Primal-dual interior-point subproblem µ(X(k))−1eT dx −
1

2
dTx

(
W

(k)
ρ + (X(k))−1Z(k)

)
dx

(In)equality-constrained subproblem 0

easier to drive ρ to 0 than to drive the penalty parameter of η(x) to +∞; (ii)
in second-order methods, the inverse penalty parameter enters the Hessian as
objective multiplier; and (iii) as ρ → 0, only ωρ vanishes, and the implicit
constraints in ξ (barrier or proximal terms) are still enforced.

The two main classes of globalization strategies are merit functions and
filters (Figure 2). They typically enforce a sufficient decrease condition that
forces some scalar combination of η, ωρ, and ξ to decrease by at least a fraction
of the decrease predicted by the local model.

η = βη(3) ω = ω(3) − γη

U

(η(1), ω(1))

(η(2), ω(2))

(η(3), ω(3))

η

ω

filter filter envelope upper bound merit function

Fig. 2: Example of a filter and a merit function.

4.3.1 Merit functions

A merit (or penalty) function combines the three goals η, ωρ, and ξ into a
single scalar value:

ψρ(x)
def
= ωρ(x) + η(x) + ξ(x),

where ρ ≥ 0 is an inverse penalty parameter. Its predicted reduction is given
by

∆ψ(k)
ρ (dx)

def
= ∆ω(k)

ρ (dx) +∆ξ(k)(dx) +∆η(k)(dx).

The trial iterate x̂(k+1) is accepted if the actual reduction ψρ(x
(k))−ψρ(x̂(k+1))

in the merit function is larger than a fraction σ ∈ (0, 1) of its predicted reduc-
tion:

ψρ(x
(k))− ψρ(x̂

(k+1)) ≥ σ∆ψ(k)
ρ (αd(k)x ). (6)
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The sufficient decrease condition (6) (also known as Armijo condition) indi-
cates how the subproblem solve is connected to the merit function to ensure
global convergence.

4.3.2 Filter methods

Filter methods are motivated by the desire to decouple reduction in the objec-
tive function from progress toward feasibility. We can interpret a filter method
as a mechanism to force iterates closer to the feasible region, so that uncon-
strained sufficient reduction conditions on the objective can be used to force
convergence (see, e.g., [16, 19,43,44]). The decrease function is given by

ϕ(x)
def
= ω1(x) + ξ(x),

and its predicted reduction is given by

∆ϕ(k)(dx)
def
= ∆ω

(k)
1 (dx) +∆ξ(k)(dx).

Filter methods measure progress toward a solution by comparing the trial
infeasibility measure η and objective measure ϕ to a filter F , a list of pairs
(η(l), ϕ(l)) (typically from previous iterates) such that no pair dominates an-
other pair; that is, there exists no index l′ such that η(l

′) < η(l) and ϕ(l
′) < ϕ(l)

for all (η(l), ϕ(l)) ∈ F . Formally, the trial iterate x̂(k+1) is acceptable to the
filter if and only if the following conditions hold:

ϕ(x̂(k+1)) ≤ ϕ(l) − γη(x̂(k+1)) or η(x̂(k+1)) < βη(l), ∀(η(l), ϕ(l)) ∈ F (k),

where γ > 0 and 0 < β < 1 are constants that ensure that iterates cannot
accumulate at infeasible limit points. These conditions are represented as the
filter envelope in Figure 2.

The filter provides convergence only to a feasible limit because any infinite
sequence of iterates must converge to a point where η(x) = 0, provided that
ϕ(x) is bounded below. To ensure convergence to a local minimum, filter meth-
ods use a standard sufficient reduction (Armijo) condition from unconstrained
optimization:

ϕ(x(k))− ϕ(x̂(k+1)) ≥ σ∆ϕ(k)(αd(k)x ), (7)

where σ ∈ (0, 1). It makes sense to enforce this condition only if the model
predicts a decrease in the objective function. Thus, filter methods use the
switching condition

∆ϕ(k)(αd(k)x ) ≥ δη(x(k))2,

where δ > 0, to decide when (7) should be enforced. If the trial point is
accepted, it is added to F (k) if η(x(k)) > 0 or if the switching condition fails
(which automatically satisfies η(x(k)) > 0).
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4.4 Globalization mechanisms

When the methods are started far from a solution, directions may be un-
bounded or result in trial iterates that increase both the objective and the
constraint violation. Globalization mechanisms provide a recourse action if a
local approximation is deemed too poor to make progress toward a solution:
line-search methods restrict the length of the step along a given direction,
while trust-region methods restrict the length of the direction a priori.

4.4.1 Line-search methods

Line-search methods compute a trial step αd
(k)
x by determining a step length

α ∈ (0, 1] along the direction d
(k)
x . Exact line-search methods compute the

global solution of the one-dimensional problem min
α∈(0,1]

f(x(k) + αd(k)x ), which

is typically impractical to solve. Inexact line-search methods determine an
approximate step length accepted by the globalization strategy (sufficient de-
crease for a merit function or acceptance by a filter). For instance, backtracking

line-search methods generate a sequence of trial iterates x(k) + α(k,l)d
(k)
x for

l ∈ N until acceptance, where α(k,l) = clα
(k)
max, α

(k)
max ∈ (0, 1] (usually 1 in

SQP methods and smaller than 1 in interior-point methods) and c ∈ (0, 1)
(Algorithm 2).

Algorithm 2: Backtracking line-search method.

Input: primal-dual iterate (x(k), y(k), z(k))

(d
(k)
x , d

(k)
y , d

(k)
z , α

(k)
max)← solve subproblem at (x(k), y(k), z(k))

α(k,0) ← α
(k)
max

Set inner iteration counter l← 0
repeat

Assemble trial iterate

(x̂(k+1,l), ŷ(k+1,l), ẑ(k+1,l))
def
= (x(k), y(k), z(k)) + (α(k,l)d

(k)
x , α(k,l)d

(k)
y , d

(k)
z )

if x̂(k+1,l) is not acceptable then

Decrease step size α(k,l)

l← l + 1

until (x̂(k+1,l), ŷ(k+1,l), ẑ(k+1,l)) is acceptable

Return (x̂(k+1,l), ŷ(k+1,l), ẑ(k+1,l))

Line-search methods require that the Hessian of the Lagrangian (or a reg-
ularization thereof) be positive definite on the nullspace of the Jacobian of the

active constraints in order to guarantee that d
(k)
x is a descent direction for the

objective or merit function.
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4.4.2 Trust-region methods

Trust-region methods limit the length of the direction dx a priori by im-
posing the trust-region constraint ∥dx∥ ≤ ∆(l) for some norm ∥ · ∥ in IRm,

where ∆(l) > 0 is the trust-region radius. The step d
(k,l)
x is then computed

by (approximately) solving the trust-region subproblem. If the trial iterate

x̂(k+1,l) def
= x(k) + d

(k,l)
x is accepted by the globalization strategy (Algorithm 3),

∆(l) is increased if the trust region is active at d
(k,l)
x . Otherwise, ∆(l) is de-

creased to a value smaller than min(∆(l), ∥d(k,l)x ∥). Contrary to line-search
methods, a positive definite Hessian is not required because directions of neg-
ative curvature are bounded by the trust region.

Algorithm 3: Trust-region method.

Input: primal-dual iterate (x(k), y(k), z(k))
Set inner iteration counter l← 0

Reset trust-region radius ∆(l) ∈ [∆,∆]
repeat

(d
(k,l)
x , d

(k,l)
y , d

(k,l)
z )← solve trust-region subproblem at (x(k), y(k), z(k)) with

radius ∆(l)

Assemble trial iterate

(x̂(k+1,l), ŷ(k+1,l), ẑ(k+1,l))
def
= (x(k), y(k), z(k)) + (d

(k,l)
x , d

(k,l)
y , d

(k,l)
z )

Reset the multipliers ẑ(k+1,l) corresponding to the active trust region

if x̂(k+1,l) is acceptable then

Possibly increase radius ∆(l)

else

Decrease radius ∆(l)

l← l + 1

until (x̂(k+1,l), ŷ(k+1,l), ẑ(k+1,l)) is acceptable

return (x̂(k+1,l), ŷ(k+1,l), ẑ(k+1,l))

5 Uno: a modular solver for unifying nonconvex optimization

We have implemented our unifying framework for nonlinearly constrained non-
convex optimization within Uno, a novel modular solver written in C++17.
A generic and flexible code, it supports a broad range of constraint relax-
ation strategies, subproblems, globalization strategies, and globalization mech-
anisms that can be combined automatically and on the fly with no program-
ming effort from the user. In addition to the four basic ingredients, an optimiza-
tion solver requires components that can be implemented independently, such
as termination criteria, subproblem solvers, or preprocessing techniques, which
results in a large amount of code reuse. The code is packaged in a lightweight
library (around 7,400 lines of code for Uno 1.0.0) available as open-source
software under the MIT license at https://github.com/cvanaret/Uno .

https://github.com/cvanaret/Uno
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In the following, we list the features of the current version Uno 1.0.0, briefly
present its generic architecture, describe how ingredients can be automatically
combined, and discuss the current limitations.

5.1 General utilities of Uno 1.0.0

Uno 1.0.0 contains a number of general utilities that are described here.

5.1.1 Interfaces to modeling languages

Uno 1.0.0 is interfaced to the modeling language AMPL [21] through the ASL
library [22]. It performs 1st- and 2nd-order automatic differentiation of the
objective and constraints of the model. Gradients, Jacobian and Hessian, are
stored in sparse data structures (sparse vectors and sparse matrix formats
COO and CSC).

5.1.2 Interfaces with subproblem solvers

Interfaces with the following subproblem solvers are available in Uno 1.0.0:

– BQPD [14,20], a null-space active-set solver for nonconvex QPs, and
– MA57 [13], a direct solver for sparse symmetric indefinite linear systems.

5.1.3 Preprocessing

The preprocessing techniques available in Uno 1.0.0 are the following:

– Feasibility with respect to the linear constraints Ax = b and x ≥ 0 is
enforced at the initial point x(0) by solving a proximal QP:

min
dx

1
2∥dx∥

2
2

s.t. A(x(0) + dx) = b
x(0) + dx ≥ 0.

Minimizing the quadratic objective 1
2∥dx∥

2
2 ensures that the point x(0)+dx

is not too distant from x(0). If the linear constraints are consistent, the point
x(0) + dx satisfies the linear constraints and is taken as the initial point.
Otherwise, NLP is infeasible.

– An estimate of the initial multipliers y(0) can be obtained as a least-square
solution to the stationarity equation (2a):(

I ∇c(0)
(∇c(0))T 0

)(
w
y(0)

)
=

(
∇f (0) − z(0)

0

)
,

where w is discarded after computation. If the multipliers y(0) exceed a
given threshold ymax in the modulus (that is, ∥y(0)∥∞ > ymax ), we discard
the least-square estimate and set y(0) = 0 (similarly to the IPOPT imple-
mentation). This situation often arises if a constraint qualification fails to
hold at x(0).
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– The functions are scaled by coefficients that depend on the magnitudes
of the function gradients at the initial iterate (similarly to the IPOPT
implementation). The objective f is replaced with sf .f , and the constraint
cj(x) = 0 is replaced with scj .cj(x) = 0, where

sf = min

(
1,

smax

∥∇f(x(0))∥∞

)
∈ (0, 1]

scj = min

(
1,

smax

∥∇cj(x(0))∥∞

)
∈ (0, 1]

and smax is typically 100. Scaling helps improve the conditioning of the
problem.

5.1.4 Automatic model reformulations

An optimization model may be automatically reformulated as follows:

– A model with nonlinear equality constraints. Slack variables are introduced
to turn nonlinear inequality constraints into equality constraints. The cor-
responding bounds become bounds on the slack variables. This reformula-
tion is required for our implementation of interior-point methods.

– A scaled model whose objective and constraints are scaled by coefficients
that depend on the values of the function gradients at the initial point.

5.1.5 Automatic nonlinear reformulations

Constraint relaxation strategies replace the original problem with a (possibly
nonsmooth) optimization problem that strategically balances the objective
function and the constraint violation. Reformulations in Uno 1.0.0 include
the ℓ1 relaxed problem (see Section 4.1.1) and the ℓ1 feasibility problem (see
Section 4.1.2). Nonsmooth problems resulting from ℓ1 or ℓ∞ relaxations are
rewritten as smooth problems in which nonnegative elastic variables capture
the positive and negative parts of the constraints, respectively.

5.1.6 Termination criteria

In practice, we cannot hope to drive the error in the first-order conditions
to zero: optimization algorithms may terminate at locally infeasible points or
at points that fail to satisfy constraint qualifications. We therefore check for
termination, rather than for optimality. Uno terminates at the primal-dual
iterate (x∗, y∗, z∗, ρ∗) if

– sufficient first-order optimality conditions are approximately satisfied:
– a feasible KKT point (CQ holds) if it satisfies Equations 2a, 2b, 2c,

and 2d with ρ∗ > 0;
– a feasible FJ point (CQ does not hold) if it satisfies Equations 2a,

2b, 2c, and 2d with ρ∗ = 0;



18 Charlie Vanaret, Sven Leyffer

– an infeasible stationary point (a minimum of the constraint viola-
tion) if it satisfies Equations 2a and 2c with ρ = 0, no primal feasibility
c(x∗) > 0 and a complementarity condition on the violated constraints
that depends on the norm used in the feasibility problem;

– primal feasibility is approximately satisfied and the trust-region radius is
close to machine epsilon. This is an indication that the problem is poorly
scaled or non-differentiable;

– the first-order optimality conditions cannot be satisfied for the user-defined
tolerance ε but are satisfied for a looser tolerance (e.g., 100ε) for a certain
number of consecutive iterations (e.g., 15).

5.1.7 Error handling

Uno throws an error if it encounters an IEEE exception at the initial point x(0).
Otherwise, it tries to recover from IEEE exceptions during the optimization
process by invoking the globalization mechanism in the following way:

– the current trust-region radius is reduced;
– the backtracking line search reduces the tentative step length.

5.1.8 Flexible parameterization

The values of the hyperparameters used by Uno are dynamically loaded from
an option file. Values passed as command line arguments take precedence. The
solver is therefore fully parameterizable at runtime.

5.2 Generic architecture

The modularity of Uno stems from its generic architecture: each ingredient
is implemented independently of the others, which improves readability, pro-
motes code reuse, and makes building blocks less prone to error and easier to
maintain than monolithic codes. This results in a modern, flexible, and main-
tainable framework. The intricate distribution of responsibilities is presented
in Figure 4: each ingredient is responsible for computing certain quantities
(represented by the list of bullet points under the ingredient) that are passed
on to other ingredients. Arrows point to the recipient of each responsibility.

Figure 3 represents Uno’s object-oriented architecture as a Unified Model-
ing Language (UML)1) diagram based on inheritance (“is a”) and composition
(“has a”). The four ingredients are modeled as abstract classes: they define
interfaces, that is, generic actions and behaviors that must be implemented by
concrete strategies modeled as subclasses. For example:

1 https://www.visual-paradigm.com/guide/uml-unified-modeling-language/
uml-class-diagram-tutorial/

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
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– the classes BacktrackingLineSearch and TrustRegionStrategy inherit the
abstract class GlobalizationMechanism (inheritance is represented by dashed
arrows) and thus must implement the purely virtual member function
compute acceptable iterate();

– the GlobalizationMechanism class possesses a ConstraintRelaxationStrategy
member (composition is represented by solid diamond lines).

Uno

globalization mechanism

solve()

GlobalizationMechanism

constraint relaxation strategy

compute acceptable iterate()

BacktrackingLineSearch

step length

compute acceptable iterate()

TrustRegionStrategy

radius

compute acceptable iterate()

ConstraintRelaxationStrategy

subproblem strategy

compute feasible direction()
is acceptable()

FeasibilityRestoration

optimality strategy
restoration strategy

compute feasible direction()
is acceptable()

l1Relaxation

globalization strategy

compute feasible direction()
is acceptable()

Subproblem

solve()

QPSubproblem

QPsolver
hessian model

solve()

LPSubproblem

LPsolver

solve()

PrimalDualInteriorPointSubproblem

linear solver
hessian model

solve()

GlobalizationStrategy

check acceptance()
armijo sufficient decrease()

l1MeritFunction

check acceptance()

FilterMethod

filter: Filter

check acceptance()

Fig. 3: Uno’s UML diagram: interactions and dependencies between ingredi-
ents, using the same color scheme as Figure 1.

The data members and member functions of each class are listed at the top
and bottom of the blocks, respectively. For the sake of readability, the return
types of the member functions and their arguments are omitted.

5.3 Automatic strategy combinations

Figure 5 shows the strategies implemented in Uno 1.0.0 and illustrates the full
potential of our approach: strategies implemented as independent software
components are agnostic of the other components as long as they comply
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with the defined interfaces. Consequently, the number of possible strategy
combinations is the size of the Cartesian product of the four ingredients. Note
that all combinations do not necessarily result in sensible algorithms, or even
convergent approaches.

The command line syntax to automatically assemble the four ingredients
is

./uno_ampl -constraint_relaxation_strategy feasibility_restoration
-subproblem QP -globalization_strategy leyffer_filter_method
-globalization_mechanism TR ./model.nl

Some strategy combinations that correspond to state-of-the-art solvers are
available as “presets”: the four ingredients are automatically connected, and
the hyperparameters are set to values that can be found in the solvers’ docu-
mentations (they will be listed in the Uno user manual). The following presets
are available in Uno 1.0.0:

– filtersqp: A trust-region restoration filter SQP method à la filterSQP [16].
Second-order correction steps were not implemented.

– ipopt: A line-search restoration filter interior-point method à la IPOPT [45].
Second-order correction steps, a proximal term in the feasibility problem,
iterative refinement, iterative bound relaxations, non-monotone techniques,
and soft feasibility restoration were not implemented.

– byrd: A line-search ℓ1-merit Sℓ1QP method à la Byrd et al. [7].

The command line syntax of presets is

./uno_ampl -preset filtersqp ./model.nl

5.4 Current limitations

Uno 1.0.0 implements state-of-the-art strategies that have proven efficient and
robust and can be combined automatically thanks to the modular software
architecture. Two elementary combinations require additional work and, as is,
do not result in sensible algorithms.

– feasibility restoration and ℓ1 merit function : the inverse penalty param-
eter is steered by the ℓ1 relaxation strategy but not by the feasibility
restoration strategy. Consequently, the direction obtained by solving the
subproblem may not be a descent direction for the merit function. In that
case, Uno issues a warning.

– interior-point methods and trust-region strategies : using an l∞ trust re-
gion in the definition of the subproblem would introduce additional bound
constraints, which would defeat the purpose of interior-point methods. An
alternative is to use an iterative linear solver (such as MINRES on the
KKT system or CG on the normal equations) with an ℓ22 trust region. At
the moment, Uno prohibits this combination.

These limitations will be resolved in later Uno versions.
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Fig. 4: Responsibilities of each ingredient. Arrows point to the recipient of each responsibility.

globalization mechanism constraint relaxation strategy

globalization strategy subproblem solvers

Hessian model

backtracking line search

ℓ∞ trust-region method

ℓ1 feasibility restoration

ℓ1 relaxation

filter method (Leyffer)

filter method (Wächter)

ℓ1 merit function

QP

LP

primal-dual IPM

BQPD (QP)

BQPD (LP)

MA57

exact

regularized

Fig. 5: Uno 1.0.0: hypergraph of strategy combinations.
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6 Combining the ingredients

We show below how the four ingredients naturally arise in two popular SQP
methods—namely, a trust-region restoration filter SQP method and a line-
search ℓ1-merit Sℓ1QP method—and a line-search restoration filter interior-
point method.

6.1 Trust-region restoration filter SQP

Convergence of SQP filter methods has been proven under mild conditions
in [16, 19] in the context of trust-region methods and in [43, 44] in the con-
text of line-search methods. The trust-region optimality QP subproblem about
(x(k), y(k)) is defined as

min
dx

1
2d
T
xW

(k)

1
dx + 1 (∇f (k))T dx

s.t. c(k) + (∇c(k))T dx = 0

x(k) + dx ≥ 0

∥dx∥∞ ≤ ∆(l) ,

(QP (k)(∆(l)))

where ∆(l) > 0 is the current trust-region radius and W
(k)
1 is the Lagrangian

Hessian (following the notation introduced in Section 2). If QP (k)(∆(l)) is
infeasible (the linearized constraints are inconsistent), we switch to feasibility
restoration and solve a smooth reformulation of the ℓ1 feasibility problem with
elastic variables u+ ∈ Rm and u− ∈ Rm:

min
dx , u+,u−

1
2d
T
xW

(k)

0
dx + eTu+ + eTu−

s.t. c(k) + (∇c(k))T dx − u+ + u− = 0

x(k) + dx ≥ 0

∥dx∥∞ ≤ ∆(l)

u+ ≥ 0, u− ≥ 0 .

(FQP (k)(∆(l)))

If the trial iterate x(k) + dx makes sufficient progress with respect to
the filter method, it is accepted. If it was active at the solution of the QP
(∥d∗x∥∞ = ∆(l)), we enlarge the trust region and start a new iteration. If the
trial iterate is rejected, we resolve the trust-region subproblem with a smaller
trust-region radius. It can be shown that this mechanism either generates an
acceptable iterate or results in an infeasible QP. The complete pseudocode of
the method is given in Algorithm 4. Note that in [16] the authors do not solve
the feasibility problem with elastic variables but exploit the partition into sat-
isfied and violated linearized constraints provided by the Phase I method of
the QP solver BQPD.
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6.2 Line-search ℓ1-merit Sℓ1QP

We solve the ℓ1 relaxed problem (3) using an SQP method with a line search,
and we build a smooth convex QP subproblem about (x(k), y(k)):

min
dx , u+,u−

1
2d
T
x (W

(k)

ρ
+ δwI )dx + ρ (∇f (k))T dx + eTu+ + eTu−

s.t. c(k) + (∇c(k))T dx − u+ + u− = 0

x(k) + dx ≥ 0

u+ ≥ 0, u− ≥ 0 ,

(ℓ1QP (k))

where δw > 0 is a regularization coefficient chosen such that W
(k)
ρ + δwI is

positive definite; this guarantees that the (ℓ1QP (k)) steps are descent direc-
tions for the ℓ1 merit function and the line search does not fail. The complete
pseudocode of the method is given in Algorithm 5. It implements the steer-
ing rule described in [7]; during the penalty parameter update, the search for
a suitable ρ may involve several QP solves. The algorithm makes use of the
following error measure that aggregates the dual FJ residuals:

E(k)
ρ (x, y)

def
=

∥∥∇xLρ(x, y)
∥∥
1
+

∑
j∈S(k)

|yjcj(x)|+
∑

j∈V+(k)

|(yj + 1)cj(x)|

+
∑

j∈V−(k)

|(yj − 1)cj(x)|,

where S(k), V+
(k), and V−(k) are the sets of satisfied (c(x(k)) = 0), upper

violated (c(x(k)) > 0), and lower violated (c(x(k)) < 0) constraints evaluated
at x(k), respectively.

6.3 Line-search filter restoration interior-point method

We adopt the primal-dual approach described in Section 4.2.3 and solve a
smaller, symmetrized version of Problem 5: W

(k)

1
+ (X(k))−1Z(k) + δwI ∇c(k)

(∇c(k))T −δcI

(
dx
−dy

)
= −

 1 ∇f (k) −∇c(k)y(k) − µ(X(k))−1e

c(k)

 ,

(IPSPµ)
where δw and δc are primal and dual regularization coefficients, respectively.
The dual direction for the bound constraints is given by dz = (X(k))−1(µe −
Z(k)dx)−z(k). The fraction-to-boundary rule determines primal and dual step
lengths that maintain positivity of x and z:

α(k)
x

def
= max{α ∈ (0, 1] | x(k) + αdx ≥ (1− τ)x(k)}

α(k)
z

def
= max{α ∈ (0, 1] | z(k) + αdz ≥ (1− τ)z(k)},

(8)
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where τ is a parameter close to 1. A filter line search assesses whether the
trial iterate makes sufficient progress with respect to the filter method. If so,
the trial iterate is accepted; otherwise the line search backtracks and tries
again with a smaller step length. If the step length ultimately falls below a
given threshold (e.g., 10−7), we switch to feasibility restoration and solve the
ℓ1 feasibility problem with elastic variables.

Note that by construction the filter entries depend on the barrier parameter
µ through the auxiliary measure ξ. Consequently, the filter must be flushed
whenever µ is updated. The complete pseudocode of the method is given in
Algorithm 6. An alternative that we plan to explore in the future is to update
the filter whenever the barrier parameter is updated.

7 Numerical results

We compare Uno 1.0.0 against state-of-the-art solvers filterSQP (20010817)
(with the QP solver BQPD), IPOPT 3.14.11 (with the linear solver MUMPS
5.5.1), SNOPT 7.5-1.2, MINOS 5.51, LANCELOT, LOQO 7.03, and CONOPT
3.17A on 429 small test problems of the CUTEst benchmark [24]. The log files
of all solvers are available at the following repository:
https://github.com/cvanaret/nonconvex solver comparison .

7.1 Validation of Uno presets

In this section we demonstrate that the Uno presets closely mimic the corre-
sponding solvers and are competitive against all state-of-the-art solvers. Ta-
ble 6 Table 7 and Table 8 summarize the number of objective evaluations
required by each solver for linear, quadratic, and nonlinear instances, respec-
tively. The lowest count is shown in bold. IPOPT terminated with the status
“EXIT: Problem has too few degrees of freedom” on the instances argauss and
lewispol; this is interpreted as failure.

Figure 6 portrays a performance profile [11] of all solvers: the y axis is the
fraction of solved problems, and the x axis represents the relative budget of
objective evaluations compared with the (virtual) best solver for each instance.
The higher and more to the left, the better. This performance profile conveys
three important messages:

1. the Uno presets mimic the corresponding state-of-the-art solvers well;
2. the Uno presets filtersqp and ipopt outperform most state-of-the-art

solvers;
3. 12 instances (aljazzaf, hatfldf, himmelbd, hs085, hs109, hs114, launch, po-

lak6, powellsq, snake, spiral, and vanderm4) are solved by IPOPT but not
by the Uno ipopt preset, most likely because of the IPOPT features that
were not implemented (see Section 5.3).

https://github.com/cvanaret/nonconvex_solver_comparison
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These results validate the implementation of off-the-shelf strategies within
Uno and demonstrate that Uno is a strong new contender on the nonlinear
optimization scene.
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Fig. 6: Performance profile (number of objective evaluations) of state-of-the-
art solvers and Uno presets on 429 small CUTEst problems.

7.2 Performance of a novel Uno combination: a trust-region ℓ1-merit Sℓ1QP
method

We now assess the performance of a novel Uno combination, a trust-region
ℓ1-merit Sℓ1QP method, against the state-of-the-art solvers on the 429 small
CUTEst instances. The method builds on the byrd preset and is obtained via
the following command line:

./uno_ampl -preset byrd -globalization_mechanism TR ./model.nl

where -globalization_mechanism TR overwrites byrd’s line-search method
with a trust-region method.

Figure 7 portrays the performance profile of the state-of-the-art solvers, the
new Uno combination, and the Uno byrd preset (for comparison). It shows that
the trust-region Sℓ1QP method (byrd preset + TR) outperforms the original
line-search Sℓ1QP method (byrd preset) in terms of objective evaluations and
robustness, as well as most state-of-the-art solvers except for filterSQP. In fact,
it turns out to be as robust as filterSQP (both solvers solve 428 of the 429
instances), albeit requiring more objective evaluations.
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Fig. 7: Performance profile (number of objective evaluations) of state-of-the-art
solvers and a novel Uno combination, a trust-region ℓ1-merit Sℓ1QP method,
on 429 small CUTEst problems.

These results demonstrate the modularity and versatility of Uno: with a
single command line and with no programming effort from the user, Uno can
generate combinations of strategies on the fly that perform well. In particular,
individual ingredients can be replaced in existing presets effortlessly.

8 Conclusion and future developments

We have introduced an abstract framework for unifying nonlinearly constrained
nonconvex optimization based on four ingredients common to most methods:
a constraint relaxation strategy, a subproblem, a globalization strategy, and a
globalization mechanism. We have shown that our abstract framework provides
a unified view of most state-of-the-art solvers, as well as common notation and
abstractions for the unified description of well-known optimization strategies.

We then presented Uno, a C++ implementation of the abstract frame-
work. A modular solver, Uno provides efficient implementations of off-the-shelf
strategies and facilitates the development of new algorithmic ideas by mak-
ing building blocks and abstractions readily available. In particular, newly
developed strategies (e.g., a new type of line search) can be immediately de-
ployed and tested within a wide range of strategy combinations. Entirely novel
strategy combinations (such as a trust-region ℓ1-merit Sℓ1QP method) can be
generated on the fly with no programming effort and tested against more tra-
ditional approaches for a given instance. We believe that Uno has the potential
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to serve as an experimentation laboratory for the optimization community and
accelerate research in nonconvex optimization.

Future releases of Uno will include the following features:

– quasi-Newton methods: L-BFGS and DFP;
– iterative linear solvers: MINRES [37];
– equality-constrained subproblems: SLPEQP;
– globalization strategies: funnel method;
– globalization mechanisms: parallel line search [40];
– interfaces to subproblem solvers: HiGHS and ProxQP;
– interfaces to programming languages: Python, Julia, and Matlab.
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A Statistics

Table 6: Number of objective evaluations on a subset of linear CUTEst prob-
lems.

Uno presets State-of-the-art solvers

Problem filtersqp ipopt byrd filterSQP IPOPT SNOPT MINOS LANCELOT LOQO CONOPT

booth 2 2 3 2 2 2 1 3 7 1

degenlpa 2 32 3 2 29 26 15 25 29 1

degenlpb 2 35 3 2 41 26 23 45 30 1

extrasim 2 6 3 2 6 1 1 3 11 1

goffin 3 9 3 3 10 25 25 10 13 1

himmelba 2 2 3 2 2 2 1 3 7 1

linspanh 2 19 4 2 54 5 14 13 12 1

makela4 3 8 3 3 8 1 1 20 12 1

model 2 15 3 2 15 23 34 33 15 1

res 3 9 2 2 10 1 5 1 12 1

simpllpa 2 13 3 2 14 3 3 5 12 1

simpllpb 2 11 3 2 11 1 1 4 13 1

supersim 2 7 3 2 2 1 1 7 11 1

zangwil3 2 2 3 2 2 3 2 3 8 1

Table 7: Number of objective evaluations on a subset of quadratic CUTEst
problems.

Uno presets State-of-the-art solvers

Problem filtersqp ipopt byrd filterSQP IPOPT SNOPT MINOS LANCELOT LOQO CONOPT

3pk 7 12 2 7 12 41 209 47 20 24

arglinb 2 3 3 2 3 1 8 2 3 20

arglinc 2 3 3 2 3 1 8 2 3 18

avgasa 2 10 3 2 10 9 19 12 11 16

avgasb 2 13 3 2 13 9 15 11 16 19

biggsc4 2 26 5 2 35 13 16 15 21 4

bqp1var 2 6 2 2 6 1 5 3 10 2

bqpgabim 2 13 2 2 21 36 107 6 14 17

bqpgasim 2 13 2 2 21 40 121 6 14 15

bt3 2 2 3 2 2 5 12 6 3 9

deconvb 42 – 32 30 – 103 30 31 45 23

dixon3dq 2 2 2 2 2 10 43 4 3 9

dual1 2 17 3 2 17 221 – 9 22 29

dual2 2 15 3 2 14 116 – 9 19 27

dual4 2 14 3 2 14 31 – 8 21 23

dualc1 2 28 3 2 30 7 24 17 26 14

dualc2 2 26 3 2 28 5 14 19 21 17

dualc5 2 11 3 2 11 7 24 8 16 15

dualc8 2 13 3 2 13 9 16 24 19 25

fccu 4 2 4 4 2 19 48 13 3 11

genhs28 2 2 3 2 2 11 12 5 3 9

hatfldc 5 6 5 5 6 14 19 9 9 15

hatfldh 2 14 3 2 19 3 8 13 16 5

hilberta 2 2 2 2 2 2 12 60 3 9

hilbertb 2 2 2 2 2 50 – 5 3 10

hs003 2 6 31 2 5 2 12 16 11 5

hs021 2 7 3 2 9 1 8 3 12 12

hs028 2 2 3 2 2 4 12 4 3 8

hs035 2 8 3 2 8 5 12 8 10 12

hs044 2 20 10 2 20 2 10 11 16 5

hs048 2 2 3 2 2 6 16 3 3 9



30 Charlie Vanaret, Sven Leyffer

Uno presets State-of-the-art solvers

Problem filtersqp ipopt byrd filterSQP IPOPT SNOPT MINOS LANCELOT LOQO CONOPT

hs051 2 2 3 2 2 6 12 10 3 7

hs052 2 2 3 2 2 5 11 6 3 9

hs053 2 7 3 2 7 2 12 6 12 15

hs054 2 8 3 2 8 5 16 9 12 12

hs076 2 8 3 2 8 4 13 9 11 16

hs118 3 12 4 3 12 21 41 19 17 4

hs21mod 2 16 3 2 17 1 8 3 20 12

hs268 2 19 4 2 17 6 36 27 27 19

hs35mod 2 16 3 2 16 1 6 3 16 6

hs3mod 2 6 3 2 6 5 13 4 12 10

hs44new 2 14 6 2 14 4 10 10 21 4

lotschd 3 15 4 3 15 8 5 9 19 7

lsqfit 2 8 3 2 8 3 11 7 12 10

maratosb 10 33 20 13 33 7 10 8 21 14

nasty 2 2 2 2 2 1 6 5 3 10

obstclal 2 11 2 2 15 37 90 7 23 15

obstclbl 2 12 2 2 13 44 87 3 13 47

obstclbu 2 13 2 2 13 36 74 2 15 26

oslbqp 2 15 2 2 15 6 11 3 19 2

palmer1c 7 2 2 7 2 8 61 145 – –

palmer1d 6 2 2 6 2 7 50 34 – –

palmer2c 5 2 2 5 2 8 62 298 – –

palmer3c 5 2 2 5 2 8 61 206 – –

palmer4c 6 2 2 6 2 8 61 176 – –

palmer5c 4 2 2 4 2 6 26 2 – –

palmer5d 5 2 2 5 2 4 25 2 – –

palmer6c 6 2 2 6 2 8 60 159 – –

palmer7c 8 2 2 8 2 8 64 189 – –

palmer8c 7 2 2 7 2 8 61 152 – –

portfl1 2 10 3 2 10 12 48 20 17 20

portfl2 2 9 3 2 9 12 50 14 17 23

portfl3 2 11 3 2 11 13 52 14 17 32

portfl4 2 10 3 2 10 11 49 19 16 19

portfl6 2 9 3 2 9 11 48 20 16 31

qudlin 2 25 7 2 26 11 18 2 20 3

sim2bqp 2 8 2 2 8 2 9 3 14 5

simbqp 2 8 2 2 8 2 10 2 13 4

tame 2 6 3 2 6 1 8 2 9 6

tointqor 2 2 2 2 2 50 – 8 3 12

zangwil2 2 2 2 2 2 2 11 4 3 3

zecevic2 2 9 3 2 9 2 9 7 11 7

Table 8: Number of objective evaluations on a subset of nonlinear CUTEst
problems.

Uno presets State-of-the-art solvers

Problem filtersqp ipopt byrd filterSQP IPOPT SNOPT MINOS LANCELOT LOQO CONOPT

aircrfta 4 4 4 4 4 – 1 10 6 2

aircrftb 21 15 15 21 19 58 65 27 21 32

airport 13 16 10 13 16 58 527 69 19 101

aljazzaf 12 – 37 15 82 145 64 24 79 9

allinitc 29 44 16 24 44 105 55 76 – 17

allinit 11 15 10 11 19 17 29 13 18 16

allinitu 12 15 10 12 15 14 20 15 11 17

alsotame 5 9 5 5 9 6 11 11 11 4

argauss 1 – 3 1 – 7 – – – 3

avion2 23 78 3 19 143 19 17 787 65 25

bard 11 9 19 11 9 23 36 15 19 17
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Uno presets State-of-the-art solvers

Problem filtersqp ipopt byrd filterSQP IPOPT SNOPT MINOS LANCELOT LOQO CONOPT

batch 9 31 8 9 34 33 379 – 64 32

beale 19 11 12 10 19 15 24 21 10 16

biggs3 11 16 18 11 28 24 31 40 12 15

biggs5 54 24 94 50 36 107 38 64 32 48

biggs6 74 38 67 83 50 120 119 103 59 139

box2 9 9 12 9 9 10 10 20 10 10

box3 8 11 9 8 15 24 15 31 11 13

brkmcc 4 4 4 4 4 10 13 7 8 10

brownal 8 8 8 8 8 21 77 24 10 17

brownbs 48 8 10 48 8 32 35 7 49 1

brownden 9 9 9 9 9 40 41 9 57 15

bt10 7 8 7 7 7 1 1 20 11 3

bt11 7 9 8 7 9 12 56 22 11 21

bt12 5 5 5 5 5 10 59 11 11 11

bt13 58 25 24 48 25 34 69 – 21 590

bt1 2 15 13 1 15 12 16 19 24 1

bt2 13 13 13 13 13 18 385 36 18 20

bt4 8 11 80 11 10 10 47 25 9 21

bt5 9 8 27 9 8 11 172 20 8 10

bt6 11 11 31 12 18 14 117 25 12 28

bt7 17 26 – 19 30 36 85 49 18 8

bt8 12 29 32 12 52 14 21 30 – 9

bt9 19 14 40 23 14 19 34 22 14 17

byrdsphr 8 28 – 11 19 59 35 43 11 17

camel6 9 11 7 8 11 19 24 8 12 19

cantilvr 13 12 18 16 12 23 69 27 16 45

catena 12 7 16 13 7 87 125 56 26 80

cb2 7 9 7 7 9 7 31 18 11 14

cb3 7 10 7 7 10 1 26 18 11 3

chaconn1 5 7 5 5 7 9 22 12 11 10

chaconn2 5 7 5 5 7 1 20 11 11 4

chebyqad 77 127 31 50 168 – – 62 12 87

chnrosnb 56 60 58 59 92 170 – 68 58 101

cliff 28 24 28 28 24 28 46 28 32 32

cluster 10 10 9 10 10 – 3 45 11 3

concon 7 10 6 5 10 14 – 676 – 40

congigmz 5 33 – 4 33 10 16 30 36 3

coolhans 3 10 – 3 10 – 4 281 25 2

core1 6 – – 6 105 44 86 – 52 5

coshfun 86 – – 303 1039 273 1091 154 24 140

cresc4 84 189 – 52 269 93 864 – 111 47

csfi1 20 12 1737 18 12 36 – 155 16 7

csfi2 13 331 – 8 86 60 – 180 17 3

cube 39 38 38 41 58 42 66 52 41 36

dallass 18 23 77 56 29 109 140 – – –

deconvc 24 73 12 58 99 81 87 43 31 30

deconvu – 454 150 971 687 152 30 69 76 86

demymalo 8 12 16 8 12 8 34 28 15 15

denschna 7 7 7 7 7 12 23 13 9 10

denschnb 10 21 20 10 25 10 17 11 9 10

denschnc 11 11 11 11 11 21 30 13 14 13

denschnd 41 27 35 43 27 77 111 65 44 64

denschne 11 17 20 11 25 44 34 16 15 34

denschnf 7 7 7 7 7 12 21 8 11 12

dipigri 12 18 19 13 22 23 129 63 12 30

disc2 5 48 217 25 48 800 – – 28 3

discs – – 1088 40 186 – – 422 59 3

dixchlng 10 11 153 12 11 31 – 44 26 43

djtl 31 3 122 29 861 – – 100 132 1

dnieper 4 31 594 4 31 13 36 75 25 6



32 Charlie Vanaret, Sven Leyffer

Uno presets State-of-the-art solvers

Problem filtersqp ipopt byrd filterSQP IPOPT SNOPT MINOS LANCELOT LOQO CONOPT

eg1 8 8 15 8 8 9 14 9 10 13

eigencco 20 13 21 29 14 34 158 17 22 26

eigmaxc 5 9 13 7 7 18 – 21 14 3

eigminc 5 12 10 7 8 21 182 11 13 4

engval2 19 29 19 20 33 34 66 30 28 33

errinros 53 42 41 53 70 267 – 76 60 90

expfita 13 34 19 13 31 24 28 54 23 14

expfit 13 9 9 13 9 18 28 11 13 19

extrosnb 2 2 2 2 1 2 5 1 1 1

fletcher 2 26 3 1 28 2 – 28 14 19

genhumps 139 212 165 188 321 77 169 134 146 71

gigomez1 8 18 17 8 19 9 51 33 16 14

gottfr 14 8 8 13 9 – 1 35 12 3

gridnetg 4 16 5 4 11 22 42 21 12 21

gridneth 5 9 5 5 7 36 114 20 12 12

gridneti 5 14 5 5 14 47 111 22 16 24

growthls 101 104 – 106 171 184 258 178 122 212

growth 101 109 – 106 171 187 258 178 143 206

gulf 26 28 25 26 44 66 695 63 26 32

hadamals 13 117 70 13 128 19 266 20 13 38

haifas 12 10 58 13 10 28 59 27 13 23

hairy 45 71 84 84 96 35 59 102 64 92

haldmads 25 249 – 41 23 71 94 45 31 12

hart6 15 10 9 11 14 16 36 9 23 20

hatflda 10 11 24 15 11 30 44 47 9 114

hatfldb 9 11 21 11 11 28 32 28 11 138

hatfldd 31 23 22 23 27 29 48 66 25 37

hatflde 36 28 36 26 32 31 63 57 29 31

hatfldf 8 – – 15 1335 – 2 113 13 3

hatfldg 5 20 18 15 20 – 2 29 16 3

heart6ls 2596 1109 1970 – 1588 – – – – 3067

heart6 5 1516 – 16 – – 49 – 327 3

heart8ls 248 133 105 217 189 – 474 238 108 369

heart8 5 37 – 12 40 – – 359 39 3

helix 18 17 21 19 25 28 53 18 13 21

himmelbb 62 12 12 25 12 8 20 11 16 32

himmelbc 5 8 7 8 9 – 1 11 8 3

himmelbd 4 – – 4 79 12 – – – 3

himmelbe 2 3 4 2 3 – 1 8 8 2

himmelbf 8 11 17 8 11 53 47 29 24 15

himmelbg 10 10 6 10 14 12 17 16 7 13

himmelbh 8 20 20 8 24 10 10 7 9 10

himmelbk 6 19 573 6 19 82 109 206 23 11

himmelp1 9 12 10 9 12 19 20 29 11 21

himmelp2 9 21 10 9 19 32 151 275 20 18

himmelp3 5 9 5 5 13 8 119 870 17 9

himmelp4 5 11 6 5 25 8 115 737 17 9

himmelp5 12 26 16 12 543 44 75 273 90 23

himmelp6 2 11 2 2 12 2 5 2 45 1

hong 5 13 8 5 13 4 14 6 20 4

hs001 33 33 34 36 53 48 9 41 35 36

hs002 9 13 10 9 17 15 12 7 21 10

hs004 3 6 3 3 6 4 6 2 8 2

hs005 8 9 11 11 9 9 13 9 10 14

hs006 3 8 12 3 7 9 90 63 10 4

hs007 12 51 11 13 28 30 64 26 12 13

hs008 6 6 6 6 6 – 1 13 8 3

hs009 5 5 5 5 6 10 11 22 9 8

hs010 10 13 26 10 13 20 22 18 15 19

hs011 6 9 6 6 9 15 46 16 12 12
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Uno presets State-of-the-art solvers

Problem filtersqp ipopt byrd filterSQP IPOPT SNOPT MINOS LANCELOT LOQO CONOPT

hs012 8 9 9 8 9 11 158 26 11 16

hs013 25 1083 22 34 79 17 53 60 – 19

hs014 6 8 6 6 8 10 9 13 11 3

hs015 4 21 6 7 21 11 85 47 31 3

hs016 5 10 6 5 23 5 9 19 18 3

hs017 8 20 9 8 18 19 11 20 30 6

hs018 7 14 7 7 27 32 93 117 15 16

hs019 7 16 6 7 16 9 56 45 18 9

hs020 5 8 5 5 7 5 8 23 24 3

hs022 2 7 5 2 7 7 47 10 9 3

hs023 7 11 7 7 12 7 53 51 18 6

hs024 3 11 16 3 13 8 8 14 13 3

hs025 31 40 2 27 44 2 5 1 20 1

hs026 18 26 19 18 26 27 76 41 14 33

hs027 21 125 1042 8 143 21 136 31 16 43

hs029 8 9 25 8 9 14 173 18 10 13

hs030 2 24 3 2 26 5 29 8 9 20

hs031 6 8 6 6 8 11 28 12 17 20

hs032 2 16 3 2 20 5 14 7 24 3

hs033 5 11 16 5 16 9 38 9 11 3

hs034 8 10 14 8 10 5 9 21 15 16

hs036 3 13 7 3 13 10 8 7 20 3

hs037 6 13 81 6 13 10 16 13 11 15

hs038 53 50 51 54 78 101 88 56 13 94

hs039 19 14 40 23 14 19 34 22 14 17

hs040 5 4 19 5 4 9 21 11 8 11

hs041 2 9 44 2 12 7 5 7 16 14

hs042 6 7 6 6 7 10 21 13 9 13

hs043 9 10 8 11 10 11 102 25 12 27

hs045 2 24 2 2 48 2 5 1 25 1

hs046 19 20 18 19 20 32 121 28 18 37

hs047 21 25 19 21 21 28 125 29 24 31

hs049 17 20 19 17 20 34 61 38 21 21

hs050 9 10 10 9 10 20 24 11 16 14

hs055 2 8 3 2 4 2 5 7 11 1

hs056 15 35 72 19 40 52 52 12 12 27

hs057 5 24 26 5 28 – 28 2 14 28

hs059 11 182 14 11 72 22 127 340 27 22

hs060 7 8 7 7 8 13 120 18 9 23

hs061 1 30 7 1 10 39 70 19 10 2

hs062 8 9 7 10 9 16 18 37 13 19

hs063 8 8 32 1 8 18 119 21 8 19

hs064 12 18 – 13 18 28 98 38 26 20

hs065 5 114 5 5 91 11 319 42 19 22

hs066 9 7 9 14 8 8 8 11 15 15

hs067 12 12 – 12 12 32 60 287 17 19

hs070 40 12 25 42 36 34 66 39 23 31

hs071 6 9 48 6 9 8 55 16 13 14

hs072 15 17 210 15 17 27 52 65 28 20

hs073 4 10 3 4 9 11 8 18 21 5

hs074 6 10 26 6 10 15 27 13 16 15

hs075 5 10 9 5 10 12 18 110 18 6

hs077 11 11 12 14 13 16 123 27 12 28

hs078 5 5 36 5 5 7 57 12 8 13

hs079 5 5 5 5 5 12 54 14 7 24

hs080 8 7 8 8 7 9 48 13 10 17

hs081 29 8 – 38 8 11 55 17 16 17

hs083 5 17 4 5 15 8 11 16 14 6

hs084 11 12 – 6 12 58 45 47 44 4

hs085 – – – – 127 – – – 63 7
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Uno presets State-of-the-art solvers

Problem filtersqp ipopt byrd filterSQP IPOPT SNOPT MINOS LANCELOT LOQO CONOPT

hs086 5 13 4 5 11 16 13 15 13 19

hs087 7 18 33 7 18 16 23 32 25 11

hs088 21 27 12 19 18 59 66 56 27 17

hs089 23 28 15 31 38 85 197 61 30 19

hs090 74 22 – 2 28 55 92 58 29 54

hs091 51 15 – 337 15 73 215 62 28 12

hs092 40 22 33 2 25 56 110 58 22 103

hs093 3 11 1619 2 10 33 – – 13 22

hs095 3 16 3 3 18 1 1 24 17 4

hs096 3 21 3 3 24 1 1 23 22 4

hs097 7 24 69 7 24 13 63 19 19 9

hs098 7 21 69 7 21 13 47 19 93 9

hs099 12 6 – 9 7 19 60 – 22 29

hs100lnp 12 21 19 14 21 33 133 32 12 36

hs100mod 12 21 28 14 27 32 123 137 15 32

hs100 12 18 19 13 22 23 129 63 12 30

hs101 22 98 23 34 273 530 – – 64 49

hs102 17 31 18 42 36 238 980 – 154 46

hs103 37 56 14 28 64 177 1418 – 88 38

hs104 17 9 36 23 11 29 85 – 14 3

hs105 9 24 80 9 31 89 114 – 17 24

hs106 16 15 66 17 15 34 – – 27 33

hs107 6 11 8 6 12 14 20 26 35 21

hs108 25 17 5286 36 17 152 164 43 20 32

hs109 6 – 59 7 44 349 – – 45 13

hs110 5 7 5 5 7 11 43 5 8 15

hs111lnp 40 16 42 31 16 64 388 57 17 30

hs111 40 16 42 31 16 70 388 46 15 29

hs112 12 18 12 12 18 35 92 47 19 58

hs113 6 12 6 6 12 28 146 97 17 30

hs114 1 – – 1 73 9 – 664 – 4

hs116 12 27 – 14 26 75 52 – 24 25

hs117 6 30 8 6 23 20 157 66 19 46

hs119 7 14 8 7 15 22 29 28 29 18

hs99exp 12 25 – 12 30 42 212 – 256 4

hubfit 2 8 3 2 9 8 11 8 – –

humps 114 186 260 – 571 257 193 – 307 259

hypcir 6 6 6 8 8 – 1 10 8 3

jensmp 11 10 11 11 10 36 55 10 14 13

kiwcresc 11 11 45 11 11 13 30 23 14 17

kowosb 18 15 17 18 23 33 39 24 11 26

lakes – 74 – 63 20 39 – – 288 1

launch 1 – – 1 673 246 – – – 3

lewispol 1 – 5 1 – 6 – – – 1

loadbal 8 17 15 8 18 58 130 62 23 26

loghairy 90 – 224 – – 249 402 – 64 150

logros 50 323 35 50 358 109 147 66 398 84

lootsma 5 11 16 5 16 9 38 9 12 3

lsnnodoc 7 13 7 7 15 8 7 11 21 3

madsen 14 23 12 25 25 14 28 26 26 28

makela1 12 19 17 15 19 8 27 19 15 20

makela2 5 8 14 5 8 16 21 40 12 7

makela3 22 17 29 25 17 288 96 125 18 15

maratos 10 5 19 10 5 9 20 9 7 11

matrix2 12 21 21 12 21 14 65 13 26 161

maxlika 9 24 80 9 31 89 114 – 17 24

mconcon 7 10 6 5 10 14 – 676 – 40

mdhole 3 62 51 56 106 70 116 68 98 6

methanb8 47 9 24 47 9 306 175 221 155 28

methanl8 105 50 164 96 82 499 669 640 80 84
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Uno presets State-of-the-art solvers

Problem filtersqp ipopt byrd filterSQP IPOPT SNOPT MINOS LANCELOT LOQO CONOPT

mexhat 10 5 5 10 5 37 18 4 7 8

meyer3 255 525 – 280 494 – 775 559 522 716

mifflin1 10 7 18 23 7 10 15 18 9 8

mifflin2 10 16 20 10 16 14 53 50 13 13

minmaxbd 22 114 20 9 78 115 160 592 31 38

minmaxrb 3 11 29 3 11 4 34 81 14 5

minsurf 14 13 13 10 21 24 196 15 13 15

mistake 22 15 9 18 15 19 159 30 15 36

mwright 9 11 18 12 11 12 37 19 11 19

nonmsqrt 786 – 228 716 – – 1490 167 – –

nuffield2 5 7 5 5 7 9 15 15 10 17

odfits 7 11 10 7 11 17 28 49 15 16

optcntrl 4 190 3 4 134 5 15 352 58 6

optmass 9 25 812 18 23 2 331 – 15 27

optprloc 16 19 32 6 19 12 685 438 23 19

orthregb 2 3 3 2 3 9 262 64 8 2

orthrege 2896 70 – 180 77 31 857 795 482 13038

osbornea – 92 – – 152 120 127 57 – 52

osborneb 20 21 24 20 25 82 127 45 19 42

palmer1a 42 47 46 51 71 205 – 102 113 200

palmer1b 21 22 17 21 26 87 – 55 65 69

palmer1e 105 82 295 74 122 186 149 353 187 100

palmer1 33 1003 12 33 1854 30 39 28 41 21

palmer2a 68 147 102 68 392 115 197 211 169 83

palmer2b 16 22 15 16 34 61 – 77 52 49

palmer2e 99 36 278 86 52 191 345 133 171 111

palmer2 32 39 11 33 63 44 – 34 24 57

palmer3a 78 115 94 82 199 136 – 201 172 172

palmer3b 21 15 11 21 15 54 – 36 37 49

palmer3e 453 78 92 117 133 293 426 – 234 118

palmer3 11 285 17 12 553 13 11 58 32 23

palmer4a 52 77 55 52 133 109 – 93 110 42

palmer4b 21 19 10 21 31 52 – 64 35 48

palmer4e 25 30 74 24 38 123 210 123 87 65

palmer4 12 617 18 12 1182 14 11 142 35 32

palmer5a – – – – – – 321078 – – –

palmer5b 837 125 66 855 208 – 3728 961 – –

palmer5e 3 – – 3 – – 25501 8 – –

palmer6a 132 157 122 137 263 202 270 277 – –

palmer6e 22 39 25 38 59 198 259 47 – –

palmer7a – – – – – – – – – –

palmer7e 1486 – – – – – 924 39 – –

palmer8a 49 58 35 50 102 127 103 61 – –

palmer8e 29 27 39 29 31 92 121 86 – –

pentagon 8 19 9 12 20 15 22 48 38 23

pfit1ls 365 369 304 566 678 480 717 453 337 1064

pfit1 365 369 304 566 678 480 717 453 337 1064

pfit2ls 178 105 125 210 184 175 237 217 115 2586

pfit2 178 105 125 210 184 175 237 217 115 2586

pfit3ls 166 188 149 139 337 289 474 272 148 3428

pfit3 166 188 149 139 337 289 474 272 148 3428

pfit4ls 84 298 288 126 548 470 754 410 286 4925

pfit4 84 298 288 126 548 470 754 410 286 4925

polak1 8 7 15 8 7 15 30 37 14 24

polak2 46 29 450 10 15 106 138 321 24 2

polak3 21 – 18 24 – 183 – 234 24 2

polak4 5 10 9 5 10 6 22 16 11 37

polak5 82 33 192 45 33 43 16 7 69 17

2 full name: nuffield continuum, which this table is too narrow to contain.
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Uno presets State-of-the-art solvers

Problem filtersqp ipopt byrd filterSQP IPOPT SNOPT MINOS LANCELOT LOQO CONOPT

polak6 43 – 47 29 301 62 108 644 27 40

powellbs 10 12 196 16 12 – 1 – 17 3

powellsq 80 – – 4 109 78 – 23 – 2

prodpl0 9 16 12 9 16 60 42 35 24 34

prodpl1 7 17 16 7 17 59 56 27 21 5

pspdoc 9 11 9 7 15 15 25 10 12 12

recipe 2 3 4 2 3 – 1 12 10 2

rk23 7 11 19 9 12 18 28 54 12 6

robot 14 11 604 45 10 18 377 33 18 64

rosenbr 29 29 29 29 45 45 9 36 26 29

rosenmmx 36 41 24 37 22 41 66 226 17 75

s365mod 23 – – 86 43 31 539 – 28 57

sineali 10 – 10 – – – 7333 – 16 24

sineval 57 66 66 62 110 94 123 75 57 77

sisser 19 21 15 19 21 15 17 38 17 19

snake 3 – 99 3 14 2 9 – – 4

spanhyd 4 24 6 11 24 13 – 26 – 24

spiral 113 – 527 152 64 130 148 96 135 642

ssnlbeam 5 31 – 5 22 36 124 39 60 44

stancmin 2 11 3 2 11 5 5 9 20 4

swopf 5 17 – 6 17 160 100 290 21 22

synthes1 5 10 5 5 10 10 21 13 17 13

try-b 8 20 9 8 20 10 10 13 16 3

twobars 8 10 12 8 10 11 31 13 10 14

vanderm4 1 – – 1 51 86 – 36 – 3

watson 22 14 71 21 14 172 117 44 18 18

weeds 38 27 4 39 32 51 – 3 29 44

womflet 42 13 – 9 12 14 40 97 12 25

yfit 47 116 49 48 185 95 130 103 45 74

yfitu 47 45 57 48 69 95 130 103 43 74

zecevic3 10 22 346 9 22 11 38 19 12 19

zecevic4 6 10 6 6 10 8 22 12 15 16

zigzag 11 27 76 11 23 23 218 43 29 74

zy2 5 12 16 5 10 9 43 9 14 4

B Combining the ingredients
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Algorithm 4: Uno: trust-region filter restoration SQP.

Input: initial primal-dual iterate (x(0), y(0), z(0)), initial trust-region radius ∆
k ← 0

constraint relaxation
(η(x), ωρ(x), ξ(x) )

def
= (∥c(x)∥1, f(x), 0 )

(∆η(k)(dx), ∆ω
(k)
ρ (dx), ∆ξ

(k)(dx) )
def
=

(
∥c(k)∥1 − ∥c(k) +

(∇c(k))T dx∥1,−(∇f(k))T dx, 0
)

phase ← Optimality

globalization strategy
ϕ

def
= ω1 + ξ

∆ϕ(k) def
= ∆ω

(k)
1 + ∆ξ(k)

Initialize F

repeat

globalization mechanismSet inner iteration counter l← 0

Reset trust-region radius ∆(l) ∈ [∆,∆]
repeat

constraint relaxationif phase = Optimality then

(d(k,l)
x , d(k,l)

y , d(k,l)
z )← solve QP (k)( ∆(l) )

if QP (k)( ∆(l) ) infeasible then

phase ← Restoration

y(k) ← 0

globalization strategyF ← F ∪
{(
η(x(k)), ϕ(x(k))

)}
if phase = Restoration then

(d(k,l)
x , d(k,l)

y , d(k,l)
z )← solve FQP (k)( ∆(l) ) starting from d(k,l)

x

Assemble trial iterate (x̂(k+1,l), ŷ(k+1,l), ẑ(k+1,l))
def
= (x(k), y(k), z(k)) +

(d(k,l)
x , d(k,l)

y , d(k,l)
z )

Reset the bound multipliers corresponding to the active trust region
acceptable ← false

constraint relaxationif ∥d(k,l)
x ∥ = 0 then
acceptable ← true

else

if phase = Restoration and QP (k)( ∆(l) ) feasible and

η(x̂(k+1,l)) < ηmin(F) then

phase ← Optimality

F ← F ∪
{(
η(x(k)), ϕ(x(k))

)}
globalization strategyif phase = Restoration then

if ∆η(x(k))− η(x̂(k+1,l)) ≥ σ∆η(k)(d(k,l)
x ) then

acceptable ← true

else if x̂(k+1,l) acceptable to F and improves upon x(k) then

if ∆ϕ(k)(d(k,l)
x ) ≥ δη(x(k))2 then

if ϕ(x(k))− ϕ(x̂(k+1,l)) ≥ σ∆ϕ(k)(d(k,l)
x ) then

acceptable ← true (f-type)

else
acceptable ← true (h-type)

F ← F ∪
{(
η(x(k)), ϕ(x(k))

)}

if acceptable then

if trust region is active at d(k,l)
x then

Increase radius ∆(l)

else

Decrease radius ∆(l)

l← l + 1

until (x̂(k+1,l), ŷ(k+1,l), ẑ(k+1,l)) is acceptable

Update (x(k+1), y(k+1), z(k+1))← (x̂(k+1,l), ŷ(k+1,l), ẑ(k+1,l))

k ← k + 1

until termination criteria are satisfied

return (x(k), y(k), z(k))
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Algorithm 5: Uno: line-search ℓ1-merit Sℓ1QP.

Input: initial primal-dual iterate (x(0), y(0), z(0)), initial penalty parameter ρ
k ← 0

constraint relaxation
(η(x), ωρ(x), ξ(x) )

def
= (∥c(x)∥1, ρf(x), 0 )

(∆η(k)(dx), ∆ω
(k)
ρ (dx), ∆ξ

(k)(dx) )
def
=

(
∥c(k)∥1 − ∥c(k) +

(∇c(k))T dx∥1,−ρ(∇f(k))T dx, 0
)

globalization strategy
ψρ

def
= ωρ + η + ξ

∆ψ(k)
ρ

def
= ∆ω(k)

ρ + ∆η(k) + ∆ξ(k)

repeat

globalization mechanismconstraint relaxation(d(k)
x , d(k)

y , d(k)
z )← solve (ℓ1 QP

(k)
ρ )

if l(k)(d(k)
x ) > 0 then

(d̄x
(k), d̄y

(k), d̄z
(k))← solve (ℓ1 QP

(k)
ρ ) with ρ = 0 ▷ Eq. (ℓ1QP(k))

Decrease ρ until the solution (d(k)
x , d(k)

y , d(k)
z ) to (ℓ1 QP

(k)
ρ ) satisfies

{
l(k)(d(k)

x ) = 0 if l(k)(d̄x
(k)) = 0

l(k)(0)− l(k)(d(k)
x ) ≥ ε1

(
l(k)(0)− l(k)(d̄x

(k))
)

otherwise

Further decrease ρ until the solution (d(k)
x , d(k)

y , d(k)
z ) to (ℓ1 QP

(k)
ρ ) satis-

fies

∆ψ(k)
ρ (d(k)

x ) ≥ ε2 ∆ψ(k)
0 (d̄x

(k))

ρ← min

(
ρ,

(
E

(k)
0 (x(k), y(k) + d̄y

(k))

max
(
1, ∥c(x(k)∥1)

) )2)
if ρ has decreased then

(d(k)
x , d(k)

y , d(k)
z )← solve (ℓ1 QP

(k)
ρ )

α(0) ← 1
Set inner iteration counter l← 0
repeat

Assemble trial iterate (x̂(k+1,l), ŷ(k+1,l), ẑ(k+1,l))
def
= (x(k), y(k), z(k)) +

(α(l)d(k)
x , α(l)d(k)

y , d(k)
z )

acceptable ← false

constraint relaxationif ∥d(k,l)
x ∥ = 0 then
acceptable ← true

else

globalization strategy
if ψρ(x

(k))− ψρ(x̂
(k+1,l)) ≥ σ∆ψ(k)

ρ ( α(l) d(k)
x ) then

acceptable ← true

if not acceptable then

Decrease step length α(l)

l← l + 1

until (x̂(k+1,l), ŷ(k+1,l), ẑ(k+1,l)) is acceptable

Update (x(k+1), y(k+1), z(k+1))← (x̂(k+1,l), ŷ(k+1,l), ẑ(k+1,l))

k ← k + 1

until termination criteria are satisfied

return (x(k), y(k), z(k))



Unifying nonlinearly constrained nonconvex optimization 39

Algorithm 6: Uno: line-search filter restoration interior-point
method.

Input: initial primal-dual iterate (x(0), y(0), z(0)), initial barrier parameter µ > 0
k ← 0

constraint relaxation
(η(x), ωρ(x), ξ(x) )

def
= (∥c(x)∥1, f(x), −µ log(X)e )

(∆η(k)(dx), ∆ω
(k)
ρ (dx), ∆ξ

(k)(dx) )
def
=

(
∥c(k)∥1 − ∥c(k) +

(∇c(k))T dx∥1,−(∇f(k))T dx, µ(X
(k))−1eT dx

)
phase ← Optimality

globalization strategy
ϕ

def
= ω1 + ξ

∆ϕ(k) def
= ∆ω

(k)
1 + ∆ξ(k)

Initialize F

repeat

globalization mechanismconstraint relaxationsubproblemPossibly update the barrier parameter µ

(d(k)
x , d(k)

y , d(k)
z )← solve


IPSP (k)

µ if phase = Optimality

FIPSP (k)
µ if phase = Restoration

subproblemScale primal-dual direction according to (Eq. 8)

α(0) ← 1
Set inner iteration counter l← 0
repeat

Assemble trial iterate (x̂(k+1,l), ŷ(k+1,l), ẑ(k+1,l))
def
= (x(k), y(k), z(k)) +

(α(l)d(k)
x , α(l)d(k)

y , d(k)
z )

acceptable ← false

constraint relaxationif ∥d(k)
x ∥ = 0 then
acceptable ← true

else

globalization strategyif phase = Restoration then

if ∆η(x(k))− η(x̂(k+1,l)) ≥ σ∆η(k)(d(k,l)
x ) then

acceptable ← true

else if x̂(k+1,l) acceptable to F then

if η(x(k)) ≤ θmin and 0 < ∆ϕ(k)( α(l) d(k)
x ) and

∆ϕ(k)( α(l) d(k)
x ) ≥ δη(x(k))2 then

if ϕ(x(k))− ϕ(x̂(k+1,l)) ≥ σ∆ϕ(k)( α(l) d(k)
x ) then

acceptable ← true
else

F ← F ∪
{(
η(x(k)), ϕ(x(k))

)}
else if x̂(k+1,l) improves upon x(k) then

acceptable ← true

if ¬
(
0 < ∆ϕ(k)( α(l) d(k)

x ) and ∆ϕ(k)( α(l) d(k)
x ) ≥ δη(x(k))2

)
then

F ← F ∪
{(
η(x(k)), ϕ(x(k))

)}
if acceptable and phase = Restoration and

x̂(k+1,l) acceptable to F and η(x̂(k+1,l)) ≤ κη(x(k)) then

phase ← Optimality

F ← F ∪
{(
η(x(k)), ϕ(x(k))

)}
if not acceptable then

Decrease step length α(l)

l← l + 1

if α(l) too small then

constraint relaxationphase ← Restoration

globalization strategyF ← F ∪
{(
η(x(k)), ϕ(x(k))

)}
(d(k)

x , d(k)
y , d(k)

z )← solve FIPSP (k)
µ

subproblemScale primal-dual direction according to (Eq. 8)

until (x̂(k+1,l), ŷ(k+1,l), ẑ(k+1,l)) is acceptable

Update (x(k+1), y(k+1), z(k+1))← (x̂(k+1), ŷ(k+1), ẑ(k+1))

k ← k + 1

until termination criteria are satisfied

return (x(k), y(k), z(k))
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